£'Game Masterl

ZX Spectrum

PK McBride

ZX Spectrum
Game Master

ZX Spectrum

Game Master
PK McBride

Longman &2

_ NKY

il

Jn‘h. -

ZX SPECTRUM is a Trade Mark of
SINCLAIR RESEARCH LIMITED.

Longman Group Limited

Longman House, Burnt Mill, Harlow,

Essex CM20 2JE, England

and Associated Companies throughout the

world.
(© Longman Group Limited 1984

All rights reserved. No part of this

publication may be reproduced, stored in
a retrieval system or transmitted in any

form or by any means, electronic,

mechanical, photocopying, recording or
otherwise, without the prior permission of

the Copyright owner.

First published 1984
ISBN 0 58Z 91k0b 2

Printed in UK by Parkway [llustrated Press,
Abingdon

Designed, illustrated and edited by
Contract Books, London

The programs listed in this book have been
carefully tested, but the publishers cannot
be held responsible for problems that
might occur in running them.

Contents

P b |

Introduction

Action games
1 Movement
2 Targets & invaders
3 The Hall of Fame
4 Mazes
5 Special effects
Program listings

Adventure games
6 The spirit of adventure
7 BASIC logic
8 Planning the game
9 The key routines
10 Taking it further
Program listing

Interactive games
11 Game design
12 First moves
13 Developing tactics
14 Take it from here
Program listing

A
A Essential BASIC

B Defining your own graphics

C Super screens

12
16
36
48
g2
62

16
16

84
98
106
114

122
122
124
128
132
136

148
154
157

Why bother to write your own computer
games? After all, it is hard work, and there are
so many games around already that you may
wonder whether it is really worth the effort. Of
course it is, because however much hard wor!
1s involved, writing a game is an exciting
challenge. When you have succeeded in
producing the game you want, that does the
things you want it to do, in the way that you

| choose, there is an enormous sense of
satisfaction. It's a bit like climbing a mountain.
may be a struggle getting there, but there's
great view from the top.

And are there so many games around
already? How many truly original games have
you come across? How many are simply new
versions of old favourites? Could you come up
with something really new? If you could, then
there's someone out there who would like to
play it, and perhaps, to pay for the pleasure.

The second question is ‘Why BASIC?
Machine code programming produces much,
much faster games - about fifty times as fast as
BASIC programming. The answer there is that
BASIC is far easier to use, and do you really
need the speed? Those all-action high-speed
arcade games represent weeks or months of
work by teams of experienced programmers.

=~

Z,

You want to see results, don't you? Also, there
are many types of computer games where
high-speed is simply not necessary. You don't
need it in adventure games or games of
strategy. Imagination is far more important
here, and imagination and attractive graphics
will go a long way to make up for lack of speed
in action games.

This is the real strength of BASIC
programming. You will find that you spend less
time struggling with the technicalities of the
program, and more time using your imagination.
You can always add machine code routines into
your BASIC programs - short, tried-and-tested
routines that will speed up particular parts of
the program or give you special effects that are
not possible in BASIC. Useful routines can often
be found in computing magazines.

\ 6

F \ Introduction

There are three aspects to any computer game:

1 theidea

2 the way you present the game

3 the techniques you use to make the game
work.

Theidea Ofthese three, this is the most
important. It doesn't matter how good your
technique is, or how beautifully designed your
screens are, if the idea is poor, then you still
have a poor game. On the other hand, poor
presentation can ruin a good idea, and if your
technique isn't good enough, it won't work
anyway.

If you are stuck for an idea, look at the games
that people play - board games, pencil and
paper games, plastic peg games, group activity
games. There's inspiration there. Some of these
games will translate directly onto a computer,
others might stimulate your imagination.

Play with your micro. Try out anything new
you come across, any new ideas, techniques or
routines - and see if they lead to a game of some
sort.

THEGAME;

Presentation comes next. How will your
game actually appear on the screen? What will
the player have to do to play the game? How
can you make it most interesting? Are you using
colour and sound to the best advantage? Can
the player see all the information he needs to be
able to play? Are you giving him too much
information and causing confusion?

Technique is, of course, essential. You have to
know how to get the effects you want, or you are
stuck before you start, but that is where this
book, and others like it come in. You can always
read up on technique. Somebody, somewhere,
can tell you what you need to know to make the
game work. You will also find that there is
usually more than one way to get a particular
effect, and a bit of creative thought willgo a
long way.

8
Introduction

9
Introduction

&

Computer games come in a bewildering variety
of types, shapes and sizes. Some are true
computer games - the sort that don't exist in any
other form - others are 'computerised games' -
versions of existing board or paper games.

The book is divided into three sections —
Action, Adventure, and Interaction. Itisa
convenient way to try to cover the techniques of
games-writing, but in practice many games
refuse to fit into nice neat categories.

Action games

These are the games played out on the screen —
the arcade games. They have come a long way
in a few short years, from the TV Tennis of the
early 70s through Space Invaders, Munchman,
Donkey Kong, Frogger to the latest 3-D effect
Star Wars games. All action games are based
on speed of movement and of response, but
speed is not the only thing.
The best games have
excellent graphics and sound
effects, and it's here that
imagination comes into play.

Adventure games

The classic adventure games — developed on
mainframe computers in the 60s and 70s - were
all text based. Games were often included in
commercial software packages, just to show off
how well the computers could handle words.
Cheap chips have brought to home computers
the same kind of memory capacity that the old
mainframes had, and now adventure games
have reached the home. Many of the newer
games include graphics, sometimes in the form
of illustrations, sometimes as action games
spliced into the main adventure. All adventure
games share a common theme - the player has
doorexitsN, S, E. / to find his way around some unknown land,
using his wits to solve the many problems he
meets, trying to discover the hidden treasures.

Interactive games

All computer games are interactive one way or
another, i.e. the computer responds to what you
do, and you must respond to the computer. All
games must work this way. By 'Interactive
games' I mean those where the computer acts
as a player, in much the same way asa human
would act. The machine has to
‘think’, to make decisions and to
work through a strategy. These
types of games require very
careful planning,and even the

- simplest interactive game is far
from simple to write. This
section comes at the end of the E=y
book for that reason! "~

P

10
Introduction

All action games depend upon speed of
response. The speed with which the player
responds to the computer, and the speed with
which the computer responds to the player.
This can create problems when you are
working in BASIC.

Don't be put off by this. You can achieve some
quite slick games in BASIC, as long as you keep
the routines simple. Also, BASIC does have one
enormous advantage over machine code. It is
fairly simple to handle, and not too hard to track
down your mistakes. Debugging machine code
1s no fun at all!

The listed games

You will find the lists for two examples of action
games at the end of this section of the book.
These could be typed in now, or you may prefer
to wait until you have worked your way through
the section. If you wait, then you will have a
better understanding of how the games work,
and will be less likely to make mistakes as you
type them in. On the other hand, typing them in
now will give you something to refer to as you
read.

The purpose of the games programs is to
demonstrate techniques and routines, and for
this reason they have been kept as simple as
possible. You may want to add title pages,
sound effects and additional graphic effects to
your versions of the programs. Suggestions for
improving the games will be given in this
section.

This game looks at simple movement, and
shooting and bombing routines. The story
behind the game is that a small fleet of
spaceships has been sent to destroy the
buildings on an enemy planet. The ships make
their bomb runs, one at a time, shooting down
any enemy ships that try to intercept them. The
enemy do not need to shoot at you. Contact with
their force fields will destroy your ship, leaving
them unharmed.

12
Action games

13

Action games !

The game has three types of movement. The
attacking spaceships move steadily from left to
right, with their height controlled by the keys.
Bombs drop straight down, and the enemy
spacecraft move from right to left, but their
height is adjusted by the computer to bring
them onto a collision course with the attacker.

Also in the game are three varieties of
collisions: ship to ship, bomb to building, and
laser beam to ship.

Firefight

This is essentially a game of movement. A fire
engine has to be steered around the screen,
rushing to put out fires. The fires spring up at
random places, and the more successful you are
in putting them out, the quicker new ones burst
into flame. This is not a game anyone can win.
The only question is, how long can you last?

The main points to note here are the ways in
which 4-directional movement is managed, and
how the computer keeps track of what's going
on. An array is used to record the positions of
the obstacle blocks and of the fires. This is not
strictly necessary, as the screen could be read
directly to see what was where. However, the
array 1s convenient, and there will be other
times when you will need to use one to store this
type of information.

L]
"

Shoot, steer and catch

If you are a keen games player, you will have
noticed that there are really only a limited
number of different action games around. These
tend to fall into three types: those where the
object is to shoot things; those where you are
steering round some kind of maze or obstacle
course; and those where you are trying to catch
things. The common factor in all of these games
is the movement of objects on the screen, and
the control of the action through the keyboard
(or joysticks.) This then is where we should

14
Action games

18

Action games f

routine in your programs which lets each player
choose his own keys for controlling movement.
To do this you need to create a small array to
hold the player's choices, collect those choices,
and then compare A$ with the array. The 'D.LY.
Key Routine' does this.

This program will crash if you go off the
screen. Simply re-RUN to begin again.

)

D.LY. key routine

5 GOsuB 1000

I
[

I

I

I

|

I

|

I ..
'_
I
|
I

I
|

I

This shows the essence of key control. You
need two variables to store the position of your
object (line 10). You must display your object on

=
|
|
|
|
I " T (as opposite)
screen (line 20). The computer must scan the I
I
I
I
I
|
I

30 ..
40 IF A$= K$(1) THEN.... up
50 IF A%$= K$(2) THEN.... down
60 IF A$= K$(3) THEN... right
70 IF A%$= K$(4) THEN.... Lleft
- —=~1 80 GOTO 20
| ' 1000 DIM K$(4) (the Keyarray)
: 1] 101@ INPUT “ WHICH KEY FOR
| UP ?7; K$(1)
------- 1020 INPUT “ WHICH KEY FOR
DOWN 27; K$(2)
1030 INPUT “ WHICH KEY FOR
RIGHT ?”; K$(3)
1040 INPUT ”~ WHICH KEY FOR
LEFT ?7; K$(4)

keyboard to find out if any keys have been
touched (line 30). Lastly you need to translate
the key contacts into changes in the position
variables (lines 40 to 70). And, of course, you
have to keep doing it (line 80).

10 LET L=1@ : LET C=15
20 PRINT AT L,C;“»”

(use any character you fancy)
30 LET A$=INKEY$: IF A$ = “” THEN GOTO 30
40 IF A$="7" THEN LET L=L-1
50 IF A$="6" THEN LET L=L+1
60 IF A$=“8" THEN LET C=C+1
70 IF A$="5" THEN LET C=C-—1

I
|
|
|
80 Goto 20 | 1050 RETURN
r-————— I = Notice how the key choice routine has been
I | | made into a subroutine, even though it is only
| | used once in each game. This helps to speed up
I have used the ‘arrow’ keys for the controls in | | I the computer's responses. Every time it hits a
this program. You may not like them. Pick the | | GOTO line, it has to work out where the line is
keys you would like to use instead, and type | I I by going back to the start of the program. The
their characters into lines 40 to 70 to customnize I : I fewer lines there are at the top of the program,
your program. You can, if you like, include a - L T d I the quicker it calculates its GOTO.
= I
16 H 17
Action games 1
1

Movement C

Continuous movement

The Key Moves program doesn't give you
continuous movement — it produces a
continuous line instead. To give the
impression that an object is moving, the first
essential is that there should be only one
image on the screen at any time. To do this,
you must rub out the old image before the
new image is printed. The change of
variables doesn't have to be through key
controls. A target, for instance, would
probably move smoothly across the screen.
Here's a target moving routine.

1000 REM TARGET

1810 FOR C=0 TO 31
1020 PRINT AT 5,C;“
1030 PRINT AT 5,C; ”
1040 NEXT C

Type it in and run it.

Now there's a target few people would be
able to hit! BASIC can be very fast, aslong as
the routine is short and simple. You will need to
slow the target down, to give people a chance
to see it. Insert this line:

1025 FOR D=1 TO 5@ : NEXT D

This is a delay loop. The computer isn't
actually doing anything at all, but it is doing it 50
times, and that slows things down a bit. Change
the number in the loop to change the speed.

Here's another way to move a target. It'sa
simpler routine, but it works perfectly well as
long as the movement is straight across the
screen,

1010 FOR C = @ TO 30

1020 PRINT AT 5,C;“

103@ FOR D=1 TO 5@ : NEXT D
1040 NEXT C

Rewrite line 1020 in that last example to give
a bigger picture - 6 squares, rather than one.
You will notice, when you run this, that the
movement has slowed down a little and has
become a bit jerky.

1020 PRINT AT 5,C;" mme “; AT
6,C;" _wpgugm "

You must change line 1010 as well, to stop the
graphic running off the edge of the screen.

18
Action games

19
Movement

Things to try

1 Adda GOTO line to keep the movement
going endlessly.

2 Alter the numbers in the FOR. .NEXT. . loop
so that the picture moves from right to left.
Remember that, as the numbers are going
down, you must add STEP — 1. If you use the
second type of routine, then your ‘rub out’
square needs to be to the right of the graphic.

3 Work out a routine - using a separate rub
out' line, to get vertical movement.

This time it is the line variable that needs to
go into the loop, while the column is fixed.

PRINT AT L,15;“%"

would drop a target down the middle of the
screen.

4 Combine the two routines — Key Moves and
Target — so that you have an object where the
movement is controlled by a loop and by the
keys. This is what happens in the ORBIT
program. The spaceship's horizontal movement
is run through a loop, and the keys control the
vertical movement.

SET HEIGHT

START LOOP
FOR HORIZONTAL
MOVEMENT

v

———I DISPLAY GRAPHIC

NO‘

v

DELAY AND
RUB OUT

v

'YES

o

ADJUST
HEIGHT

END
OF
LOCP

e

20
Action games

2
v
STOP
21

Movement

The program here is a development of the Key
Moves program. It allows you to move the

blocks and letters are printed can be altered at
any time by pressing one of the number keys. If
you want to rub out something, then take the
cursor back over that spot.

Two points to note in this program.

cursor anywhere you like on the screen, and to '
print at that spot, either a block of colour or a
(coloured) capital letter. The colour in which /

1 Look at the lines 120 and 130. They stop the
cursor from moving off the screen.

2 After something has been printed, the
cursor is automatically bumped to the right. This
is to stop it overprinting your block or letter.

You may find it more convenient to bump it left
or down instead. Alter lines 140 and 150, and
replace the LET C=C+(C<31) statement

with your own variable change.

18 PAPER 7:INK @ : CLS

20 LET L=1@ : LET C=15 (start position - start where YOU want)

30 LET I =0 (listhe colourof the INK)

4@ PRINT AT L,C; “*"

50 LET A$ = INKEY$: IFA$="" THEN GOTO 5@

6@ PRINT AT L,C;” "

70 IF A$>="D" AND A$<="7" THEN LET I = VAL A$

(converts the number key stroke into the value for the Ink variable)

80 IF A$ =“u” THEN LET L=L-1
90 IF A$ =“d” THEN LET L=L+1
(small letters for the movement controls)
100 IF A$=“r" THEN LET C=C+1
110 IF A$="l" THEN LET C=C-1

120 LET L = L+(L<@) — (L>21) (adjusts L to keep it in range)

130 LET C= C+(C<@)—(C>31) (adjustC)
140 IF A$= “ " THEN PRINT AT L,C; PAPER I;* ":
LET C=C+(C<31)

150 IF A$>="A" AND A$<="7" THEN PRINT AT L,C;INK I;

A$: LET C=C+(C<31)
160 GOTO 4@

22
Action games

%W« A L S

Once you have designed your title page, you
will need to save it on tape, so that you can add
it to your game later. Do this using the SAVE
‘name' SCREEN$ command. Break into the
program and key in SAVE, the name of the
screen, and SCREEN$. Make sure your cassette
player is set up properly, then proceed as if you
were saving a program.

There are two ways to add the title page to
your game.

1 Put the instruction : LOAD ‘name' SCREEN$
as the first line of the game, and SAVE the game
so that it runs itself. You do this with the
command

SAVE “gamename” LINE 10
(where 10 is the first line)

Then SAVE your fancy title page on the tape
directly after the program. When the program
is LOADed back in, it will run itself, and LOAD
in the screen.

2 Usealoader program. This isa very short

program, whose sole purpose is to LOAD ina

screen, and the game program - and maybe a
chunk of machine code if you are using any. It

should look something like this:

10 LOAD “ORBIT” SCREENS$
20 LOAD “ORBIT”

SAVE this loader so that it runs itself, then SAVE
the screen immediately after it, and finally
SAVE the game program — make that auto-run
as well.

If you are going to be using a machine code
routine, then include the CLEAR command in
the loader. You could find it very irritating if you
had just watched a fancy screen load in, only to
have it wiped away the instant the program
started.

5 CLEAR 56999 (or whatever numbers)

23
Movement

Despite its name, this is not a version of the wall
game, but one where you have to steera
runaway car down a hill - and your brakes are
not working.

The car only moves from sideto side
(controlled by keys [5 |and [8]). The
downhill movement is created by making the
screen scroll upwards by continually printing
on the bottom line.

Normally, if you try to print below line 21, you
will get the ‘scroll? message. In this program,
the SCRLCT (Scroll Count) systems variable has
been reset, so that it will print an additional 255
lines before the 'scroll? appears (line 140).

You can improve the car design by changing
the data in the subroutine at 1000. The original
design is shown for your reference.

100 GOsSuB 1000

110 CLS : LET T=10

120 LET SC=@ : LET C =14

125 REM GRAPHICS IN 130

130 PRINT AT 1@,C;“ABC”;AT
11,C;“DEF”

140 POKE 23692,255

200 GosuB 2000

210 LET AS$=INKEY$

220 LET C1=C+(A$="8")—(A$="5")

230 IF ATTR (11,C1) =@ OR ATTR
(11,C142)=0 THEN GOTO 400

240 LET C=C1

245 REM GRAPHICS IN 250

250 PRINT PAPER 8;AT 9,C—1;
“ (Sspaces) ”; AT 10,C-1;
“ ABC ”;AT 11,C;“DEF”

260 FOR D=1 TO 25 : NEXT D

270 LET SC=SCH1

280 GO TO 140@

=

400 PRINT “YOU DROVE “;SC/1@;”
KM’ ,“BEFORE YOU CRASHED.”
41@ STOP

Graphics

1000 FOR N=0 TO 5: READ G$

1010 FOR R=0 TO 7: READ B

1020 POKE USR GS$ +R,B

1030 NEXT R: NEXT N

1040 DATA “A”,0,1,6,12,9,25,16,49

1050 DATA “B”,8,255,0,192,224,224,
192,255

1060 DATA “C”,0,128,96,48,16,24,
8,140

1070 DATA “D”,63,127,119,119,127,
127,112,112

1080 DATA “E”,255,255,129,255,129,
255,0,0

1090 DATA “F”,252,254,238,238,254,
254,14,14

1100 RETURN

Lines 1040 to 1090 contain the DATA for each of
the graphics A, B, C, D, Eand F.

Kerb printing

2000 LET X=INT(RND * 3)-—1

2010 LET T1=T+X

2020 IF T1>3 AND T1<19 THEN LET
T=T1

2030 PRINT AT 21,T;PAPER 0;“m";
AT 21,7T+10;“®”:PRINT

2040 RETURN

Most of what's happening here should be fairly
obvious, but the following points are worth
looking at more closely.

24
Action games

a5
Movement

. s

v’—-___i
The winding road
The road edge must change gradually, no more 1 If you haven't already done so, now is the
than one column either way ata time - inother ~ H-{{+ H:ﬂ WEEE] time to design your own car for this game. It
words, the T variable must be altered by —1,0 iF 13](3—.1; aEEES doesn't have to be a car. It could be a downhill
or +1. Line 2000 pr::duqes a suitable random TE 7 e He {i d R E S :kliré:m parlachuusl landing in a narrow ravine, a
number. INT(RND*3) gives 0,1 or . Takeaway ~ FFf e naem paceship lowering down into the depths of a
1 to drop it into range. Ul TR forbidden planet, or anything else your
H H imagination will stretch to.
AT 10.C— I 2 Givethe screen a different appearance.
m Instead of marking the edges of the road, you
could mark the road itself:

The kerbstones don't just look black, they are
also printed on black PAPER. This means that
the colour ATTRIBUTES of the kerb squares are
quite different from the rest of the screen. The
ATTR(Line, Column) function will tell you what
colours are used at any particular square on the
screen, using this code: ATTR number = INK
code, plus 8 times the PAPER code, plus 64 if
the square is BRIGHT, and 128 if it is FLASHing.
The normal state of the screen is white PAPER
and black INK, so the ATTRibutes of a square
would be 8*7+0=>56. Where the PAPER is
black, the ATTRibutes are 0*8+0=0. Line 230
tests the squares where the wheels would be
printed on the next move, to see if either are
kerb squares.

There is no separate rub out line here. The car
is printed (line 250) with extra spaces above
and round the top line. These will rub out the
old image, even though the new image may not
be directly in line.

|

2030 PRINT AT 21,T;
PAPER @; “ (l12spaces) ”

Now check it to see if the car has lost contact
with the road:

IF ATTR(11,C1)<>0 OR
ATTR(11,C1+2)<>0....

an't forget to _draw the road at the start, and to
print the car directly onto it in a light colour.

3 Why have a road at all? Why not random
obstacles coming up at the car/skier/boat/
spaceship? This is actually easier. All you need
1s a routine to produce a random number
between 0 and 31, and to print something on the
chosen column.

You could even arrange it so that your score
de_pended upon how many of those obstacles/
objects you landed on.

Play around with the scrolling screen idea
and see what you can come up with.

26
Action games

21
Movement

Key controls

You could have a different key for each
direction - the number keys 1 to 8 would seem
appropriate — but that is not terribly user
friendly. It would be simpler, from the player's
point of view, to have one key for a clockwise
turn, and one for an anticlockwise turn.

1000 IF A$="5" THEN LET D=D-1
1010 IF A$="8" THEN LET D=D+1

These can be combined into one line using
logical operators.

w 1000 LET D=D+(A$="8")—(A$="5")
In those games where the playing piece can
move in different directions about the screen, it
looks much better if you have suitable graphics
for the directions. You can see this in a simple
form in the FIREFIGHT game. There, the fire
engine faces left, right, front or back as
appropriate.

It all makes extra work, of course. For a start,
you need more user defined graphics. A typical
set for 8-directional movement is shown here.
As graphics go, they are not very beautiful, but
at least there is no doubt as to which way they
point. Define them as a set, and in the right
order, so that the graphic for direction 1 is in
Graphics ‘A, direction 2 in Graphics B' and so
on. This is important, as it makes changing 6
direction very simple. 5 4

The directions are coded 1 to 8. To make the
correct graphic appear, you need a line like
this:

PRINT AT L,C;CHR$(143 +D)

(CHRS$ 144 is Graphics ‘A, 145 1s
Graphics 'B')

B
[

[1

28 29
Action games Movement

A further line is needed to stop D wandering out
of range. This line allows for full travel either
way round; you can go clockwise from 8 to 1,
and anticlockwise from 1 to 8.

LET D=D+(8 AND D<1)—(8 AND D>8)

You can see the way this works from this
program. Type it in and try it.

1@ LET D=1

20 LET L=10: LET C=15

30 PRINT AT L,C;CHR$(48+D)

40 LET AS=INKEY$

50 LET D=D+(A$="8")—(A$="5")

60 LET D=D+(8 AND D<1)—(8 AND
D>8)

70 GOTO 30

The first two lines set up the variables to hold
the direction and position (which we will be
changing shortly), and the character is
displayed by line 30. 48+ D will give a number
between 1 and 8.

I you look at the listing for FIREFIGHT you will
find a couple of lines that convert the direction
value into movement, using logical operators
(lines 160 and 170). You can work out similar
lines for 8-directional movement, but the lines
are horribly complicated. It is much simpler to
set up a bank of subroutines to change the
position variables.

L=L-1
C=C+1

C=C+1

L=L+!
C=C+1

70 GOsuB (90 +1@%D)

80 LET L=L +(22 AND L<@)—
(22 AND L>21)

90 LET C =C +(32 AND C<@)—
(32 AND C>31)

95 GOTO 30

18@ LET L=L—1 : RETURN

110 LET L=L-1: LET C=C+1:RETURN

120 LET C=C+1 : RETURN

130 LET L=L+1: LET C =C+1 :
RETURN

140 LET L=L +1: RETURN

150 LET L=L+1 : LET C=C-1:
RETURN

16@ LET C=C—1 : RETURN

170 LET L=L—1: LET C=C-1 :
RETURN

Type it all in and watch what happens when you
press the control keys. If you would prefer a
tidier screen, then loop the program back to
line 25, and write in a line to clear the screen
before the new graphic is printed.

As it stands, this routine gives you continuous
movement. To make it one step at a time, then
rewrite line 40:

40 LET AS=INKEY$: IF A$ ="" THEN
GOTO 40

30
Action games

31
Movement

When you have got only one object on the

screen, it's simple enough to control its speed
through a variable in a delay loop.
1@ LET WHEN = 50

300 FOR D=1 TO WHEN : NEXT D

WHEN can then be increased or decreased
by a key control line.

With two or more objects moving on screen,
this method will not do. If you increase the delay
to slow down one object, you slow down the
whole program. The CATCH program given
here shows one way to allow two objects to
move at different, controlled, speeds. It works
by using multiples of numbers, in the same way
that the Fizz-Buzz game is played in schools.

In Fizz-Buzz, pupils count round the class, one at
a time, but when the number is a multiple of 3,
the pupil says Fizz, rather than ‘3, 6, '9', or
whatever. For multiples of 4, the pupils would
say ‘Buzz. It's a fun way of learning tables. The
Fizz-Buzz numbers don't have to be 3 and 4.
Here's how it would sound when played with
Fizz for 2, and Buzz for 5.

1, Fizz,3 Fizz,Buzz Fizz,1,Fizz 9 Fizz-Buzz,

The computer doesn't Fizz and Buzz. Instead, it
goes to a subroutine to move the graphic, when
it meets the right multiple in a simple counting
loop. The overall loop (CT - Check Time)
increases by 1 each time round. (Line 110).
Each graphic has its own time code held in the
T() array. Line 70 checks to see if the Check
Time is a multiple of a graphic’s time code. If it

is, then the program goes off to move that
graphic. The square block has a time code of 2,
so that it is moved every second time the
program goes round the loop. The angled block
starts with a time code of 10, so that it is only
mfg’ed e(;rery 1 g loopr? You can reduce this time
code and speed up the graphic, by pressin
[8]. slmévij it dowhn‘ The grapl};ig can bg
moved up and down the screen by keys
and[7 |, and the object of the garze isylo[:ni;ltch
the speeds and positions of the two graphics.
Type the game in and get it working, then
design some graphics of your own to make this
look like a spacecraft docking manoeuvre. (For
advice on using user-defined graphics, see

: Appendix B.)

10 REM CATCH

20 DIM T(2): DIM X(2): DIM Y(2):
DIM C(2): DIM G(2)

30 LET T(1) =2: LET Y(1) =10:
LET X(1) =0: LET Cc(1) =1:
LET G(1) =143

40 LET T(2) =10: LET Y(2) =20:
LET X(2) =@: LET C(2) =3:
LET G6(2) =142

50 POKE 23672,0: POKE 23673,0:
LET CT=1: CLS

6@ FOR N=1 TO 2

70 IF CT/TC(N)=INT (CT/T(N)) THEN
GO SuB 200

80 NEXT N

90 IF ABS (X(1)-X(2)) <2 AND
Y(1) =Y(2) AND T(1) =T(2)
THEN GO TO 120

100 LET AS$=INKEYS$: IF A$<>"" THEN
GO SuB 300

110 LET CT=CT+1: GO TO 6@

120 PRINT “SUCCESS IN ";INT ((PEEK
23673%256+PEEK 23672)/5@); “

SECONDS.”
B

32
Action games

33
Movement

=

13@ STOP
200 PRINT AT Y(N),X(N);“ ”

210 LET X(N)=X(N)+1—(32 AND X(N)=31)

220 PRINT AT Y(N),XCN); INK C(N);
CHRS G(N)

230 RETURN

300 LET
T(2)=T(2)+(A$="5")— (A$="8") :
IF T(2) <1 THEN LET T(2) =1

310 LET YN=Y(2)+(AS="6")—(A$="7")

320 PRINT AT Y(2) ,X(2); “ "

330 LET Y(2) =YN

340 LET N=2: GO SUB 220

350 RETURN

1 Improve the appearance of the game by
giving it a background. If you are creating
graphics to make this a spacecraft docking
program, then add a subroutine to turn the
screen black, and scatter stars at random over
it. A few of these will get wiped out by the
space station and satellite as they cross the
screen, but it should not be enough to worry
about.

2 The movement here is horizontal only. This
is to keep the program simple. Why not
combine this program with the routines for
multi-directional movement to make a more
challenging and interesting game?

3 The two objects do not have to start at any
given place or speed. The initial values for T(1)
and Y(1) could easily be randomized so that the
game becomes a little different each time.

4 Single square graphics are rather sma]].l
why not make them larger and more attractive?
There will be a slight loss of speed, but this

should be more than made up for by the
Improved appearance.

5 Watch out when using lines like line 70, IF
A/B =INT(A/B). . does not always work as well
as it should. Sometimes you will find that it
misses the odd multiple because of rounding
errors. The computer works in binary numbers,
and only converts these to decimal for your
benefit. This rounding can occasionally lead to
numbers being out by a very tiny decimal
fraction. 9 and 9.000000001 may be, in reality,
the same, but the computer will see them as two
different numbers. A better check line in this
kind of situation should take this form:

IF ABS(C A/B — INT(A/B))<.0001
THENLw .o s

It now checks to see if they are 'equal enough’,
rather than exactly equal You will see a similar
check in line 90, where the question is, are the
two objects close enough?

34
Action games

35
Movement

T

I
!
E

Targets & invaders

|| This shows a simple but effective way toruna
‘ shooting game. It uses high-speed bullets - so
fast, indeed, that you can't see them. If you can't

| see them, then you don't have to program them, |
| and that saves a lot of work.]
‘ ‘ The player has a gunsight which he can steer |+

around the screen using the keys around S. This

key (S) acts as the trigger. If it is pressed when

| ’ the gun is on target, then a hit is scored. To
| make life interesting, the targets (rabbits)
‘ appear on the screen at random heights and
then hop (randomly) across.

‘ 10 GOSUB 5000

20 PAPER 4: BORDER 2: CLS
. 24 REM GRAPHICS IN 25 -
‘ 25 PAPER 8: PRINT AT GY,GX; l

“1"; AT GY+1,6X;"J”
| 30 LET RC=: LET HIT=0
| 40 LET RL=INT (RND*10)+5
| 50 FOR D=1 TO 50: NEXT D

A 60 LET J=INT (RND*3)

|‘ Il 70 IF J=0 THEN GO SUB 200@: GO
TO 50

80 FOR I=RC TO RC+J

85 REM GRAPHICS IN 90

| 9@ PRINT AT RL,I;” AB";AT

RL+1,1; “ CD”
| 18@ GO SUB 2@@: IF HIT=1 THEN
GO TO 14@
110 NEXT I

T L R e

36
Action games

120

125
130

140
150
160
200

210

220
230
235
240

250

260
300
310
320
330
5000
5010

5020

5030

5040

5100
5110

LET RC=RC+J: IF RC>28 THEN
GO TO 20

REM GRAPHICS IN 130

PRINT AT RL,RC;” EF”;AT
RL+1,RC; “ GH”: GO TO 50

LET T=INT (RND*500)

FOR D=1 TO T: NEXT D

GO TO 20

LET AS=INKEY$: IF A$=“" THEN
RETURN

g:mz AT GY,6X;" ";AT GY+1,
LET GX=GX+(A$="D")—(A$="A")
LET GY=GY+(A$="X")—(A$="W")
REM GRAPHICS IN 240

PRINT AT GY,GX;“I”; AT GY+1,
Gx; L

IF A$="S" AND RC—GX<3 AND
RL—GY<2 THEN GO TO 300
RETURN

PRINT AT 20,1@; “GOT HIM!!"
FOR D=1 TO 50@@: NEXT D

PRINT AT 20,10;” (9spaces) ”
LET HIT=1: RETURN

FOR N=1 TO 1@0: READ G%$

FOR R=0 TO 7: READ B: POKE
USR G$+R,B: NEXT R: NEXT N
DATA “A”,0,0,0,0,1,3,23,63,'B",
112,8,14,127 ,248,240,252,192,
“c”,63,14,15,7,30,48,96,64,
“p”,128,0,0,0,0,0,0,0

DATA “E”,0,0,0,0,0,1,3,7,“F",
0,128,128,128,224,240,128,128,
g ,15,15,31,95,255,255,126,55,
“H,224,144,0,0,0,0,0,192
DATA “17,8,8,62,8,8,8,8,28,
“yr, 62,127,127 ,127,127,62,28,0
LET GX=15: LET GY=20

RETURN

37

Targets & invaders

The main loop of this program runs from line 50
to line 130. This is the part that runs the rabbit
across the screen. GOSUB 200, in lines 70 and
100, sends the program to the key controls
subroutine. The size of the rabbit's jump is fixed
by line 60, and could be of 1 or 2 squares or
nothing. If 'nothing’ then the hunter gets a
chance to move his gun before the program
goes back for the next jump.

Line 250 is the line that checks for hits. There
are two parts to this — is the trigger being
pressed, and is the gun on target? This gun
obviously fires buckshot, as that line accepts
close as being good enough to count. You could
convert the gun to a rifle by insisting on greater
accuracy.

‘You want to make sure that the gunsight is
directly over the target area on the rabbit. This
is the line to do it:

IF GY=RL AND GX=RC+2 THEN....
The line checks the coordinates of the rabbit

and the gun more closely than the original line
does.

Target area

RL|

 RL+1

N

¥

4

o 4

RC RC+1 RC+2

GX

|

GY

GY+1

Action games

39
Targets & invaders

Projects

1 Add a subroutine to create some scenery.
This can be as complex as you like to make 1t as
long as you keep the ‘hopping area’' simple.
Some good background effects can be
achieved by using blocks of coloured PAPER.
The rabbit is printed on PAPER 8 (transparent)
so the background colours are not changed as it
goes.

It 1s also possible to print moving graphics
over an intricately printed screen by using the
screen dumps routines that are given in the
machine code section (Appendix C).

2 Design your own game based on the
techniques used here. If you want to keep it
light-hearted, how about replacing the rabbit
and gun with a fly and a fly-swatter? Flies, of
course, don't hop, but they do buzz around
unpredictably. This would change a variable by
either +1or =1

LET DX=1:IF RND>.5 THEN LET DX=-1
LET X=X+DX

Here's another way of producing random
either-way movement:

LET DX=INT(RND*3)—1
LET X=X+DX

DX could have a value of +1,0, or —1. Y should

STAR'I‘

GOSUB GRAPHICg

4

4

GOSUB SCREEN

=27 unc/z .

L7/}
=]
5
]
&
o
Q
-

MOVE & DISPLAY TARq
v
. "

® GOSUBFIRE |

GOSUB GUN

" GOSUB MISSILE

L
L“ RESET VARIABLES
-1

LAAUES

For a more warlike game, make a tank or
plane your target. This should move more
purposefully than a fly, but could weave up and
down as it crossed the screen.

The only difference between bombs, missiles
and bullets is that some go down, some go up,
and some go in any direction. They should all
travel at least as fast as the target at which they
are aimed.

The flowchart here is for a missile firing
game. Most of the routines should be known to
you already, and we can concentrate on the
parts of the program that handle the missile.

You will need two variables to handle the
missile's position - MX and MY. You also need a
flag to show whether or not a missile is in flight -
MF=1 for flight, MF=0 for not yet fired.

So what happens when the player presses the
trigger?

GOSUB fire

ieq) P
be changed in the same way. W vEs Where has the missile staneld from? If your gun
___________________ T i1s stationary then the missile's X position will
& 3 2 SUBROUTINES FIRE] always be the same, otherwise find where the
bl BRACE SETINITIAL | | v qunis:
DEFINE GRAPHICS
| | “SBrVARIABLES VALUES FOR | 5
FEARS e GUN MISSILE LET MX = GX
MOVE & DISPLAY I —" ‘ !
| CHECK FOR EDGES MISSILE | The Y position is fixed. Set MY to a point just
| SCREEN MOVE & DISPLAY | beyond the barrel of the gun. Now tell the
|| PrNTSCREEN Ci lc!):lgg FOR TOP | W NO computer that it has a missile to handle:
CREEN
D L e] LET MF=1
S
40 41
Action games Targets & invaders

GOSUB missile

Is a missile in flight?
IF MF=1 THEN GOSUB.....

Move and display your target in the usual
fashion, one step at a time for a slow missile. For
a faster missile, then either move your missile in
bigger jumps or use a loop. If you choose to use
the Great Leap Forward method then watch out!

LET MY=MY-3 (the target moves | square
at a time)

Your missile is now moving three times as fast
as the target - but it's missing two out of every
three positions, What happens if it misses the
line that the target is on? This method will work,
as long as you make sure that the leaps up the
screen will bring the missile onto the target line.
The Leap approach gives a fast movement, but
the graphics suffer a little. The movement s
jerky. You will get a smoother movement, and
cover every possible line of the screen, by
moving your missile through a loop. The catch
here is that there will be a noticeable slowdown
of the program - and of the target's speed, when
the missile is in flight. This can be smoothed out
by the addition of a line:

IF MF=@ THEN FOR D=1 TO 25:NEXT D
The length of the delay needed will depend
upon the rest of the program, but should be set

so that the target's speed remains constant
whatever the missiles are doing.

Projects

Turn the flowchart on page 41 into a game of
your own. Use simple blob graphics and a blank
screen at first, until you have got the routines
working properly. You can also simplify the
program initially by leaving the gun at a fixed
place. The gun moving routine can be easily
added later.

Use lots of imagination in your graphics, and
in the game's background screen. Use even
more in that BANG routine at the end. The
speed and flow of the program no longer count
at that point. You can have the target exploding,
or crashing down in flames, with lots of sound
effects.

Give your game a tighter structure by limiting
the number of missiles, and keeping track of the
scores. Instead of stopping and asking if the
player wants another go, give him another
directly, as long as he has missiles left. The
missile count and hit count can be displayed on
the screen during the game.

Turn the game on its head, and have the
plane dropping bombs on a moving target. The
bombs could travel diagonally, rather than
vertically, to give a more interesting effect. An
extra twist to this variation is to have the plane
losing height all the time, so that the game hasa
very definite time limit. This would work best
with multiple targets, for which, read on. ..

42

43
Targets & invaders

String

[yado

Here it is! A 15 line space invader program. It
may not look much, but it's very impressive
when you think how short it is. Type it in and run
it to see what it does, and then we will look at
how it does 1t.

10 LET IS=" X X X X X “

20 LET C=@: LET D=+1

30 CLS : PRINT AT 2@,15; “1”

40 PRINT AT 4,C;1$

50 LET A$S=INKEYS$: IF A$<> “
THEN GO SUB 100

60 LET C=C+D

70 1F C>=2@ THEN LET D=-1

80 IF C<=@ THEN LET D=+1

99 PAUSE 5: GO TO 40

100 1F A$<>"1" THEN RETURN

110 FOR L=2@0 TO 5 STEP —1: PRINT
AT L,15; »»

120 PRINT AT L—1,15;“1": NEXT L

130 LET P=16—C

140 LET I$S=IS(TO P-1) + “ ”
+IS(P+1 TO)

158 PRINT AT 20,15; “1"”: RETURN

1 The object of the game is to shoot the X's
Fire your missile, by pressing 'I'

2 If you miss the string of invaders the
program will crash.

3 You have got all the time in the world. These
invaders do not descend.

4 The program doesn't check the condition of
the invading fleet to see if it's wiped out, so
break out of the program when you have shot
them all.

The key to the program is STRING SLICING -
the art of chopping strings up and sticking them
back together. You can cut individual
characters out of string by telling the Spectrum
the position of the character you want.

A$=[T[N[VIAIDIEIR]S]

A$3)=[V]
To take a slice of several characters, give the
positions of the first and last ones that are
wanted.

A$3TOT) = [VIAID[EIR]

If the slice you want is on the left of the string,
then you only need to give the position of the
last character.

AYTO4) =
Likewise, if you want a slice from the other end,
just give the first position.

A3(8TO) = [DIEIR[S]

Strings can be joined together by using the
addition sign. This is known as STRING
CONCATENATION.

A$ = “SPACE" + "INVADERS" gives A$ =

‘SPACE INVADERS"

44
Action games

45
Targets & invaders

The main part of the program (30 to 90) shuffles
the string of X's backwards and forwards across
the screen. The D variable holds the direction
of movement, and lines 70 and 80 turn it round at
the limits of the movement.

The subroutine from 100 first whizzes the
missile up the screen, then finds the place in the
string (P) where the missile struck. The next
line slices off the part of the string to the left of P
and the part to the right, and rejoins them with a
space in between. If there was an invader
there, then there isn't now.

tr'ﬂpl'OVC‘ﬂ]Cl'l[S

1 Check for Hits. Did you get one? The way to
answer that question is to find what was at place
P in the string:

IF I$S(P)="X" THEN LET HIT=HITH1

2 Adda Score. If you have a HIT counter, then
this can be used as a basis for scoring. Write a
PRINT "SCORE =";HITS*20 line into the end of
that subroutine.

3 Make them invade. Move the invaders
steadily down the screen, dropping a line after
every three or four passes. Keep a count of the
number of times they have crossed, and hold
their line position in a variable which is nudged
on when COUNT = 4.

You can check to see if they have landed by
looking at the line variable.

IF IL=20 THEN..... (end)

4 Add some nice graphics - if you haven't
already done so.

5 Crashproofit. If you try to look at, or slice off,
parts of the string which aren't there — that is, if
the missile flies past the end of the string - then

the program will crash. Prevent this by
including a line to check that the value of P is
within range.

6 Shrinking Strings. Calculate the limits for the
column position for printing, so that the string of
invaders travels the full width of the screen.

As invaders get shot at the ends of the string,
the length of the string could be reduced. If the
leftmost character is hit, then the string needs to
be redefined to include only that section to its
right:

IF P=2 THEN LET I$=I$(3 T0):
LET L=L-2

Turn this on its head to handle the other side.

IF P=L—1 THEN LET I$=I$(TO L-2):
LET L=L-2

The direction changing routine will need
adjustment as well, now. The left limit for the
print column (C) will always remain at 0, but the
right limit will increase as the length of the
string is reduced. You could get the computer
to calculate this from the L variable, but the
simplest method is to store the right limit in
another variable, and alter that as the string is
reduced.

46
Action games

47
Targets & invaders

=58

It would be possible to write a routine that
compared the latest score with the recorded
scores and then shuffled the lower scores down

(and out) to make room for it. Possible, but not
simple. The straightforward answer is to use a
standard routine. The method given here works

The Halll- of Famll_a,,;

Every good game should have a Hall of Fame.
How else will you keep track of the scores with
so many of your friends and family queuing up
to play?

To include a Hall of Fame in your program,
you must store the names and scores of the best
players, and the most convenient way to handle
any sets of data is in ARRAYS. Anarray isa
block of variables, all with the same name, but
with different SUBSCRIPTS - reference
numbers. S(5) would store five numbers in S(1),
S(2), 8(3), S(4) and S(5). All arrays start their
numbering from 1. The size of the array i1s set,
by you, early on in the program, with a line that
gives the DIMENSIONS of the array.

Similarly, N$(5, 10) would store five names.
Here they would be limited to ten letters each,
but they could be any length you choose, as
long as you fix that length in the DIM line.

To use the routine, you need a couple of
check lines at the end of the game. Is there an

empty place still in the Hall of Fame? There will

be at first, because the stores start off empty. If
there's space, then go to the Hall routine. If not,
then is the latest score better than the lowest
score in the Hall? If it is, then it should be fitted
into the Hall at the appropriate place. If not, then
it's straight on to the next player.

by reordering the set of numbers from the top
down. It looks through the set to find the biggest
number, and swaps this with whatever number
is in the first store. It then looks at the list again,
starting from the second store, and swaps the
biggest unsorted number with the number in
the second store. It moves on through the stores
working the same way, until all have been
shuffled into new places. This is a very efficient
way of sorting lists. See for yourself. Type this
program in, then enter six different numbers

1@ DIM N(6)
20, FOR T=1 T0 6
3@ INPUT “NUMBER ";N(T)
40 NEXT T: LET P=0: GO SUB 200
58 FOR P=1 T0 5
60 LET H=-1
70 FOR T=P TO 6
80 IF N(T)>H THEN LET H=N(T):
LET Z=T
NEXT T
LET X=N(P): LET N(P)=N(Z):
LET N(Z) =X
GO SuB 200
NEXT P
STOP
FOR T=1 TO 6é: PRINT AT P#*3,
T*4;N(T): NEXT T
: 210 RETURN
This routine only sorts positive numbers and
I: zero. Some games produce negative scores — so
i1 beware.

90
100

110
120
130
200

-

48
Action games

49
The Hall of Fame

...............

How it works

Look first at the set of lines from 60 to 100, H will
store the highest number, but must be setto —1
before use. The T loop looks at each number in
the array to see if this is higher than the highest
number it knows, If it is, then the H variable is
reset to a new high, and the reference number
of the store is entered into Z. At the end of the
loop it swaps the highest number (the one from
N(Z)) with the one at the top of its list. The P loop
moves the starting place for the T loop steadily
downwards.

The print-out subroutine should show you
what is happening, stage by stage.

With a few minor adjustments, this sorting
routine can look after your Hall of Fame. The
main change is to include the names in the
swapping process. It's no good reordering the
scores, and leaving the names the same way
round. The arrays should be dimensioned to be
one more than the number you intend to display
— 50 that the latest score can be included. I have
written it as a subroutine starting at 9000, and
assumed a display of five names.

wa...DIM N$(6,10):DIM S(6)
(include in initialization routine)

FIRST PASS
Store Number

N(1)

N(2)

N(3)

N(4)

N(5)

Swap N(8) and N(1)

Start—| N(3) | 25

9000 LET N$(6)=P$:LET S(6)=SC

2991@ FOR P=1 TO 5

9020 LET H=-1

9038 FOR T=P TO 6

9040 IF S(T)>H THEN LET H=S(T):
LET Z=T

9050 NEXT T

9060 LET X=S(P): LET S(P)=S(Z):
LET S(Z)=X

9070 LET X$=N$(P):LET N$(P)=N$(Z):
LET N$(Z)=X$

9080 NEXT P

909@routine to print out
Hall of Fame

SECOND PASS
Store Number
N(1) | 99
Start—| N(2) | 37
N@) | 25
N(4) | 71 |+« Highest
«Highest N() | 15
Swap N(4) and N(2)
THIRD PASS
Store Number
N(1) | 99
N@) | 71

N(4) | 37 |« Highest

++x..IF S(5)=0 THEN GOSUB 9000 NG) [15
(an empty place in the Hall) Swap N(4) and N(3)
.«x.=-1F SC>5(5) THEN GOSUB 9000
(better than lowest score)
50 . 51
Action games The Hall of Fame

1

Mazes

There are basically two different types of
mazes, for two different types of games. The first
type is a complex obstacle course, and is used
in dodging, shooting and chasing games. The
second type has confusing paths, and is used in
exploring and adventure games. With either
type of game, you have two alternative ways of
creating the maze - either design it yourself, or
get the computer to design it for you. Normally,
the ones you design will look better, and can be
more complicated than those produced by the
machine, but your players will soon learn their
way around them. Computer-generated mazes
may not be as fine and fancy, but at least they
will be random.

Obstacle courses

The simplest way to set up an obstacle course is
to scatter blocks around the playing area.

The position of the blocks is shown on the
screen, but is also recorded on a two-
dimensional array. When the player tries to
make a move, the coordinates of his intended
position are checked against the array to see if
the move is permissible. This is not actually
necessary, as you could colour the blocks
distinctively and check the ATTRibutes of the
new position.

52
Action games

However, should you want a maze where the
computer creates paths, then you would need to
record it in an array. This will scatter 20 blocks
on a 20x20 screen.

1000 FOR N=1 TO 20

1010 LET R=INT(RND*2@)+1
1020 LET C=INT(RND*2@)+1
1030 PRINT AT R,C;”m”
1040 NEXT N

You could use a similar system for scattering
mines, or other traps. For this, put a character
on the screen, to mark its position, but colour it
the same as the screen. You can check for it
with a line like this: (you have used ‘M for mine.)

IF SCREENS(R,C)="M” THEN.

These can be built at random, using a
development of the block-scatter method. The
walls need length, as well as a starting place,
and some walls will go across the screen, others
up and down. This produces random walls
across the screen,

1000 FOR N=1 TO 10

1010 LET X=INT(RND*16)+1
1020 LET Y=INT(RND*20)+1
1030 LET Z=INT(RND*3)+2

1040 FOR Q=1 TO Z

1050 IF X+Q>20 THEN LET Q=Z:

GOTO 1070
1060 PRINT AT Y, X+Q;”W”
1070 NEXT Q:NEXT N

These walls can be anything between 2 and 4
blocks long, (the Z variable). Notice the
adjustments that have been made to ensure that
the walls do not overrun the edge.

53
Mazes

Projects

1 Tryand write a tank game for two players.
Get the computer to create the battlefield out of
random horizontal and vertical walls. The
routines needed for controlling two tanks are
the same as for one, except that you will need to
give each player his own set of key controls.
Think the game through carefully before you
start, and decide just how it is to be played. Will
you allow the tanks to shoot their way through
walls? What range will the tanks have? What is
to happen after a tank has been hit? Does it
carry on from where it was, but damaged, or go
back to base? Do the tanks carry an endless
supply of ammunition, or will they have to head
for an arms dump every now and then? Will you
give a tank the chance to escape when a shell
has been fired at it?

2 Design a chasing game. Use a random wall
routine, or work out your own maze, and write it
in as a print routine. Give the 'hero' something to
find in the maze, and send some monsters in
after him. You can create very aggressive
monsters by making them head directly for your
hero, wherever he may be. To do this, the
program must compare the coordinates of the
monster and the hero, and adjust the monster to
bring it closer.

IF MX>PX THEN LET MX=Mx-1
(PX=Player's X position)

IF MX<PX THEN LET MX=MX+1

IF MY>PY THEN LET MY=MY-1

IF MY>PY THEN LET MY=MY+1

As the monster can no more walk through walls
than can the hero, you have given the player a
chance with this routine. It is possible to trap the
monster by leading him into dead ends. If you
think that this gives the hero too much of a

chance, and doesn't make the game sufficiently
challenging, then add more monsters, all
starting from different parts of the maze. The
routine is exactly the same for ten monsters as
for one, except that you no longer use simple
variables. Hold the X and Y coordinates in an
array, and run the monster-move routine
through a loop.

FOR @=1 TO 10
IF MX(Q)>PX THEN LET
mMx(@)=mMx()-1

etc

A simpler, but no less effective, way to make the
game more exciting is to use ghosts, instead of
monsters. Ghosts can walk through walls! If you
do this, or if you have many monsters, then you
really should give the player some means of
defending himself. If you don't, then the games

could be rather short.

' - @
—

54
Action games

55
Mazes

Healaen ﬁaf

Here's a way to get the computer to generate a
maze of confused and confusing paths. It works
by laying a trail in stages, each of up to four
steps. The steps cover two squares at a time so
that it is spread out. At the end of a stage, it goes
back to the point where it started that part of the
path, and lays another path in a different
direction. The program then looks at the two
ends and sees which is in the most open
position. That end becomes the start of the next
stage - of the next pair of paths.

When the computer is taking a step, it picks a
direction at random, and then checks that it
hasn't tried to go that way already. It next
checks to see if the step would take it onto an

[sTEP-TAKING SUBROUTINE |

CLEAR DIRECTION
TRY STORES

existing path, and rejects the move if it does. If %Fprhizicz; e
no move is possible, then the program goes ?
back to find a new place to start. Most of the w N0
time, this new place will be where the last path
started, but sometimes it will reach dead ends st ek
along both of the current paths. When this *__
happens, it scans the array, working from the A“E"‘D
‘bottom right' and picks up the path at the first :
place it finds. This tends to make the overall W o
trail go from top left to bottom right, which is TAKE STEP
what was intended. Two examples of the kinds [v
of pathways produced by this routine are |
shown. Look at them closely and you will see | L
that although the paths wind backwards and e
forwards, they do not actually cross. Thisis |
important if you want to make sure that there is |
no way out of a dead end, except the way that RETURN| Vs Y
you came. Vi, . ad e Moy ot sl 9
56 51
Action games Mazes

Type the listing in carefully - there are a lot of
variables floating round in there, and it only
takes one mistype to create havoc. When the
program runs, you will see the pathways drawn
on the screen as they develop.

10

20
30
40
50

60
70

80
90
100

110

120
130

140

150
160
170

200
1000
1010

1020
1030
1040

DIM M(20,3@): DIM T(4):

DIM E(2,2): DIM B(2)

LET END=0: LET X=1: LET Y=1
GO SUB 1000

LET SX=X: LET SY=Y

FOR @=1 TO 2: LET X=SX:

LET Y=SY: GO SUB 1000

IF END=1 THEN GO TO 200

IF X=SX AND Y=SY THEN

GO SUB 2000

LET E(Q,1)=X: LET E(Q,2)=Y
NEXT Q

LET @=1: LET B(1)=0:

LET B(2) =0

FOR G=1 TO 2: FOR I=—2 TO +2:
FOR J=—2 TO 2

LET X=E(G,1): LET Y=E(G,2)
IF Y+I<1 OR Y+I>2@ OR X+J<1
OR X+J>30 THEN LET B(G) =
B(G) + 1:60 TO 150

IF M(Y+I,X+J)=1 THEN LET
B(G) =B(G) +1

NEXT J: NEXT I: NEXT 6

IF B(2)<B(1) THEN LET @=2
LET SX=E(Q,1):LET SY=E(Q,2):
GO TO 50

STOP

LET Z=0

LET TC=1: FOR N=1 TO 4: LET
T(N) =@: NEXT N

IF TC=5 THEN RETURN

LET D=INT (RND*4) +1

LET F=@: FOR N=1 TO 4: IF D
=T(N) THEN LET F=1: LET N=4

1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160

1170
2000

2010

2020
2030

NEXT N: IF F=1 THEN GO TO
1020

LET T(TC)=D: LET TC=TC+1
LET XD=(D=1) — (D=3)

LET YD=(D=2) — (D=4)

IF X+XD*2<1 OR X+XD*2>3@
THEN GO TO 1020

IF Y+YD*2<1 OR Y+YD*2>20
THEN GO TO 1020

IF MCY+YD*2,X+XD*2) =1 THEN
GO TO 1020

PRINT AT Y+YD,X+XD;“W”: LET
MCY+YD,X+XD) =1

PRINT AT Y4YD*2 ,X+XD*2;“m" :
LET MCY4+YD*2,X+XD*2) =1
LET X=X+XD*2: LET Y=Y+YD*2
IF X>26 AND Y>16 AND (X=29
OR Y=19) THEN LET END=1:
RETURN

LET Z=Z+1: IF ZI=4 THEN
RETURN

GO TO 1010

FOR I=3@ TO 1 STEP —1: FOR
J=20 T0 1 STEP -1

IF M(J,I) =1 THEN LET SY=J:
LET SX=I: LET I=1: LET J=1
NEXT J: NEXT I

RETURN

How it works

1 Arrays and variables.
M() stores the maze, T() is the temporary store
to keep track of the directions tried by the
computer, E() holds the coordinates of the ends
of the two paths created at each stage, and B()
counts blocked routes.

SX and SY are the coordinates of the start of
the path, X and Y are the running coordinates.
In the step-taking subroutine (1000-1170), TC s

58
Action games

59
Mazes

the try counter, Z counts the steps, and XD and
YD are the change of position variables. (One of
these will be 0, the other willbe — 1 or +1.)

2 The subroutine at 1000. The computer
picks a direction (1030), checks that it hasn't
tried to go this way before (1040) and, all being
well, stores the direction for future reference
(1060). The direction is then converted into a
form suitable for coordinate work (1070-1080). It
then checks that the move will remain in the
maze area, and that it will not join up with an
existing path (1090-1110), and then takes the
step — or rather, two steps - in the same
direction. Finally it updates the X and Y values
and checks to see whether it has reached a
suitable place on the edge, and whether it
should take another step at that stage,

3 The main routine. The first steps taken by
the program are unusual in that the subroutine is
only visited once at this point. This ensures that
the path gets into the maze before it starts to
divide. Lines 50 to 90 then take it through the
subroutine twice, starting from the same place
each time, and storing each endpoint. If no
steps were taken by the subroutine (line 70),
then the program goes to 2000 to find another
place to start the path.

The lines from 100 to 150 assess mobility. How
many of the possible steps around the end of
each path are blocked by the edgesof the
maze, or by existing paths? The end which has
most openings becomes the start of the next
stage. If you wish to speed up this program,
then this whole routine can be replaced by a
simple random switch.

LET Q=1: IF RND > .5 THEN LET Q=2

The program will lose a little finesse, but the
end result will not be too different!

60
Action games

Use a maze-making routine to create an
exploration game. The basic flowchart for such
a game is given here. First get the computer to
generate your maze, but do not display it. Next
scatter a variety of happenings about the
pathways. Some of these should be good things
to find, like bags of gold or princesses in need
of rescue (they should be worth lots of points!);
other things will be not so good - evil goblins,
fire-breathing dragons or whatever. Make sure
that these are placed on the paths by checking
their coordinates against the maze array and
rejecting any not on paths. Enter them into the
array in code. 1 indicates path, so 2 could show
the presence of gold, 3 dragons, etc.

You will then need to add a routine to allow
the player to move about the maze. You might
liige to display his movements, or, iIf you want to
give your players a real challenge, you could
continue to leave the screen blank. As he tries
to make a move, check that there is a path
there, and look to see if he is about to meet
something interesting. All of the meetings will
be dealt with by separate subroutines, Quite
how you deal with a fire-breathing dragon in a
maze s a problem for you to solve! The last
check is to see whether or not he has reached
the end. When he does, you can give a final
score based on the quantity of treasure, and the
number of wounds he has acquired in his
travels.

Exploration games of this type are sometimes
referred to as graphic adventures, and they
have much in common with adventure games, of
which more in the next section.

61

e R

Basic beeps

Spectrum's BEEP command is very easy to use,
but rather limited in the range of sounds that it
can produce. Running a series of short BEEPs
through a loop gives some interesting effects.
Try this:

1@ FOR N=@ TO 4@ STEP 5
20 BEEP .005,N

3@ NEXT N

40 GOTO 1@

There are lots of variations on this idea. The
length of the note depends on the first number
after the BEEP command. Below .002, the sound
1s a simple click, with the pitch almost
completely lost. Altering the size of the step
changes the jumps in pitch. Add another line to
give an undercurrent to the sound:

25 BEEP .005,0

The pitch of the note in this line could also be
related to the value of N. BEEP .005,N-10 sounds
quite interesting.

—

Space sounds

The range of sound effects you can get from the
Spectrum can be greatly increased by the use
of a simple machine code routine. The one
given here will produce a weird and wonderful
variety of sounds by putting in different values
at the places marked in the DATA lines. Use this
program to explore the possibilities, and write
down any combinations that you find
particularly pleasing.

10 CLEAR 32499: LET M=32500

20 FOR T=Q TO 25: READ B

30 POKE M+T,B: NEXT T

40 DATA 6,5:REM 5= DURATION
(@ TO 255)

50 DATA 197,33,0,5:REM 5=
FREQUENCY (O TO...)

60 DATA 17,1:REM 1=TONE (@ TO
255)

70 DATA 0,229,205,181,3,225

80 DATA 17,16: REM 16 = INTERVAL
61y,

90 DATA 0,167,237,82,32,240,
193,16,233,201

100 RANDOMIZE USR M

110 PAUSE ©@

120 GOTO 100

The top limits to the FREQUENCY and
INTERVAL values have not been given, as this
is for you to explore, but neither should be too
high, or you will find that the routine takes an
amazing time to run.

Some combinations will give you siren
effects, others could well be used for lasers.

62
Action games

63
Special effects

Lasers

If you want laser sounds, then you will be
needing laser graphics as well. Here are a
couple of ideas to try. Both use high-resclution
graphics, though in different ways.

100@ OVER 1: FOR N=1 TO 2
181@ PLOT X,Y: DRAW X1, Y1
102@ NEXT N:RETURN

This is really too fast to be of much use as it
stands, but by adding a command to call up
your machine-code sound effect, you will slow it
to a more reasonable speed.

A series of plots takes longer to appear.

1000 OVER 1: FOR N=1 TO 2

181@ FOR P=X TO X1

1020 PLOT P,Y: RANDOMIZE USR M
(sound effect)

103@ NEXT P

1040 NEXT N

1 In both of these routines, XY is the position of
the gunand X1,Y1 is the target. As both of these
will probably be printed on screen, using line
and column coordinates, you will need to
convert the print coordinates to high-res.
coordinates. Use these formulae:

X= C*8 + 4

Y= (21 - L)*8 + &

If you need to convert back to print
coordinates, then use these:

C= INT (X/8)
L= 21 — INT(Y/8)

11

DEF are the

graphics (UDG)

first flying saucer

Spinning saucers

It is a well-known fact that all flying saucers
have flashing navigation lights. Have yours got
them? You can make the whole saucer flash by
using the FLASH control, but you may want a
more subtle effect than this. Here's one way to
do it. It uses two separate images of the saucer,
one with lights on, and the other with them off.
Two images are held in an array, and printed
alternately.

1000 FOR N=1 TO 12: READ G$

1010 FOR R=@ TO 7: READ B

1020 POKE USR G$+R,B

1030 NEXT R: NEXT N

1040 DATA “A”,1,3,0,0,3,6,12,63

1058 DATA “B”,255,24,60@,255,255,60,
126,255

106@ DATA “C”,128,192,0,0,192,96,
48,252

and JKL are those for 187@ DATA “p”,15,31,57,115,255,12,

nd.

| B

26,124

1080 DATA “E”,255,255,153,153,255,
126,24 ,60

109@ DATA “F”,240,248,156,206,255,
48,24 ,62

1100 DATA “6”,1,3,0,0,3,7,15,63

1110 DATA “W’,255,24,60,255,255,
255,255,255

1120 DATA “17,128,192,0,0,192,224,
240,252

1138 DATA “J”,15,31,63,127,255,12,
24,124

1140 DATA “K",255,255,255,255,255,
126,24 ,60

1150 DATA “L”,240,248,252,254,255,
48,24,62

1160 DIM AS(2,2,3)

117@ FOR T=1 TO 2: FOR N=1 TO 2

1180 READ AS(T,N): NEXT N: NEXT T

64
Action games

65
Special effects

119@ DATA “ABC”,DEF”,“GHI”,“JKL"

1200 PRINT AT 10,10;A$(1,1); AT
11,10;A%$(1,2)

1210 PAUSE 10

1220 PRINT AT 10,10;A$(2,1); AT
11,10;A%$(2,2)

1230 PAUSE 10: GOTO 1200

This gives a steady flash. To turn thisinto a
spinning effect, you need to make a few
adjustments. Instead of two images, you will
need a set, with different lights on in each
image. They can then be printed one after the
other, so that it looks as if there is a single light
on a rotating saucer

Speed up the action - B

There will probably come a time when you feel
that you simply cannot get the speed you want
by writing in BASIC, and you will start to look
round for alternatives. Machine coding is an
obvious route to take, but not an easy one. Even
experienced machine code programmers find
that 1t takes days or weeks to produce routines
that do the same as BASIC routines that were
written in a few hours. There are less taxing
alternatives that give results that are almost as
good

Compiler programs

BASIC is slow because the computer has to
interpret every command as it goes through the
program. When it meets an instruction, it has to
work out what it means, call up the appropriate
routine from ROM, look up any variables or
coordinates that are being used and then
implement it. The computer also has to sort

through the program every time it meets a
GOTO or GOSUB instruction, and count its way
down to the appropriate line. It all takes time

A COMPILER PROGRAM will take your BASIC
program and turn it into machine code,
eliminating all of this interpretation and line
finding. The result is a much faster program.
There are catches though. Compilers won't
handle any string arrays, some won't handle any
arrays at all, or any strings, and most are
protected by copyright. If you wrote a game
which you hoped to sell, you could not use
someone else's compiler to give you the speed
you needed.

Special languages

There are several versions of FORTH on the
market at the moment. This language is far more
structured than BASIC, and runs much quicker
It would be ideal for games writing, except that
again, it is protected by copyright, and to run a
FORTH program, you need to have the
language in the micro already. It's suitable for
enthusiasts who will simply swap games around
between themselves, but of little value if you are
hoping to sell your game on the open market

SCOPE (from ISP Marketing) offers a better
solution. SCOPE routines are not unlike BASIC
to write, and the complete routine can be
compiled into a block of independent machine
code which will work without the SCOPE
language being present. This can be a
complete program, or a set of routines to call up
from a BASIC program. The SCOPE code can
be saved in the same way that any machine
code can be, and there is no copyright problem
about using SCOPE in games that you hope to
sell

66
Action games

67
Special effects

Program listings

™ ""“"‘
(REF

L

10 REM “ORBIT”

15 REM

20 REM SHOOTING AND BOMBING

25 REM

30 LET G=0: LET H=@: RESTORE 6000:
GO sSuB 6000

40 PRINT AT 21,0;” **x READY -
PRESS ANY KEY *#*%”: PAUSE 0

100 BORDER 4: PAPER é: INK @: CLS

110 INK 1: PRINT AT 14,14;“m";
AT 15,6;“®";AT 15,13;"HEN";
AT 16,6;“mm";AT 16,12;
“AENEER ;AT 16,26;"HER”

120 PRINT AT 17,2;“mW";AT 17,6;
“Hn";
AT 17,11;"AAAEEER";
AT 17,26; "HEEER"

13@ PRINT AT 18,2;”Hmm";AT 18,6;
“mE;AT 18,10; ANNEEEENN";
AT 18,26;"HEEEN"

140 FOR L=1@ TO 18: PRINT AT L,21;"HENE":

150 FOR L=19 TO 21: PRINT INK 3;
AT L,0;"ANEENEEENEEEEN
EEEEEEEEEENEEEERER:
NEXT L

NEXT

L

68
Action games

199 REM :

200 REM STARTING VARIABLES

210 LET L=6: REM SHIP LINE

220 LET C=@: REM SHIP COLUMN

240 LET E=@: REM NO ENEMY
FIGHTERS - YET

250 LET B=@: REM NOT DROPPING
BOMBS

260 LET F=0: REM LASERS NOT
FIRING

27@ LET SN=5: REM NUMBER OF
SPACESHIPS

290 REM

300 REM MAIN LOOP

305 REM GRAPHICS IN 310 AND 320

31@ FOR N=1 TO SN: PRINT AT
20,N*2; INK @;“A”: NEXT N

320 INK @: PRINT AT L,C;“A"

340 LET A$=INKEY$

345 REM

346 REM DROP BOMBS

347 REM

350 IF B=@ AND A$="0" THEN LET
BL=L: LET BC=C: LET B=1

355 REM

356 REM FIRE LASERS

357 REM

360 IF A$="“1" THEN GO SUB 3000

370 PRINT AT L,C:»~

380 LET L=L+(A$="6")*(L<18)—
(A$="7")*(L>0)

390 LET C=C+1—(32 AND C>30@)

410 IF F=0 AND RND>.9 THEN LET
F=1: LET G=INT (RND*1@):
LET H=31

415 REM

416 REM CRASH INTO BUILDING?

417 REM

420 IF ATTR (L,C)=49 THEN
GO TO 600
69

Program listings

430

440
450

460
470
600

610
620

630

640
650

655
656

657
660

670

700
1000
1001
1002
1005

1007
1008
1009
1010

1020

OVER @: INK @: PRINT AT
Ly C2PAY

IF B THEN GO SUB 2000

IF F THEN GO SUB 1000: REM
FIGHTER?

IF F=—1 THEN GO TO 600
GO TO 340

FOR N=1 TO 6: PRINT AT L,C;
INK N;“A”: BEEP .01,N%4:
NEXT N

PRINT AT L,C;” "

PRINT AT 20,0; INK 3;
‘SEEEEEEEERER”

LET SN=SN—1: IF SN=0 THEN
GO TO 700

IF F=@ THEN GO TO 670

FOR N=H TO @ STEP —1: IF
ATTR (G,N)=49 THEN GO SUB
3100: GO TO 67@

REM

REM G,H ARE LINE & COLUMN
VARIABLES OF ALIENS

REM

PRINT AT G,N;“C": BEEP
.02,25: PRINT AT G,N;” ":
NEXT N

LET F=0: LET L=6: LET C=0:
GO TO 300

STOP

REM

REM MOVE ALIENS

REM

PRINT AT G,H;” ": LET
H=H—-14(32 AND H<1): LET
G=G+(L>G)—(L<G)

REM

REM CRASH INTO BUILDING?
REM

IF ATTR (G,H)=4%9 THEN GO TO
3100

PRINT AT G,H; INK 2;"C"

Graphics occur in the
following lines:

430, 600, 660

1020, 2030, 3100

1027
1028
1029
1030

1070
2000
2001
2002
2005

2010

2030
2040
2100
2110

2200
3000
3001
3002
3005
3010
3020

3040
3050
3100
3110
4999

6000
6010

REM ;
REM CRASH INTO SHIP?

REM

IF G=L AND H—C<=1 THEN LET
F=—1

RETURN

REM

REM BOMB ROUTINE

REM

PRINT AT BL,BC;” ”: LET
BL=BL+1

IF ATTR (BL,BC)>48 THEN GO
TO 2100

PRINT AT BL,BC;"B”

RETURN

IF BL=19 THEN GO TO 2200
FOR T=1 TO 3: PRINT AT
BL,BC;”*#": BEEP .01,10: PRINT
AT BL,BC;“ “: NEXT T

LET B=@: RETURN

REM

REM LASERS

REM

IF C>24 THEN RETURN

INK 3: OVER 1

PLOT FN CC),FN L(): DRAW
48,0

OVER 1: PLOT FN CC),FN LO):
DRAW 48,0

OVER @: IF ATTR (G,H)<>51
THEN RETURN

LET F=@: FOR N=3 TO 6:
PRINT AT G,H; INK N;“C":
BEEP .@2,N*5: NEXT N

PRINT AT G,H;” ”: RETURN
STOP

PAPER 7: INK @: CLS

PRINT AT 2,13;“ORBIT”

70
Action games

71

Program listings

6020

6030
6040
6100
6110
6120

6130

6140
6150

6160
6170

6180
6190

6200
6230
6240
6250

PRINT AT 5,2;“YOU ARE IN
ORBIT AROUND THE ;AT 7,2;
“PLANET XERON. YOUR TASK IS
T0”

PRINT AT 9,2;“FLATTEN THE
BUILDINGS, AND TO”;AT 11,2;
“BEAT OFF ENEMY FIGHTERS.”
PRINT AT 14,2;“CONTROLS:”; AT
16,3;“6 UP 7 DOWN’;AT 18,3;
“1 FIRE LASERS @ DROP BOMBS”
REM GRAPHICS

FOR N=1 TO 3: READ G$: REM
WHICH GRAPHIC LETTER

FOR R=0 TO 7: READ B: REM
NUMBER FOR DEFINING EACH ROW
POKE USR GS+R,B: NEXT R:
NEXT N

REM SPACESHIP

DATA “A”,0,224,124,50,255,
124,0,0

REM BOMB

DATA “B”,48,48,208,252,30,
30,14,0

REM ALIEN FIGHTER

DATA “c”,0,60,118,173,247,
126,36,66

REM FUNCTION DEFINITION

DEF FN L()=171-L*8

DEF FN C()=C*8+8

RETURN

T2
Action games

40
50
60

68
70
80
88
90
98
100

120
128
130

140
148
150
160
170
180

190

s
REFGH

REM “FIREFIGHT1”

GO SuB 5@0@@: REM front page
and graphics

GO SUB 600@: REM screen
display and variables

REM main loop starts here
IF INKEY$<>“" THEN GO TO 40
PRINT AT L,c;e$(d)

IF PEEK 23672>tl THEN GO SUB
1000

REM fires out of control

IF f>25 THEN GO TO 500

LET a$=INKEY$

REM quit

IF a$="@" THEN GO TO 600
REM squirt

IF a$="1" THEN GO SUB 1100:
GO TO 4@

IF a$<”5” OR a$>"8" THEN

GO TO 5@

REM direction change

LET d=d+(a$="8")—(a%$="5"):
LET d=d+(4 AND d<1)—(4 AND
d>4)

PRINT AT L,c;» ~

REM movement

IF a$<>"7" THEN GO TO 4@
LET U1=l—(d=4)*(1>1)+
(d=2)*(L<20)

LET cl=c—(d=3)*x(c>1)+
(d=1)*(c<29)

IF 88(l1,¢1 TO 1+ 7
THEN GO TO 50

LET Ll=L1: LET c=c1

T3

Program listings

200
500

600

998
1000

1010
1020
1098
1100
1110

1118
1120

1130
1140
1150
1160
5000

5010
5020

5030

5050

GO TO 5@

BEEP 2,1@: PRINT AT 0,5;
“ENOUGH! ! !”: STOP

STOP

REM put arsonist to work

LET fl=INT (RND*2@)+1: LET
fc=INT (RND*29)+1: IF ABS
(fl—L)<5 AND ABS (fc—c)<5
THEN GO TO 1000

LET s$(fl,fc)="f": PRINT AT
fl,fc; PAPER 6; INK 2; FLASH
1;”1”: LET f=f+1: REM GRAPHICS
POKE 23672,0: RETURN

REM find position and
direction of hose

LET fl=l—-(d=4)*(1>1)+
(d=2)*(1<20)

LET fc=c—(d=3)*(c>1)+

(2 AND d=1)*(c<29)

REM check for fire

IF s3(fl, fc)<>“f" AND
s$(fLl,fc+1)<>f” THEN RETURN
LET s${fl,fc TO fc¥1)=":
PRINT AT fl,fc;# ”: REM TWO SPACES
LET tl=tl—=5: REM reduce time
limit

LET f=f-=1: REM 1 Lless fire
RETURN

PRINT AT 1,10; PAPER 6; INK
2; FLASH 1; “ FIREFIGHT ”
PRINT AT 3,2;”Steer the fire
engine around”;AT 5,2;“the
screen, putting out fires.”
PRINT AT 7,2;"You lose if
the fires get out”;AT 9,2;
“of control!”

PRINT AT 12,2;“Use these
keys:”;AT 14,3;“STEER RIGHT 8
LEFT 5”;AT 16,9;“G0O FORWARD
77;AT 18,3;“SQUIRT 1 QUIT @
PRINT AT 21,0;“HANG ONTO

5100
5110
5120

5130

5140

5150

5160

5170

5180
5200

5210
5220
5380

5390
5400
6000

6010
6020

6030
6040

6050

6060
6070
6080

YOUR POLE FOR A MINUTE” . ﬁ
RESTORE 5100

FOR n=1 TO 9: READ g$

FOR r=0 TO 7: READ b: POKE

USR g$+r,b

NEXT r: NEXT n

DATA “a”,@8,7,125,255,255,255,
60,24,0",127,220,242,241,
255,255,60,24: REM right

DATA “c",.3,7,9.,9,15,12,31,4,
“d,128,192,32,32,224,96,

240,64

DATA “e”,254,59,79,143,255,
255,60,24 ,f",0,224,190,255,
255,255,60,24

DATA 497 ,3,4,15,12,15,15,31,5,
“h’,128 64,224 ,96,224 224, 240 64
DATA “i”,16,16,16,25,187,191, 126,60
DIM E$(4,2): FOR N=1 TO 4:

READ E$(N): NEXT N

DATA “AB”,“CD”,”EF”,”GH”: REM GRAPHICS
LET TL=200: REM TIME LIMIT
PRINT AT 21,0; “PROGRAM

READY - ANY KEY TO START”

BEEP 1,0: PAUSE 0

RETURN

DIM s$(20,30): BORDER 4:

PAPER 7: INK @: CLS

PRINT PAPER 2;“ (32spaces) "
FOR n=1 TO 2@: PRINT AT

N, B2 PAPER 22" “3AT >N, 3154 "
NEXT n

PRINT AT 21,0; PAPER 2;” (32spaces) ”
FOR N=1 TO 25: LET L=INT
(RND*1@)*2+1: LET C=INT
(RND*15) *2+1

LET s$(l,c)="1": PRINT AT

L,c; PAPER @;“ “: NEXT N

LET L=1: LET c=1

LET d=1: LET f=0

RETURN

14
Action games

%

Program listings
T

The spirit of adventure

Adventure games should challenge the players
ingenuity, wit and staying power. Cunning. not
speed, 1s the key to success in these games, and
this means that the speed at which the program
runs is not particularly important either, That's
good news, because it means that you do not
have to think about machine code, or about
making sure that your program is always written
in the most efficient and fastest way.

What is an Adventure Game? You have
probably played them already, but just in case
you haven't met them before . . .

An Adventure Game is like an adventure
story, except that you - the player — are part of
that story. It will usually be set in some exotic
place - a Lost Temple, a mad scientist's secret
base, the Wild West, an alien planet, the ocean
floor, a jungle, or whatever. The object of the
game 1s usually to explore all the parts of this
place, meeting and overcoming terrible
dangers, and eventually finding some
wonderful object, treasure, captured princess,
magic wand, or even the Lost Crown of the
Umbamajini!

The game is played as a series of events, with
the computer first telling the player which
Toom' that he is in, and something about it —
what he can see there, and which ways he can
leave. The player then tells the computer what
he wants to do. The instruction might be to go to

76
Adventure games

g
The spirit of adventure

the next room, or to pick up an object that he
can see, or what he 1s going to do to stop the
‘great hairy monster with gnashing teeth and
rolling eyes' from eating him up. These
Instructions are given using a few simple words,
which the computer has been programmed to
understand.

Some adventure games go beyond this, and
are more a variety of 'Dungeons and Dragons’,
where the player is one of a band of explorers,
the others being controlled by the computer.
Each player has his own special mixture of
strengths and abilities — he may be a magician,

START
with a story line

MAP
your world
on paper

a warrior, a burglar, a dwarf. The player's PEOPLE
character is decided at the beginning of the
to meet and
game by a random process. OBJECTS
At the time of writing, probably the most w Bl
successful adventure game around is The

player enters Tolkien's wonderful world of

Hobbit' (Psion & Melbourne House), where the
dwarves and trolls, elves and goblins,

magicians and spiders. Like proper adventure Work st e
games, this is text-based, but some pretty PROGRAM
pictures of different locations have been added and type itin
—just to brighten things up.

Writing an adventure game

Start with the storyline. What is the atmosphere
that you want to create? Where will your
adventure take place? What kind of quest is it?
When you have got the feeling of what it's all
about, and have sketched in the broad outlines,
then it's time for the next stage.

Design your map. You are going to create a
new world for your adventure, and that world
needs lots of interesting places where
unpredictable things can happen.

People your world with different characters
for the player to meet. Some of them might be

TEST
Does it play
properly?

STOP work
and have some fun

friendly, others hostile. You will also need to
place a variety of objects in various locations,
for the player to find. Some of these might be
absolutely vital to the success of the adventure,
others merely useful, and some totally useless.
One of those objects should be the chest of
treasure, magic ring, lost crown or whatever
else you decide is the key object which must be
found.

All of this needs to be planned out carefully
on papet, well before you start to hit the
keyboard. The more time and care you take at
this stage, the quicker ana iess frustrating the
programming will be.

The final stage of the writing process is
testing the game. You will find, unless you are
one of those rare perfect human beings, that
there are things that you didn't foresee, and that
your program needs all sorts of minor — or major
— adjustments before the game goes as you
wanted.

All in all, writing an adventure game is a long
process, but an interesting one. We'll start to
look at it in detail shortly. First, though, there are
a few programming techniques that are vital in
this type of game, so let's have a look at those.

(

78
Adventure games

79
The spirit of adventure

k- {N

BASIC logic

You must have already come across the
Conditional Jump:

IF X=10 THEN GOTO......

As long as the single condition (X=10) is right,
then the program jumps as instructed. When
writing adventure programs you also need to be
able to handle more complex conditional jumps.
The computer has to check that both the verb
and object are acceptable, and lead to some
sensible action on its part. [t needs to check
instructions further: if the player has said he
wants to light a torch, this can only be allowed if
he has both matches and a torch.

You can cater for these kinds of double
checks by having two sets of check lines. In the
example below, the computer will PRINT “Ten
Four” only if the user has entered 10 for X and 4
fory.

10 INPUT “X";X

20 INPUT “¥”;Y

3@ IF X=1@ THEN GO TO 50
4@ STOP

50 IF Y=4 THEN GO TO 70
6@ STOP

7@ PRINT “Ten Four”

8@ sTOP

This works perfectly well, but it's very clumsy. If
you had a lot of different things to check, you

would have jumps all over the place.

A neater and, in the end, simpler way to cope
with two conditions is to use the LOGICAL
OPERATORS. These are the words AND, OR
and NOT.

AND

This operator is used when you want the
program to jump if both conditions are true. You
can rewrite the "Ten Four" program like this:

10 INPUT “X”;X

20 INPUT “Y7; Y

30 IF X=10 AND Y=4 THEN PRINT
“Ten Four”

40 STOP

INPUT
XY

W VES

PRINT
TEN FOUR

As you can see, it's much neater. Type each of
these programs in, and test it with different
values for Xand Y.

If you need to test more than two conditions at
once, then you simply slip in an extra AND. . .
Alter the last program to include these:

25 INPUT *717;1
30 IF X=9 AND Y=9 AND Z=9 THEN
PRINT “Emergency!” J

80
Adventure games

8l
BASIC logic

Lot

Logical operators

Computer scientists like to show how logical
operators work, by setting out all the possible
combinations in a TRUTH TABLE. Here's the
table for AND (when there are two conditions).
You will see that both the X condition and the Y
condition have to be true, before X AND Y is
true. (The program only jumps if X AND Y is
true.)

AND
X Y XandY
True True True

True False False

False True False

False False False

The OR operator looks to see if either of the
conditions is true. In the game, this might mean
checking that the player is carrying a gun OR
an axe, when he says he is going to kill
something. You can see it at work in this
program.

1@ INPUT “X";X

20 INPUT “Y”;Y

30 IF X=1@ OR Y= 1@ THEN
PRINT“One is a ten.”

40 STOP

Type it in and try it with different values. What
happens if both X and Y are 10? The OR
operator leads to a jump if either X is true, OR Y

INPUT
XY

82
Adventure games

is true OR both are true. You can see this in the
truth table.

String variables

All of the examples above have used number
variables, but the logical operators work just as
well with string variables. Try this:

1@ INPUT “COLOUR 17;C$
20 INPUT “COLOUR 2”;D$
IF C$="RED” AND D$="BLUE” THEN

NO 30
} PRINT “MY FAVOURITE COLOURS.”
40 STOP

Now change line 30 and try it again:

30 IF C$= “RED” OR D$= “BLUE” THEN
PRINT “I LIKE GREEN.”

Note that line 30 only works properly if the same
typefaces are used by both the player and the
computer. It's no good if the player types in ‘red’
and the computer is looking for 'RED'. There are
other problems like this with string variables,
and we will return to them later.

Equals or not

All of the examples above have used
expressions containing an equals sign (X=10).
The logical operators work with any of the
comparison signs <,=,>,< >, Try typing in one
of the short number programs above, and
changing the check line so that the jump occurs
when X is less than a certain limit, and when Y 1s
not equal to a given number. There are lots of
variations you can work out on these lines using
AND, OR and the comparison signs.

-l

83
BASIC logic

Planning the game

What is the story behind your game? Where
does the action take place, and what sort of
things can happen. What is the point of the
game? These are basic questions that you must
answer before you can go any further.

Adventures based on Goblin-and-Dwar{
fantasy land are traditional, but are perhaps a
bit overdone. Haunted Houses and Science
Fiction locations are quite common, but offer
lots of scope for imagination. How about a
search for the Bigfoot in the wild timberlands of
America, or the Quest for the Holy Grail, set in
Medieval Europe? You could evensetup a
detective-type adventure based on your own
town, or another real area that you know quite
well.

In JUNGLE, the story is this: deep in darkest
equatorial Africa, there is a hidden temple, and
somewhere in that temple is the ancient crown
of the Emperor of Umbamajini. In ages long
past, the Umbamajinian Empire stretched from
coast to coast across that vast continent, and,
according to the legend, whoever can find the
Lost Crown will be able to claim that enormous
empire, and all its wealth, as his own.

Adventure games

The adventurer sets out from Port Bata, on the
coast of Equatorial Guinea, to explore inland
regions beyond. Much of the land through
which he will fravel is thick jungle, but there are
also mountains, swamps and desert. The
adventurer has brought a number of useful
things with him, but he does not have all that he
will need if he is to survive and complete his
mission. There are other essentials which he
must find, somehow or other, as he goes on. For
astart, he will need an axe if he is to chop his
way through the impenetrable jungle.

The journey is fraught with danger. There are
wild animals and cannibals out there in the
jungle, and the explorer could easily come to an
untimely, and sticky, end in a patch of swamp.
There are also some valuable contacts to be
made. Legend has it that the inner room of the
temple is sealed with an enchanted door. Only
he who knows the Word can open that door.
The Guardian of the Word is an old hermit who
lives somewhere in the mountains. Perhaps he
could be bribed to part with his secret. . .

The object of the game is to find that Lost
Crown. Only that way can the search come to an
end. Asan extra, and rather unfriendly, twist to
the game, 1t is possible to destroy the crown
accidentally, and not notice. The penalty for this
is to be trapped forever in the game!

When you have got your storyline planned, and
you are happy with it, then it is time to start on
the map. This is the stage at which you will work
out the details of the game.

The size of your map — how many different
areas or Tooms' it has — depends upon how
much memory you are prepared to allow for it.
A lot of space will be needed for all the data that
the game requires, and for the routines to
handle the different events. In JUNGLE the map
has 64 rooms, and the total program takes up
approximately 8k, which is more than enough
for anyone to key in. If you intend to make much
use of the game, and you have a 48k Spectrum,
then you should expand it later. The
descriptions, and event-handling routines, have
been much compressed to keep the program as
short as possible.

The map should allow several good routes
from the start to the goal and should include a
number of dead ends, one-way systems and
other obstacles. There should also be other
places of interest to visit on the way. Some of
these visits may be vital to the game ~ in
JUNGLE, you have to go to the shop to getan
axe before you can chop your way through the
areas of impenetrable jungle.

You do not have to fill every space on the
map. Rooms can be left empty and walled off
from the player. This map is never visible on the
screen, and sealed rooms could be a useful
distraction for some players. The really serious
adventurers try to draw up the map for
themselves as they carefully explore each and
every avenue. They could spend a long time
trying to get into those closed off rooms!

Mark on the map the exits from each room.
These do not have to be open, or even visible.
You can have locked doors, darkened rooms
where the exits can only seen when a torch is lit po¥

TOWER
ROOM

S| ¢
LI
E
HALL [
b
s
+
T
N
PORCH
4
DOWN .

AIRS

LOBBY

.

(or dense jungle where you have to chop down

86
Adventure games

trees to see), or even hidden doors which must
be searched for.

At some point you will have to convert these
exits into the form of compass directions, as that
is the way that the program will handle them. It
may be useful to do it at this stage, If you want to
give the impression that your mapped world
has three dimensions - stairs in a house, a
mountain climb, dungeons and towers in a
castle, then you can label some of your exits Up
and Down. You will then need a special routine
to convert the Up/Down movements back into
two dimensions. This is done in JUNGLE. You
can even create a truly three-dimensional map,
but more of that later.

The map data

All of the data from the map - the descriptions of
the rooms and the exit directions — must be
transferred into arrays in the program. You
would not normally do this yet, as there is still
much to be worked out. However, when you are
ready to start programming, here's what needs
to be done.

The initialization routine is usually written as a
subroutin= at the end of the program. It will
inevitably be rather long, and you don't want the
computer to have to run through its bulk every
time it has to look for a line humber. In JUNGLE,
1t is numbered from 2000 onwards.

The first thing to do is to set up the arrays, for
the rooms and the exits. Some programmers
prefer to use single dimensioned arrays for
their maps — DIM R$(64,14) - (64 rooms, with up
to 14 letters allowed for each description).

This has its advantages - for a start it uses
slightly less memory than a two-dimensional
array, but it also has its drawbacks. I use two-
dimensional arrays for two-dimensional maps.

B7
Planning the game

-
DESERT] +{— DESERT CLEARING [~ JUNoig
Yope
: | ¢ L
| v | + |
—t
DESERT DESERT _|* PLAIN
=
v |
poRr > ow I B PASSAGE
BATA ¢ STREET < nown
i) | 3 | 3
: 2 I v | +
-+ SMALL
BEACH _|_ DUNES SWAMP i
| L7%
+ + | ¥
QUICK] o = i
+— PLAN t JUNGLE PLANTATION
t | o, |
| v | + ¥t
—
BEACH T JUNGLE
]t | ¢ |.ig 4
v | + + 1
BEACH STREET YARD JUNGLE
WLJE mop A
XS e 1 ¢ +
simple crossing v 1 v
points
4 VILLAGE —1* = ”
4| cosedornisten wnowe] ViaASE 1° man 7 pean
exits
VAMF] No way out
1
88
Planning the game

- JUNGLE _] PLAIN _: LOW HILL
+ 1 | ;
1 ¢
- CLFF —1* CuFF —1* HILL
4}~ SDE &} PATH &}— SIE
| ¢ + ¢
4+ 1 |
M CLIFF
= CAVE [HUT
mengy
It N
1
- INNER CLFF _|
&— SANCTUM TOP [A
1.9 +
) S | |
=% PRIESTS CLIFF —T* ROCKY
- ROOM PATH 4— LEDGE
1 18 K .
+ 1 + |
iy Tyt g MOUNTAIN
o] CLEARING _| MOUNTAIN AR
| ¢]
v | v ¥
— —t
ol N JUNGLE
{1]
i v 1
- WEST :l . EAST —T® WEETU
o— Bang N BANK o4— VILLAGE
89
Planning the game

It is very obvious that R$(4,5) is directly
over R$(5,5), but not so clear that R$(29) 1s
above R$(37).

The data for the rooms and exits can be read
into the arrays by the same loop, and this also
keeps the information together in the DATA
lines.

2020 FOR N=1 TO 8: FOR T=1 TO 8:
READ R$(N,T),ES(N,T):NEXT
T:NEXT N

2030 DATA “DESERT”,“”,“DESERT”,”WS”,
“CLEARING”,“ES”,“JUNGLE",“/EWS"

Notice two things in that DATA line: the first
DESERT square is a dead end - there is no way
out of it whatsover, and the JUNGLE square has
hidden exits. The */' before the directions
signals this to the program

When you have typed in your data, write ina
short routine to print it all out again. That way
you can check it more easily than you could by
reading through the DATA lines,

2500 FOR N=1 TO 8: FOR T=1 TO 8:
PRINT N;T;R$(N,T);ES(N,T):
NEXT T: NEXT N

Start to plan out your own game. If you are
feeling ambitious and intend to make it a big
game - a hundred or more rooms — then only
map out the main routes and areas at this stage.
Leave the rest of the rooms empty, and sealed
off, until you have got the essential routines
running.

Draw up the map and work out the exits, then
convert the information to a DATA list. You
could write the subroutine to set up the arrays
and read in the data now, and save it on tape, to
be added to later.

90
Adventure games

91
Planning the game

Your adventure games must have things for the
players to find, and people, or ‘things' for them
to meet. If yours is a Tunnel of Gloom' type of
game, where several different varieties of
nasties are lying in wait for your luckless
adventurer, then these could be scattered at
random about the place, as in the maze games
covered in the action games section.

If you want to create a more organized and
thoughtful type of adventure, then you will need
to spend more time working out where you are
going to place what, and for what reason. There
should be some objects which are vital to the
success of the game - the key to the door, the
matches and torch to light the darkened rooms
— and others which will give your players
something to think about. Their locations are
also very important, and cannot be left to
random chance, You could not have the
matches hidden at the end of the darkened
tunnel, as the player could never reach them
Lastly, the objects can be characters in the
story.

You can see examples of all of this in these six
squares from the JUNGLE game.

When the player enters the PLANTATION,
he will find BANANAS. He can take these, and
eat them if he likes. This might be tasty, but
won't do him a lot of good. He really needs to
keep those bananas with him in case he meets a
GORILLA, and then they can be put to good
use.

——

PLAIN

92
Adventure games

-

s =

PLANTATION
(BANANAS)

I

+ 1

JUNGLE

The SHOP has a SHOPKEEPER visible in it. If
the player offers money or trade goods to the
shopkeeper, he will be given an AXE. The
player must have the axe before he can enter
any JUNGLE square.

Next door to the SHOP is UBIMBI VILLAGE,
where the player will meet a WITCHDOCTOR.
He plays no meaningful part in the game, and
the MEDICINE, which he will give you in
exchange for any trade goods, is quite useless.
The player is not to know this. You can write an
interesting variation to the game by adding an
INVENTORY routine. This takes note of all the
things that the player is carrying, and can be
used to limit the number of items which can be
carried. This forces the player to make guesses
about what is, and what is not useful.

ALL of the JUNGLE squares contain JUNGLE,
which is treated as an object by the program,
but handled by a special routine. It is not
necessary, therefore, for JUNGLE to be marked
In every square.

The word 'Objects' is used here for good
grammatical reasons. When the player gives his
move to the computer, it is in two words
(generally) - Verb followed by Object The
program will need a routine to check the move
to make sure that 1t is valid, and part of this
check will involve looking at the object word
and comparing it with the ones it knows. To
enable it to do this, the objects need to be
written into an array. The locations of the
objects also need to be stored in an array, and
if, as happens in JUNGLE, some objects are
visible and others are hidden, you need some
means of indicating this.

If you look at the listing, you will find that line
2010 sets up a number of arrays, including these
- O$(),P() and F(). O$() is for the OBJECTS, P()
is for their positions, given as coordinates, and
F() is a set of FLAGS. These are mainly used to

a3
Planning the game

indicate the state of the objects — are they
visible, hidden, or being carried by the player?

The main list of objects is given here. There is
some order to the way that they are organized.

The first object is JUNGLE, which appears to
be at 0,0 but in fact is in every appropriate
square. It has to be included in the object list
because one of the valid moves (and the one
which is probably used more than any other) 1s
'‘CHOP JUNGLE'

Objects 2 to 8 are all things which can be
found lying around in various squares, and
which can be carried off by the explorer.

The RIVER is a bit like JUNGLE. A twist in the
program allows it to appear in (or between) two
squares, 8,6 and 8,7 and while it can't be carried
off, 'CROSS RIVER ' is a good move.

The set of cbjects from 11 to 22 are arranged
in pairs. The first of each pair —- GORILLA,
HERMIT,SNAKE, WITCHDOCTOR,SHOP-
KEEPER, and CANNIBAL - is visible in the
given square. If the player does the right thing
to, or with, this character, then he is rewarded
by getting the second object of the pair. To save
memory space, most of these follow the same
routine. The player gives a present, and
receives one in exchange. There are
exceptions to this. The gorilla only likes
bananas, and the snake has to be killed, in the
right way, to uncover the crown. Also, you can
eat the cannibal and still find the torch.

18
19
20
a1
a2
23
24

Witchdoctor
Medicine
Shopkeeper
Axe
Cannibal
Torch

Lion

Door

eros

What sort of actions are you going to allow in
your game? The adventurer must be able to go
from place to place, to pick things up and to use
them in various ways. He might also be able to
speak, search for hidden objects, light torches,
unlock doors, kill monsters and other enemies,
eat and drink, and cast magic spells. The limit to
the number of possibilities in your game is the
amount of memory space that you are prepared
to leave for the routines which manage the
actions. In JUNGLE these take very nearly half
of the total program. The verb list itself is very
short:

LOOK, GO, TAKE, GIVE, SAY, OPEN, EAT,
LIGHT, CHOP, CROSS, KILL.

Each of these requires its own routine, of
anything from three to ten program lines. Some

§. verbs are very simple to handle. LOOK' will

normally just send the program back to the
point where it prints a description of the room
that the adventurer is in at that time. Sometimes
it will also reveal objects that are normally
hidden, but to handle this, it is only necessary to
check the coordinates of the current location
against those of the squares with hidden
objects.

Other verbs are more complex. When the
program meets a GO instruction, it must check
that the verb is followed by a valid direction
word (N,E,S,W,U,D), that the exit is visible and
that it is possible to GO in the given direction. If
all is well, then the instruction must be

Object list

1 Jungle 9 River

2 Key 10 Bananas

3 Cun 11 Gorilla

4 Beads 12 Stick

5 Cloth 13 Hermit

6 Money 14 Word

7 Boat 15 Snake

8 Matches 16 Crown
94

Adventure games

95
Planning the game

[R oy e e

converted into a change of coordinates, and, if
not, then the player needs a message to tell him
why not. _

When you are working out your verb list,
think about the acceptable Verb-Object
combinations at the same time.

VERB OBJECT RESULT

LOOK noneneeded Show location, +
hidden objects if in
right squares

GO NESWUD Move if exit visible,
present and open

TAKE Portable Flag to show being

objects carried

GIVE Anycarried Receiveobject, ifin
right square

SAY the WORD Open enchanted
door, if WORD
carried

OPEN DOOR Unlock door, if KEY
carried

EAT BANANAS Yum yurn' message
CANNIBAL Reveal hidden

TORCH
LIGHT TORCH Shows exits, if
TORCH and
MATCHES carried
CHOP JUNGLE show exits from
jungle square
CROSS RIVER move between 8,6
and 8,7
KILL GUN Depends on place
(WITH) AXE and victim

STICK

You will notice that the 'Objects' listed next to
GO are the directions, and these need to be
added onto the Object List. In JUNGLE, the O%()
array is dimensioned for thirty objects (twenty-
four things and characters, and six directions). If

you look at line 2010, you wil] g

P() - Position array, and F(), thlgoﬂs:gs,m;;t}? 8

have twenty-seven stores. Twenty-four flags are

needed for the major objects, and 5 further

three to indicate visibility, and the statys of the

two doors. The P() array is really slightly larger

than necessary, but was made that size to allow

a simple READing loop.

2110 FOR N=1 TO 3@: READ O$(N):

IF N<28 THEN READ P(N,1),
P(N,2) ,F(N)

KILL is the most complex of the verbs used in
the JUNCLE game. It must be used in the form
KILL WITH GUN/AXE/STICK, and can only be
used where a second character or animal is
present. In the version given here, the KILL
instruction always works where the victim is
harmless (GORILLA HERMIT, WITCHDOCTOR
and SHOPKEEPER), although none of these
should be killed, as each has something to give
to the adventurer. When the player tries to kill
the LION,SNAKE or CANNIBAL, it becomes a
bit more risky. There is a chance that he will
miss, and then he gets eaten. Finally, as part of
this routine, the SNAKE has to be killed with the
night thing if the Lost Crown is to be revealed.

Think through the possible complexities of
the Verbs before you commit yourself to them.
It would probably be best, in the early stages of
the game, to keep to an absolute minimum. You
can always expand the game later when the
essential routines are working properly.

96
Adventure games

97
Planning the game

The program core

Adventure games will generally follow the
same pattern, and use the same, or very similar,
routines at their core. They are made individual
by the data that goes in at the initialization stage,
and by their action subroutines.

The print routine

This starts by telling the player where he is and
what he can see. How you present this is
important. Straightforward text printing, as in
JUNGLE, can get boring, unless you have a qgift
for words and can write some stunning
descriptions of the rooms. Pictures can be
added here if you are prepared to take the
trouble. They do, of course, take up memory,
and a separate picture for each location would
eat up space alarmingly. Limiting yourself to a
different picture for each type of location will
help - in JUNGLE there are 40 types of rooms in
those 64 squares. An alternative is to give
pictures only for certain locations - the more
interesting ones, or those where an object is to
be found

Divide the screen into picture area and text
area and keep all your printing within the limits.

This cancreate a minor problem, If the player
stays in one location for any length of time, while
he tries out different instructions (perhaps
looking for a way to escape), then there is going
to be a build up of text. You can cope with this in
several ways.

1 Rgstxict the amount of text. Only display the
location, and other basic information, and not
the previous moves. This is a simple way to
keep the screen tidy, but some players like to
be able to see at least some of their most recent
moves.

2 Store the last few moves and display them
Sf_aparately, The display can be updated by a
simple loop. Here the M$() array stores the last
five moves.

4000 FOR N=1 TO 5
4010 LET MS(N)=MS(N+1): NEXT
4020 RETURN

The latest move is then stored in M$(6).

NOTE A very friendly option to offer your
players is a Move Review'. If the space is
available, you could store every move inan
array, and display the move number at each go.
The player could then choose to see any
particular move or set of moves, or every move
that he has made. This could be especially
useful at the end of the game, where he fries to
find out where he went wrong!

3 Create a limited scroll. You can get the
computer to shuffle lines of print up the screen,
while the rest stays fixed, by getting it to read

98
Adventure games

99
The key routines

the characters and rewrite them on another
line. This is the kind of routine that you would
need:

10 CLS

20 FOR Z=1 TO 5:PRINT Z:NEXT Z

30 FOR L=1 TO 5:FOR C=@ TO 10:
LET X$=SCREENS(L,C)

40 PRINT AT L—1,C;XS$:NEXT C:
NEXT L

5@ PRINT AT 4,0;Z: LET Z=I+1

60 GOTO 30

Line 30 starts reading the screen from the
second line down, storing the character in X$.
This is then displayed directly above by line 40.
Line 50 then prints the next Z number in the
space created below to keep the demonstration
going. Only numbers are used here but this
technique can be used for as much text as you
want, anywhere on the screen.

Syntax checks ‘

Checking that the player has used words that
make sense to the computer is largely a matter
of string slicing and logic. The routine that
handles this in JUNGLE runs from line 150 to
300.

It starts by separating the first word from the
rest of the string. This is done by finding the
space between the words and slicing off the
portion to the left of the space.

158 ...FOR N=1 TO LEN AS$:
IF A$(N)<> “ " THEN GOTO 170
160 LET D$=AS(TO N—1):LET Q=N:
LET N=LEN AS$
17@ NEXT N

VERB CHECK
v

FIND SPACE &
SLICE OFF
FIRST WORD

v

START LOOP TO
COMPARE WITH
KNOWN VERBS

v

s
THE VERB

CHECK THAT
ITSAYS
“KILL WITH"

COLLECT REF. (VG)

& END LOOP

At the end of the routine, D$ holds the first word
and Q stores the position of the space. This will
be needed later.

The next stage is to run the verb array
through a loop, comparing each in turn with D$.
When the word is found, its reference number
1s stored in VG (Verb Good), If at the end of the
loop VG = 0 (to which it was set at the start)
then the computer knows that no match has
been found.

If you are using verbs which do not need
objects - like LOOK, or RUN - then now is the
time to check for them. Keep these single word
Instructions at one end of the array so that
handling themis easy. . . .

TE e NGesq i (if the word is LOOK)

Next make sure that there is another word
there. . ..

IF @=LEN A$ THEN....

You must not try to slice a word that isn't there,
as the program will crash, and the next stage is
to slice off the second half of the input and
transfer it to another store.

LET W$=A$(Q+1 TO LEN A$)

Wi$ is then compared with the words in the
object list, and its reference number held in KW
(Known Word).

The final section of the main program sends
the computer off to the action subroutines, and
then checks for any possible endings before
looping back to the PRINT lines.

In JUNGLE, there are several ways in which
the program can be ended. The adventurer can
be lost in the desert, or walk into a patch of
jungle without an axe, disappear in quicksand
or swamp, or be eaten. Lines 340 to 370 deal
with these possibilities. There is even a chance
that your player might actually reach the goal

100
Adventure games

101
The key routines

and find the crown. This is checked in one of the
subroutines, and the program ends at that point.
This is not good programming practice, and is
not to be encouraged. Ideally you should always
return from subroutines, and end your program
from the main routine. You must do this if you
are going to offer the player another game from
within the program. Leaping out of subroutines
without using RETURN leaves the return line
number on the Gosub Stack, and uses up
valuable memory space. You can see the limit
of the Gosub Stack by running this program:

10 LET N=0
20 PRINT N,
30 LET N=N+1: GOSUB 100
100 GOTO 20

How many return addresses can it store before
overflowing?

Start to key in the JUNGLE program. You will
need all of the lines from 2000 onwards to set up
the arrays, and the main routine down to 380.
You must also type in RETURN linesat 1150,
1200,1300,1350,1400, 1450, 1500, 1550, 1600, 1650,
1700 and 1750. This will give you enough to test
the main program. It's as well to get that right
before you tackle the action subroutines.

Use the main routine given here in your own
game. The only things that you will have to
change are the numbers in the loops, so that
they agree with the sizes of your arrays.

102
Adventure games

103
The key routines

Action subroutines are all about Condition
Testing. Has the player used a meaningful
combination of words? Is he in the right place to
perform a particular action? Has he all the
equipment he needs to be able to do 1t?

Look at the routines in the JUNGLE listing to
see how they are tackled. They are not easy
program lines to read, as they contain so many
reference numbers and variables. Take, for
example, the GO subroutine - your adventure
games will need one very similar to this.

1200 IF KW<25 THEN PRINT “I CANT
GO “; WS: RETURN

LET G$=0$(KW,1):FOR N=1 TO
4: IF ES(PL,PC,N)=“/" AND F$
(25) =“@" THEN PRINT “I CANT
SEE TO GO ANYWHERE,”: RETURN
IF GS<>ES(PL,PC,N) THEN GO
T0 1290

IF PC=5 AND (PL=4 AND
F(26)=@) OR (PL=6 AND
F(27)=@) THEN PRINT “THERE
IS A CLOSED DOOR.”: RETURN
LET PC=PC—(G$="W")+(GS="E")
LET PL=PL—~(GS="N")+(G$="5")
IF G$="U" THEN LET
PC=PC—(PL<4): PL=PL+(PL>3)
IF G$="D" THEN LET
PC=PC+(PL=2 OR PL=4): LET
PL=PL—(PL=3 OR PL>4)

LET N=4: NEXT N: RETURN
NEXT N:PRINT“I CANT GO THAT
WAY.”: RETURN

The first thing to check here is that the player
has given a proper direction. All of these have
reference numbers of 25 or more. (Line 1200.) If
you wanted to include witty responses to any
illegal commands they would have to be fitted
in before this general cut-out line, For example,
you might not want to let a GO BANANAS

1210

1220
1230

1240
1250
1260

1270

1280
1290

co
U]
==

oCc
o
mo

(=lw)

|

=

’ Vs
5 7 8
U Y
pl
U
DL,
y 4 t
v D)
Bt [ue
Ip v D

command pass without comment.

The first part of line 1210 is not strictly
necessary. It transfers the array variable to a
simple variable for ease of handling.

As so many of the rooms in this game have
hidden exits, 1t makes sense to check that the
player can see to go, before you do anything
else. "/" indicates that the exit is hidden, and if
F(25)=0 then either the jungle hasn't been
chopped down, or the torch has not been lit.

The last stage before allowing a move is to
check that the player is not trying to walk
through locked doors. These are at 4,5 and 6,5,
and their status is flagged by F(26) and F(27).

Normal N,E,S,W movements are a simple
matter of using the logical operators to add to or
take from the line or column variables. There
are then two extra lines to convert U' and 'D'
into two-dimensional moves. The way it works
in JUNGLE is that Up means West for any room
above line 3, and South for any room below.
Likewise, Down means East on lines 2 and 4,
and North on line 3 and below line 4. If you are
using Up and Down, then try and arrange it to
keep the conversion simple.

Notice that there are two RETURN lines. If,
and when, the program finds a valid move, it
will come to line 1280, close the loop and return.
If it runs right through the loop without finding a
match between your chosen direction and the
possible exits from that room, then it returns
after printing the No go' message.

Start writing the subroutines to handle the
actions in your own game.

104
Adventure games

108
The key routines

Helpful hints

In this form, the program gives the player
advice on how to cope with the particular
situation he finds himself in. The hint will appear
as a single line in the normal text area. It might
¥ be a clue, or it might be the actual solution to a
K problem. If you have the memory space to
spare, you could set up an array to hold helpful
hints for every room, and read these into the
array at the same time as the program is
reading the room descriptions and exits

A more economical form of help-giving is to
have a short list of general hints

1 TRY GOING NORTH
2 TRY GOING SOUTH
..etc
7 HAVE A GOOD LOOK ROUND
8 USE THE STICK
9 DON'T KILL HIM
10 THISIS A USEFUL OBJECT

You can then create an array to hold the
reference numbers of the appropriate hint for
each room.

|
| JUNGLE is a very basic example of adventure
' games. There are a great many ways that it
‘ could be improved. You might like to do this
instead of, or as well as, writing your own game
| from scratch

Struggling players will very much appreciate a
HELP option. It can take several forms, but
whatever kind of help you give, it should be
accessed in the same way. Include HELP in
your Verb list, and write in a subroutine to
handle it

‘ The help page

Here the normal location text display is
replaced by a complete page of general help
| ‘ and advice. As an absolute minimum this should

include a list of the acceptable Verbs and
Objects, and a note on how to enter commands.
You can go further and give a list of all the

\ acceptable combinations of words (if there is
space on the screen).

| If you intend to give more specific help then
| it is better done a different way.

107
Taking it further

106
Adventure games

Wizards, Warriors & Dwarves 07,

Some adventure games are played 'Dungeons
and Dragons' style, In this game each player has
a different character, with a different balance of
abilities. Warriors are strong, but not very
bright, and can use only the simplest spells.
Wizards have much magic at their disposal,
Burglars are sneaky, Dwarves are tough and
can keep a few spells up their sleeves. The
game is usually played by groups of people,
acting as a single party as they explore their
way around the dungeons, and they are then
able to put their different abilities to work in
different situations. A feature of Dungeons and
Dragons is that the dungeons are inhabited by a
weird variety of monsters, some of whom can
be best defeated by Warriors, others by
Wizards, and others by Dwarves.

To develop a game along these lines you are
going to need a whole set of new routines. At
the simplest level, the game could be played by
one player with his character determined by
chance at the start. This can be done in either of
two ways. The character type can be selected
at random, with his balance of abilities fixed by
the character, or the level of his different
abilities can be decided by a set of RND lines,
and a character given according to the balance,
Of the two, the first method is by far the easiest
to organize.

The levels of his abilities are held in
variables, and brought into play during
encounters. When player meets monster, and
decides to fight, he does it by rolling the dice.
The score needed to defeat the beast will
depend upon the nature of the monster, and the
level of the player's abilities. This combination
of chance and known quantities enable the
player to plan his moves more wisely. In the

example here, any player with a strength of 9 or
more knows that the odds are in his favour. He is
most likely to kill the wolf (with a score of 7 or
more) on the first blow, but even a very low
score will inflict 50% wounds, so that a second
stroke would finish it off.

The player's ability levels change during the
course of the game. He gains in magic and
strength as he overcomes challenges, and he is
weakened by combat. The object of the game is
to survive, and grow, as well as to find treasures.

As you can imagine, the action subroutines to
cope with these encounters can become very

 complex. When working out this type of game,

keep it as simple as possible at first. Develop
the routines you need to handle the encounter
with one type of monster - the ability variables,

B the KillYWound array, the 'dice-roller' - and then

expand it, one aspect at a time.

&
/.8,

S /O o (@)

@Q \@\\ ﬁQ &,

SIS TETA
Wizard 241 8] 4110
Warrior LM T Y
Dwarf Bl1612]4
Burglar 4(4|18]0

Woll encounter

Strength 0f1]12]3]4]5]|6]7]8

w
o
[

~3
[a2]
[22]
E
w

Kill score (>)]12[12]12]12]11]10{9 [8
50% wound [12]11{10{9(8]7]|6]5]4[3]2]1]!

108
Adventure games

109
Taking it further

Other characters can be introduced to the
game in different ways. There can be
predetermined companions, as in the famous
HOBBIT program, and these can take a more or
less active part in the game. Their abilities can
be added to the player's, when they are around,
and they can be made to appear and disappear
at intervals. There are several ways in which
you could handle this. Their presence can be
controlled by random lines in the main loop:

IF RND>.9 AND COMPANION=0 THEN
LET COMPANION =1

You can mark certain squares as crossroads
where the companion will branch off, if he was
with the player, and join him if he wasn't.

Their stay can be timed. Reset the timer at
the beginning of the game, and have the
companion wandering off after a given time.

POKE 23672,0: POKE 23673,0
This would check for a lapse of 15 minutes:
IF PEEK 23673>180 THEN....

These same techniques can be used to create
moving monsters in your game. They don't
actually have to move from square to square,
simply to appear — preferably when least
expected.

The companion characters can be brought
under the control of the player, or of a group of
players. At the INPUT stage, the computer
would need to be told which character was to
be affected by the following command, and the
variables that hold information about the player
must be made into arrays to cope with the extra
characters. Apart from that, the rest of the game
runs the same way that it does for a single
character.

N
i
We— '
v
S
=
3
[ie]
a
o
A
Total Total
failure success
- 111]12]|3]|4]5}6
- ce [§]4[d]i]3]3
¢ »
®
e o
er | Totals
48
o R
1L |18 8
01 2
N Spinner 2
A er[1]2]3]4]5
ce |4]8]3]%]4

Random factors

The simple random number is not always
enough. It's fine where you want something to
happen once every so many times;

IF RND>.8 THEN....

Where you have a distinct set of possible
outcomes you can use lines like these:

LET X=RND

IF X <=.25 THEN.. (go North)

IF X >.25 AND X <=.5
THEN .. (go East)

IF X >.5 AND X <=.75
THEN. . (go South)

IF X >.75 THEN.. (go West)

In your encounters with monsters you might
want a more flexible, and realistic, outcome,
Producing a random number on the computer is
like rolling a dice. Every number is as likely as
the next. What you want is for the middling
numbers to come up more often than the
extremes. Something in between is always
more likely than total failure or total success.

You can create the 'curve' effect in two ways.
One way is to set the limits for the random
numbers so that the central section is wider:

IF X >.3 AND X <.7 THEN..
(50% wounds)

The alternative is to combine two random
numbers. The most likely number you would
get by rolling two dice is 7. This can turn up in
six different ways. The extreme numbers, 2 and
12, will only turn up about once in every thirty-
six rolls. For a percentage result — perhaps the
percentage of wounds in an encounter — use
two random numbers between 0 and 50. Over
half of the totals will be between 35% and 65%.

110
Adventure games

111
Taking it further

R$(F,L.C) Flooxs, Lines,

Running an adventure game in three e

dimensions is no more difficult than running one

in two dimensions. The only extra programming A=

involved is a pair of lines to handle the change
of floor'. You will need to take a little extra care
when setting up your maps, to make sure that

the different floors agree with each other. The v
stairs going up from one level must meet the i

ones that come down from above.

The room array will need an extra dimension,
and you will need to adjust the initialization
stage so that all your data is read in, and in the

right order.

If your game takes place within a building,
then you will probably waste little space within P on / /
the array. Each room will be used. On the other

hand, if the game is set in a wider landscape,
with mountains and castles rising out of flat land

then there could be quite a lot of the array left
blank - unless your hero can fly! It is always / / / /

worthwhile to stop at an early stage of your
planning, and try to work out how much
memory your game will need. As a very rough
guide, in the JUNGLE program, about 13k was
used for the main program loop, 3k for the
action subroutines and 2k for the initialisation
A further 2k was needed to create the arrays.
The memory cost of an array can be
calculated accurately. A string array uses 1 byte
for each element, plus a few bytes for labelling.
R$(10,10,10) will take approximately 1k, and will
allow you up to ten letters per room for
descriptions. If you created space for
descriptions of fifty letters (about seven words)
then a hundred room map would still only need
Sk. The DATA lines to fill the array would
probably need another 5k. You could cut this
cost by SAVEing the array DATA separately
and LOADing it in at the start of the game.

112
Adventure games

113
Taking it further

Program listing

10
20
30
40
50

60

70

80
90

100
110
120

130
140

Mi' F
REM “JUNGLE”

GO SUB 2000

PRINT “ LOCATION ”;R$(PL,PC)
PRINT “ YOU CAN SEE... "

LET GE=0: LET CS=0: FOR N=1
TO 24: IF P(N,1)<>PL OR
P(N,2)<>PC THEN GO TO 70

IF F(N)=1 THEN PRINT OS(N):
LET CS=1: IF N>1@ AND N/2
<>INT (N/2) THEN LET GE=N
NEXT N: IF CS=@ THEN PRINT
“ NOTHING.”

PRINT “ VISIBLE EXITS ”

LET VE=@: FOR N=1 TO 4: IF
(E$(PL,PC,N)="/" AND F(25)=0)
OR E$(PL,PC,N)=""

THEN LET N=4: GO TO 110
PRINT (E$(PL,PC,N) AND
E$(PL,PC, N)<>"/"): LET VE=1
NEXT N: IF VE=@ THEN PRINT
ﬂNONE"

INPUT “WELL....7";A$

IF A$=“STOP” THEN GO TO 1070
IF LEN A$<6 THEN LET AS=
A$+ll L

150

160

170
180

190
200

210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

360

LET @=1: LET D$=A$: FOR N=1
TO LEN A$: IF AS(N)<>" "
THEN GO TO 170

LET D$=A%$(TO N—1): LET
Q=N: LET N=LEN AS$

NEXT N: GO SUB 3000

LET VG=0: FOR N=1 TO 11: IF
D$<>VS(N) THEN GO TO 220

IF D$<>“KILL” THEN GO TO 210
IF AS(Q+1 TO Q+4)="WITH"
THEN LET D$=D$+” WITH”: LET
Q=Q+5

LET VG=N: LET N=18

NEXT N

IF VG=0 THEN PRINT “I DONT
KNOW HOW TO ”;D$: GO TO 120
IF VG=1 THEN GO TO 310

IF Q=LEN A$ THEN PRINT * “TELL
ME AGAIN. ”;D$;” WHAT ? ”:

GO TO 120

LET W$=A$(Q+1 TO LEN A$):
GO SuB 3020

LET KW=@: FOR N=1 TO 3@: IF
W$<>0%(N) THEN GO TO 290
LET KW=N: LET N=31

NEXT N

IF KwW=0 THEN PRINT “I DONT
KNOW THE WORD ”;W$: GO TO
120

GO SUB 1100+50*VG+(5@ AND
VG>2)

IF F(25)=1 THEN LET F(25)=2:
GO TO 340

IF F(25)=2 THEN LET F(25)=0
IF R$(PL,PC, TO 9)
="QUICKSAND” OR R$(PL,PC, TO 5)
=“SWAMP” THEN GO TO 1000

IF PL=1 AND PC=1 THEN GO TO
1040

IF F(20)<>3 AND R$(PL,PC, TO 6)
=“JUNGLE” THEN GO TO 1040

114
Adventure games

115
Program listing

370

380
1000
1020
1040
1060
1070
1150
1160
1170

1180
1200

1210

1220
1230

1240
1250
1260

1270

1280
1290

IF EU THEN GO TO 10820
GO TO 30
PRINT R$(PL,PC)": GOTO 1060

PRINT “YOU HAVE BEEN EATEN .”:

G0 TO 1060

PRINT “LOST.STARVED.”

PRINT “HARD LUCK.YOURE DEAD.”
PRINT “USE ““RUN“" TO
RESTART.”: STOP

IF PL=2 AND PC=8 THEN LET
E$(2,8)="UNS": RETURN

IF PL=3 AND PC=6 THEN LET
E$(3,6)="EW’: RETURN

IF PL=2 AND PC=4 THEN LET
F(2)=1: RETURN

RETURN

IF KW<25 THEN PRINT “I CANT
GO “;W$: RETURN

LET G$=0$(KW,1): FOR N=1 TO
4: IF ES(PL,PC,N)="/" AND
F(25)=0 THEN PRINT “I CANT
SEE TO GO ANYWHERE.”: RETURN
IF GS<>E$(PL,PC,N) THEN

GO TO 1290

IF PC=5 AND ((PL=4 AND
F(26)=0) OR (PL=6 AND
F(27)=0)) THEN PRINT “THERE
IS A CLOSED DOOR.”: RETURN
LET PC=PC—(GS="W")+(G$="E")
LET PL=PL—(G$="N")+(G$="S")
IF G$=“U" THEN LET
PC=PC—(PL<4): LET
PL=PL+(PL>3)

IF G$="D" THEN LET
PC=PC+(PL=2 OR PL=4): LET
PL=PL—(PL=3 OR PL>4)

LET N=4: NEXT N: RETURN

NEXT N: PRINT “I CANT GO
THAT WAY.”: RETURN

116
Adventure games

1300

1310
1320

1330
1340
1350
1360
1370
1380
1390

1395

1400

1410
1420

1430

1450

IF PL<>P(KW,1) OR PC<>P(KW,2)
OR F(KW)=0 THEN PRINT “ TAKE
WHAT?”: RETURN

IF KW>22 THEN PRINT “THAT'S
NONSENSE!”: RETURN

IF KW=1 OR (KW>1@ AND KW/2
<>INT (KW/2)) THEN PRINT
“YOU CANT TAKE A “;W$:
RETURN

IF F(KW)=3 THEN PRINT “YOU
HAVE ALREADY GOT IT.”

LET F(KW)=3: RETURN

IF GE=0@ OR GE=15 OR GE=23
THEN PRINT “GIVE WHAT TO
WHOM?”: RETURN

IF F(KW)<>3 THEN PRINT “YQU
HAVEN'T GOT THE ”;W$: RETURN
IF GE>12 AND KW>2 AND KW<9
THEN GO TO 1390

IF GE=11 AND KW<>10 THEN
LET F(KW)=0: RETURN

LET F(GE)=0: LET F(GE+1)=3:
PRINT “THE ";0%(GE);” SAYS
‘THANK YOU,.” .

PRINT “HE GIVES YOU THE ”;
0$(GE+1)"“AND GOES AWAY.”:
RETURN

IF PL<>%& OR PC<>5 THEN
PRINT “THAT'S NO USE HERE.”:
RETURN

IF KW<>14 THEN PRINT “IT'S
NO USE SAYING “;W$: RETURN
IF F(14)<>3 THEN PRINT “YOU
DONT KNOW THE WORD.”

LET F(26)=1: PRINT “A DOOR
OPENS IN THE EAST WALL":
RETURN

IF PC<>5 OR F(25)<1 THEN GO
TO 1490

117

Program listing

1460

1470

1480

IF PL=6 AND F(2)=3 THEN LET
F(27)=1: PRINT “THE DOOR IS
OPEN”: RETURN

IF PL=6 AND F(2)<>3 THEN
PRINT “YOU HAVENT GOT THE
KEY.”: RETURN

IF PL=4 AND F(27)<>1 THEN
PRINT “YOU HAVENT SAID THE
WORD.”: RETURN

1670
1680

1700

1710

PRINT “CROSS WHAT? CROSS
COMPUTER SOON!”: RETURN
LET PC=7—-(PC=7): PRINT
“SAFELY ACROSS.”: RETURN
IF KW<>3 AND KW<>12 AND
KW<>20 THEN PRINT “YOU
CANT KILL WITH THAT.”:
RETURN

IF GE=@ THEN PRINT “KILL

149@ PRINT “WHAT DOOR?”: RETURN WHAT?WHO?": RETURN
158@ IF KW=10 AND F(1@)=3 THEN 1720 IF GE=11 OR GE=13 OR GE=17
LET F(1@)=1: PRINT “YUM OR GE=19 THEN GO TO 1760
YUM”: RETURN 1730 1IF GE=15 AND KW=12 THEN
1510 IF Kw=21 AND GE=21 THEN GO TO 1780
GO TO 1540 1740 I1F RND>.6 THEN PRINT
1520 IF F(KW)<>3 THEN PRINT i) “MISSED!”: LET EU=1: RETURN
ISNT YOURS TO EAT.”: RETURN 1750 PRINT “KILLED HIM!”: LET
153@ PRINT “YUK!”: LET F(KW)=0: 0$(GE)=" ": RETURN
RETURN 1760 LET F(GE)=@: PRINT “A BIT
154@ LET F(22)=1: LET F(21)=0: UNNECESSARY, BUT HE'S DEAD.”:
PRINT “BURP! SEE WHAT YOUVE RETURN
FOUND.”: RETURN 1780 PRINT “IT'S DEAD, AND YOUVE
155@ IF KW<>22 THEN PRINT “YOU FOUND THE LOST CROWN OF
CANT LIGHT A ”;W$: RETURN UMBIMAJINI.”: GO TO 1070
1568 IF F(8)<>3 THEN PRINT “YOU 1999 RETURN
NEED MATCHES.”: RETURN 2000 REM “INITIALIZATION”
1570 IF F(22)<>3 THEN PRINT “YOU 2070 DIM R$(8,8,14): DIM E$(8,8,4):
NEED THE TORCH.”: RETURN DIM 0%(3@,11): DIM P(27,2):
1580 LET F(25)=1: PRINT “IT'S DIM V$(11,5): DIM F(27)
ALIGHT, BUT NOT FOR LONG.": 2020 FOR N=1 TO 8: FOR T=1 TO 8:
RETURN READ R$(N,T) ,ES(N,T):
160@ 1F F(2@)<>3 THEN PRINT “NO NEXT T: NEXT N
AXE.NO CHOP!”: RETURN 2030 DATA “DESERT”,” “, “DESERT”,”WS”,
161@ 1IF KW<>1 THEN PRINT “YOU “CLEARING”,“ES”,“JUNGLE” ,“/EWS"
CANT CHOP DOWN ”;W$: RETURN 2035 DATA “SWAMP”, “ ”,“JUNGLE”,
1620 LET F(25)=1: PRINT “NOW You “/EWS”,"PLAIN",“WE” ,”LOW HILL",
CAN SEE.”: RETURN “WS”
1650 IF PL=8 AND (PC=6 OR PC=7) 2040 DATA “DESERT”,“NE”,”DESERT”,“WNE”,
AND F(7)=3 THEN GO TO 1680 “PLAIN,“NSW’,“RUIN" ,“NE"
1660 IF F(7)<>3 THEN PRINT “YOU
NEED A BOAT.”: RETURN
118 119

Adventure games

Program listing

2045

2050

2055
2060

2065

2070

2075

2080

2085

2090

2095

2100

2105

DATA “JUNGLE”,“/ND",

“CLIFF SIDE”,“UDN",

“CLIFF PATH”,“UDS”,

“HILL SIDE”,“UN/S”

DATA “PORT BATA”,“ES”,”OLD
STREET”,“ESW’,“EDGE OF
TOWN”,“NSW” ,“PASSAGE” "/ ENS”
DATA “STAIRS”,”/UD”,“CAVE",“E/W",
“CLIFF PATH”,“NSW’,”HUT”,"N"
DATA “BEACH”,“NES”,”DUNES”,
“NSW”,“SWAMP”,# ” ,“SMALL ALCOVE”,
u/NElr

DATA “TEMPLE ROOM’,“/UWE”,
“INNER SANCTUM’,“W’,

“CLIFF TOP”,”DNS”,“SWAMP"," "
DATA “QUICKSAND”,” ”,“PLAIN",
“NESW”,“JUNGLE” ,“/NEW",
“PLANTATION",“WS”

DATA “ENTRANCE HALL”,”S/ED”",
“PRIEST'S ROOM”,“/W’,“CLIFF
PATH”,“NES”,“ROCKY LEDGE”,“UDW"
DATA “BEACH”,”NES”,“UBIMBI
VILLAGE”,”NES” ,“SHOP” ,“WS",
“JUNGLE",“NES”

DATA “JUNGLE”,”/NEW’,
“CLEARING”,“WE”,“MOUNTAIN",
“DSW’,“MOUNTAIN PASS”,"“DS”
DATA “BEACH”,”NS”,“STREET”,
“NS” ,“YARD" ,“N”,“JUNGLE",

“/NES”

DATA “PLAIN’,“ESW’,“LAKE",“EW’,
“LARGE NEST”,“NESW",“JUNGLE",
“’HN”

DATA “JUNGLE”,“/NE”,”VILLAGE
END”,“NEW’,“PLAIN" “EW”",
“PLAIN’,"NEW”

DATA “JUNGLE”,”/NEW’,"WEST
BANK”,“W”’,“EAST BANK",

“NE” ,“WEETU VILLAGE",“W’

2110

2120
2130

2140

2150

2160

2170

2180

2190
2200

2210

2220
3000

3010
3020

3030

FOR N=1 TO 3@: READ O$(N):
IF N<28 THEN READ

PN, 1),P(N,2) ,F(N)

NEXT N

DATA “JUNGLE”,@,0,1,KEY”,
2,4,0,“GUN",3,1,1,“BEADS”,
7,2,1,”CLOTH",3,3,1

DATA “MONEY”,3,1,1,“BOAT”,
4,1,1,"MATCHES”,3,2,1,
“RIVER”,8,6,1

DATA “BANANAS”,S,4,1,
“GORILLA",7,7,1,"STICK",
7,7,0

DATA “HERMIT”,3,8,1,“WORD",
3,8,0,"SNAKE", 4 ,6,1,
“CROWN”, 4,6 ,0

DATA “WITCHDOCTOR”,6,2,1,
“MEDICINE”,6,2,0,
“SHOPKEEPER”,6,3,1,
“AXE”,6,3,0

DATA “CANNIBAL",8,8,1,
“TORCH",8,8,0,“LION",6,6,1,
“DOOR”,6,5,0,0",0,0,0,D",
B,G ,0,"‘N”,ﬂ ,0,0,"5","5”,““"
FOR N=1 TO 11: READ VS(N):
NEXT N

DATA “LOOK”,“GO”,“TAKE” ,“GIVE”,
“SAY” ,“OPEN",“EAT” ,“LIGHT”,
“CHOP”,“CROSS” ,“KILL"

LET PL=3: LET PC=1: LET
EU=0

RETURN

IF LEN D$<5 THEN LET
D$=D$+* “: GO TO 3000
RETURN

IF LEN W$<11 THEN LET
WS=W$+” ”: GO TO 3020
RETURN

120
Adventure games

121

Program listing

I

You can always be sure of one thing with an
Interactive game. [f it takes a month to write the
program, it will take two months to debug it! In
both action and adventure games, the player's
control of the game is fairly limited - there are
only certain keys which he can press, or certain
commands which can be entered. It's not too
hard to work out all the things which can
happen in the game, and to make sure that your
program caters for them all. Interactive games
offer far more opportunities for things to go
wrong. Not only is it hard to see all the ways in
which the player could tackle the game, it's also
hard to predict what decisions the computer
will make.

This section concentrates on one simple
Interactive game — BATTLE - and looks at how
it was designed and written.

The object of the game is to simulate a tank
battle, where the two opposing forces can
manoeuvre for position and slog it out in
exchanges of fire. There are a number of board
games around based on the same general idea,
and one of those formed the particular
inspiration for this program.

Whatever the style or type of game that you
want to write, the first step is to have a clear
idea of its essence. What kinds of images do you
want the game to conjure up for its players? The
second stage is to develop the game on paper,

and to play it as a board game, or a pencil and
paper game. This is the best way to work out
the rules, and to find out what size of board and
what number and variety of pieces you need to
make a good game. If you are going to base
your program on an existing game, then sit
down and play that game until you know it
inside out.

The last, and longest, stage is to convert the
game to a working program. Start by writing
down a description of the game, and its rules.
Then note the steps that its players go through
as they take their turns. How exactly is the game
played? This information can then be used to
work out a flowchart for the game, and its
initialization routines. What variables and arrays
will it need?

As you flowchart, you should think through
each routine and spot those that are going to
present particular problems. Tackle them
before you start programming, if you possibly
can. It's much easier to sort out techniques away
from the main program.

122
Interactive games

In BATTLE, the game is played on a 16x 16 grid
— the battlefield - on which are marked three
features — two rivers and a wood. These are
natural obstacles which the tanks cannot cross,
and the wood does not even allow the passage
of shells. The battlefield is shown on the screen,
and also held in an array.

Each player has four tanks, at the beginning
of the game, and on each move he gives
instructions to all of these. The tanks can move,
fire or stand inactive, and the player can specify
the direction and distance of movement or
shelling. The orders need to be stored in an
array, and a second array is needed to hold the
position and the damage status of each piece.

There are two parts of this program where
we can expect to have problems - the routines
that manage the computer's decision-making,
and the routines that carry out the orders. If we
replace the computer with a second (human)
player in the early version of the program, then
we are able to concentrate on the analysis and
movement routine.

The routine will work through the orders,
taking one from each player in turn. Is the piece
still present, or has it been knocked out of the
game? Is it making an active move this time, or
just standing still? If moving, is there a vacant
square in the right place? If firing, does it hit
another tank, and, in which case, which tank?

MOVE ROUTINE

STAl

INITIALIZE

\E

4

UPDATE DISPLAY

| hd
PLAYER |
g INPUT ORDERS
i 3 v

[CARRY OUT ORDERS
——

| MAIN LOOP

How much damage does the hit cause? Enough
to knock out the other tank?

The program lines from 300 on, and the
subroutines at 1000 and 1200, manage this part
of the program. The orders are held in the array
O%(2,4,3) - two armies, four tanks in each and
up to three parts for each order - the type of
command, and direction and distance where
necessary.

Movement involves relatively little. The tank
1s removed from its old position both on screen
and in the array, and its new position is then
calculated from the given direction. If this
square is already occupied by another tank, or
by an obstruction, then the tank is replaced
where it was. Otherwise, its new position is
entered on the screen, in the array, and in the
line and column variables of the tank's own
array. The screen is laid out so that the line and
column positions for the array agree with the
PRINT AT lines and columns.

Firing is slightly more complicated. The
shells are moved in much the same way as the
tanks, and, in fact, both are able to use the same
subroutine (at 1100) to convert direction into a
change of line and column. Checking for a HIT
1s a simple matter of looking at what is in the
array at the shell's square. A further routine is
needed to analyse the hits (1200 on). This
compares the line and column of the shell with
the stored positions of all the tanks, until it finds
amatch,

This is not the only way to cope with this type
of problem. An alternative is to use a separate
code for each piece in the map array.

124
Interactive games

125
First moves

In BATTLE, the player's tanks are all coded as INITIAL POSITIONS
T, the computer's/second player's, as ‘E' (for MAP ARRAY MS$(16,16)
Enemy). ‘1234' and 'ABCD' could have been T
used instead. This would have made it very T
simple to spot which tank had been hit, but
would have created other problems elsewhere
in the program. Look up the lines where the W
computer checks for ‘T and 'E' and imagine how T,
they would look under the alternative system. : RIRIR W
How quickly should the game end? This is the
key question when working out the damage R
assessment routine. If you are converting an random range

existing game into a program, then you can for WOOD
follow the methods used in the game. In W R
BATTLE, the amount of damage caused by a hit W ARG
depends upon two factors - the distance
between the tanks and a random number (line
1250). The damage status of the tank that is firing W
the shell could be worked into the equation if
you felt it was useful. This line would do it:

LET DAMAGE = ((5—E)*INT(RND*10)+10) BIEIELE
*A(P,N,3)/100
‘E' is the variable from the loop that moves the :
shell. Its value is equivalent to the distance ARMY ARRAY A(@4.3)
between the tanks. ARMY | TANK | LINE |COLUMN|DAMAGE
A(P,N,3)/100 is the percentage damage
status, where 100% means undamaged. 1 1 1 /i 100
Probably the best approach to damage 5
calculations is to keep playing through the ! 8 100
game with different damage lines, until you find 3 . 3 100
one that gives the right effect.
4 1 10 100
2 1 16 1 100
2 16 8 100
3 16 9 100
4 16 10 100
126 127

Interactive games First moves

Develo

Whether you are writing a program for a battle
game, or any other kind of interactive game,
you must first spend time watching how humans
play before you try to develop the computer's
tactics. Making the first version of the game a
two-player one allows you to do this, as well as
letting you work out the other complexities of
the program.

How do you decide what to do when it's your
turn? What is your order of priorities? Make
notes as you play, and then write these outas a
set of game-playing rules. Next, play the game
again, several times, and follow your own rules
exactly. Do they work? At the very least, your
rules should not let you miss any obvious
opportunities and should not lead you into
hopeless situations.

If you have got the BATTLE program typed in
and running, then try playing it, on the two-
player version, using the order of priorities that
the computer follows. Note that the main attack
line is calculated during the initialization stage,
and the tanks advance up columns 5 and 6, or
up columns 11 and 12 if the wood blocks the
passage to the left.

The rule set is not particularly sophisticated,
and there are a number of ways in which it
could be improved. At the moment it shoots at
the first target that it finds, rather than selecting
the best target. The 'best' target is the tank

e

which can be knocked out most quickly, and a
development of this is to concentrate as much
fire as possible on one tank at a time, That way
you reduce the number of opponents most
quickly, and therefore reduce the amount of
damage that you will suffer.

The program could be adapted to include
these tactics, though it obviously makes it more
complicated. You would need a further array in
which to store the direction and damage status
of every tank within range. At the end of the
scan routine, the program would then select the
most damaged tank as its target, To coordinate
the action of different tanks, you would need to
store the details of every possible target of all
the tanks, and then compare them with each
other to see if any tank turned up in more than
one set. This would make the program much

— " more ‘intelligent’, but also much slower.

The Scan

-] 4— X —» +]

'

+1

The same scan routine is used when a tank is
seeing if any eflemy tanks are in range, and
when it is looking for a nearby enemy. The lines
from 3200 check along each possible line of fire
(or movement) in turn, working from left to right,
and top to bottom. The variable H governs how
far it should check.

128
Interactive games

1288 .
Developing tactics

There was an interesting little problem involved
in finding a single direction value - for the
computer's orders — from the scan routine. This
produces X and Y values of either —1,00r +1.
You could use eight separate lines, like this:

IF X=—1 AND Y=—1 THEN LET D=8
IF X=B AND Y=—1 THEN LET D=1
elc, etc

The routine would work, but it's long, and it
will slow the program down. The computer will
have to check a total of sixteen possibilities as 1t
works through those lines.

To find a more compact way of doing this, we
have to look for a pattern in the values of X, Y
and D.

The table shows that D will be 2,3 or 4 when
X=+1, and that it will be 2 when Y=— 1,3 when
Y=0and 4 when Y=+1. This leads us to the
line

3500 IF X=1 THEN LET D=3+Y

When you have found one pattern, the next is
always more obvious.

351@ IF X=—1 THEN LET D=7-Y

A simple ‘truth in a bracket' test allows one
line to cater for the two values of D when X=0:

IF X=0 THEN LET D=1+4%(Y=1)

The program now only has to test three values
of X in this routine. The saving in time 18 obvious.

Whenever you find a long, repetitive routine,
look for ways of compacting. Usually the
increase in speed is worth the effort of rewriting
the lines, but not always. Sometimes the more
compact routine will be so involved and
complex that it is not worth using - you, afterall,
will be faced with the problem of debugging it,
and will you remember exactly how it works in
a few months' time?

-] X +1
8 | 2
e
74+ D 4+ 3
¥
6 5 4

130
Interactive games

Developing tactics

Take it from here

There's room for improvement in the BATTLE
program, in both meanings of the term. The
program could definitely be improved, and
there's memory space in which to write your
extensions to the program.

Ways of improving the computer's tactics
have already been covered, but what about its
strategy? At the moment its master plan is to
find where the wood isn't and advance. This
approach is hardly likely to give a hard time to
any Napoleons among its human opponents, but
could it be improved? The answer must be yes.

How does a thoughtful human (you) approach
the game? What possible opening moves can
you make? Is it best to attack along a single
broad front, or does it pay to split your force?
How does the position of the wood affect the
game? In what ways do you respond to your
opponent's plan of campaign?

As you find answers to these questions, write
them down in terms of orders of priorities, or of
specific responses to specific situations. They
can then be added into the program. For
example, if you wanted the computer's tanks to
advance four abreast, if there was room, you
would start by including this line in the

132
Interactive games

Initialization routine after the wood's position has
been set. It checks that columns 5 to 8 are clear.

IF C>8 THEN LET P1=1
(C = wood column)

Plan | is now operational. It is worked into the
computer's move by a new line:

3865 IF P1=1 AND C>=5 AND C<=8
THEN GOTO 3100

(C = tank column)

Plan 2 would use a similar pair of lines to find

and move up a broad column on the other side
of the wood.

Landscaping

Y_our map could include other features such as
hills and roads. Hills would slow down the tanks,
but off_EI improved shelling distances from the
summit. Roads could give greater speed. If you
feel the map is too small to accommodate all the
features you would like to include then use a
larger map. You could reduce 1heuamoum of
other information on the screen, or remove it
altogether, writing in a new 'Help' page that the
player could call up at will.

133
Take it from here

A whole new range of possibilities, and
complexities, can be introduced into your game
by including other units such as artillery or
anti-tank infantry units. These would have
different speeds of movement, ranges of fire,
and resistance to hits. Each different type would
need a separate set of control routines, but they
would follow the same general plan as those
used for the tanks,

For a more mobile game, you could try
redesigning’ your tanks, so that they can fire
while they are moving. If you restrict the firing
to the direction of movement, then this won't
raise any major problems.

A game of your own

What will your interactive games be? Most
board games can be programmed, though
some will take more thought and effort than
others. The tactical games like chess, draughts,
Chinese Checkers and Ludo all offer real
challenges. (The major challenge on Chinese
Checkers is how you cope witha hexagonal
board!) Other board games present different
problems of programming and of presentation,
but the routin®s to work out the computer's
decisions are usually quite simple.

Card games can be programmed and are
particularly interesting if you are keen on the
mathematics of probability. At the time of
writing, card-playing programs are fairly thin on
the ground — perhaps because people prefer to
play cards with people.

War-gaming is traditional computer territory.
Some of the first computers ever built were
used for calculating the trajectories of shells. In

134
Interactive games

the Second World War, computers were much
used for working out the probabilities of
success of different types of military action. The
planners could feed the machines with data
about their own and the enemy's weapons and
forces, the nature of the terrain, and the
possible effects of different kinds of weather
and the computers were then able to pull alk‘the
information together to give an assessment of
the plans. If you are a keen war-gamer, you
should, at the very least, write programs to
make your machine handle the hit tables and
damage assessment, and to keep track of all the
results.

Whatever the game you decide to program,
do spend a long time planning it, before you try
to write the program, and don't expect it to work
perfectly first time, because it won't. You are
entering difficult territory. Enjoy the journey.

135
Take it from here

208

REM cp=1 if computer plays

209 REM
210 IF cp=1 THEN GO SUB 3000:
GO TO 350
220 LET p=2: GO SUB 2000
349 REM
° o 350 REM analysis and movement
Program listing
= 360 PAPER 8: FOR n=1 TO 4: FOR
i p=1 TO 2
- -' 363 REM
Hq" ' i 364 REM tank still operational?
-_— 365 IF a(p,n,3)=0 THEN GO TO 500
Ly b e 367 REM
368 REM “STAND” order?
1@ REM “BATTLE” 369 REM
20 RESTORE 4000: GO SuB 4000 370 IF o%$(p,n,1)="$" THEN GO TO
97 REM 500
98 REM display damage status 377 REM
99 REM 378 REM transfer Line, Column &
100 PRINT AT 9,20;“PLAYER 17 Direction to variables
11@ FOR n=1 TO 4: PRINT AT 379 REM
94n,21;"UNIT ";n;” 7; 380 LET l=a(p,n,1):
a(1,n,3);“ “: NEXT n LET c=alp,n,2):
120 PRINT AT 15,20;“PLAYER 27 LET d=VAL o0$(p,n,2)
130 FOR n=1 TO 4: PRINT AT 387 REM
158021 UNIT Sns ™ 388 REM “FIRE” order?
a(2,n,3);“ ”: NEXT n 389 REM
140 PRINT AT 18,0;“ENTER G for 390 IF o$(p,n,1)="F” THEN GO TO
GO”;AT 19,0;“F-FIRE S-STAND” 450
147 REM 40@ GO SUB 1@@@: REM moving
148 REM clear space to display new 407 REM
orders 408 REM move one square only?
149 REM 409 REM
150 PRINT AT 20@,0;"(32spaces)” 410 IF o%$(p,n,3)="1" THEN GO TO
160 PRINT AT 21,0;”(32spaces)” 500
197 REM 420 LET l=alp,n,1):
198 REM collect orders LET c=alp,n,2)
199 REM 430 GO SUB 100@: REM 2nd move
200 LET p=1: GO SUB 2000 440 GO TO 500
207 REM 447 REM
136 137
Interactive games Program listing

448
449
450

460

L67
468
469
470

477
478
479
480

490
500
507
508
509
510

520

530
600

700
1000
1010
1017
1018

1019
1020

REM fire routine

REM

FOR e=1 TO VAL o%(p,n,3):
GO SuB 1100

IF m$(L,c)="w" THEN LET e=h:
GO TO 49@: REM in wood

REM

REM move shell

REM

LET z$=m$(l,c): PRINT AT
L,c;”*":BEEP .02,0

REM

REM check for hit

REM

PRINT AT L,c;“B’: IF z$="T"
OR z$=“E” THEN GO SUB 1200
NEXT e

NEXT p: NEXT n

REM

REM check for win

REM

FOR p=1 TO 2: LET v=08: FOR
n=1 TO 4: LET v=v+alp,n,3):
NEXT n

IF v=0 THEN GO TO 600+
(100 AND p=2)

NEXT p: GO TO 100

PRINT AT 2@,1;”*** Red wins.
*%%x”; STOP

PRINT AT 20,1;“x** Blue
wins. *%%”: STOP

PRINT AT L,c;“B": LET
m$(Ll,c)=" "

GO SUB 110@: REM change line
and column

REM

REM is move blocked?

REM

IF m$(l,c)<>" " THEN GO TO
1040

1030

1837
1038
1839
1040

1050

1057
1058
1059
1060
1070
1100

1110
1120
1200

1219
1220
1221
1228
1229
1230

1237
1238
1239
1240

1247
1248
1249
1250

1260
1267
1268

LET alp,n,1)=L: LET
a(p,n,2)=c

REM

REM display tank

REM

PRINT AT a(p,n,1),alp,n,2);
INK p;“A"

LET t$="T": IF p=2 THEN LET
ts=uEu

REM

REM enter in array

REM

LET m$Calp,n,1) ,alp,n,2))=t$
RETURN

LET Ll=Ll+(d>3 AND d<7)—
(d=8 OR d<3)

LET c=c+(d>1 AND d<5)—(d>5)
RETURN

PRINT AT L,c; INK
1+(2$="E") ;A"

REM

REM which was hit?

REM

REM check Lline and column
REM

FOR x=1 TO 2: FOR y=1 TO 4:
IF alx,y,1)<>L OR
alx,y,2)<>c THEN GO TO 1300
REM

REM make tank flash

REM

LET 2z=22528+32*l+c: POKE z,
(PEEK z+128)

REM

REM damage assessment

REM

LET damage=(5-e)*INT
(RND*10)+10

LET a(x,y,3)=a(x,y,3)—damage

REM
REM knock out if under 10

138
Interactive games

139
Program listing

1270
1280

1287
1288
1289
1290

1300

2000
2001
2010
2017
2018

2020

2027
2028
2029
2030

2035
2038
2039
2040

2050

2057
2058
2059
2060
2067
2068

IF a(x,y,3)>=10 THEN GO TO
1290

LET alx,y,1)=@:LET alx,y,2)=0:
LET a(x,y,3)=0: PRINT AT
L,c;”B": LET m$(L,c)="":

LET y=4: LET x=2: GO TO
1300

REM

REM turn off flash

REM

BEEP .1,25: POKE z,(PEEK
z—128)

NEXT y: NEXT x:

LET e=4: RETURN

REM get orders

REM

FOR n=1 TO 4

REM

REM tank still operational?
IF a(p,n,3)=0 THEN GO TO
2150

REM

REM make tank flash

REM

LET Z=22528+32*a(p,n,1)+
alp,n,2): POKE z,PEEK z+128
REM

REM collect order codes

REM

PRINT AT 19+p,n*6; INK p;n;:
POKE 23658,8: INPUT ﬁT

0,0; (“Player “;p;“:Unit “;n;”
- Move ?7);a$

IF a$="S" OR a$="F”" OR a%$="G"
THEN GO TO 2070

REM

REM ignore invalid inputs
REM

2069
2070

2080
2090

2100
2110
2120

2130
2140
2150
2999
3000
3001
3005

3007
3008
3010

3020

3027
3028
3030
3040
3047
3048

3050
3060
3067
3068
3069
3070

3080
3090

REM

PRINT a$;: LET o%$(p,n,1)=a$%:
IF a$="“S” THEN GO TO 2140
INPUT AT @,0;Which
direction? ”;a$

IF a$<”1” OR a%$>“8” THEN GO
TO 2080

PRINT a$;: LET o$(p,n,2)=a$
INPUT AT 0,0;"Distance ?”;a$
IF a$<“1" OR a%$>"4" THEN GO
T0 2110

PRINT a$;: LET o%$(p,n,3)=a$
POKE z,PEEK z—-128

NEXT n: RETURN

REM

REM computer gives orders
REM

FOR n=1 TO 4: LET m=0: LET
o$(2,n)=""

REM

REM tank still operational?
IF a(2,n,3)=0 THEN GO TO
3190

LET L=a(2,n,1): LET
c=al(2,n,2)

REM

REM scan for enemy in range
LET h=4: GO SUB 3200

IF m=1 THEN GO TO 3190

REM

REM scan for enemy just out
of range

LET h=6: GO SUB 3200

IF m=1 THEN GO TO 3190

REM

REM main Lline of advance
REM

IF c=ac OR c=ac+1 THEN GO
TO 3100 '

IF c<ac THEN GO TO 3110

IF c>ac THEN GO TO 3140

GO TO 2040
REM
REM transfer to array
140
Interactive games

141
Program listing

3100
3110
3120
3130
3140
3150
3160
3165
3170
3175
3180
3190
3200
3201
3202
3205
3210

3220
3230

32357
3238
3239
3240

3247
3248
3249

IF m$(L—1,c)=" " THEN LET
0%(2,n,2)="1": GO TO 3180
IF m$(L—1,c+1)=" " THEN LE}
0$(2,n,2)="2": GO TO 3180
IF m$(L,c+1)=" " THEN LET
0$(2,n,2)="3": GO TO 3180
LET 0%(2,n,1)="Ss": GO TO
3190

IF m$(L—1,c—1)=" " THEN LET
0$(2,n,2)="8": GO TO 3180
IF m$(l,c—1)=" " THEN LET
0$(2,n,2)="7": GO TO 3180
LET 0$(2,n,1)="8": GO TO
3190

REM

REM STAND if no good move
REM

LET 0$(2,n,1)="6G": LET
0%(2,n,3)="2"

PRINT AT 21,n*6; INK 2;n;
0$(2,n): NEXT n: RETURN
REM .

REM scan routine

REM

FOR y=—1 TO 1: FOR x==1 TO
1: FOR z=1 TO h

IF x=0 AND y=@ THEN GO TO
3260

LET L1=l+z*y: LET cl=c+z*x
IF c1<1 OR L1<1 OR ¢c1>16 OR
L1>16 THEN LET z=8: GO TO
3260

REM

REM spotted a target

REM

IF m$(L1,c1)="T" THEN GO SUB
3500: GO TO 3260

REM

REM path blocked

REM

3250

3260
3270
3497
3498
3499
3500
3510
3520
3527
3528
3529
3530

3540
3547
3548
3549
3550

3999
4000

4010

4020

4030
4040

4050
4060

IF m$Cl1,c1)<>" ” THEN LET
z=H

NEXT z: NEXT x: NEXT y
RETURN

REM

REM get Direction from scan
REM

IF x=1 THEN LET d=3+y

IF x=—1 THEN LET d=7-y

IF x=0 THEN LET d=1+4*(y=1)
REM

REM finish off order

REM

LET q$="G": IF h=4 THEN LET
qs=JlF”

LET o%$(2,n,1)=q$: LET
0$(2,n,2)=STR$ d: LET
o$(2,n,3)="4"

REM

REM close Lloops

REM

LET 2=8: LET x=1: LET y=1:

LET m=1: RETURN

STOP

PAPER 7: INK @: BORDER 7:
CLS : PRINT AT 0,13;“BATTLE”
PRINT AT 2,1;“Each move
opens with you giving”“each
piece its orders.”

PRINT “The second player (or
Spectrum)”“gives his orders,
and the moves”

PRINT “are then played
out.”“POSSIBLE MOVES:”

PRINT “ GO.. FIRE.. STAND
(do nothing)”“Direction and
distance must be”

PRINT “given for GO or FIRE
commands.”

PRINT “ GO 1 or 2 squares.”

142
Interactive games

143

Program listing

4070

4500
4510
4520
4530

5000
5010
5020

5030
5040

5050

5055
5060
5065
5070

5075
5080
5085
5090

5895
5100
5105
5110

5115

PRINT “Rivers & woods can't
be crossed.”“FIRE - Max. 4
squares - more damage at
close range.”

FOR n=1 TO 2: READ g$: REM
graphics

FOR r=@ TO 7: READ b: POKE
USR g$+r,b: NEXT r: NEXT n
DATA “A”,0,0,31,24,126,255,
126,6@: REM tank

DATA “B”,0,1,0,1,0,1,0,85:
REM grid Llines

DIM m$(16,16): REM map

DIM 0%$(2,4,3): REM orders
LET m$(6, TO 3)=“rrr”:

LET m$(7,4)="r":

LET m$(10,13)="r":

LET m$(11,14 TO)="rrr”

REM rivers on map

LET L=INT(RND*6)+4: LET
c=INT (RND*5)+5

FOR n=L TO Ll+3: LET

m$(n,c TO c+3)="wwww’: NEXT
n

REM

REM wood in random position
REM

LET ac=5: IF c<8 THEN LET
ac=11

REM

REM attack Lline misses wood
REM

LET m$(1,7 TO 1@)="TTTT":
LET m$(16,7 TO 10)="EEEE"
REM

REM starting positions

REM

DIM a(2,4,3): REM 2 armies -
4 pieces in each - line,
column and damage status
REM

5120

5130
5140

5150
5160

5170

5180
5200
5205
5210
5215
5220

5230

5240
5250
5255

5260

5270
5280
5290
5300

5310
5320

5330

FOR n=1 TO 2: FOR e=1 TO 4:
LET aln,e,1)=1+(15 AND n=2):
REM Llines

LET a(n,e,2)=e+6: REM
columns of pieces

LET a(n,e,3)=100: REM 100% =
undamaged

NEXT e: NEXT n

BEEP 1,0: INPUT AT 0,0;“ONE
PLAYER OR TWO ?”; LINE A$

IF A$<>“1" AND AS$<>“2" THEN
GO TO 5160

LET cp=VAL A3(1)

BORDER 5: CLS

REM

REM blank map

REM

PRINT AT @,0; PAPER 2;“(18
spaces) "

FOR n=1 TO 16: PRINT AT

n,®; PAPER 2; ”; PAPER 7;
Bbbbbbbbbbbbbbbb™ ; PAPER 2,'
“ . NEXT n: REM GRID

PRINT AT 17,0; PAPER 2;“(18spaces)”
REM direction display

REM USE KEYBOARD FOR SYMBOLS
IN 5260

PRINT AT 1,20;“DIRECTIONS”;
AT 3,22;“8 1 2";AT 4,23;

" AT 5,22; “T—%=3"; AT
6,25 "INT:AT 71,2276 5 &

REM

REM put details on map
REM

FOR L=1 TO 16: FOR c=1 TO

16: IF m$(l,c)=" " THEN GO
T0 5350

REM rivers

IF m$(L,c)=“r" THEN POKE
22528+432%+c 40

REM woods

144
Interactive games

145
Program listing

5340

5350
5360
5370
5380
5390

IF m$(l,c)="w" THEN POKE
22528+32%L+c,32

NEXT c: NEXT L

REM display armies

PRINT AT 1,7; INK 1;“AAAA"
PRINT AT 16,7; INK 2;”AAAA”
RETURN

146
Interactive games

147
Program listing

Appendix A

Essential BASIC

ABS gives the ABSolute value of a number by
stripping off any minus sign.
AND compares two statements to see if they
are both true.

Can also be used like this: LET X=X+(4 AND
A$="8")

Here AND really means 'IF the following
statement is true'.
ATTR gives the colour code for a square on
the screen. Use it like this: ATTR(L,C)

BEEP produces a sound. BEEP is followed by
two numbers e.g. BEEP 1,0. The first fixes the
length of the note (1=1 second), the second
controls the pitch (0 = middle C).

BIN used when you want to give a binary
number for graphics definition. BIN 10000100 =
132.

BORDER sets the border colour, using the
numbers 0 to 7. BORDER 2 for a red border.
BRIGHT 1 makes things appear extra bright.
BRIGHT 0 puts them back to normal.

CHR$ converts an ASCII code number into a
character, graphic, or control command.
CIRCLE drawsa circle. Follow it by three
numbers - the x and y co-ordinates of the
centre, and the radius.

CLEAR clears the memory beyond the BASIC
program, wiping out all variables, arrays, etc.
CLEAR 50000 resets RAMTOP, the end of
your BASIC program area, to address 50000
(48k machine.) Used to create a safe space in
which to store machine code programs.

CLS clears the screen only. Other parts of
memory are not affected.

COPY can only be used with a printer. It
copies the screen onto paper. If the copy looks
odd, it is because the printer only picks up
those parts of the screen that are INKed.

DIM setsup an array. Initially all stores are
empty, if it is a string array, orsetto O ifitisa
number array. The DIM line must give the array
name, and the dimensions of the array. DIM
5$(20,20), DIM N(10,15,20), DIM X(12).

The subscripts of the array start from 'l' and
go up to the dimensions given. An array can be
DIMensioned several times during a program —
it's quite a useful way of clearing it for a fresh
start.

DRAW will draw a line from the current PLOT
position to a point given by x and y vectors.

FLASH is used in the same way as BRIGHT.
FLASH 1 makes things flash. FLASH 0 is back to
normal.

FOR....TO....STEP... isthefirstlineofa
FOR. .NEXT. . loop. This sets the range of
numbers through which the loop must run. STEP
1s optional and can be missed out from a simple
series (1,2,34,...)FORX=1TO 21 STEP 4:
PRINT X: NEXT X would print 1,5,9,13,17,21.

GOSUB (line number) sends the program to a
subroutine, storing the current line number in
the gosub stack. When the program meets a
RETURN command, it returns to the line at
which it left the main program.

148
Appendix A

149
Appendix A

GOTO (line number) sends the program to
the line given. If there is no line with the stated
number, then the program will go to the next
line down.

IF....THEN.... testacondition, and the
program branches if the condition is true.
INK is the colour in which characters are
printed. Use a number between 0 and 7, to get
the colours shown on those keys. INK 8 is
transparent — characters will be printed in
whatever INK colour happens to be set at the
squares on which they appear, INK 9 will make
the Spectrum print either in white, or black,
whichever gives the best contrast with the
PAPER colour at the print position.
INKEYS$ reads the keyboard. It can be used
directly;

IF INKEY$S ="8” THEN X=X+2...

It is safer, however, to transfer the character
read, from INKEY$ to a normal store. . . .

LET A$= INKEYS$.

IF A$ ="8" THEN. . .. '
INPUT waits for the user to type something in,
and then to press ENTER to close the message.
If you are friendly towards your users, you will
usually include prompts in the INPUT lines, so
that they know what they are supposed to do:

INPUT “PLEASE TYPE IN YOUR NAME”; N$

INT lops off the whole number part of any
number, INT 4.567 = 4. INT 9.9999 = 9. Almost
essential when using the RND function, as this
produces decimals, and you will want whole
numbers for most purposes.

INVERSE prints reversed characters by
putting PAPER where the INK should be and

vice versa.

vanable, i.e. how many charactersin it.

LET qivesa value to a variable. LET A=99.
LET N$="PETER".

LIST displays the program on the screen.
LIST 100 (or whatever) to start the list from a
particular line.

LOAD “MYGAME” will search for a program
called "MYGAME" and load it into the computer.
LOAD" will load the first program it finds.

NEW clears the BASIC area of memory, (the
program and any variables and arrays) ready
for a new program. Things beyond the BASIC
area- UDG's and machine code routines - are
not affected.

NEXT is the closing command for a

FOR. .NEXT. .loop. As long as there is a number
left, and it is within range of the STEP, then the
program will loop back to the FOR.

OR tests to see if either or both of two
statements are true,

OVER 1 can produce some peculiar printed
effects. Two characters can both appear at the
same position, but where their INK dots
coincide, the screen will be PAPER colour.
OVERO0 is the normal condition.

PAPER s the colour of the background.
Numbers 0 to 7 give the colours shown on the
keys. PAPER 8 is transparent - anything printed
this way will pick up whatever the background
colour happens to be at that point. PAPER 9 is
contrast, and will be either black or white, to
give the best contrast to the current INK colour.
PAUSE makes the program wait for a given
length of time. PAUSE 50 will cause a wait of 1
second. PAUSE 0 for an endless wait. The
program can be moved on at any time by
pressing a key. PAUSE 0: LET A$ =INKEY$ is

LEN tells you the length of a string or a string one way to collect keystrokes.
150 181
Appendix A Appendix A

PEEK (an address) will tell you the contents of
any address. Some PEEKs are more useful than
others. i

PLOT putsa dot of INK at the point marked by
x,y coordinates. PLOT 100,50 will plot a point
100 dots from the left, and 50 dots up.

POKE (an address) puts data into an address
in memory. Machine code routines have to be
POKEd into place.

PRINT puts things on the screen. The PRINT
lines can contain a wide variety of commands to
change the appearance of the printed material
- colour commands are the most obvious.
PRINT AT line, column;“. .. willprintata
given place on screen.

PRINT SEPARATORS: a semicolon (i)
between two items will make the second item
appear immediately after the first.

A comma (,) between two items makes the
second item appear in the next available print
zone. ¢

An apostrophe () between two items makes
the second item appear on the next available
thRlNTe- TAB column;*. .. will printata given
column on the next available line.

PRINT, (ZONE). A print zone is half a screen
wide.

RANDOMIZE should be used at the start of
any program where you are going to use
random numbers. It makes sure that the random
number sequence starts at a random place.
READ must be followed by a variable. It
transfers DATA from the DATA line to the given
variable.

REM marks the start of a line where you can
write remarks to remind you what the program
is doing. The computer ignores anything on a
REM line.

RESTORE pushes the data marker back to
the top of the data list. If you want to READ the
same set of DATA several times — perhaps the
data for your signature tune — then you must
restore the data marker before it reads.
RESTORE followed by a line number sets the
data marker to the data that starts at, or after,
that line.

RETURN sends the program back from a
subroutine to the main program.

RND produces a random decimal number
between 0 and 1. It can be used as it is to seta
random limit:

RUN clears all variables and starts the
program. This can be replaced by GOTO
followed by the first line number if the program
has already been run and you want to keep the
information that the variables contain.

SAVE “MYGAME” transfers a program to
tape, and labels it "MYGAME".
SAVE “MYGAME” CODE (number)

transfers a machine code program starting from
the address given,

SAVE“MYGAME” LINE 10 saves a named
program so that when reloaded it automatically
runs from line 10.

SAVE “MYGAME” SCREENS transfersa
screen to tape, with the label ‘MYGAME".

SQR gives you the square root of a number,
STOP halts the program. It can be restarted
with CONT.

STR$ converts a number 1o a string variable.
STR$9is"9".

VAL gives you the value of a number ina
string, or string variable. VAL"99" = 99.

VAL will also give you the answer to a sum in
astring. VAL " 3+4*SQR 16" =19
VERIFY isused after SAVING a program, to
make sure that the tape recording is good.

182
Appendix A

153
Appendix A

Appendix B

Defining your own graphics

The Spectrum has been designed so that it 1s
easy to create your own graphics. An area of the
character set has been left free to handle them,
and there are two commands which allow a
very simple transfer of a design from paper to
memory. ‘
When a character is printed on the screen, it
occupies a grid of pixels (picture cells — each is
a dot of light). The grid has eight rows, each of
eight dots. The pattern for the character is held
in the memory as a set of eight binary numbers.
Whereas ordinary numbers use a range of ten
different figures (0,1,2,3,4,5,6,7,8,9), binary
numbers only use two figures, 0and 1. Ina
computer like the Spectrum, the numbers are
limited to a maximum size of eight digits,
because this is the size of memory stores. Any
address can hold one BYTE of information, and
the BYTE consists of eight BITS - Binary digITS.
If you could look into an address in the way that
the computer does, then you would see
something like this:

22101101

When the computer 1s displaymg a character on
the screen, it looks at the set of elg]_ﬂ addresses
where the pattern is stored, and prints a dot of

light for each BIT that is set to 1 in each row.

To define a character then, you need to puta
new pattern of binary numbers into the memory
space for that character, Spectrum’s User
Defined Graphics are to be found in Graphics
Mode, on the letter keys ‘A’ through to U,
Here's how to define a jet into Graphics ‘A’.
Type it in, then PRINT (Graphics) “A".

10 POKE USR “A"+0,BIN 00000000
20 POKE USR “A"+1,BIN 11110000
30 POKE USR “A”"+2,BIN 01101000
40 POKE USR “A"+3,BIN 01100100
5@ POKE USR “A"+4,BIN 11111111
60 POKE USR “A"+5,BIN 01100100
70 POKE USR “A"+6,BIN 01101000
80 POKE USR “A"+7,BIN 11110000

POKE is the command used to put a number
directly into a memory address. Normally you
would have to give the numbers for these
addresses, but not here.

USR 'A’ tells the Spectrum that the address is
that of the UDG on letter ‘A’. There are, of
course, eight addresses here, for the eight lines.

BIN is a special function which allows you to
enter numbers in BINary form. You will find it in
E mode on the letter key [B].

To redefine any other UDG, you could use the
same basic program, changing only the USR
letter, and the pattern. If you are going to be
doing much in the way of graphics definition,
you will soon find that this is a very slow way of
going about it, and also that it eats up memory at
an alarming rate.

The first stage in making the definition
routines more compact is to use a loop, and
READ in the binary numbers from DATA
statements.

10 FOR R=0 TO 7: READ B
20 POKE USR “A” +R,B:NEXT R

154
Appendix B

155
Appendix B

30 DATA BIN 00000000, BIN
11110000 ,BIN 01101000,
BIN @1100100,BIN 11111111,
BIN @1100100,BIN 01101000,
BIN 11110000

The next stage is to learn to convert binary
number patterns into normal decimal numbers.
To do this, use the Conversion Table. Work
through your number from left to right, and
when you find a 'l’, note down the decimal
number above that column. Add the decimal
numbers together at the end. The DATA line in
the example program can now be changed:

30 DATA B,240,104,100,255,100,104,240

When you want to define more than one
character — which will usually be the case -
then you can compact even further by using a
double loop. The outside loop determines the
number of characters, and READs the letter for
each character. The inside loop is the same as
that used above.

1@ FOR N=1 TO 2: READ G$

20 FOR R=0 TO 7: READ B

30 POKE USR G3$+R,B: NEXT R: NEXT N
4@ DATA “B",56,60,56,16,56,120,191,184

50 DATA “C”,184,184,40,36,36,68,132,196

You will probably find it best, at first, to stick to
the binary form of numbers, as it is then much
easier to see how the numbers and the patterns
relate to each other. Compact the DATA into
decimal form later, when you are happy with
the designs, and when you feel you need the
extra memory space.

Conversion table
128 164132168 | 4
o P i])

Total =64+ 32+ 8= 104

Do
st

Appendix C

This section introduces two machine code
routines that allow you to produce screen
effects that you could never achieve in BASIC,
When you are typing in these routines, or any
other machine code routines for that matter,
take extra care to ensure that you type exactly
what is written. A mistake in a machine code
routine will not make the Spectrum print a
helpful Error Report. What normally happens is
that the machine locks up and you have to pull
the plug and start again.

Yc_Ju will get more out of machine code
routines if you understand what they are
supposed to do. Read up on Z80 machine code,
and then use the Assembler codes in Appendix
A of the Spectrum manual to analyse the routine.

Screen Dump and Recall

This transfers an entire screen display to a
reserved area in memory, and transfers it back
again when wanted. The process is much the
same as transferring screens to and from tape
with SAVE and LOAD instructions, but infinitely
quicker.

10 CLEAR 24999
20 FOR N=25000 TO 25023
3@ READ X:POKE N,X: NEXT N

156
Appendix B

167
Appendix C

16384 very slick transfer between game and Help. To
48 DATA 33,0,64,17,8,98 do this you will need two dumps. This version of
1,0,27,237,176,201 DISPLAY the rout 1l do it
50 DATA 33,0,98,17,0,64, FILE RIORe PHIoe
1,0,27,237,176,201 - i 1@ CLEAR 49999
Type it in and run it. Nothing visible has ATTRIBUTES 20 FOR N=50000 TO 50047
Ao e OO 30 READ X: POKE N,X : NEXT N
happened yet, but the code is in p! SYSTEM
print something in the screen, then enter this: VARIABLES 40 DATA 33,0,64,17,0,196,
ity 1,0,27,237,176,201
RANDOMIZE USR 25000 d 50 DATA 33,0,196,17,0,64,
o 1,0,27,237,176,201
ter this: M,el, , ’
i ey i?a%g i 60 DATA 33,0,64,17,0,223,
RANDOMIZE USR 25012 1,0,27,237,176,201
You should see your original screenagain £ 70 DATA 33,0,223,17,0,64,
RANDOMIZE USR 25000 sent the Spectrum to M CODE 1,0,27,237,176,201
the machine code routine that started at i i RANDOMIZE USR 50000, and RANDOMIZE
address 25000. That routine — the da!a:glel:naiea DUMP USR 50012 dump and recall the first screen.
40 - dumps the screen contents in ano AREA RANDOMIZE USR 50024, and RANDOMIZE
of memory. R USR 50036 dump and recall the second screen.
CLEAR 24999 resets RAM 0

address, to create an area beyond 1he BASIC
program for your screen dump. This dump
needs nearly Tk of memory, so you are only left
with about 2k for your BASIC. If you have a 48k
machine, this could be changed to CLEAR

2 Use the routine for animating a graphic
across a detailed background. Dump the
background, print your graphic, and then recill
the background to erase the graphic before you
move 1t It's fast, and very effective.

56999. The machine code routine and screen
dump area is now much higher in memory, and Smooth Scrolls . .

ou have 34k left for your program. If you do this Try this for a super title screen, or work it into
zou must also change the next line to: an action game to give a moving background.

o ; 10 CLEAR 29999
FOR N=5700@0 TO 570823 20 FOR N=30000 TO 30016

The machine code routine starts the screen 30 READ X: POKE N,X: NEXT N
dump at 25088. This needs moving to match the 40 DATA 33,255,87,14,192,6,32,
new RAMTOP. Change the 98's in the DATA 183,203,22,!’3,16,25 1 ,13 ’32’
lines to 223. 98*256=25088: 223*256="57088. This 245201
is the start of the new screen dump area. 50 INK é: PAPER @: CLS

60 FOR N=1 TO 5@: LET
Y=INT(RND*176) :
LET X=INT(RND*256)
70 PLOT X,Y: NEXT N
80 LET Z=USR 30000

Using the Screen Dump

1 Use screen dumps to save the game screen
when you bring up a Help page. You could
even hold the Help page in a dump, to allow

158 159
Appendix C Appendix C

90 LET Y=INT(RND*176):PLOT 255,Y
100 GOTO 8@

‘LET Z=USR 30000’ is another way of calling up
a machine code routine. If you use
RANDOMIZE USR 30000 here, then you
interfere with the random numbers, so that they
are no longer random.

Variations

With a few minor alterations, you can make this
routine scroll the screen from left to right. This
program shows it in operation.

10 CLEAR 29999

20 FOR N=30000 TO 30016

30 READ X: POKE N,X: NEXT N

40 DATA 33,0,64,14,192,6,32,183,
203,30,35,16,251,13,32,245,201

50 LET L=0

60 LET Z=USR 30000

70 PRINT AT L,0;"m”

80 LET L=L+1: IF L>21 THEN LET L=0

90 GOTO 60

You don't have to scroll the whole screen. If you
have watched a screen being loaded in from a
tape, you will have noticed that it works in three
blocks of eight lines each. Change DATA line to
this if you only want the bottom third of the
screen to move:

40 DATA 33,0,80,14,64,6,32,183,
203,30,35,16,251,13,32,245,201

The third number has been changed to 80, and
the fifth to 64. These control where in the
display file you start your scroll, and how much
you move. There are three possible starting
points ~ Top of screen (64), Middle section (72)
and bottom third (80). To scroll a third of the
screen only, the fifth number should be 64; 128
moves two-thirds of the screen, and 192 scrolls
itall

160
Appendix C

Masterpmmdesa]ltheb 1lding blocks ’iw’llneedto
start programming your own games. Title pages, game
screens, sound effects, movement routines, g
routines. Evarjrthmg you need and a lot more besides.

FULL LISTINGS
To start you off there are plenty of full length Spectrum
games listed in the Game Master. Choose between
E.I'Cﬂdi., adventure, and strategy games. Then, when
you've played through a % ame, use the listings to develop
something of your own. Put on your own title page - and

~ your own name.
It's your game after all.

GAME MASTER

Move cn to wholly original games. The tricks and routines
in the ZX Spectrum Game Master will give you the
confidence to set off on your own. How to develop your
own ideas, how to plan gour games, how to present them
on screen, how to program them
for maximum efficiency.

MLASTER THE ART OF THE SUPER GAMESTERS.
ZX SPECTRUM GAME MASTER.

Longman &
Computer

ISBN 0-582-91k0b-¢

