THE GAC ADVENTURE
WRITERS HANDBOOK

CONTENTS
How to write a good Adventure 1
What is a Condition? 4
Markers 7
Counters 11
Diagnostics Screen 15
Text 16
Graphics 18
Advanced Commands 20
Advanced use of Conditions 23
Multiple Loading Techniques 26
Error Messages 27
Errata Information 28
Amstrad Hints & Tips 30
BBC Hints & Tips 35
Comnodore Hints & Tips 38
Spectrum Hints & Tips 41
Adventure Cludbs 8 Magazines 46

Grateful thanks to all contributors

Simon Lipscomb, Tim Walsha, Pat Winstanley, John Guwinnell
& Lesley Anderson

The Graphic Adventure Creator (GAC) is Copyright Incentive
Software Ltd/Sean Ellis. 1985 & 1986.

All rights of the producer and of the owner of the work being
produced are reserved. Unauthorised copying of this work as a
whole or in part are strictly prohibited. The pudblisher assumes
no responsibility for errors. Although every effort is made to
ensure the information in this publication is true and correct.

HOW TO WRITE A GOOD ADVENTURE

The best adventures all contain the following features:

1. A well defined and interesting plot.

2. A good atmosphere.

3. Ortginality and inventiveness in the problems - but with a
good deal of logic.

4. A lot of responses to player input.

B, A degree of humour.

Thene features are descorihed more fully below.

I PLOT

Try to make your plot original, not just another “collect the
treasures” or "rescue the princess” clone. You muast be careful
that your plot will work in adventure format - a hijacked plane
scenario would probably be a bit limited,

A plot should neither be too mimple nor too complex as the player
will either become too bored or too confumsed.

The plot can be presented on the inlay or accompanying literature
on a loading screen or at the game astart, but these methods allow
for gradually less plot to be mshown. Plot on the inlay can be
read (n the shop and may incite the customer to buy the game.
Almo any nasty pirates won't know what's going on!

2. ATHOSPHERE
Room descriptions do not have to be big to be atmospheric. Good

use of adjectives and adverbs usually does the trick.
For example:

GOOD: You're in a cold damp east-west corridor. The walls are
bathed in flickering torch light.

BAD : You're in a corridor. Torches are on the walls. East or
West.

Aim to include available exits, but +try to make them more

interesting than “Exits lead North, East and West". "The path

winds it's way Northuards into the mountains", is more

interesting.

3. PROBLEMS

Problems consist either of having to get past some obstacle or

interacting with other characters or objects. A problem should
always have a reason for solving it, usually to reach sSome new
locations or to get an essential object. Problems are usually
successive, for example, solving one problem, gets an object
needed to solve the next.

When designing a problem keep it relevant to the plot, for

example, coping with technology/getting past robots in a science
fiction game.

The problem should not be so obscure as to make it impossible,
unless some clue is given elsewhere.

The solution to a problem should be relevant to the actual

problem. For example, if the player meets a vampire they will
assume that the way to defeat it 1is one of the old vampire
methods, (e.g. garlic, cross, holy water and so on). If it turns

out that the way past the vampire is to "REMOVE SHOES" +then the
player will feel cheated.

Gets Harder

Adventures should get harder as they progress, so that the
beginners get some easy problems to start them off and more
experienced players will not sail straight through to the end.
Easy problems at the beginning should have plenty of clues as to
what the player should do and plenty of responses, (see below).
They will also give the player a feel of your adventure writing
technique so they will know what to expect later on.

DON'T put any "Instant death" high priorities in right at the
start, unless they are for walking off a cliff or something
similar. In fact the player should never be killed unless he/she
deserves it - moving into a new location and finding out it s
quicksand will annoy the player unless it is specifically stated
that there is quicksand in that direction.

A player attacking a lion with bare hands is asking for trouble.
A player walking along a path is not.

4. RESPONSES

A game should have lots relevant responses to wrong inputs,
instead of saying "You can’t", it will say why you can’t.
An example of this would be:

The player is on the south bank of a river in a copse of trees.
The way across the river is to build a raft using the axe and the
rope.

Error messages can be written for:

a) Trying to cross the river without the raft -
*Full of crocodiles", “Can’'t swim", etcC.
b) Building the raft without the axe -
"You try to fell the tree using karate, but fail".

c} Building a raft having cut down the trees, but not having the
twine -
"The logs don't seem to want to stay together".

d) Finally two messages for building the raft successfully, and

crossing the river.

5. HUMOUR

In general, humour found in adventure games is the wry comment Or
sarcasm. Humourous responses are usually those for when the
player does something wrong or stupid. Total all out silly
adventures and spoofs, (e.g. “Bored of The Rings"), should only be
attempted if you are above averagely witty or the player will fed
up with the same old jokes every time.

No game should take itself too seriously, it is after all only a
game'!

GRAPHICS

Graphics are becoming an important part of adventures thess days,
at least as far as the commercial aspect is concernad. A
text-only adventure written on GAC is only wutilising half the
features, but it is best to leave the graphics until last and use
up the repaining memory rather than trying to cram an adventure
1nto memory left after drawing the graphics.

If you try to have a graphic for every location, you will end wup
mither with a nmall adventure or poor graphics. The best tactic
tn to uxn yvarinun marged elements, and to place graphics evenly
throuwghout the adventure, no that the player goes for roughly the
name amouht of time hetwsen (lluntrated locations. It ts best to
draw graphicn of the more interesting places tn your game. A
TiApla mrant Wwant tunnel 1t not the most (napivring of places, but
the NO foot ntatue ol the {2 armed warrsor detty could make an
(Rprasnive ploeture,

If you are not particularly good at drawing, you can alwayn get a
friend to 4o the graphics, Failing that make the pictures
thformative rather than artistic,

Some pointern to follow as regards to graphicas are to knep the
paper colour dark and pen colour light. Choone atmilar colours as
oppuoned to Wildly differsant ones, in the hops of getting lots of
shades.

A3 a final point, rememher that mroat adventure reavimsusx 4o not have
graphica ratingn.

BELIEVABILITY

This may seem like a strange thing to ask of a game where magic
works, or aliens frequently pop in for tea, but your game should
have an internal logic.

Believability is enhanced by relevant placement of locations and
objects, for example, a snowfield next to a desert, or an i{roning
board in a forest, do not help believability.

The best way to make an adventure seem realistic is to ask the

question why? of all features. 1f you have no answer, change that
feature.

PLAYTESTERS

Always get someone else, (at lecast one other), to play your game.
This way you will be able to find out if your problems are too
easy or too difficult, which responses to put in and any mistakes
in spelling or syntax, (other people tend to sSpot your mistakes
more easily'!). And when your playtester gets stuck or stops the

game, don't just tell them the way round it, but note things doun
and adapt your adventure to accept his responses and/or put in
more clues etc.

R Y]

WHAT IS A CONDITION?

In an adventure the player has freedom to type anything at the
keyboard. Only a tiny minority of the possible inputs has relevance
to the adventure, 30 some method must be used to tell the interpreter
what these are and how to deal with them. The method used in GAC is
the use of four different types of conditions.

a) Connectjons

b) Local Conditions

¢) Low Priority Conditions
d) High Priority Conditions

Every command that the player can type which causes some action to be
taken by the interpreter must have a condition of one type or other,
as the conditions are what cause action to be taken. It isn't aluays
necessary to have a separate condition for every single relevant
input. Very often a group of similar commands can be lumped together
into one °*blanket® condition which will deal with them all (e.g. GET.
DROP, EXAMINE etc). But remember..... no condition....no action!

The term condition is a little misleading as this implies only a test
for truth. In GAC the term condition s used to cover actions
too..... sometimes with no *condition’ attached.

The general construction of conditions is as follows:

IF (whatever is inside the brackets is all true) {(Then, and only
then } perform all the actions between the end of the brackets and
the 'END' command.

The conditional part * IF (.....) * can be omitted altogether if it

is required that a particular action be performed every turn.
Normally, this type of entry would go in the High Priority section.

When the conditional part is used, what it does is test to see
whether the player's input and any oOther relevant information is
true. If everything in the brackets is true, all the actions after
the brackets will be performed. If anything within the brackets s
not true, none of the actions after the brackets will be performed,
so the condition will be ignored. The search through further
conditions will continue until either a condition which is true |is
found and acted upon, or no true condition at all is found 1in which
case no action will be taken, and the player will be asked to try
again.

Order of Priorities

Each condition is looked at in turn and acted upon if appropriate
until either a command to stop looking at any further Local or Low
Priority conditions is found (WAIT or OKAY at the end of a true
condition which jumps the player to the beginning of the High

Priority conditions), or all conditions have been checked and the
player is asked for the next comnand. The order in which conditions
are checked is predetermined and very important..... Connections,

Local, Low, High.

CONNECTIONS .. are conditions which the writer can adjust only to
the extent of which movement verb leads to which location, Any input

by the player which matches a valid connection in the room where the
player is will be acted upon, the player moved to a new room, The
High Priority conditions checked and acted upon if appropriate, and

the “What now?" message printed....WITHOUT LOOKING AT ANY LOCAL OR
LOW PRIORITY CONDITIONS!!'! So if you want a move from one room toO
another to be conditional upon (say) possession of the correct key,

that particular room connection must not be entered in the room
description, otherwise the player will move before any check is made
an to whether or not the key is available. Instead, the connection
mumt bhe ommitted from the room description connections and entered
elsevhere, usually as a LOCAL condition. For instance, say you wanted
the player to bhe ahle to move north from room 6 to room 7 if, and
only {f a key was being varried, the entry would be as followus;.

IF (VERB (north) AND AVA! (key))} GOTO 7 WAIT END

This would be entered as a Local condition for room 6, but no en(
would be made for 'north’' in the room connections.

LOCAL CONDITIONS If no valid connections are found or the
player has not typed a movement verb, the next set of conditions will
be searched { in number order) for a match with the player's input
and status. These will be the Local conditions relating to the room
where the player currently is. (If the player is in room 15, only
room 15 conditions will be checked, regardless of whether another
room's local conditions match). If and when a true condition is
found it is acted upon, and if a 'WAIT' or °'OKAY' is encountered in
that condition, a jump will be made to the High Priority conditions,
then to the player's next command as above. If no true condition is
found, or one is found and acted upon which has no 'WAIT' or ‘OKAY®
command in its actions, further searching continues. Only when all
relevant Local conditions have been looked at are the Low Priority
conditions checked.

LOWw PRIORITY Assuming no jump has been made, the Low Priority
conditions are checked for a match in exactly the same way as the
Local ones. Whereas only the Local conditions pertaining to the
current room are available for <checking, all the Low Priority
conditions are available. Again, true conditions are looked for and
acted upon, and if no jump is made, High Priority conditions are
checked.

HIGH PRIORITY CONDITIONS ... These are aluays checked and acted u(
after every turn, regardless of whether any Connections, Local or LJ3w
conditions have been performed. A 'WAIT' or °‘OKAY' command which
stops further checking of Low or Local <conditions jumps +to the
beginning of the High Priority table after incrementing the turns
counter. Once The High Priority conditions have been 'done' the "What
now?" message is printed (if the player is still in the game').

Use of Conditions

CONNECTIONS

Used ONLY for unconditional moves between rooms.

LOCAL CONDITIONS
Used for actions which will only be performed

LOW PRIORITY
Used for actions which can take place anywhere

HIGH PRIORITY
Used for conditions and actions to occur befor

Drafting Conditions

When working out the form of a new condition,
noun, verb, object, marker numbers, and urite
English. Think of the condition as split into

in one location

e the players input.

it is useful to ignore
the logic out in plain
two parts;

1) TRUE OR FALSE....... what needs to be true for the actions to be
performed?

2) WHAT TO DO.......... what actions are required for the desired
effect?

e.g. IF (VERB (hit} AND NOUN {granny} AND HERE <(granny} }
[thenl MESS °'she hits you back harder'®' WAIT END

Only when the logic of the condition is clear
insert the relevant numbers. Don't stop in the

on paper should you
middle of a condition

to enter a new message or verb etc, as doing so will probadbly ruin

your train of thought. Also, keep your draft
condition has been entered and debugged. It's
and understand English than algebra!

on paper until the
a lot easier to read

MARKERS

While writing an adventure you wWill come across many situations where,
depending upon the player's actions, the environment can be in one of
two states. For instance..... imagine the following text greeting the
player on entering a location;

"You are in a farmhouse kitchen. You can also see a table.*

Now suppose you wanted the player to examine the table, and in doing
a0 find a bottle. This is simple to set up, merely by having a
condition on the lines of;

A) IF VKRB (examine) AND NOUN (table}) BRIN {(bottle) LOOK WAIT END

On typing "exam tahle" the player would be rewarded with the following
text |

"You are (n a farmhouse kitchen. You can also see a table, a bottle(

There is just one snag with this routine. If the player again types
"exam table" (which s ©perfectly reasonadble since occasionally
adventures provide for a sequence of objects to be found) the bottle
will be acted upon by the BRIN command again. Since you won't want the
player to discover the bottle every ¢time he examines the tablse,
something must be done to let GAC know that the bottle has already
been found.

This is where the use of a marker comes in' A marker can be imagined
as a switch which can be either on or off, but no other state is
possible. In the situation described above you would allocate a marker
to 'mark’ whether or not the bottle had been discovered. If the player
types “exam table* and the marker says that the bottle has not yet
been found, GAC needs to know that it can bring the bottle. If however
the bottle has already been found, GAC needs to know that further
examination of the table will NOT result in the bottle being brought.
And since examining the table after the bottle has been found ought to
give some description of the table, two conditions need to be set up,
(B) & (C);

B) IF (VERB (examine} AND NOUN (table? AND RES? x) BRIN
{bottle} SET x LOOK WAIT END

C) IF (VERB {(examine) AND NOUN ({(table} AND SET? «x) MESS (see
nothing special}) WAIT END

So if the bottle has not been found, condition (B) will be acted up(..
because marker x is "reset". (All markers are reset initially wunless
you set them, except markers O 8 |).

If condition (B) is acted upon, one of the things that will happen is
the “"setting" of marker x in the action part of the condition. So if,
at a later stage, the player tries to examine the table again,
condition (B) will no longer be true. GAC, on reaching "res? x" will
check marker x and find that it is "set". This being so, it will move
on to look for a true condition.... condition (C). Here GAC is told to
check for marker x being "set ?", which it i1s8. So condition (C) will
be acted upon giving the message "You see nothing special™”.

Once a marker is set, or reset it will remain in that state unless GAC
acts upon a condition which contains a command to switch it to the
opposite state.

There are only four possible expressions which can be wused regarding
markers:

SET? x - is used in the 'IF’ part of a condition, ie Wwithin the
brackets to ask GAC to check if the marker x is "set". If marker x is
not "set" the condition is not true, as so wWill not be acted upon.

RES? x - is also used in the 'IF' part, to ask GAC to check if
marker x is "'reset”. If marker x is not "reset", the condition will
not be acted upon.

SET x - is used in the ‘'action' part of the condition ie after the
brackets. If marker x is reset, "set x" will change it to being "set"“.
If marker x is already "set" it will remain "set.

RESE x - is used in the ‘action part. If marker x is "set", "rese x"
will change it to being "reset”. If marker x 1is already ‘'reset" is
will remain "reset'.

So if you want a condition to include a check on the state of a
marker, use RES? or SET? inside the brackets.

If you want to change the state of a marker, use SET or RESE after the
brackets.

LIGHT AND DARK

To indicate a light or dark room, a special marker is set aside...
marker 1.

If the player is in a light room and moves into one you have
designated as being dark, marker 1 is changed from being set to being
reset. In this special case only the action words SET and RESE are
needed. The way to acheive a change of light conditions is as follows.

For this example, imagine two rooms;

(LIGHT) ' . (DARK) .

a) Make sure there is NO connection E 2 from Room 1, and NO connection
W ! from Room 2, in the movement line of the room description. If you
don't, typing the relevant direction will cause a move to be made
without looking at any conditions.

b) Make local conditions as follows;

ROOM 1.... IF (VERB (east}) RESE 1 GOTO 2 WAIT END
ROOM 2.... IF ¢ VERB {(west}) SET 1 GOTO 1 WAIT END
What happens is this: If you are in room 1 and type "“east", GAC looks

through the connections, doesn’'t find an east connection, SO moves oOn
to the Local Conditions for room 1. Here it finds a condition for
moving east and acts upon it, in the process 'resetting’ marker 1. Now

GAC knouws (because it is already built in) that if marker 1 is reset,
the current room is dark. The current room in this case is room 2
since the GOTO moves the player there. Since marker is signifying
darkness, the room description is not printed. Instead the appropriate
nmessage, "lt i3 dark. You can't see." greets the player.

If the player is in room 2 and types “west*, GAC moves the player to
room 1, "setting" marker 1 in the process. Now that marker 1 is set,
GAC knows the player ia in a light room and prints the description of

room 1. (

If you have dark rooms in your adventure, you will probably want to
provide the player with a lamp. Again, a special markor 15 set aside
by GAC to cope with lamps... marker 2.

If the player is in a room and both marker 1 and marker 2 are "reset",
GAC will refuse to describe the room, instead giving the "It is dark"
message. So marker 2 is used to tell GAC whether a 1it lamp is
available.

There are three possibilities for the circumstances in which the
player may move east from room 1 to room 2:

a) Carrying a lit lamp Wwith him.
b) The lit lamp is already in room 2 having been left there earlier.
c) The lit lamp is neither carried nor in room 2 already.

Now if either (a) or (b) is the case, GAC needs to know that light is
available in the dark room when the player reaches it, ie marker 2
must be "set" when the player gets there. This is achieved with the
following line:

Room 1: Line 1:

IF ¢ 2 IN (1it lamp} OR CARR (lit lamp} AND VERB (east}) RESE 1 SET 2
GOTO 2 WAIT END

This line tells GAC that if the lamp is in room 2 or the player 1(
carrying it and east is typed, rese marker 1 to say the room is dark,
and set marker 2 to say there is a light source available.... then
move to room 2

If neither of the above are true, ie the lit lamp is not in room 2 and

the player is not carrying it, when east is typed in room 1, the
condition will be ignored. But uwe still want the player to be able to
get to room 2, even though he will get a "It's dark" message, so the

following line must be inserted after the first:

Room 1: Line 2:
IF (VERB (east})) RESE 1 RESE 2 GOTO 11! WAIT END
This line will take care of possibility (c)

When setting up the “light lamp" command, ignore the setting of
markers and let the local movement conditions take care of it. Simply
by having two objects , a lit lamp and an unlit lamp which are swapped
as required will be enough for descriptive purposes.

Don't forget that similar conditions must be set up for each move from
dark to light or vice versa, but moving light to light or dark to dark
can be set up using normal connections.

COUNTERS

While markers are useful to store information about the status of the
game, counters are far more versatile. The ability to store any
number between O and 255 opens immense possibilities, not only for
counting turns and scoring!

Almost anything can be stored in a counter as long as it is in the
form of a number. This includes terms such as TURN, ROOHM, RAND x,
VBNO, NO! and NO2, which all return a number wWwhen used in a
condition.

Counters can also be used to manipulate numbers, by wusing them as
temporary stores, and their contents as the values used in arithmetic
expresasions,

Scoring
This i3 one of the simplent uses of a counter. Counter O is used l
hold the score, since thin is where GAC looks when asked to print t

score at the end of a game, or when the player is killed.

Imagine you had the following puzzles and scores for solving them in
your gamo:

1) Find a key......... 20 points
2) Kill a giant....... 30 points
3) Cross a river...... 50 points
To increase the score when the relevant puzzle is solved, the

condition which covers solving the puzzle needs to add the correct
number of points to counter O. All counters are set to O initially,
and only the ‘'turns® counters (126 & 127) change without any
intervention.

So, Counter O holds the value O at the start. There are three ways to
change the value held in a counter:

1) x CSET n - stores the value 'x' in the counter numbered 'n’. Thus
to store 25 in counter O you would use " 25 CSET O " in the action
part of a condition.

2) INCR n - adds one to the number held in counter n. If counter O
held the number 25 from the last example, wusing "INCR O" in the
action part of a condition would result in counter O then storing the
number 26. Using "INCR 0" again would result in counter O storing

and so on.

3) DECR n - subtracts one from the number held in counter n....
exactly the reverse of "INCR n".

Returning to our ‘scoring’® using counter O, this is how to do it:

A) IF ({the player does something to find a key}) CTR O + 20 CSET O
{ and anything else that happens when the key is found}

The ‘scoring’ part is "¢ CTR O + 20) CSET O "

Taking the part within the brackets first, “"CTR 0" gets the value
currently held in Counter 0, and "+ 20" adds 20 to that value. The
result of the 'sum’ in the brackets then REPLACES the original value
held in counter O by the action "CSET O". This might seem a bit long
winded: why not simply use "20 CSET 0"? The problem with doing that
is that since the result of the calculation in the brackets replaces

whatever was originally held in counter O, "20 CSET 0" would only
give the correct result if counter O happened to be holding the
number "O". A look at the condition for killing the giant will

demonstrate why the simpler version is inappropriate’

B) IF ({ player kills giant}) CTR O + 30 CSET © {and any other
actions required?

Again, "CTR O + 30" is taking the value of counter O and adding to
it, but assuming the key has already been found, counter O will
contain not O but 20 from condition (A). If we simply used "30 CSET
0", counter O would end up holding only 30, not 50 (20 + 30)!

C) IF ({player crosses river}) CTR O + 50 CSET 0 <{(and other actions
reqired?

Assuming the key has been found and the giant killed, counter 0 will
be holding 50, so "CTR O + 50" will be the equivalent of "50 + 50"
giving a total of 100 to store in counter O. If we assume that
crossing the river completes the adventure, the score (je the value
of counter O) will be displayed (if marker 3 which can disable this
is reset). The puzzles could have been solved in any order, but the
final result will still be 100.

Some games penalise the player for ‘'saving’ a game position. If you
want to do this, simply alter the routine for saving to include "CTR
O - x CSET O" where 'x' is the amount of the penalty.

Turns

The number of turns taken by the player are automatically stored in
counters 126 & 127. This can be useful if you want to introduce a
routine where the player will die of hunger if he doesn’t find and

eat food within a certain number of turns. Assume the player is
allowed 20 turns from the start to find and eat the food. The
following condition will kill him off after the 20th turn if he has
not eaten. Here we will use a marker to ’'mark’ that food has been
eaten. Any marker (except the reserved ones) will do...we'll wuse

marker S.

LOW.. IF ({(player eats food}) SET S {(and any other action
required?}

HIGH.. IF ¢ TURN > 20 and RES? 5) {kill player?

In this routine, marker 5 will be reset until +the player eats the
food, when it will cahnge to being set. If marker 5 is set, the High
Priority condition will be ignored. If marker S5 is reset and the
player has not yet taken 21 turns, the High Priority condition will
be ignored. But if the player has not eaten (res? S), and more than
20 turns have been taken, he will be killed. 'TURNS' is used here as
it is a short way of saying ‘counter 126°*.

If later on in the game you wish the player to have a limited number
of moves in a desert without drinking, *TURNS' is not much use, since
you don't know what turn the player will reach the desert in, sc¢ have
no idea what turn to kill him off in. To overcome this, We can use a
marker to check when the player enters the desert, and wuse a spare

counter as a base for our calculation as follows. (We®ll assume 10
turns are allowed without water, marker 6 to say the player has
entered the desert, marker S for drinking, and counter S to keep

track of turns after entering the desert).

LOCAL...(Instead of a connection to the desert location)
1F (go into desert) 10 CSET S SET 6 enter desert location?

LOW... IF ({drink water)) SET % { any other actions}

HIGH. .. IF ¢ RES? % AND SET? 6) DECR 5 END

HIGH... IF (CTR 5 = O AND SET? 6) {kill player off} '
In this sequence, as the player enters the desert, counter S is

loaded with the value 10 (turns allowed without water) using "“10 CSET
5", and the fact that the player has entered the desert is noted by
setting marker 6. The first ‘high’ condition then subtracts one from
counter S every turn unless marker S is set (ie water has been
drunk). If marker S is reset, counter 5 will continue to decrease,
until eventually (after 10 turns) it reaches O. When this happens,
the second ‘*high®' condition kills the player off.

Money

Sometimes you will want your player to be able to obtain and spend
money, tokens etc. To keep track of the ©player’s solvency (or
otherwise') use a counter to store the value of his holding. Things

can get tricky if you have more than one value of currency, eg 100p =
£1 so initially stick to a single unit. You will need to be able to

reduce the value of the counter when the player spends money (or
perhaps has it stolen) and increase the value of the counter if he
finds (or steals) extra cash. If possible, use a counter with the
same number as the object it counts....it makes keeping track and

de-bugging easier!
Assuming counter 100 will hold the money:

To get money; ‘
IF ({(player gains money}} CTR 100 + x CSET 100 ({(and anything
else)....

To spend/lose money;:
IF ({player spends money})) CTR 100 - x CSET 100 { and anything
elsel}. ..

To count money;
IF ({player counts money}) PRIN CTR 100 (with messages to make it
read well)..

Time

—_— .

This can be controlled by allocating a set number of turns to
represent a unit of elapsed time. If we assume 60 turns equals one

'hour’, the following routine will give the player a time-check on
request. (We'll use counter 10 to store 'minutes’ and counter 11
*hours).

HIGH. (A) INCR 10 END
HIGH (B) IF (CTR 10 = 60) INCR 11 O CSET 10 END

LOW IF ({ player asks time}) PRIN CTR 11 PRIN CTR 10 (with
suitable messages to make it read well}

Using this, minutes will never be greater than 60, as when counter 10

reaches 60, 1 is added to the hours and counter 10 loaded with O to
start counting again. You could improve this routine by adding an
extra counter (say counter 12) to count days. Just add this:

HIGH (C)> IF ¢ CTR 11 = 24) INCR 12 O CSET 11! END

Also add "PRIN CTR 12" to the low condition to have days displaved
too.

These are just a feu examples of the ways counters can be used. In
conjunction with the other commands GAC provides, you can build up
virtually any ‘counting’ routine you wWish.......... EXPERIMENT '

DIAGNOSTICS SCREEN

This shows the state of markers and counters during the game.
They can be called up at any point in the game, by pressing ESC
followed by D, and are useful for finding out why something is not
going quite as expected.
The first table shous markers -
MKR 0 1 2 3 4 5 B8 7 8 9 0 1 2 3 4 S B 7 8 9
¢}
20
40 1
60
80
100
120
140
160 1
180
200
220
240
e.g. Marker 42 has been set and so has 172
Note: Markers start off Reset, except for No.O and 1, which are
used by the systen.
The second table shows the state of the counters at the time of
access. Note that a counter can only hold a number from O to 255.
The GAC counter system works in Modulo 255, therefore if a number
is raised more than 255, it will wrap around back to O and up,
whilst the opposite happens if a counter is lowered below O.
N.B. This only applies when a counter is changed by:
CTR [counter No. 1 + [No. 1 CSET [counter No.]
Not when it is changed by the INCR and DECR commands. With these
when the number reaches a limit (255 or O0), it will stay as it
was.
CTR +0 +1 +2 etC.
10 0 0 0
20 0 0 254
30 0 (o] 0
40 0 55 0
50 0 0 0
etc.
e.g. In the above diagram, counter 22 has a value of 254 whilst

counter 41 has a value of SS5.

TEXT
STORAGE OF TEXT AND COMPRESSION
As you wWrite your adventure all the words you type, whether as
messages or nouns for example, are stored in a dictionary. Each
new word takes up a number of bytes equal to its length, plus
another three for a pointer showing its position in memory. When,
(and if), the word is deleted, part of the pointer remains so that

if you constantly enter and delete words, you would gradually run
out of memory. The old words remain in memory, the program merely
ignores them.

When a word is entered that has already been used, the GAC will
refer to its pointer, thus only using up three bytes.

Points to remember are:

a) Spelling mistakes and typing errors are all stored in memory,
so check a line before entering it.

b} If you are running low on memory, try using words that you
have used before.

c) Words, messages etc are stored in memory in the order you
enter them, which is why when you do a printer listing,
(except for the Commodore), local conditions and messages may

not be in numerical order.

NOUNS AND VERBS

When entering nouns, verbs and adverbs, try to use as many
synonyms as possible, but be careful of overuse, for example,
"SCRUTINISE" for "EXAMINE".

With an object such as "A CREDIT CARD", the associated nouns
should be "CREDIT" and "CARD".

It is a good idea to feature "THEM" as noun 255 as well as "IT",
if you have objects such as "a pair of shoes". "HIM" and "HER"
can also be included if other people feature strongly in your
adventure, (although the program will not distinguish between
them!).

The GAC handles abbreviations automatically, looking through
verbs, nouns and adverb tables until it meets a word that matches
up with the players input. To explain this more fully we have

included a sample verdb table:

20 EAT

3 EAST

16 EXAMINE
7 GET

13 GRAPHICS
10 INVENTORY

9 L

15 LOAD

3 LOOK

In the adventure with this verb table, the player could type
"INVENTORY", "INVEN", "INV" or even just "I", because it is the

16

only verdb beginning with "I". To go EAST, however, the ©player
nust type "EAST" or "EAS® - simply typing "E" or "EA" would cause
the program to try to “EAT", due to the fact EAT is before EAST
alphabetically. To make the program accept "E" for east, you
would need to enter "3 E". A similar thing has been done with
"LOOK" and "LOAD".

DIFFERENT BUT THE SAME

If you have different types of the same object, for example, "A
RED CARD", "A GREEN CARD", etc., there are several ways of telling
the difference.
a) Colour as Noun
i.e. Obj 1 = "a red card*

Noun 1 = “"RED*

Ob; 2 = "a green card"
Noun 2 = “GREEN"

If you are doing it this way, it is a good idea to have a noun
"CARD", (separate from the actual cards), and have a line +that
checks to see if the player has just typed "CARD". If this is so,
a message along the lines of "which one?" is printed up.

b) Use of Adverbs

Probably the best method, but it does mean the player has more
typing to do, is:

Obj 1 = "a red card"
Obj 2 = "a green card"
Adverb 1 = "RED"
Adverb 2 = "GREEN"
Noun 100 = "CARD"

So a line would read as followus:

IF (VERB [TAKE] AND NOUN C[CARD] AND ADVE C(RED] AND HERE C(RED
CARD]) GET (RED CARD] OKAY END.

c) Priority of Objects

The player need only type "GET CARD" and the program will first
check whether the Red Card is there and get it, if it is. If not
the program will check for the Green Card and so on.
This method can be used for cases where there are two objects that
represent one object in two different states and that cannot exist
at the same time, for example a lamp and a lit lamp.

17

SYSTEH MESSAGES

These are the messages from 239, (238 for BBC computers), onwards.
They are automatically printed up by GAC if the situation arises.
The messages and situations are as follows:

238 "nothing." (BBC ONLY) This is printed when a LIST command
and the area listed, (either WITH or
a room), is empty of objects.

239 "You are carrying'. " Should always have a space at the
end, or a colon. The only one GAC

does not automatically use.
Printed up after all High Priorities
are carried out. WAIT and OKAY

240 “"What now ?2...."

return to this section of the

program.
241 "You Can’t." When the players input <contains at
least one word in the GAC's

dictionary, but no conditions are
met by it.

242 "Pardon 2" None of the input is recognised.

243 "Press a key...." Printed after EXIT or if the player
answers Yes to Mess 244.

244 "Are you sure 2. ." Printed after a QUIT command has
been executed.

245 "You've already got that" If a GET command is carried out and
the player already has the object.

246 "You haven’'t got that" If a DROP command is carried out and
the object is not carried.

247 "You can't see that" If a GET command is carried out and
the object is not HERE.

248 "Carrying too much.” If the objects weight + weight of
currently carried objects exceeds
STRE.

249 "Your score was" Lecave a space at the end. If the
player ansuwers Yes to 244 or if an
Exit is met.

250 " and you took" Leave a space at each end. Printed

after Mess 249 and CTR 0. NOTE: It
is a good idea to print the maximum
score possible.

251 "It is dark. You can't see" Automatically printed up each
move, if marker O is reset.

252 "] can’t find that anywhere" If a BRIN is carried out and the
object in question a) doesn’t exist
or b) is in room O.

253 "You can also see" Needs a space, colon etc. Printed
after room descriptions if objects
are present.

254 "Okay" OKAY prints this and performs a
WAIT. It can be printed without a
WAIT by MESS 254.

255 " turns" Needs a space at the front. Printed

after Mess 250 and TURNS.

NOTE: Messages 249, 250 and 255 can be wused for scoring during
the game, but their wording must be such that they mean "So far in
this adventure" and "“In the adventure you have just played".

GRAPHICS

CARTOON FILMS ON GAC! (Amstrad, BBC and Commodore only)

Yes, simple animated cartoons are possible on GAC, although their
uses are limited.

To draw your cartoon, simply draw one frame of animation, redraw
over the parts to be moved in Ink O, then draw on a new frame.

It is best to stick to lines, as filling can slow the process down
and make the "film" seem jerky. If the line drawing goes too fast
however, a few fills in the background colour, (0,0), will slow
the action doun to the speed required.

ADVANCED GRAPHICS - TECHNICAL

Memory Used (Bytes)

Function BBC Amstrad Spectrum Commodore
/ 5 5 5 5
D 3 3 3 3
R 5 5 5 5
E 5 5 5 5
I 1 1 1 1
S 3 3 3 3
F 3 3 3 3
P (m) 3 3 3 3
AOT X X X 1
HIRROR X b 3 b3 1

HOW TO SAVE MEMORY IN THE GRAPHICS SECTION

a) Draw a rectangle instead of 4 lines.

b) To draw an arc, first draw an ellipse, then redraw the part
you want with lines. Step back through the picture and delete
the ellipse.

c) Fill an area first and then add details instead of filling
around thenm. If adding detail to a stippled fill, try to draw

it in a colour that is not one of the +two comprising the
shade, this makes it much bolder.

d) Use the step back and forwards facilities to delete mistakes
made, instead of merely drawing over thenm.

LOOK

DESC

x SWAP n

X ton

ADVANCED COMMANDS

If you have a problem whereby EXAMINING or OPENING
something BRINGS an object, it is user friendly to put a
LOOK command after the "A-HA, FOUND SOMETHING" message,

so that the player can see what thay have found. of
course if you have a message that reads "YOU FIND A
FROG", for example, this is not necessary.

A neat wuse of DESC 1is to have illustrated Examine
messages. The way to do this is to have a room instead
of a message, with the Examine reply in it, i.e. "It is a
large, rusty key". Thus if you have a room, you can also
have a picture of the object. The conditional line for

Examine wWould read something like:

IF { NDOl is within examinable object range AND VERB
EXAMINE) DESC NO1 WAIT END.

If you examine object 1, (with Noun 1 presumably), room 1
Wwill be displayed. If room 1 is part of yocur adventure,
start all Examine rooms at 200 for example and DESC NO!
+ 199.

If two objects are to be swapped whilst being carried,
they must be of the same weight., or problems with the
inventory limit will occur. If they are not the same
weight, simply drop them first.

This can be used to 'spice up' messages. for example:

"A rat steals” OBJ n.

Note that as most objects are "A gun" or "SOME seed",
clever wording must be used to avoid "you can’'t see the
a gun".

List can be used to do backpacks, chests, other people’s
inventories and so on. A room must be assigned to the
backpack, for example, as well as the actual object.
Objects placed in the backpack are sent to this room.
When the player EXAMINES or LOOKS into the backpack,

print a message "very roomy. It contains: " and LIST
{Backpack rooml.

It makes the game look neater, if after LIST, another
room or "WITH", you have a message "." printed at the
end.

If moving an object that the player is «carrying, make

sure it is DROPPED first or problems with the inventory
will occur as Wwith SWAP.

CTRx + CSETx - Ctr O holds your score. Ctrs 126 and 127 hold the

turns and should be left well alone.

This can be used to do a "You can't go that way" routine.
IF CONN x = O, it means you cannot go VERB x, so a line

IF (CONN I[x] = O AND VERB x) MESS "BLOCKED" WAIT END.

1S required. This is more user friendly than merely
repeating "You can't".

This can be altered in the course of the adventure by
potions of healing and so on.

Brin x uses 1 less byte than x TO n, so if you have a
situation where a new object is brought to the players

20

location, for example, a vending machine, it may be
better to use BRIN x if this situation occurs frequently.
NOTE: objects cannot be brought from room O, so use some

other room such as 500 as an ‘"object sanctuary", where
all uncreated and destroyed objects reside.
MESS - Several can be strung together, i.e. built up from a

stock of short multiple use message.

DEBUGGING NOTE: If debugging your adventure, make up a verb and
put it in the verb table, i.e. 254 x. Then put the following line
in low priorities:

IF (VERB 254) BRIN NO1 GET NO1 OKAY END.

This will not work if your uncreated objects start in room O. To
use the line, begin at the room you wish to test and type "X
object".

FIND - This can be used for ‘'teleports’, where the player is
returned to an object either static, (although GOTO would
work for that), or movable.

WAIT - WAIT returns to players input, so if a line <containing

WAIT is true, any following lines will be ignored.

OKAY - Basically MESS 254 WAIT.

PRIN - Useful for printing CTR values for ~coins, =stamina etc.
Can also be used in debugging by using PRIN ROCM.

HOLD - By having a value such as HOLD E€5000, a vpress a key

situation can be achieved, as HOLD is stopped when a key
is pressed.

GET/DROP These check automatically for the conditions needed for
GET, for example, is it here?/are you «carrying it
already?. They are also the only commands that alter the
value of your inventory limit, so if you move an object
directly *to O without dropping it first, itsc weight will
still be in your inventory.

Condition lines do not exist with ‘gaps® ‘tetween line numbers.
For example, if you have lines 1, Z, 32, and type 1n a line 10, it
will be moved down to become line 4.

New lines can be inserted between existing lines as leng as END
is put at the end. For exanmple:

Line #10 is......
IF ¢ VERRP 10) GOTO ! WAIT END

If we wanted to enter a line between 10 and 11, we could ecither
place it at the end nof line 10:

IF (VERE 10) MESS 1 WAIT END if verh 11 mecz 15 wait and.
Or btefore line 11!:
If verb 11 mess is wait end TF (VERP S0 Y GOTD 2 WAIT END.

In either case our new line wenld become 11, 11 and all follouing
lines wnuld be shunted up 1.

2

The GAC will check through all lines of conditions until it finds
one that is true. It will then carry out all actions in the line.
If it encounters WAIT, it will return to the input routine and
ignore any following conditions.

OKAY is the same as WAIT, except that it prints up message 254
first, so OKAY WAIT END is superfluous.

Use of WAIT can mean that you do not need to check a marker tuwice.

For Example: Local Condition Room !

IF ¢ RES? 10 (TROLL ALIVE] AND VERB KILL AND NOUN
TROLL) TROLL TO O MESS "YOU KILL TROLL" SET 10 WAIT END

Line 2.....
IF (VERB KILL AND NOUN TROLL) MESS "ALREADY DEAD"
WAIT END
In line 2 marker 10 is not checked because it has to be set if
"KILL TROLL" has been typed and this line is being checked by GAC.
If 10 was reset and "Kill Troll" was typed, line 1 would be
carried out, the wait in it would return the GAC to input mode and
line 2 would never be reached. This wWworks best with local
conditions.
NOTE that line 2 has a wait on it as well. This is because local

conditions are checked before 1low and there is a line in low
conditions that is:

IF (VERB KILL) MESS "VIOLENCE WILL NOT HELP YOU HERE" WAIT END

This will be printed up if the player +tries to kill something
other than the troll.

If line 2 did not have the wait, it would print "already dead.
Violence will not help you here". This actually makes sense! But
imagine a hermit who you give an apple, and an error trap for
give with no one there, it would come up uwith; "Thank'ee kindly.
No one wants that".

If a line takes up 255 characters without brackets, when it s
entered the GAC will include brackets and spacing which will cause
the line to be more than 255 characters long, which may cause
undesirable effects.

22

ADVANCED USE OF CONDITIONS

NOUN, VERB, ADVE

It is worth noting that the GAC will understand four words from an

input sentence - 2 nouns, a verb and an adverb. These of course,
do not have to be used as nouns, verbs and adverbs. Nouns can be
stored under verbs and so forth, for example, Noun 1 could be

"Take", but it is easier to keep to the correct catagories.

HERE

If you have monsters/obstacles as objects, HERE can be used
instead of a marker. For example, instead of marker 10 being the
troll - set means dead, 2 objects can be used. "A large ugly
troll" and "a dead troll". Then conditions could be placed in the
program to control whether the troll is alive or dead.

A line would read:

IF (VERB NORTH AND HERE TROLL) MESS "TROLL BLOCKS PATH"
WAIT END

followed by:

IF (VERB NORTH AND HERE DEAD TROLL) GOTO NORTH ROOM WAIT
END

HOWEVER, CARE MUST BE TAKEN - If there is a connection betuween the
troll room and the NORTH ROOM, GAC will by-pass the above
instructions and go directly to the north room, ignoring the fact
that the troll is there. (See flouwchart)

X IN n (See Errata Information also)

This can be used in a similar way to HERE. For example, in a
shop, all objects for sale can be stored in an inaccessable roon,
say 200. Instead of having a marker to determine whether an item
has been purchased, check uwhether it is in 200 wusing 200 I[N
object. If it is then the player may buy it.

NOTE: 1IN must go at the start of a conditional expression.

Set? & Res?

Used to check the state of markers. Markers are wused for
something that has two possible forms, for example, a chest open
or closed/whether a button has been pressed etc. Physical objects
such as doors, chests, monsters and so on, can be done using HERE,
but markers are useful for things such as determining whether you
have initiated the =self destruct sequence or are under an
invisibility spell.

NOTE: Remember the ? on the Set? !

23

Som2 built in markers are:

Mkr O - If set, it means a room has been described since last
reset, (either by moving, looking or DESC). This is
useful for high priorities relating to the colour of the
sky for instance. A RESE O command must be placed after
all checks for SET? O in high priorities.

Mkr 1 - If set means room is light. If reset means room is dark,
(i.e. print mess 251). To do this, have local conditions
when moving from Dark to Light/Light to Dark, (i.e. from
the outside to the inside of a cave), which set or reset
| depending on the direction of movement, current sStatus
of mkr 1, (so as not to get stack empty), and any light
source available.

Mkr 2 - If set means you are carrying a light source, for
instance a torch. Note that Carr Torch has the same
effect as Set? 2.

Mkr 6 - If reset means it is the first move. It can be used to
set, stre, print “"thanks to GAC" etc.
For example: IF (Res? 6) MESS WELCOME TO x¥x QUEST
STRE 100 SET 6 END.
Effectively any marker can be used for 2 & 6.

CTR

These are used in a similar way to markers, but for things that
have <ceveral possible wvalues, for exanple, money. Further
information can be found under INCR, DECR, CSET and x EQU? n.

x EQU? n

Does ctr n EQUAL x? This condition must go at the beginning of a
set of conditions.

VBNO, NO1, NO2

VBNO = | ic the same as VERB 1. These conditions return the value
of the verbsnoun etc. and can be used to check whether the ©player
has tried to take a movable object or an obstacle, i.e. all

takeable objects have nouns below 50.
IF t NOYl ¢ SO AND VERB TAKE) GET NO1 OKAY END.
If VBNO, NOl or NO2Z2 = O, it means that the player has typed in
something that is not in the games vocabularly. This means you
can do lines such as:
IF (VENO = 0) MESS "I DON'T KNOW HOW TO DO THAT" WAIT END.
ALGEBRA

Any condition containing <, >, 4+, -, must go at the FRONT of a set
nf conditions. This also applies to RAND and IN. For example:

IF ¢ VERB 7 AND NO1 > 8) MESS | END

24

will not work properly, whereas

IF (NO1 > 8 AND VERB 7) MESS 1t END
is correct.
Because EQU?, IN and ALGEBRA nust go at the beginning of
conditional lines, if you wish to check two of them, for example,
IF NO1 < 8 and 5 EQU? 7, you must use two lines and a marker:

1 IF (NO1 < 8) SET 40 END
2 IF (S EQU? 7 AND SET? 40) MESS 1 END
High priority line 1 must be RESE 40, otherwise line 2 will happen
without line 1 being true. The way these lines wWwork is as
followus:

1 IF NOUN was less than 8, SET 40

2 IF Ctr 7 = 5 and 40 is SET (line 1 must have been true therefore
NOUN less than 8) MESS 1 END.

If you remember that Room, VBNO, NO1, NO2, TURN, WEIG and CTR (X)

are all numbers disguised as words, you can carry out sums With
them, set Ctrs to them, GOTO them and all sorts of things.

25

MULTIPLE LOADING TECHNIQUES

There are several ways in which to implement multiple
loading techniques.

The first is to simply have each part as a stand alone
adventure, for example, "EUREKA".

The second is the password method, whereby completing
one part gives you the password for the next. A point
to note is that if this method is used, a word the same
as the password, minus one letter, eg. PASSWORD &
PASSWOR must be defined to ensure the whole password is
typed.

The final method is the load/save method. This entails
saving a status out at the end of one part and loading
it in at the beginning of the next.

SAVE command saves out status of markers, counters,
objects, relevant nouns and your current room, so ALL
these must match for all parts.

It is a good idea to set a marker at the end of one part
and check for it in the next part to ensure it is a save
from a completed game.

26

ROOM NOT FOUND

MESSAGE NOT FOUND

STACK EMPTY

ILLEGAL VALUE

ERROR MESSAGES (Additional)

The program has been sent to a room that has
not been defined, (either by beginning there,
by use of GOTO or by an exit)

The program has been told to print an

undefined message. Use the line that is
printed up to determine which. If the line
contains no undefined message, not found is a
system message, (239-255, 238 for BBC - See

System Messages).

Usually because a "?" is left out or a space
left between the SET or RES conditions.

A value that is either negative or exceeds

the maximum value. (See Appendix A — Amstrad,
Appendix B(v) - BBC, Commodore, Spectrum for
the range of numbers for maximum values
possible). It will wusually be a number

greater than 255 that is causing the trouble.

27

ERRATA INFORMATION

Advinman messages (Chapter 5 - Amstrad, App.A - Others)

15.

16.

17.

18.

19.

20.

21.

It is a small battery operated lamp.

It is a freshly dead rat. Looks tasty!
It is a small silver key.

It looks valuable.

It is a small lamp, shining brightly.
You can’'t walk through doors you know!

The snake wakes up, comes over and bites Yyou. The poison
takes hold immediately.

Well done' You got out with the gold. You are rich!
The door unlocks and swings open.

The snake wakes up, comes over and eats the rat. It then
returns to its position.

The snake, not surprisingly takes a nasty turn and bites you.
The venom kills you.

It lights up brightly.

It goes out.

It tastes even better than it looks! Yum Yum!'

You find nothing much.

I'm afraid 1 don’t know what that is.

You hear scuffling footsteps nearby....

A giant spider with glowing red eyes leaps from the shadous

and neatly severs your head with powerful jaws, before
devouring you.

Conditions

Amstrad

x IN n Is object n in room x? If object 1 is in room 3, as
above, then 3 IN 1 will be true, but 4 IN 1 will be
false.

Others

r IN O Is object O in room r? If object 1 is in room 3, as

above, then 3 IN 1 will br true, but 4 IN 1 will Dbe
false.

28

BCS

BCS

BS

QS verbs (All except Amstrad)

For 12 EXITS, read 12 TEXT.

KEY - A = Amstrad
B = BBC
C = C64
S = Spectrum

Appendix B - Words Used In Conditions, Objects

(iii) BBC + Spectrum/(iv) C64

For o in r, read r in o

Appendix A - Table iii - Conditions High Priority

For Res ? read Res?

For Equ ? read Equ?
Verbs - 2.2

Para.3, line 1 should read:

"To enter a verdb, simply type in a number then a space followed by
your verb".

Graphics - 3.2
G - Displays Attribute grill. Must be held down.

Section 2
You may have as many connections from a single room as you can fit

into 255 characters, all on a single line and followed by RETURN.
For example: EAST 20 WEST 18 NORTH 19 SOUTH 21 jump 48 (RETURN).

Appendices A & B

Where it reads "Tape or Disc", ignore "or Disc".

AMSTRAD HINTS AND TIPS

Control Characters

The Control Characters explained in Chapter 9 of your User Manual
can be incorporated into your GAC programs to produce effects on
screen and in game.

Control Characters can be entered as rooms or messages using
the following notation:

{CTRL + KEYl, <PARAMETERS>.
Some useful control characters to remember are:

SET PEN NO.
{CTRL) + {01 n (n is the pen number (0-31)

SET PAPER NO.
[CTRL] + [N] n (n is the paper number [(0-31)

Clear screen.
[CTRL] + (L]

Move cursor

(CTRL) + ({J1] Down one line (LF)
CCTRL] + (K] Up 1 line
{CTRL) + [H] Left 1 character

(CTRL] + [I3 Right 1 character (space)

Inverse Video on/off

[CTRL] + [X)] Toggles inverse video on or off

Beep

[CTRL] + (G] Can be wused if something important
happens.

Change pen colour (INK)
(CTRL] + (\1 n xx
n is the pen number (0-3).

X is a letter representing a colour (as in Appendix B of your GAC
manual).

NOTE: If two different x's are specified, the ink will be flashing
between then.
{CTRL] + [1] xx Set border colour

Where x is a letter representing a colour (as above).
Change screen mode.

[CTRL]) + (D] n n is mode number (0-2)

30

This is not advisable with graphics on screen! Note that +the
Auto-formatter in GAC is set to 40 columns, so in mode 2 only half
the screen will be used.

Other Control Characters can be found in Chapter 9 of the User
Manual, but their use in GAC is limited.

Graphics

Due to differing ROM routines for 1line drawing across the CPC
range, your graphics may differ on all Amstrad machines. The
answer is simple - avoid where at all possible filling wWwith the
cursor adjacent to a line, or "fill leakage" may occur when the
game is transferred from 664/6128 to 464 or vice versa.

If you own a 464 without a disc drive and are thinking of making
your game commercially available, your game wWwill reach a wider
audience if you leave 1400 bytes free for the disc drive inherent
to other CPC's.

Conditions

With some complicated commands, for example: NO1 SWAP (NO1 + 10)
the brackets are removed when the line is entered and the line
cannot be re-edited. Replace the missing brackets each time, and

everything will work okay!

31

AMSTRAD ERRATA

Advinman Messages (Chapter S)

1. It is a small battery operated lamp.

2. It is a freshly dead rat. Looks tasty!
3. It is a small silver key.

4. It looks valuable.

5. It is a small lamp, shining brightly.
6. You can’t walk through doors you knou!

8. The snake wakes up, comes over and bites you. The poison
takes hold immediately.

9. Well done! You got out Wwith the gold. You are rich!
10. The door unlocks and swings open.

13. The snake wakes up, comes over and eats the rat. It then
returns to its position.

14. The snake, not surprisingly takes a nasty turn and bites you.
The venom kills you.

15. It lights up brightly.

16. It goes out.

17. It tastes even better than it looks' Yum Yum!

18. You find nothing much.

19. I'm afraid I don't know what that is.

20. You hear scuffling footsteps nearby.....

21. A giant spider uwith glowing red eyes leaps from the shadous

and neatly severs your head with pouwerful jaus, before
devouring you.

Conditions (Section 4.i)

The command “IN" is documented incorrectly. The corrected version
is as follouws:

"x IN n Is object n in room x? 1f object 1 is in room 3 as
above then 3 IN 1 will be true, but 4 IN 1 will be
false.

32

Section 2

The section on exits should include the following:

"You may have as many connections from a single room

fit into 255 characters, all on a single line and
RETURN, i.e. EAST 20 WEST 18 NORTH 19 SOUTH 21 JUMP 49

Section 4

The example line should read:

IF (VERB S) LOOK WAIT END

(Verb 9 = LOOK)

as you
followed

can
by

(RETURN) .

240

241
242

START

) —

Y

output
ROOM DESCRIPTION

N

"What now?"

A

"You can’t"

I
TURNS + 1

HIGH PRIORITY
CONDITIONS

output
MESSAGE 240

[PLaYER'S INPUT]

CHECK CONNECTION
TABLE

"Pardon?*

A 4

<:§EE;EE>>

[AOCAL CONDITIONS

LOW PRIORITY
CONDITIONS
I

1

MOVE TO
NEW ROOM

(Valid? >

MESS 241

!HESS 242;

A

The internal commands QUIT and EXIT return the player to the
room With the program initialized. There is no end as such.

first

33 34

BBC HINTE AND TIPS

Message + Goto

When in graphics mode (PICT), the GAC clears the =screen when
moving from location to location, so if you wish to have a MESSage
followed by a GOTO, you will need to have HOLD command of suitable
length between the two.

Reset start

When a datafile is loaded into GAC, the Begin Where? value is not,
you will therefore either have to begin your adventures in Rocm 1,
(default), or remember to change the Begin Where? value before
saving each time.

Border
The border around the Graphics area, whilst using the Graphics
Editor will not be present in your runnable adventure. If vyou

wish to have one, simply draw a rectangle encompassing the entire
screen area.

Because GAC uses interrupts to produce two modes at the same time,
the bottom two pixels may become corrupt. To prevent this, drav a
border as above but move it up two pixels from the bottom.

Bug

Sometimes an error may occur with the formatter where the game
will print a location description &nd then lock-up. To prevent
this simply alter the length of the offending room description bty
adding or changing one or two words.

Memory free

There is approximately 18K free for wuse in vyour adventures.
However a certain amount of memory must be assigned to each part,
Graphics and Text.

There must be at least 2K used on Graphics and at least 3K on
Text. As the memory is depleted on the GAC Main Menu, a message
"available for graphics” will appear, showing how much K there iz
left for your pictures.

Deleting lines from your game

To delete whole condition lines, rooms etc. Precs fO. Delete i
only used to change part of a line. i.e.

IF (VERB 9) LOOOK WAIT END

If we want to get rid of the extra "0O" in "look", (so that the

line can be entered), move the copy cursor up to the beginning of

the line, copy out the line until the offending word is reached

and either:

a) move the copy cursor past it before continuing copying, or

b) copy it out and use delete to erase the mistake or unwanted
part.

FO will erase the whole thing.

35

BBC ERRATA

Advman Messages (Appendix A.v)

1. It is a small battery operated lamp.

2. It is a freshly dead rat. Looks tasty!
3. It is a small silver key.

4. It looks valuable.

S. It is a small lamp, shining brightly.
6. You can't walk through doors you know!

8. The snake wakes up, comes over and bites you. The poison takes
hold immediately.

9. Well done' You got out with the gold. You are rich!
10. The door unlocks and swings open.

13. The snake wakes up, comes over and eats the rat. It then
returns to its position.

14. The snake, not surprisingly takes a nasty turn and bites you.
The venom kills you.

15. It lights up brightly.

16. 1t goes out.

17. It tastes even better than it looks! Yum yum!

18. You find nothing much.

19. I'm afraid I don’t know what that is.

20. You hear scuffling footsteps nearby.....

21. A giant spider with glowing red eyes leaps from the shadouws

and neatly severs your head with pouwerful jaws, before
devouring you.

Conditions (2.7.1)

The command "In" is incorrectly documented. The <correct version
is as follows:

"r IN o Is object O in room r? If object 1! is in room 3 as
above, then 3 IN 1 will be true, but 4 IN 1 will be
false.

36

QS Verbs (Appendix B)

For "12 EXIT" read "12 TEXT".

Appendix B.iii

For "o IN r" read "r IN o".

Appendix A.iii. Conditions

For "RES ?" read "RES?".
For "EQU ?" read "EQU?".

Verbs (2.2)

Para.3 line 1 should read:

"To enter a verb, simply type
your verb. *

in a number then a space followed by

37

COMMODORE - SPECIFIC HINTS

Message and goto

When in grpahics mode (PICT), the GAC <clears +the screen when
moving from location to location, so if you wish to have a message
followed by a GOTO, you will need to have a HOLD command of
suitable length between the MESS and the GOTO.

Control Characters (Used in Descriptions and/or Messages)

The Control Characters in Appendix B section ii of the GAC manual
can be used for various effects.

Their types and effects are given in the manual. Suggestions for
their use are:
i) To emphasise something - (CTRL G and REVS ON/OFF).
ii) To change the screen/text colour either to highlight a word,
(see above) or to fit the description without a picture, eg.
A lava flow description could have red paper and

orange/yellow text.

AOT/Mirror

"Mirror" REFLECTS left onto right or top onto botton. Using
Mirror you can save work and memory, especially on borders where
only the top right hand corner need be drawun. After Mirroring,
nother features can be added to prevent the picture from looking
symmetrical, (see the Castle picture in RANSOM).

AOT can be used to produce variety in similar pictures, or for

views from different angles.

If you wish to mirror right onto left, or bottom onto top, AOT the
screen first.

Slight animation can be achieved by "AOTing" virtually symmetrical
pictures.

Colour Scheme

If you have the programmers reference guide, you may find the
table on page 152 of some use when deciding on text colour etc.
[f you haven't, Black and White are the best <colours, but

experimentation i1s always the best method.

38

COMMODORE ERRATA SHEETS

Advinman messages

1. It is a small battery operated lamp.

2. It is a freshly dead rat. Looks tasty!'
3. It is a small silver key.

4. It looks valuable.

S. It is a small lamp, shining brightly.
6. You can't walk through doors you know!

8. The snake wakes up, comes over and bites you. The poison
takes hold immediately.

S. Well done! You got out with the gold. You are rich!
10. The door unlocks and swings open.

13. The snake wakes up, comes over and eats the rat. It then
returns to its position.

14. The snake, not surprisingly takes a nasty turn and bites you.
The venom kills you.

15. It lights up brightly.

16. It goes out.

17. It tastes even better than it looks! Yum Yum!

18. You find nothing much.

19. I'm afraid I don't know what that is.

20. You hear scuffling footsteps nearby....

21. A giant spider with glowing red eyes leaps from the shadous

and neatly severs your head with powerful jaws, before
devouring you.

Conditions (2.8 i)

The command "IN" is incorrectly documented. The correct version

is:

'r IN o Is object o in room r? If object 1! is in room 3 as
above then 3 IN 1 will be true, but 4 IN 1 will be
false.

39

QS Verbs (Appendix B)

For "12 EXIT" read "12 TEXT".

Appendix B iv

For o INr, read r IN o.

Appendix A iii - Conditions

For "Res ?" read "Res?".
For "Equ ?" read "Equ?".

Loading QS5 and ADVINMAN

To load QS and ADVINMAN, the filenames MUST be typed in
without quotation marks.

40

CAPITALS

SPECTRUM HINTS AND TIPS

Graphics

Due to the way the Spectrum handles graphics on screen, only tuo

colours can be present per character square...the paper colour -
Attribute and the foreground colour - the ink.
Note: Once something has been drawn on screen in ink, there is no

way of re-drawing over it.

With only two colours per square, you may think there isn't much
scope for multi-coloured graphics in your adventure, but with
careful positioning of your lines and nodes where lines join, many
colours may be displayed adjacently.

Filled with blue ink

\

v

Bank lines

Red (attribute) filled bricks

Bank lines
v

Filled with ink red

Green (attribute) filled grass

“Bank lines" are to contain the ink Fill (F). This enables the
area outside the bank line to be attribute filled (A) and detail
drawn on it. For example, in the house picture above, all the

side of the house is filled in red, but the bottom sections are
filled in Ink as the other half of the character squares are
filled in Attribute green. This enables windows and bricks to be
drawn on the rest of the house, and bushes etc to be drawn on the
grass in ink. It is a good idea to fill large areas in attribute
so that detail may be put on to make it less boring.

It is helpful to draw and plan graphics on squared ©paper first,
and use "G" whilst in graphics mode to bring up the character
grid.

For more information on Bank lines and so on see picture 93 of
Advinman.

Message and Goto

If you have a message followed by a Goto command, the room
description will be printed one line up, obscuring the last line
of the message. The answer is to have a line feed command (LF)

between the MESS and the GOTO.

41

~

Should your datafile become corrupt use the follouwing method
retrieving your datafile:

Note memory free

Turn Spectrum OFF then ON to clear

Clear 40000 (Enter)

Load in datafile: Load"" Code

Poke (65536 - memfree), O

Poke (65537 - memfree), O

Then Save "Datafile” CODE 42271, (23267 - memfree)
Reload GAC and load new file

ODNON L WN ~

42

of

SPECTRUM ERRATA SHEETS

Advinman messages (Appendix A v.)

w

® oo ¢ b»

10.

13.

14.

15.

186.

17.

18.

19.

20.

21.

It is a small battery operated lamp.

It is a freshly dead rat. Looks tasty!
It is a small silver key.

It looks valuable.

It is a small lamp, shining brightly.
You can't walk through doors you know!

The snake wakes up, comes over and bites you. The
takes hold immediately.

Well done! You got out with the gold. You are rich!
The door unlocks and swings open.

The snake wakes up, comes over and eats the rat. It
returns to its position.

The snake, not surprisingly takes a nasty turn and bites
The venom kills you.

It lights up brightly.

It goes out.

It tastes even better thanm it looks! Yum Yua!'
You find nothing much.

I'm afraid I don’t know what that is.

You hear scuffling footsteps nearby....

poison

then

you.

A giant spider with glowing red eyes leaps from the shadows

and neatly severs your head with powerful jaws, before ‘

devouring you.

Conditions (2.7 i)

The command *"IN* is incorrectly documented. The corrected version
is as follows:

"r IN o Is object o IN romm r? 1If object 1 is in room
3 as above then 3 in 1 will be TRUE, but 4 in 1

will be FALSE.*

QS Verbs

(Appendix B}

For "12 EXIT" read *12 TEXT".

Appendix B {iii

For "o IN r* read "“r IN o*.

Appendix A iit - Conditions

For "Res ?" read “Res?"

Verbs 2.2

For "Equ ?" read "Equ?"

Para.3, line 1 should read:

"To enter a verb, sinply type

by your verbdb.”

Graphics 3.2

The command “G* amhould read:

"G - Displays a grid showing Attribute positions whilst

held down."*

Appendices A and B

Where the text reads

“Tape or Disc",

44

ignore the

"or Disc".

key

in a number then a space folloued by

is

To

Th
Ye
Si
ol
pr

DE-PROTECTING SPECTRUM ADVENTURES (& ADDING A NEW CHARACTER SET)

With an empty Spectrum save out a header on a blank tape.
SAVE “filename” CODE 24000,41536 (save header only)
2 headers. i.e. just

Position runnable adventure tape after the

before the large block of code.
CLEAR 23999 (enter)
LOAD "filename" CODE (to load in header)

Load in program code. Ignore any tape loading error that may ﬂ(»\r
at the end of the load. .

You now have your program in memory.

LOAD "charset® CODE 38785,736 (To load in character set - SPACE to
COPYRIGHT)

Save out program. SAVE "name” CODE 24000,41536

load in your program With the new character set :-

CLEAR 23999

LOAD *"name” CODE
POKE 236086, 129

POKE 23607, 150
RANDOMIZE USR 34104

is information has been kindly provided by Simon Kimberley of 115
lverton Road, Radford, Coventry. CV6 4AG. A tape is available from
mon containing a minimum of 9 different character sets varying from
d style to ultra modern and a font creator with many features. The
ice is just 1.49! ‘

45

ADVENTURE CLUBS AND MAGAZINES

ADVENTURE HELP/CLUBS AND MAGAZINES

When writing please help by enclosing a stamped addressed envelope
for the reply.

Adventureline Club (The Guiding Light),
52 HMicawber Way, Newlands Spring,
Chelmsford, Eamex. CM1 4UG

The Adventurersa Club Ltd.,
64c Menelik Road, London. NW2 3RH
Orcsbane,

B84 Kendal Road, Hillsborough,
Sheffield. S6 4QH

Insight,
41 Union Court, Otley,
W.Yorkmshsire. LS21 3AS

Adventurers Anonymous,
Rivendale, Nethergate Street,
Bungay, Suffolk. NR3 IHE

Adventure Probe,

78 Merton Road, Wigan. WN3 6AT
Questline Adventure Help,

17 Headley Way, Headington,
Oxford. OX) OLR

ADVENTURE WRITING HELP

Adventure Contact,
13 Hollington Way,
Wigan. WN3 6LS

Incentives Medallion Adventure Label has been set up
for the best GAC generated adventures!

Available now from all leading retailers, or order direct by HMail
Order -~ all programs sent 1st Class post free.

specifically

The Legend of Apache Gold- Amstrad, Commodore B4 and Spectrum -

£7.95
Winter Wonderland- Amstrad, BBRC B, Commodore 64 and Spectrum -
£7.95
Also avatlable (s a GAC Adventure Designer Pad - designed
speciftcally for orderly information keeping, whilst generating
adventurea, (approx. 200 sheets) - £7.95
Incentive Nufirware limtted 2 Minerva House - Calleva Park -

Aldermanton Berkahire. RG7 4QW

46

