
asswords To Computing j

Controlling
The Flow

It we pour water into Z tank
from a bucket, a constant
trickle will come from the
outlet pipe. In just the same releases it at the rruch sower
way, the computer pours' speed at which the printer, for
data into the buffer, which example, wcrks

this happening, but with certain disk operating
systems, or with certain types of applications
software (involving a lot of processing of
information) there may be a slight delay between a
key being pressed and its appearance on the
screen. A few operating systems allow the type
ahead buffer to be turned on or off, or even allow
the size of the buffer to be altered by the user.

The precise way in which the software is
organised to handle buffers varies depending on
what the buffer is supposed to do, but generally it
will he necessary to set aside a few bytes to be used
as counters and flags. It will be necessary to know
how many bytes have been read out from a full
buffer before more are written in, otherwise
important data may be destroyed before it has
been used.

Hardware Memory Buffers
Readers with printers may have noticed how slow
they seem to be, especially when printing out a
long program listing or document. Most computer
operating systems are not able to do anything else
while the printer is in use, so if it takes a long time
to finish printing, the user will just have to sit at the
screen waiting for the printout to end. Many
manufacturers now offer add-on print buffers,
usually in the form of a box that connects between
the computer and the printer. These boxes
effectively speed up the printer from the
computer's point of view. Although the printer
does not actually print any faster, the box contains
extra, dedicated memory (sometimes as much as
16 Kbytes) with its own built-in software. To the
computer it appears exactly like a faster printer.
When the computer has to print a file, it sends
bytes out to the printer until it receives a `busy'
signal, meaning that the printer cannot accept any
more bytes. The computer then has to wait until
the `busy' line goes `false', indicating that the
printer is once again able to accept data. Even
though printers usually have a small memory

buffer built in, this is often not more than two
Kbytes and it will not allow the computer to send
more data until this buffer is empty. The add-on
hardware memory buffers contain more memory,
so they can accept much more data before sending
a `busy' signal to the computer. If the buffer is big
enough, it may be able to hold all the data to be
printed in one go, so the computer will be able to
get on with other tasks while the buffer sends the
data at a slower rate to the printer.

Memory is often used rather like a large trunk
or pigeon-hole rack to store programs and data,
but it may instead be organised into stacks or
buffers. Stacks are `Last In First Out' or LIFO
structures, whereas buffers are `First In First Out'
of FIFO structures. The analogy often made for
stacks is that of the pile of plates supported by a
spring occasionally seen at self-service counters.
Plates are piled on the stack and the last one
placed there will be the first one removed. Like
buffers, stacks are also temporary memory areas
and differ from buffers only in the order in which
the data is input and retrieved. Stacks are used
`internally' in high level languages (in BASIC

interpreters, for example) when information
needs to be stored temporarily and recalled later.
Consider this tsAstc program fragment:

FORX=1 TO10
PRINTX=";X
FORY=1 TO1C
GOSUB SCAN
NEXT Y
PRINT "CS= ";CS
NEXT X

This is an example of nested FOR. ..NEXT loops.
When the BASIC interpreter gets to the second FOR
statement, it needs to remember which variable is
used by the previous FOR(X in this case), and so it
`pushes' the information about the first FOR onto a
stack. When the inner loop has been completed, it
`pops' the information from the top of the stack
and knows that the current FOR uses variable X.
Since FOR. ..NEXT loops can be nested as deeply as
required, it may need to push information for
several FORs onto the stack. When it pops the
information from the stack, it clearly needs to have
the information in the inverse order from that in
which it was pushed.

Buffers, on the other hand, organise memory so
that the first information entered is the first
information output. Buffers are often used in
input/output routines and are used as `interfaces'
between routines or devices working in different
units or at different speeds. For example, an input
routine in BASIC might work in units of lines,
terminated by a Carriage Return <CR>, but the
interpreter may work on the lines in units of one
character. Buffers usually need a 'pointer' to
indicate where in the buffer the next character
should be written. The pointer would be a byte or
several bytes containing the address of that
character. The address would be incremented
after each character had been stored,

Strong Signals
The logic nside your computer
works at TTL levels. T'ansistor-
Transistor-Logi; signifies a
binary 1 with five volts, and 0
with zero volts. However,
though devices such us the CPU
are capable of produc ng these
voltages, they can't generate
enough current to drive all the
other chins that might be
connected to each pin. Signal
buffers are therefore connected
to the CPU's output lines to
magnify the amount of current
ava fable. Signal buffers are
themselves small chips, each
typically capable of acting as a
butler for six signals

THE HOME COMPUTER COURSE 237


