Little software was available for the Jupiter Ace for
several months after last October's launch, but now
there are a number of programs to choose from.

A salesman at Lasky's in London suggested the
original software gap was a result of people buying the
Jupiter because they wanttolearn to pragram in Forth.
They want to be able to use a bigger machine which
uses Forth for business purposes, create their own
graphics or just to take on the challenge of mastering
another language.

Micro Marketing, a London firm which distributes
the Jupiter Ace, agreed that people with a knowledge of
Forth often buy the Jupiter Ace to experiment with
programming, because it is the only native Forth
micro. ;

The company also feltthatthe need for software was
great, and now offers ten games marketed under its
awn name. These consist of four at 3K for £4.50, one
combined 3K program for €6, and five 19K tapes for
£6. They include Acevaders, Swampmaonsters —
which has little boats running around dangerous
swamps — and Jupiter Says, the Jupiter Ace version
of Simon Says.

Now that Micro Marketing has started the ball
rolling, others have followed suit. Titan Programs of
Manchester is currently developing a Space Invaders
type gamie forthe Jupiter Ace, and Computer Services,
Leicestershire, is working on some educational
programs.

Technical hitches and alimited user base have led to
adelay in Computer Service's production, but the first

SOFT OPTIONS
OPEN UP

education programs — mathematics, French and
Spanish — will be ready by August. And a Christian
education series, giving Biblical knowledge and
quizzes for use on Jupiter Ace and other machines, is
being considered.

The firm had hoped to keep prices to £10, but
gscalating developing costs may hike these up a bit.

After the educational programs are successfully
launched, Computer Services will turn their chips to
Home Process Control, to enable the Jupiter Ace to be
used for operating burglar alarms, lights, cookers,
etc. This should not prove difficult as Forth was
originally designed to operate equipment, especially
radio telescopes.

The Jupiter Ace Users Club has started its own
software company, Remsoft, which currently pro-
duces ten games and ufility tapes as well as an adapter
kit to modify the Ace so that it can take Sinclair ZX81
add-ons. Remsoft also sells both 16K and 32K RAM
packs to extend the limited memory of the unexpanded
Ace.

The games include Night Rider — a challenge
familiar to certain drivers, Appleater — another
version of the Apple Panic game long available on the
Apple Il machine, Frogger — a black and white
imitation of the arcade game, and Maze, a simple maze
game.

Prices on the games range from £3.50 up to £6.50,
although you will need an expanded machine to play
some of the more complicated games. The 16K RAM
pack sells for £30, and the 32K pack for £50.

Computer Services and Remsoft will have some.
strong competition from Jupiter Cantab itself, which
has finally found the time to develop its own software.

The first batch of nine tapes — three 19K games,
five tapes of 3K games, two games per tape, and a
monitor program — will be out in a couple of weeks.
They—like the rest of the software, will be priced from
£6-£10.

The range of games includes Greedy Gobbler —a
Pac Man variation that keeps track of high scores,
plays a fast game and uses only 3K, Blowing Up The
World—arather odd game whose main objective is to
bomb as much of the world as possible, and an Ace
version of Space Invaders.

After that, a new program should be available
almost every week. More games are planned, as well
as home budgeting and club records. Even a chess
program is on the drawing board.

Planned educational programs include graphics,
maths for statistics and geometric calculations, morse
code training and a music program. Eventually a full
tax and accounting package will also be available, and
software accessories, such as an assembler and a tool
kit to help design and SAVE graphics, are being
developed.

Stephen Vickers, a director of Jupiter Cantab,
explained that the firm always intended to supply
software with the Ace. °It's been amatter of sorting out
time to do it. The first batch is being issued later than
we would have wanted it."

But with Jupiter Cantab’s 30-40 new programs,
supplemented by other new offerings from Micro
Marketing, Titan, Computer Services and REM
software, Jupiter Ace users should be well served for
software.

Pictured on the left is what you'll
see when you load five of Jupiter
Cantab’s new games for the Ace.

The Pac-Man look-alike is called
Greedy Gobbler, while the world
map is part of a program Jupiter
Cantab calls Blowing up the World.
Your objective in the second game
is to ‘see how guickly you can get
rid of the lot.’

In the race track game, called
Brands Hatch, you are a racing car
driver trying to complete as many
laps of the course as quickly as
possible. In the last, most familiar
game, you are defending your home
base in a game called Missile Men.

IX

Arcade games must move fast, so
the programs that make the games
work are often written in Forth.
Forth is different in that its
programs live for most of the time
on tape or disk, and in this sense it
is more like a compiled language
than interpreted Basic.

EVERYTHING YOU NEED TO
KNOW ABOUT FORTH...
(BUT WERE ASHAMED TO ASK)

Basic programmers coming to Forth for the first time
often find the environment confusingly different.
Certain simple facts about Forth systems are often
not explicitly explained in the manuals and books,
because the authors consider them too obvious.

And most users will probably be ashamed to ask,
revealing their ‘ignorance’. Here then is a selection
of dumb questions — with the answers your mother
never told you.

0 Where do programs live in a Forth system?
Can | list them the way | do in Basic?

Programs (usually called definitions) live most of

the time on tape or disk. Forth is in this sense
more like a compiled language than interpreted
Basic. You write your ‘source’ (/e, not yet compiled)
programs using a built-in editor and store them as
numbered ‘blocks’ or 'screens’ on tape or disk.

In most systems you start to write a source
program by typing EDITOR and then whatever the
number of the block you want is — ‘26 EDIT’, for
example. Often low numbered blocks will already be
full of source code supplied with the system. You
must find an empty one for your programs, so try
100 to start with. Looking at a screen with the Editor

is the equivalent of listing a Basic program.

When you want to use a program, you compile it
by LOADING the relevant blocks of source code into
RAM. You do this by typing ‘26 LOAD’, or whatever.
The compiled program now lives in RAM in the
“dictionary’, which is a linked list of all the words
Forth understands.

Your program is LOADED at the top of the list,
and down below it are the words that make up Forth
itself. This basic dictionary is LOADED into RAM
when you start up your Forth system and your
programs are added on top as you compile them.

Of course, when you switch off the power your
compiled program is gone, and you must LOAD it
again next session (though many systerns will let
you SAVE the whole dictionary as a new, bigger
Forth system if you wish).

Once the program is compiled into the dictionary
you cannot LIST it or change it at all, unless you own
a Jupiter Ace. To change it you go back to the source
code using the Editor and then LOAD again. You can
LIST the names of the words in the dictionary
though by typing VLIST.

Q Butisn'tit possible to type definitions straight
in from the keyboard?

e B e o L

It certainly is. But definitions typed this way go
straight into the dictionary, so you can't edit
them if they are wrong or LIST them (again, except

on a Jupiter Ace). And of course since the source
code doesn't get onto tape or disk your definition
will be lost once you turn off the power or crash the
system — you'll do quite often at first.

Incidentally, Forth doesn’t care at all where its
input comes from — it treats a block which is being
LOADED from tape or disk exactly as if you were
typing it from the keyboard.

0 Sodoes everything | type from the keyboard go
into the dictionary?

No. If you type a word, HELLO, for example,

Forth will search the dictionary to see if the word
is already there. If it is, then the word must do
something, and Forth will proceed to doit. If it isn't
then Forth does not understand it and will spit it back
at you ungraciously thus: HELLO?

For Forth to put something into the dictionary, it
must be preceded by one of Forth's compiling
words. The most common of these are colon (:),
CONSTANT and VARIABLE — later you may create
your own compiling words.

It a compiling word is there, then Forth will try to
add your input to the dictionary. But if you've done
something illegal, eg a syntax error, it might fail and
give you an error message.

If you type a number, Forth will still try to look it
up in the dictionary. When it fails to find it (and
before spitting it out) Forth checks to see if it has
been given a number rather than a word.

Since it has, it puts it on the 'stack’, which is
where Forth keeps and manipulates numbers. This
isn’t the place to go into the stack and reverse polish
and all that stuff — this is well explained elsewhere.

Unfortunately in most Forth systems you can't see
the stack. When you fype 123, Forth swallows it with
a polite ‘0K’ and nothing more. It is very helpful
when learning Forth to have a permanent display of
the stack contents on the screen, and the lack of this
facility is 2 major omission in most systems
{designed by people who have forgotten what it was
like to learn).

Some systems have a word like .S, which
non-destructively prints the stack contents, but you
have to type it out every time you change the stack.

Modify your system so the stack is automatically
displayed before the ‘0K’ prompt returns, but to do
this you will need to have either the source code of
your system to edit, or better still a ‘vectored’
prompt routine which allows you to substitute new
code without recompiling the system.

The stack can be permanently displayed on the
bottom line of the screen by using Sharp’'s
split-scrolling window facility on the MZB0B.

0 What is the stack for, apart from storing
numbers?

All arithmetic in Forth is done on the stack, and

the answer is left on the stack. It will only appear
on the screen if you request it by typing a dot (.) to
print the top item. But more important the stackis
the means by which Forth words pass values to each
other. In Basic a value is communicated to a
subroutine by putting it in a variable, eg LET A=123
: GOSUB 2000.

Though Forth has variables too it is more usual for

a Forth word which produces a numeric result to
merely leave it on the stack; the next word to be
executed finds it there, uses it, and perhaps leaves a
new number for the next word to find.

<~

LT Tt B

The reason for the ‘backwrads’ appearance of You read a Forth program
many Forth commands is just this. For instance, backwards, as words in the Forth
when you typed 26 LOAD what you really did was dictionary can be defined only in
put the number 26 onto the stack; the word LOADIs terms of words lower down than
defined so that it expects to find a number on the themselves. New words are added
stack and uses it. to the top.

If you type merely LOAD then you will either get a When a series of blocks is
‘stack empty’ error or worse, if there was a number compiled into the dictionary the
you had forgotten already on the stack, you will lower numbered are compiled first
LOAD a block you didn't intend to. and the highest last, so the last

Stack discipline is the hardest part about learning word defined sits on top of the
Forth. Most of the goofs you make to start with will dictionary.

be because a word leaves something on the stack
which it wasn't supposed to. In addition the reason
many people say that Forth programs are unreadable
is because the source code gives very little clue to
what is happening on the stack.

In fact, Forth programs can be made quite
readable by intelligent choice of word names — in
most languages you don’t even have a choice — and
by scrupulously commenting the effect of each word
on the stack. When developing Forth programs you
may find it more important to write down the stack
effects than the actual definitions on paper.

0 How do you read a Forth program?

Backwards, as usual. The Forth dictionary has a

time dimension, in as much as words can only
be defined in terms of words lower down, ie earlier,
than themselves. New words are added to the top.

When a series of blocks is compiled into the
dictionary the lower numbered are compiled first and
the highest last, so that the last word defined sits on
top of the dictionary. This imposes a ‘bottom up'
order on the way programs (a program is just a set
of word definitions) are written.

The lowest level words are defined first, then
higher level words are defined in terms of these, and
50 on until you end with the words that you will
actually type to use the program.

But programs should be designed and read from
the top down, ie from the highest level. This means
that to understand a Forth program you should start
to read at the last block ie the highest level
definition, and work back. «

Q0 Is Forth as addictive as people say?
Yes and No.

X

Laboratory Microsystem’s
implementation of Farth on the
IBM PC is an excellent
advertisement for the

language.

Forth
formats
fingered

Forth can be installed on your micro:;
how and when it's done depends
simply on how much money and/or
time you have to deal with the
installation.

Over the next three pages we
present views and reviews of
installations on three popular micros,
We range from one of the most
expensive machines — the IBM PC
— through a middle-priced machine
— the Apple Il — to the lowest price
micro on the market — the Sinclair
ZX81.

The prices on these installations
are reflected by the machines they're
expected to run on. The least
expensive is the installation on the

ZXB1, amere £15 (still a bit dear on a

micro that only costs £50), while the
less expensive PC Forth and Apple

Forths are about equally priced at

around £100, with the IBM Forth

slightly an the more expensive side.
And while you're getting your

installation ready, it's a good idea to

work with reverse polish notation for
awhile on a calculator. Qld HP
calculators operating on this system
are available at cheap prices from
secondhand shops if you don't want
to spend the £100 or so to get a full

running native Forth micro such as
the Jupiter Ace.

Using Forth is simply a matter of
changing the way you think about
computing operations. As Harry
Katzan says in Invitatien to Forih: ‘In

a Forth expression such as 4 3 + it
is executed from left to right. When a

data value is encountered it is placed
in the stack by “*pushing down”
values that are below it. This is why a
stack is commonly referred to as a
“pushdown stack”, When an

operation is performed, it uses up
the needed values from the top of the
stack and “‘pushes’’ the result back
on the stack.’

Xl

floating point and graphics
facilities, which are available as
optional extensions. The
extensions come in separate

Implementing a new language on
your micro can be a traumatic
experience, even if itis a language
with Forth's attractions. But the
Laboratory Microsystems PC/Forth

- user manual goes a long way

towards getting Forth on your IBM
PC without tears along the way.

The manual comes in a white Ad
sized ring binder, which also
contains two floppy disks holding
the PC/Forth. The disks do not have
write-protect flaps on them, and
this is a pity because re-configuring
PC/Forth is quite easy to do — as is
ruining the master disks through
accidental writes. There is also a
small PC/Farth quick reference
card. This contains the Forth words
used frequently.

The package, reviewed included

transparent folders hooked in the
front of the manual, and come with
all the necessary documentation.

Laboratory Microsystems gives
details of how you can copy the
software from the master disks to a
new systems disk, minimisingthe
danger of accidentally overwriting
one of the master disks.

Once a new systems disk has
been configured, and the masters
stored away in a safe place, the
manual gives details of how the
systems disk can be reconfigured
(again) into one arge Forth.COM
file. If you take this option you'l
have a very powerful Forth system
on one disk.

The main part of the manual is
divided into sixteen sections. The
main section is the users guide,
while the others give a more
detailed description of the system.

There are just 17 single sided
pages in the user guide section, but
it's surprising how much
information is there. This section
allows you to set up the system and
get things going immediately,
without having to wade through
masses of paper to get to the
information you need.

The user guide gives details of
how PC/Forth has been configured
to run on the IBM Personal
Computer, along with a deseription
on how to get Forth.COM RUNning.

GRAPHIC GAIN FOR PC

The software for Laboratory Microsystems’ imple-
mentation of PC/Forth uses the PC-DOS operating
system together with a high-resolution graphics
terminal. Either PC-D0S or C/PM-86 can be used with
this package, as PC/Forth has words that allow the
system to communicate with either operating system.
PC/Forth files can also be transfered from one system
to another by using commands in the operating
systems not from within PC/Forth itself,

Once LOADed, the Laboratory Microsystems logo
appears on the screen with information as to what
screen source file is attached with PC/Forth on
boot-up. Different screen source files may be attached
to PC/Forth on booting up the system. Entering
A:FORTH B:DEMO.SCR from PC-DOS would attach
the file DEMO.SCR on drive B:, subsequent LISTs,
LOADs etc would be within the file DEMQ.SCR.

It is a pity that PC/Forth uses the standard ROM
video drivers used for text output. Any output to the
screen is at the speed the video drivers can manage,
and this isn't fast enough.

Laboratory Microsystems does give details at the
back of the manual on how you can reconfigure the
video drivers ‘for special applications’ but it might
have been better if this had been handled by the
software.

The PC/Forth system is very robust, and it took
some devious manipulation of the stack to crash the

system. Error messages are actuaily in English, and if
you need a fuller explanation of what is going an a
section in the manual gives the error message,
together with a complete explanation.

Asisthe case with many Forth packages, an Editoris
notpresentinthe vocabulary, butthe systems disk has
three which can be permanently attached to PC/Forth.
This idea of keeping the frills outside the system is a
good one, and Laboratory Microsystems follows it up
by giving details of how the extras — non standard
commands — can also be removed from the main
Forth.COM file.

Demonstration software is provided with the
package. the games being of particularly high quality.
Eratosthenes Sieve program, which originally
dppeared in the September 1981 issue of BYTE
magazine, is an impressive demonstration. This
program is executed in only 50 seconds, and shows
the speed of Forth.

There are also some graphic demonstration
programs, and these are also of high quality. Infact, if
you opt for the graphic extension to PC/Forth, a very
powerful graphics library can be built up,

Sin disk, extra £95 for IBM floating point, another £95 for

Format disk Outlels Microprocessor Engineering,
Southampton (0703) 775482

Name FC Forth Application language implementation System T
IBM PC Price £95 for Fig-Forth, editor, assembler, manual and

advanced colour graphics Publisher Laboratory Microsystems

5

References are made to the
demonstration programs on the
systems disk as the description
continues.

The remainder of the users’
section gives details of the PC/Forth
compiler and the extra words that
had been added to PC/Forth to
allow it to communicate with the
PC-DOS system.

Sections three and four give
descriptions of Forth . SCR and
Demo.SCR, which are two
demonstration files on the PC/Forth
systems disk. Forth.SCR contains
various programming utilities for
the Forth programmer, and some
of these are of a very high
standard. Kim Harris's Case and
the Forth decompiler are
particularly good.

The PC/Forth package contains
three screen/line editors of one type
or another. The main editor is a
full-type screen which has been
customised for the IBM PC. As is
the case with the whole of the
manual, no details are left out, but
itisn't boring.

There is a full description of the
screen editors’ functions together
with the name of the commands,
which are logically sub-sectioned
into cursor, line, word, string as
well as some others.

For the Forth die-hards who think
a screen editor is too easy, there is
a version of FIG-Forth’'s original line
editor by W Ragsdale. This and the
other line editor are fully
documented.

Forth for the Apple comes in
varied versions, from graphics
through to number-crunching
for the US Navy.

APPLE ANIMATION
— OR OTHER OPTIONS

The Apple [was one of the first affordable micros, and
therefore has probably the widest range of Forth
implementations of any personal computer.

GraForth, Microspeed Forth, MicroMation Forth-
79, Apple Il Forth by Kuntze, TransForth 1, and many
others are available, and when you have as many
Forths asthis, the one you choose will depend on what
you want to do with the language.

GraForth, as is suggested by the title, is well suited
for graphics on the Apple. And because the graphics
are RUNning in Forth, the increased speed of the
language allows you smoother animation of images
than is available with Basic programs.

The most exciting aspect of this animation is 3D,
which is available using the Image editor. Up to 16 3D
objects can be manipulated by the program at once,
and they can be rotated, scaled, translated or
positioned.

Insoft, which distributes GraForth, brags that its
version can count to 30,000 in less than three
seconds. While you might never want to count that
quickly, it gives you a good idea of how fast the
package will handle animation.

At only £60, GraForth looks to be an economic and
useful implementation of forth for the graphically-
minded. '

A more expensive Forth package is MicroMotion's
Forth-79, which sells for between £95 and £124,
depending on whetheryou wantfloating pointand high
resolution Turtle graphics. Compared fo the GraForth

package and the PC-Forth at around the same price,
this one just doesn’t make the grade.

Part of the problem is documentation. This
becomes immediately apparent when you try to LOAD
what is essentially an 80-column package on a
40-column screen, and the manual doesn 't tell youany
reason why you shouldn't make this attempt.

You getasfaras paragraphtwo onlytobe toldtoturn
to Appendix A to start up the package. From that point
on itgoes from bad to worse. In the package's floating
point arithmetic, for example, a simple question like
the square root of 16 is answered with 3.999990. It
seems the point floats just a little bit too much.

Microspeed is more expensive, and is a combined
hardware/software package which transforms the
Apple into a very fast number-cruncher. So fastin fact
thatitwill outpace aPDP11/34, and fastenough for the
US Navy to use the system to flight-test new aircraft.

The language is a heavily-modified and extended
version of Forth, which is why we've included it here.
Like all Forths, Microspeed is programmed in RPN.

Its main feature is the high-speed maths pracessing
chip. This is on a plug-in card, and takes care of all the
really complicated floating-point and trigonometrical
calculations.

The 6502 chip which is the heart of the Apple is not
particularly good at doing calculations on large
numbers, sothis schemetakes the weightoffitand lets
a real specialist do it. The 6502 is thus free to concern
itself with flow contral.

Xill

R R R R R RO R

T 4 e e

.

LR =R

B e i e e

With Artic's implementation of
Forth on the Sinclair ZX81, you get
about the cheapest Forth machine
available. Perhaps the only way of
running anything close to Forth at a
lower cost is the use of a reverse
polish notation calculator.

The word

Low-cost Forth implementations
have been developed for many other
micros than the IBM, Apple and
ZX81.

Recently Artic computing, which
produced the ZX81 implementation
reviewed here, released an
implementation of Forth for the
Sinclair Spectrum and a toolkit for
the BBC Forth implementation.

The Spectrum implementation is
similar to the one developed for the
ZX81, and does not have the disk
handling facilities which might make
it more powerful. If it had, it could be
used in conjunction with the
much-touted Sinclair microdrive. The
package sells at about the same price
as its ZX81 progenitor — £15.

Microprocessor Engineering offers
Forth for the TRS-80 machine, the
HP-85 micro and the Atari home
computers. All these
implementations sell for about £87.

There is also a version of Forth
available for the Dragon 32
computer. Available from Oasis
Software, it's called DragonForth and
promises to be a FIG-Forth
implementation for the Dragon that
can also execute Basic statements.
On cassette and selling for £18.95, it
allows use of the Dragon sound and
colour commands as well as floating
point.

There are also several versions of

both cassette and on EPROM.

Forth available for the BBC micro on |

IS
spreading...

XIv

CHANCE FOR
ZX81 USERS

ZX Forthis a good implementation of FIG-Forth for the
16K ZX81. It comes with an Editor, which is on three
screens next to the compiler, and should provide the
FIG-Forth fan with a reliable version of one of the
original Forths on the ZX81.

The Forth comes in a small black box which contains
the tape, two instruction manuals and an installation
note. LOADing time is approximately six minutes, and
the tape is LOADed in the same way as any other tape
for the ZX81.

Alsosuppliedisa ‘peel-off' keyboard overlay, which
should be stuck to the ZX81's keyboard whenever ZX
Forth is to be used.

The reasons for this are twofold: first, Forth words
such as !, @ and * are printed on the overlay, and
secondly, special graphics characters replace the
normal ZX81 characters.

ZXForthusesthe ASClIcharacterset, andifthe user
wishes to getthe extra characters such asgraphics and
upper and lower case printed out then either a Q.S.
Chré board or dk'Tronics Graphics ROM with extra
RAM should be used.

You don't have to use other extra, but if ! was
entered on the keyboard then some other character
wiould be printed. However, there would be no adverse
effect on the program.

The display on the ZX81 is slightly jittery when the
ZX Forthis being used. Every time a key is pressed the
screen ‘dips’ by a small amount, then returns to
normal. This may sound bad, but the effect is not as
annoying as the ZX81's display in FAST mode.

The Forthis very fast, of course— character output
is in the region of four to five times that of Sinclair
Basic.

The compiler itself is fast, and adds two new words
— FAST and SLOW — to the vocabulary. A simple

DO...LOOP of 32767 to 1 takes 12 seconds to
complete in SLOW mode, and three seconds in FAST.
The addition of FAST and SLOW in the ZX Forth
makes good sense, as compilers should to some
extent be tailored to the machine they are to run on.

There is just over 7K free when the compiler is |

LOADed, and once the screens for the Editor are added
this amount is reduced to 2K on a 16K machine.
Therefore, once editing has been complete it is wise to
forget the Editor altogether.

Unlike the Jupiter Ace, which is a dedicated Forth
micro, ZX Forth uses the standard Forth words to
LOAD and SAVE screens to and from tape by using the
Editor supplied with the tape.

Atfirstitseems alotoftroubletoload four screens of
Editor before you can EDIT your own screens, but
when you realise that memory is ata premium it makes
sense to have the Editor separate from the compiler—
this is standard Forth anyway.

No extra words have been added to the standard
vocabulary to allow the use of the ZX printer, but it
shouldn’tbe a problem to write the necessary routines
to achieve this. Forth provides many facilities to
improve access to the system in general, sofilling the
printer buffer with the necessary data and executing
the necessary routines in ROM might be one way to
achieve this.

It is also possible reset the boundaries of the

~ dictionary and then exit to Basic where the modified

Forth could be saved to tape.

Overall, the compiler is suitable for anyone wha
owns a ZXB81 and wishes to learn Forth. After
seli-tuition you can easily progress to another Forth
system with confidence, and without the fear of having
to learn another new set of words.

SRR e R e

THE
STANDARD
BEARERS

Many versions of Forth are currently
available for micros, but they all
derive from two dialects that were
defined in the 1970s. These are
FIG-Forth and Forth-75 (see part 1).

When the language first gained
recognition the Forth Interest Group «
(FIG) was set up to promote it. This
group developed what it called
FIG-Forth as its standard version.
The ‘standard’ itself is embodied in
the FIG-Forth installation manual as
written by William F Ragsdale.

The European Forth Users Group
(EFUG) was founded:in 1976. The
Forth Standards Team was formed to
set a standard for all Forths, and this
task force came up the standard
known as Forth-79, actually released
in October 1980,

Programmers interested in

implementing Forth from scratchor | -

wishing to learn more about the two
dialects should read the FIG-Forth
and Forth-79 manuals — both
available from FIG.

Each standard has a good
following, and there is much debate
between the devotees of FIG-Forth
and Forth-79 as fo which is worthy of
being called the standard. |

The dialects differ both in content |
and in the way they operate. The
reader should be aware of these
differences before obtaining a Forth
compiler, as some of them — double
number extensions, for example —
are considered of such paramount
importance by either camp that they
wouldn’t dream of resorting to the
other standard.

ZX SPEX

Name ZX Forth
Applications Language
implementation

System Sinclair ZX81

Price £15

Publishers Artic Computing
Formats Cassette

Outlets Artic Computing,
0482-75284.

STACK MANIPULATION |

The word column gives the name of the word.

Action gives a description plus effect on stack ie (before --- after)

FIG-FORTH

WORD ACTION
PICK Copy n1-th number to top (n1---n2)
ROLL Rotate n-th number to top (n---(n))
DEPTH Count numbers on stack (---n)

Not supported

FORTH-79

WORD ACTION
Not supported
Not supported
Not supported
SPiu Leaves address of top of

stack (——addr

. COMPARISON

WORD ACTION
0= True if top number is greater than zero
{n---flag)
NOT Reverse value of flag (flag1---flag?)
D< Trueifd1is less than d2 (d1 d2---flag)
U= Compare two top items as unsigned

integers (un1 un2---flag)

WORD ACTION

Not supported

Not supported
Mot supported
Not supported

ARITHMETIC AND LOGIC

WORD ACTION
1- Subtract 1 from top number (n---n-1)
2- Subtract 2 from top number (n---n-2)
Mot supported

WORD ACTION
Mot supported
- Mot supported
DABS Absolute value of a

double number (d---d)

MEMORY

ACTION

Mot supported

Not supported

ERASE

ACTION

Fill n bytes in memory with zeroes.
Start at address (addr n ——)
As ERASE but with blanks

TERMINAL 1/0

WORD ACTION
U. Print top number as unsigned integer
with black (un---)
Not supported
Mot supported

Forth makes great use of the stack, and there are a
number of differences between the two standards. The
table shows some of the differences then, but not the
entire set of words required for both.

The tables are in no way complete, as there are
difierent versions of both dialects. Anyone interested
should consult the appropriate installation manual.

The reader shold not decide what compiler to invest
in merely on the basis of these tables. Control
structures, mass storage and definition words have

WORD ACTION
Not supported
T Print number right-justified in field (n
fieldwidth ---)
DR | As .R but for double number

been left out for the sake of brevity.

Such is the flexibility of Forth (both dialects) that
even with a certain word that one dialect may have and
yours hasn't, itis possible to give the definition of the
missing word (ifyou knowit) and to have it compiled as
part of your Forth dictionary.

This can even apply to control structures that
another dialect may have, although it is not
recommended that you start messing about with

them.
XV

Books are more important for Forth implementations
than for almost any other language. They give you
much needed background, and assist in-depth
implementations.

Here we look at three books about Forth, each
dealing with the language in increasing levels of
complexity. The first, The Compiete Forth, by Alan
Winfield, is also the thinnest (and the least
expensive) of the books.

But this is one of those cases where you can't tell
a book by it's cover. In addition to the Forth-79
handy reference card at the back of the book, there
is an index which lists the complete standard
Forth-79 word set. There are also 127 pages of
tightly packed and well-presented information about
the language.

The book starts from scratch, telling you how to
read the book and what both novice and computer
expert alike will get from reading it. The author then
starts on the fundamentals of Forth, bringing in the
notion of reverse polish notation, the stack and then
a series of pieces about using numbers in Forth and
learning stack manipulation.

In the second chapter he jumps into an
explanation of the dictionary, Forth error messages,

And so on

and so forth

Once you've read through the Forth Micropaedia and
you've read through the books reviewed here, you
may want to get more involved in Farth. If you do,
there are plenty of groups you can turn to, and the
numbers are growing all the time.

A good place to start is either your local Forth
Interest Group (keep an eye on PCN's Clubnet for
names and addresses in your area) or the Jupiter
Ace Users Group.

The Jupiter Ace Users Group is a relatively new
group that publishes its own guarterly newsletter,
runs its own software house and has developed a
number of discounts for club members wanting to
buy Ace software and peripherals.

If you're running Forth on the Jupiter Ace, they
are probably your best independent reference point
for getting more out of your machine. They can be
reached at the address given on page nine for
Remsoft.

Xvi

and how to use Forth variables. Mr Winfield
continues in this vein throughout the book. The very
fact that he is so thorough, however, tends to make
the book a little grey, and might deter some novices
who'll be attracted by the zappy illustration on the
COVET.

The book is published by Sigma Technical Press
and sells for £6.95. -

The other two books are printed in the US. Leo J
Scanlon's Forth Programiming is sightly more
technical, although its extensive use of diagrams
and tables makes it look less chock-a-block than the
Winfield book. The structure is similar, although Mr
Scanlon uses the greater length of his book (246
pages) to go into more detailed discussions of stack
manipulation, do-loops, control structures and the
differences between Forth-79 and FIG-Forth.

Forth Programming includes a useful appendix of
double-number extension words to process larger
values on 32-bit machines, and there is also the
obligatory comparison between Forth-79 and
FIG-Forth words, as well as a hex-decimal and ASCI|
conversion fable.

An Invitation to Forth, by Harry Katzan Jr, is the
most technical of the lot — and unfortunately the
hardest to read. The dot-matrix printer used to
typeset the book on an Apple Il is an admirable
attempt to bring micros to the publishing world, but
it still doesn’t make the dot-matrix output any easier
to read.

The book is divided into ten chapters — starting
oddly enough with chapter 0 — and explains most of
the Forth concepts with clearly labelled flow-chart
diagrams and control structure models.

Apart from the standard group of Forth chapters
common to the other two books, there is also a
chapter on double precision Forth and information
management using Forth.

There is also a rather erudite chapter on computer
philosophy, which details the differences between
the Harvard and Princeton architectures. It doesn't
necessarily bear any direct relation to Forth, but it
makes interesting reading.

The three books about Forth we've
selected for review may well whet your
appetite for more information on this
increasingly popular language.

NEXT WEEK

Next week we begin our massive five part series on graphics for six of the country’s
most popular micros. We'll have hints and programming lists (in living colour]) for the
BBC Micro, the Atari 400, the Oric 1, the Sinclair Spectrum, the Commodore Vic-20 and
the Dragon 32 machines.

Over the five weeks of this series you'll get forty pages of PCN’s best for the best of
Britain's low-priced micros. Colour will flow off our pages and onto your screens with
the mere press of a few keys (well, actually quite a few).

We'll also be featuring some of the programs discussed in the Micropaedia in our
weekly ProgramCards ‘selection, 5o you can clip and keep them with your other PCN
ProgramCards.

Stay tuned, it's going to be a colourful five weeks.
Contributors: David Janda, Marcia Macleod and Geof Wheelwright.

