THE

SPECTRUM

OPERATING
SYSTEM

Steve Kramer

- Sy
== s;‘
G

NI DN DDL_ ~

Vi -

!

The Spectrum
Operating System

The Spectrum
Operating System

Steve Kramer

"% MICRO PRESS

First Published 1984 by

Micro Press

Castle House, 27 London Road
Tunbridge Wells, Kent

(©) Steve Kramer 1984

All rights reserved. No part of this
publication may be reproduced, stored in a
retrieval system, or transmitted in any form
or by any means, electronic, mechanical,
recording or otherwise, for commercial
gain without the prior permission of the
publishers.

British Library Cataloguing in Publication Data
Kramer, Steve
The Spectrum operating system.
1. Sinclair ZX Spectrum (Computer) — Programming
2. Operating systems (Computers)
1. Title
001.64'25 QA76.8.5625

ISBN 0-7447-0019-1

Typeset by Keyset Composition, Colchester
Printed by MacKays of Chatham Ltd

Contents

Chapter1

Chapter2

Chapter 3
Chapter4

Chapter5
Chapter 6

Chapter 7
Chapter 8

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G

Index

129

Getting Started 1

Useful Call Addresses and How to Use Them: the
16K ROM 3

The 8K Interface ROM 25

The System Variables 42

Input and Output Ports and Channels 62

Using the Interrupts 70

Extending BASIC with Interface 1 75

The Calculator 80

Hex to Decimal Conversions 93
The Spectrum Memory Map 95
The Spectrum Screen Map 96
The Keyboard Map 98

The Spectrum Character Set 99
ROM Interrupt Vectors 102
Useful Subroutines 104

Chapter One

Getting Started

While this book is primarily aimed at those people who have a
reasonable understanding of assembly language programming,
there will be a considerable amount of information which will be
of use to the uninitiated programmer who would like to be able to
gain access to the versatility of machine code, without having to
learn how to write it. If you belong to the latter group [hope that
this book will whet your appetite, and prompt you to start
learning a little about assembly language programming. With the
minimum amount of knowledge and using the routines in the
following chapters, short machine code routines can be written
and used very easily.

For anybody not familiar with the operating system of the
Spectrum or who is basically bone idle (like me) and who prefers
to use ROM routines and existing facilities — rather than
re-inventing the wheel every time they want to write a program—
I will be discussing how to use ROM calls in both the 16K ROM,
which is in the Spectrum, and in the 8K ROM in the Microdrive

Interface. In some cases, | shall give examples as well as
descriptions of how to use them, except where they are just a
simple CALL.

[shall also look at the system variables and show how to use
them to advantage, and explain the use of interrupt-driven
routines, which can allow sprites to be used on the standard
Spectrum.

Unless you wish to convert the assembly language routines by
hand into numbers and then poke them into your computer’s
memory, a prerequisite to being able to use this book is an
Assembler program. | can recommend the Picturesque Editor
Assembler and also their Monitor/Disassembler programs,
which are both very easy to use and fast. | can also recommend
Highsoft's Devpack 3 which will be even better with a few
improvements which will probably have been made by the time

2 The Spectrum Operating System

you read this chapter. For the more experienced user, the
Devpack (which contains both Monitor/Disassembler and Editor/
Assembler) is, in my opinion, at present unsurpassed. The latest
versions of both these programs are Microdrive-compatible.

It is not my intention to teach assembly language programming
as there are a great many books already available which cover this
in detail. Two that 1 can recommend are Rodnay Zaks'
Programming the 780 and Spectrum Machine Language for the
Complete Beginner. The first is not related to the Spectrum, but
goes into far more detail than the second and also has concise
descriptions of all the available op-codes.

To call a machine code program from BASIC you can either use
a RANDOMIZE USR NN, a PRINT USR NN or a LET V = USR
NN command, where NN is the entry point to the machine code
program and V can be any numeric variable. On return from the
machine code routine, the variable in the LET command will be
equal to the BC register pair on exit, and with the PRINT
command the value in the BC register pair will be printed to the
current stream. In all cases the BC register pair will contain NN on
entry to the machine code program.

Whenever a machine code program is called, it is advisable to
save the contents of the H'L' register pair since the contents of
this are necessary for a successful return to BASIC. The I'Y register
pair should not normally be used as the ROM uses this to index
the system variables, but it can be used so long as the interrupts
are off and no ROM routines are used before it is restored to
holding 23610 (5C3Ah).

This book is intended to be a reference work which you will
turn to for information for as long as you have your Spectrum. [
have made no attempt in the main text to be chatty or to hold your
hand, but [hope the information required is there. Obviously it
would be impossible to detail all the ROM routines and all the
ways they could be used, so I have selected those that 1 am asked
about most often and find most useful. Further reading for the
serious programmer must be Dr lan Logan’s Complete Spectrum
ROM Disassembly.

Chapter Two

Useful Call Addresses
and How to Use Them:
the 16K ROM

It is important before using ROM routines always to save the H'
and L’ registers, and restore them afterwards before a return to
BASIC is made. Also the IY register must always contain the
address of the system variable ERR NR 23610 (SCSJ;\h) whenevera
ROM routine is used

Printing: RST 16 (10h)

The character whose code is in the A register will be printed to
whichever stream is currently open. This can also be used to
‘print’ control codes (i.e. TAB, INK, OVER, etc.; see the Spectrum
manual for details).

Opening and Closing Streams (for RST 16 (10h)):
CALL 5633 (1601h)

CALL 5633 (1601h) sets the output for RST 16 (10h) to the stream
held in the A register when called. Normally A = 2 will print to
the main screen, A = 3 will print to the printer and A = 1 or 0
will print to the lower screen. With the Interface 1 connected,
other streams can be used for output to the Microdrives, network
or other devices. Details are given on how to divert streams for
your own purposes (e.g., for controlling an interface for other
uses such as the Kempston or other Centronics printer interface)

4 The Spectrum Operating System

in the section on Expanding Tokens for Output later in this
chapter.

Detecting if Break is Being Pressed: CALL 8020
(1F54h)

This call will return with the carry flag set if it is not being
pressed, and with the carry flag reset if it is being pressed. (Note:
This call tests for both CAPS SHIFT and SPACE being pressed.) If
you want to test for SPACE alone see the section later on Getting a
Character from the Keyboard for full details but, for the time
being, you could use:

LD A7FH
IN A (OFEH)
RRA

JP NC,PRESSED

Setting the Position for Printing Using RST 16
(10h): CALL 3545 (DD9%h)

This routine requires the B register to hold the screen line
number in the form:

= 24 — line number

(i.e. if B = 24, this is the top line of the screen; if B = 1this is the
bottom line). Unfortunately due to an oversight in the writing of
the ROM, you cannot use lines 23 and 24 for printing on the main
screen. So you must use the lower section by setting up the
output stream for RST 16 (10h) to be 1, and using the top two lines
of the lower screen.

C = 33 — column number

(i.e. if C = 33 this is the left-most column; if C = 2 is the right-
most).

This call automatically updates the system variables for the
print positions on whichever stream you are using, as set up by

Useful Call Addresses and How to Use Them: the 16K ROM 5

calling 5633 (1601h). Caution needs to be exercised on the last line
of the main screen as a scroll message will be generated after
printing on the last available position. This will cause a return to
BASIC if answered with 'n” or SPACE. In addition to this, any
attempt to print to stream 1 will cause scrolling up of the lower
screen when the available space set up by the system variable DF
S§7 (23659) has been filled. This can produce some very
unexpected results.

Obviously when printing to a printer you cannot set a line
number so the B register is not used.

Clearing the Screen (Whole Screen): CALL 3435
(D6Bh)

This call will clear the whole screen and reset the attributes to
those in system variable ATTR P for the main screen and
BORDCR for the lower screen (23693 and 23624, respectively; see
the Spectrum manual for how these are made up).

Clearing the Screen (Lower Screen): CALL 3438
(D6Eh)

This will clear the lower screen only and reset the attributes.

Note: Both 3435 (D6Bh) and 3438 (B6Eh) reset DF SZ to 2 and can
corrupt the current channel used by RST 16 (10h) so this will need
to be reset. The current print positions are set to the top left of the
respective screens.

Scrolling the Screen: CALL 3582 (DFEh)

This scrolls the screen up by one ling, but leaves the current print
position unaffected. Therefore if you continually print to the
same line, scrolling the screen at the end of each line, you will
have an effect like typing using a typewriter (with the printing
taking place at the bottom and the print being moved up after a
carriage return).

6 The Spectrum Operating System

Plotting to the Screen: CALL 8933 (22E5h)

The point addressed by the B register (Y 0-175) and the C register
(X 0-255) will be plotted to the screen. The INK and PAPER
colours can be set up previously by loading the system variables
for the attributes with the colours you require or the current
attributes will be used. OVER 1 can be set by SET 0,(IY + 87) or
reset by RES 0,(IY + 87) and any point can be unplotted by SET
2,(TY + 87).

Note: It is perfectly possible to plot to the lower screen and this
should be avoided, if not required, by setting the stream required
with the 5633 (1601h) CALL.

Getting a Number to a Stream

This is the most complicated routine so far and does not have a
simple call address as such. There is a routine in the ROM for
taking a 16-bit number from two addresses and outputting it in
decimal form, but this routine has the disadvantage that the bytes
must be stored ‘about face’ from the way that the Z80 stores them.
This means that you must load the number into a register pair and
then store it back into a space in memory the opposite way round
(i.e. high-order byte first). A short program such as this would
serve:

LD DE, (address where No. stored)
LD HL, SPARE WORD

LD (HL) , D
INC HL
LD (HL) ,E

The ROM routine at 6696 (1A28h) can now be called with HL
pointing to the address SPARE WORD which will then be output
in ASCII to the current stream, but there are two drawbacks.

1) It will only be output correctly ifit is less than 10 000 decimal
and it must be an integer.

2) The number will be output with leading spaces so that
chaining outputs to create a larger number will work only if

Useful Call Addresses and How to Use Thent: the 16K ROM 7

each number output is between 1000 and 9999, otherwise
spaces will be introduced.

Those of you who have the Spectrum Pocket Book and have read
about this call address, but not used it, will now be calling me an
idiot. In that book, the author points out that the E register
controls the way the number is formatted, but if you have used
the routine you will know that this is not quite the case, as the E
register is ignored. There are two ways round this problem.

Firstly, you could write your own routine to bypass the first
part of the ROM routine, such as:

PUSH DE

LD D,(HL)
INC HL

LD E,(HL)
PUSH HL

EX DE,HL
LD E,20H
P 1A30H

Note: The last instruction must be a jump (JP) and the routine you
have written must be called, otherwise the stack will be mixed up
as the return address is stored on the stack and the routine POPs
from the stack the PUSHes you have made. You will see that the E
register is loaded in your routine and as this is a duplicate of the
start of the routine on ROM you can now see why the Spectrum
Pocket Book is wrong. Now you can change the LD E, instruction
in this routine to be either 48 decimal, in which case leading 0s
are printed, or 255 when anything not significant is not printed.

“But wait a minute,” you will be saying, “now I can see why
the byte order has to be changed.” Quite correct, if you reverse
the order of loading the DE register pair or even load HL directly
the number does not have to be reversed, so it is well worth while
rewriting this short piece of code for incorporation into your own
program as a subroutine for outputting numbers.

There is one other part to this routine in the ROM worth
considering at this point and that is the part starting at 1A1Bh.
This simply takes the number in the BC register pair and outputs
that with no leading 0s or spaces; much more useful in many
cases.

8 The Spectrum Operating Systen

With a little thought, these routines now give you the possib-
ility of outputting any size of number from your program. It is
probably easier, however, to use the routines which take a value
from the calculator stack (for details see Chapter 8).

Getting a Character from the Keyboard

The RST 56 (38h) instruction is used by the Spectrum to scan the
keyboard and update the FRAMES system variables, and it is
called by the maskable interrupt routine. If all that is required is
to see if a key has been pressed, bit 5 of FLAGS 23611 (5C3Bh) can
be tested; if the bit is set a key has been pressed since it was last
reset. Note that bit 5 needs to be explicitly reset.

The code of the last key pressed can be found from 23560
(5C08h) LAST K, detailed in Chapter 4. This is often sufficient for
getting input from the keyboard, but it has disadvantages.

Firstly, it is updated only 50 times a second (60 if the mains
frequency is 60 Hz, as in the USA) so you cannot do a RES 5
instruction immediately followed by a look at the bit since almost
certainly, even if a key is being pressed, the keyboard will not
have been scanned by an interrupt. Otherwise, if the interrupts
are off, the keyboard will never be scanned unless you do so.
Therefore something along the lines of:

LD HL,23411 3FLAGS system Variable

RES 5, (HL)

LD A,FFH

LD (23552),A §23552 is part of the
system variable KSTATE

PUSH HL

RST 56

POP HL

XOR A

BIT 5, (HL)

JP Z,NO KEY

LD A, (23560) ;LAST K system variable

NO KEY (whatever)

will return in the A register the code of the key being pressed at
the label NO KEY or 0 if no key is being pressed. In the above
routine, the LD HL,23611 instruction could have been omitted

Useful Call Addresses and How to Use Them: the 16K ROM 9

and (I'Y + 1) tested instead, as the I'Y register contains the address
of the system variable ERR NR (23610) (3C3Ah) and is used for
addressing the system variables by the ROM. This is why if you
use the 1Y register in your programs you must make sure the
interrupts are off or directed to your own routines, and you must
also reset the IY register to the correct address before using the
ROM or reverting to the normal interrupt mode,

The second problem is that you cannot test for more than one
key being pressed at a time. This is because if a combination of
keys whichis not a valid character is being pressed the Spectrum
will ignore them. To overcome this you will need to write your
own keyboard-scanning routine. Firstly, if you only want to find
outifakey is being pressed without worrying about which key or
how many keys, you could do something like this:

XOR A imake sure that A contains 0

to scan all keys
IN A, (FEH) FFEH is input port from keyboard etc.
LD D,31
AND D iBet rid of the etc.(the 3 high bits)
XOR D ;Flip the remaining bits
JR I,NO_KEY

The keyboard can be scanned properly to discover which keys
are being pressed by loading the A register with the value of the
lines to be scanned prior to the IN A,(FEH) instruction.

Chapter 23 of the Spectrum manual explains how the keyboard
islaid out, and it is also shown in Appendix D in this book, butin
brief this is the layout. The first character in each case is BIT 0 and
the second BIT 4, the hex number is to be loaded into the A
register to set the bit for the line being scanned low:

CAPS SHIFT —V FEH

A—G FDH
Q—T FBH
1—5 F7H
0—6 EFH
P—Y DFH
ENTER —H BFH
SPACE —B 7FH

10 The Spectrum Operating System

So, for example, to read the keyboard for ENTER being pressed
the program would be:

LD A,OBFH
IN A, (OFEH)
AND 1

JR Z,ENTER PRESSED

To see if more than one key is being pressed you could use the
logical operators AND, OR, etc. if they are on the same line or bit
test instructions. See the next CALL 5598 (15DEh) for getting
normal characters easily.

Wait Input: CALL 5598 (15DEh)

This is a most useful routine which allows for input from any
stream that has an input address. Before use the stream from
which the input is required must be opened by the routine at
5633, described earlier. When the Wait Input routine is CALLed,
itin turn calls the input routine of the current channel. On return
from this the carry flag is checked, if set the main CALLing
program is returned to. If the carry flag was not set the 0 flag is
then checked, and if set the process is repeated.

The routine is used by the Spectrum as the control for the
current input subroutine, normally the keyboard input, but if
CURCHL is set to point to a channel with the input address
pointing to your input subroutine this will be used. (How to do
this is explained in Chapter 5.) When used with stream 1 (the
keyboard and lower screen), the routine will wait for a key to be
pressed and return its code in the A register. This use is demon-
strated in the DeBASE program in the Appendix G.

There is, however, a problem when using this to read the
keyboard if the mode is changed. Each time the routine is called,
TV FLAG 23612 (5C3Ch) IY + 2 is checked and if bit 3 is set the
input buffer is copied to the edit area of the screen. This can be
overcome by using the Key Input routine at 4264 (10A8h) directly
and not via the Wait Input routine, as shown in the DeBASE
program in Appendix G at the label INPUT. The program dupli-
cates the Wait Input routine but ensures the MODE CHANGE
flag is always reset. The Wait Input routine is used at the label

Useful Call Addresses and How to Use Them: the 16K ROM 11

INPUTF and if the program is entered (or just this section of it)
the problem can be demonstrated by pressing CAPS SHIFT and
SYMBOL SHIFT to go into EXTENDED MODE. The last line that
was typed in from the keyboard will then appear at the bottom of
the screen.

When using these routines to read from the keyboard the
interrupts must be on and the normal interrupt routine at 56 (38h)
called within the interrupt cycle, otherwise no input will ever be
received.

Screen Copy to Printer: CALL 3756 (EACh)

This routine requires no presetting and a straightforward CALL
will output a screen copy to the ZX printer.

Printing Graphics to Printer: CALL 3789 (ECDh)

This is similar to the screen copy routine in that it uses the printer
buffer and outputs its contents to the printer. It is used by the RST
16 routine which normally treats the buffer as one screen line
(eight pixels high). If you place your graphics into the buffer one
line at a time and then make a CALL to this address, the printer
will copy the buffer to the printer.

Note: The layout is 32 bytes per pixel line with the next pixel line
following immediately and not as the screen. The buffer is also
cleared to Os after a CALL.

Clearing the Printer Buffer: CALL 3807 (EDFh)

This simply clears the buffer to Os.

Using the Beep: CALL 949 (3B5h)

The DE register pair holds the length of the output and the HL
register pair the frequency. 0 is high for frequency and FFFFh is
low. The problem with this routine is that the duration is

12 The Spectrum Operating System

frequency-dependent, hence if you halve the frequency you
double the duration for a given value in DE. The actual figures are

calculated as follows:

HL = (437 500/frequency) — 30.125
DE = duration* frequency
(duration should be in seconds)

The reason why the 30.125 is taken away from the HL calculation
is that the routine itself takes 120.5 T states actually to generate
the note and amend its own registers, etc.

Middle C is approximately 261 Hz so the value for HL would be
about 1646 decimal and DE for one second would be about 261
decimal.

Remember that the interrupts from the ULA will occur 50 times
a second (60 times in the USA) and they will corrupt the sound
output if the routine is in the bottom 16K of RAM.

Printing Messages: CALL 3082 (COAh)

On entry the DE register pair must hold the address of the
message table’s start marker, which must have BIT 7 set, and the
A register must hold the entry number in a table of messages,
each with BIT 7 set on the last byte. The first message has entry
number 0.

If you wanted to print the message “ I am "’ you might have a
line in your program such as: MESSAGE DEFM " [am “, but this
would carry on printing after the last space until it came to a byte
with bit 7 set. You should therefore change the program line to
‘MESSAGE DEFB 80H : DEFM “ 1 am” : DEFB “ " + 80H'. The
routine will subtract the 80H and print the last space correctly,
but will know that it has reached the end and return to the calling
routine. So, the whole program might look something like this:

LD A0 j{to print first message in table)
CALL FR_MES

H REST OF PROGRAM GOES HERE

Useful Call Addresses and How to Use Them: the 16K ROM 13

PR_MES LD DE,MESSAGE
CALL 082
RET

MESSAGE DEFD 80
DEFM "ENTRY"
DEFB * "+BOH
DEFM "ENTRY 2"
DEFE " "+80H

This would print to the current stream at the current position the
message <ENTRY >. To print <ENTRY 2 >, the A register would
hold 1. The chevrons are only to show the limits of what will
actually be printed, and will not appear when a message is
printed. This is the routine used by the ROM to expand tokens
and generate error messages when called from another routine at
2898 (B52h). The DeBASE program (see Appendix G) makes
extensive use of this routine.

Expanding Tokens for Output: CALL 2898 (B52h)

Whenever the Spectrum comes across a token code (anything
with bit 7 set) it has to decide what to do with it, as it could either
be a User-Defined Graphic, a block graphic or a word from the
BASIC vocabulary. Normally this is taken care of automatically
when using RST 16 (10h) (which is directed through this routine).
1f you have changed the address for output on a stream (e.g. to
output to your own printer interface), whenever your routine is
being used the A register will hold the code for the token and if
you wish to expand it you will have to do it yourself. If you leave
it as it stands you may get some peculiar results from the printer.
This routine can be used to expand the keywords, but you will
have to deal with the graphics yourself and make sure that no
graphic codes are sent to the routine, otherwise the machine may
lock up.

Note: When expanding, the routine itself makes repeated calls to
the address pointed to by the stream in use and returns only after
all the letters have been output. This means you will most likely
jump to the routine so as to ensure the code in the A register on
the final return is not output. This is shown in the following
typical program for output to a printer interface:

14 The Spectrum Operating System

INIT

START

PRINT

LD
LD

ADD

LD

LD
INC
LD
RET

LD
CcP
JP
CcP
JR

cP
RET

cP
JR

RET

HL, (23631)
BC, 15

HL, BC

BC,START

(HL),C
HL
(HL),B

B,A
165
NC, BS2H

7,CRLF

128
C,PRINT

H

-

CHANS (address of channel
data)

offset for stream 3
(printer)

HL now points to the
location holding the
address to be called with
output on this stream
START = address of the
start of your 0/P routine

stream three 1s now
initialised to send its
output to your routine

save the ASCII code in B
expansion routine in ROM

carriage return & line
feed

anything below 32 1s an
unprintable control code

must be normal character
anything left here is a
graphic, and you must
deal with it as you wish
your O/P routine comes
here

go back for next
character, if there
isn’t one execution will
return to the original
calling program

Useful Call Addresses and How to Use Them: the 16K ROM 15

This program is a very basic one; if you wish to send any printer
control codes, it will not print them. To get round this you will
have to carry out further checks and act accordingly. The first
section only needs to be called once as it permanently alters
where output to stream 3 is sent. The only times it needs re-
initialising are either after a NEW command from the keyboard or
if the output has been changed by another part of the program.

Expanding Block Graphics: CALL 2878 (B3Eh)

If you want to create from the code of a block graphic the block
graphic itself, the routine at 2878 (B3Eh) will do it for you. On
entry the base address of eight spare bytes where you want the
graphic constructed should be in the HL register pair, and the B
register should contain the code of the block graphic. Two CALLSs
need to be made, the second immediately after the first, as each
CALL constructs four bytes of the character. The first byte of your
eight-byte block will be the top of the block graphic and HL will
point to the byte after the last byte of the graphic. The register
pairs altered by this routine are AF, HL and BC; no others are
used by it.

Drawing Circles: CALL 9005 (232Dh)

The routine to draw a circle requires the parameters of the circle to
be on the calculator stack of the Spectrum. Thus the first thing to
do is put the details onto the calculator stack. A routine located at
11560 (2D28h) will do this for us if we put the number we wish to
stack into the A register (see Chapter 8 for fuller details on Use of
the Calculator). All you need to know now is that it resets the IY
register to point to ERR NR and corrupts most of the other
registers so you should save them before calling this routine.
The parameters must be saved onto the calculator stack in the
order X,Y,Z (Z = radius). The circle-drawing routine updates the
system variables COORDS so if you do not want them changed

16 The Spectrum Operating System

vou should save them before drawing your circle and restore
them afterwards. Thus, the routine to draw a circle would look
something like this:

LD HL,(23677) ;COORDS

PUSH HL ;SAVE COORDS

LD AX ;WHERE X = 0 —255

CALL 2D28H ;STACK A ROM ROUTINE

LD AY ;Y0—175

CALL 2D28H

LD AZ ;Z = RADIUS (MAKE SURE THAT

THERE 1S ROOM ON THE SCREEN
OTHERWISE YOU WILL GET AN

ERROR REPORT)
CALL 2D28H
CALL 232DH ;DRAW CIRCLE
ror HL

LD (23677),HL. ;RESTORE COORDS

If you wanted to draw vour circle round the current COORDS
position, you could have placed these onto the calculator stack,
but you would still have to save them to the machine stack if you
want to restore them unaffected.

Drawing a Line: CALL 9146 (23BAh)

The ROM line-drawing routine proper starts at 9399 (24B7h) and
takes its parameters from the calculator stack in the same way as
the circle routine. In this case, however, it is easier to bypass the
part which uses the calculator stack. The routine takes its start
from COORDS so if you want to start from somewhere else you
will have to load COORDS with your start position after first
saving them if required for later restoration. Otherwise they will
point to the end of your line. On entry the DE registers hold the
signs of the DRAW parameters which are held in the BC registers:
—1 (FFh) for negative, +1(01h) for positive. The registers Cand E
hold X, whereas Band D hold Y.

Liseful Call Addresses and How to Use Them: the 16K ROM 17

The machine code equivalent to the BASIC line DRAW 0,175
would look like this:

LD BC,AFO0H ;175,0
LD DE,0101H;+
CALL 24BAH

Or to DRAW -255,0
LD BC,00FFH ;0,255
LD DE.,0IFFH ; +,—

Note that these will draw from the current COORDS, and no

attempt has been made to save them or alter them. After running
the routine they will point to the last point plotted while drawing
the line and an errar will occur if you try to draw off the screen.

Finding the Address of a Pixel: CALL 8874
(22AAh)

To find the address of the byte holding the pixel for a PLOT
command this routine can be called with the BC register pair
holding the X and Y coordinates (Y 0~175 in B and X 0-255 in C)
will return with the HL register pair holding the address and the
A register holding the bit position.

Clearing Part of the Screen: CALL 3652 (E44h)

This routine will clear the number of lines set by the B register
from the bottom of the screen (e.g., if B contained 1 then just the
bottom line would be cleared, or if B contained 10 then the bottom
ten lines would be cleared). The bottom of the screen is always
line 24, not the lowest line of the main screen.

Scrolling Part of the Screen: CALL 3584 (E00h)

To scroll part of the screen, first the B register has to be set to the
number of lines to be scrolled — 1. Then the routine can be called.
The bottom line after each call will be cleared and at least two lines

18 The Spectrum Operating System

must be scrolled. Lines are again counted from the bottom of the
full screen.

Input to Current Channel: CALL 5606 (15E6h)

This routine picks up the address of the current channel from the
system variable CURCHL, finds the address of the input sub-
routine from the channel information area and then calls the
required routine.

Clearing the Calculator Stack and Workspace:
CALL 5823 (16BFh)

This routine can be very useful to ensure that the calculator has
the maximum workspace and that there is nothing inadvertently
left on the calculator stack. It uses only the HL register pair and
will return with the contents of the system variable STKEND in

this.

SAVEing, LOADing and VERIFYing

The Spectrum SAVE and LOAD routines are fairly straight-
forward and very easy to use if both saving and loading are to be
carried out from within the program, if the exact length of the
data is known and if it does not matter if control is retumed to
BASIC in the event of an error or BREAK being pressed. If the
length is not known, or something other than data is to be
handled, things become more complicated.

Normally when loading the Spectrum expects a header to be
received before the main block, and it is this header that tells the
Spectrum how to deal with the main data block which follows. It
is much easier to save and load without the header but, as
mentioned previously, this can only be done if the exact
parameters are known.

The header is 19 bytes long (not 17 as most books will tell you),
but only the 17 middle bytes need to be set up as the routines for
SAVEing and LOADing create the first and last bytes themselves.

Useful Call Addresses und How to Use Them: the 16K ROM 19

Byte 1 is always 00 for a header and the last byte is a parity byte
which is generated within the routine, so there is no need to
worry about it. Byte 2 holds a type number:

0 fora BASIC program 2 forastringarray
1 fora numeric array 3 forablock of code

Bytes 3 to 12 hold the name. Bytes 13 and 14 hold the length of the
main block. Fora BASIC program this would be E LINE— PROG
system variables. Bytes 15 and 16, for a code block, will hold the
start address for loading the block. Bytes 15 and 16 for a BASIC
program, will hold the auto-start line number if applicable or the

start address if not. For an array, byte 16 holds the array name in
the form of:

Bits 0 the name (A = 1to Z = 26)
Bit 5 reset if the array is numeric
Bit 6 set if the array is a string

Bit 7 set

Bytes 17 .?nd 18 hold the length of the program for a BASIC
program (i.e. VARS — PROG system variables). The last byte is

a parity byte, and this is created as the actual SAVEing or
LOADing is being carried out.

The Header
BYTES 1 2 3...12 13 W 15 16 17 18 19
FLAG | TYPE | PROGRAM [DATA |START | PROGRAN
NAME | LENGTH LENGHY | PARITY
Lidl ity i 1 1
1X+ 0 s dd TR 32 3024005 18 17

To save onto tape either a header must be created as above and
saved followed by the main data block, or if the parameters of the
main data block are known, and will still be known when it comes
to be loaded, the data block alone can be saved.

20 The Spectrum Operating System

There are a number of entry points to the SAVE routine which
can be used and each has its own merits and disadvantages. The
first entry point to be considered is perhaps the easiest, but also
the most fraught with problems. It is used by setting the IX
register to point to the start of the header (byte 2 as described in
the header information above) and the HL register pair must be
set to point to the start of the main block to be saved. Once these
registers have been set a CALL can be made to 2416 (0970h) and
SAVEing of both the header and the main block will take place.
The problems are as follows:

1) The message “‘Start tape then press any key” will appear. If
any key except BREAK is pressed all will be well, otherwise
control will be returned to BASIC via the error-handling
routine.

The BREAK key is periodically tested during the SAVE

routine. If pressed, a premature return is made to the BASIC

error-handling routine, which can be embarrassing,.

3) The header is saved in such a form so as to ensure that the
SAVEd material can be loaded back by BASIC. Under some
circumstances, this may be regarded as an advantage not a
problem.

L.

The next entry point can be regarded as the same as the last
with the exception that it does not ask for or wait for a key to be
pressed. This must be accessed via a subroutine in the calling
program because correct operation depends upon correct loading
of the machine stack. First set the IX and HL register pairs as
above, then CALL the following routine from your program:

SAVE PUSH HL
P 2436 (0984H)

The return after SAVEing is complete will be made to the location
following the CALL to SAVE. This is a neat way of SAVEing
several successive blocks complete with headers, as repeated
‘start tape’ messages are avoided.

To SAVE without the possibility of BREAKing into the SAVE
routine to return to BASIC, the normal start must be bypassed,
and the header and data saved separately as blocks. The routine
SA_BYTES located at 1218 (04C2h) is normally called to do any
SAVEing, with the A register holding 00 for a header or FFh for a

Useful Call Addresses and How to Use Them: the 16K ROM 21

data block. The first thing that this routine does is preload the
machine stack with the address of the SAVE/LOAD RETURN
routine. The SAVE/LOAD RETURN routine enables the inter-
rupts then looks to see if BREAK has been pressed. The error-
handling routine is called in with an RST 8 if BREAK has been
pressed, thereby making a return to BASIC. If BREAK has not
been pressed return is to the original RETURN address, put onto
the stack by the calling routine,

If the instructions to place the SAVE/LOAD RETURN routine
are bypassed, the RETURN address on the machine stack will be
that of your calling program, and control will be returned to that
on exit from SAVEing, with the carry flag reset if there has been
an attempt to BREAK into the SAVEing process, or set if not, and
the interrupts will be off, so they must be re-enabled. You will
also have to organise some form of message to make sure that the
tape has been started, perhaps by using the message printing and
Wait Key routines detailed elsewhere in this chapter.

To save a block of code by this method, the IX register must
point to the start of the block, and the DE register must hold the
length. The A register must hold either FFh for a data block or 00
for a header. A direct CALL can then be made to 1222 (04C6h).
Remember that the DE register pair will have to hold 17 (11h) if a
standard header is being saved. Blocks of data can be saved by
this method without a header, but can only be loaded back if the
length is known.

If a return to BASIC is nota worry, or is an advantage, then the
same routine can be used, but from the start, which is at 1218
(04C2h). If BREAK 1is pressed control will then be returned to
BASIC. Again you will have to make sure the tape 1s running.

LOADing and VERIFYing

Data on tape can be loaded into the Spectrum in two forms: either
with a header or without. Where there is a header this can be used
either to provide all the parameters for the loading of the main
data block to follow or, as when loading from BASIC, only the
details which are either unknown, known and definitely correct,
or to ensure that the correct data is being loaded. Where there is
no header, all the details that would have been in the header
section must be known before the data can be loaded.

22 The Spectrum Operating System

It is possible to create a different type of header from that used
by the Spectrum, to define the parameters of the following data,
by SAVEing a fixed length of data as a main data block and
writing one's own decoding routine, which will fumish the
details when the main block is loaded. This is often a good idea as
it prevents the possibility of a block being lost, because you have
forgotten the length or where it was on the tape, and hence cannot
reload it. This will also prevent the code being loaded by an
‘unauthorised’ user, unless he takes the time to write his own
code to examine what you have done and manages to interpret it.
A routine which creates a special header is given in the DeBASE
program in Appendix G.

To load a data block preceded by a normal header the first thing
that must be done is allocate a space of 34 bytes in memory. In the
first 17 bytes of this a ‘"dummy’ header must be created. This
defines details which are required to match, before the following
block is loaded. Once a match of the required details is made any
non-matching information will be checked against the real
header and, assuming that the changes are acceptable, these
details for the LOADing will be taken from the ‘dummy” header.
Should the changes be unacceptable, a BASIC error report will be
generated by an RST 8 instruction. The second 17 bytes will be
filled from the tape with headers for comparison. Only when a
match is made will this area become free for use again.

The dummy header is made up in exactly the same manner as
the header saved on the tape and again, the first and last bytes of
the full 19 are generated internally, so are not included in the
17-byte specifier. The first byte must be the same identifier as the
first byte in the header of the data to be loaded (i.e. the type must
match). This is held in the A register on entry to the LOAD BYTES
subroutine and need only be setif calling this directly. If the types
do not match, a new leader is waited for and the process repeated
until the types do match. The second byte (the first of the 17 that
need to be set up in the dummy header) again must match: 0 for a
BASIC program, 1 foranumericarray, etc. If there is nomatch the
next block will be waited for. The next ten bytes are the name. If
the name is to be disregarded then the first of these bytes must be
FFh, the names will then be taken as matching. The next two
bytes are the length, if this is set at 0 then the length will be taken
from the tape header otherwise the two lengths must match. Fora
block of code, bytes 15 and 16 will be the start address to load to,

Useful Call Addresses and How to Use Them: the 16K ROM 23

whereas for a BASIC array, byte 15 will be ignored and byte 16
will be the name of the array in the same form as when SAVEing.
For a BASIC program, byte 15 will be 0 and byte 16 80h. The last
bytes can be effectively ignored.

Before attempting to use the dummy header, the low byte of
the system variable T ADDR must be set to contain 01 to LOAD or
set to 2 in order to VERIFY.

The HL register pair must contain the address to which the
main block is to be accepted, or 0 if the information in the tape

. header is to be used. For an existing BASIC array, this will be the

start of the array data, following the array name and length bytes
in the variables area of a BASIC program.

Finally the IX register must be set to point to the first byte of the
dummy header. The ROM routine at 1889 (761h) can now be
called to LOAD or VERIFY both the header and main data block
from the tape.

LOADing or VERIFYing without a header can be achieved only
if the full parameters of the block to be accepted are known, when
itis a very simple process.

First the A register is loaded with FFh which signals that amain
block is to be accepted. Next the DE register pair is loaded with
the total length of the block to be accepted. Then the [X register is
set to point to the address to start LOADing or VERIFYing the
main data block. This followed by the carry flag being set,
signalling a LOAD or reset to VERIFY. Finally, the ROM routine
at 1366 (556h) is called to do the actual operation.

The start of this routine preloads the machine stack in the same
way as the SAVEing routine detailed earlier, giving an error
return in the event of BREAK being pressed. It can be bypassed
by CALLing the following short subroutine in your own
program:

LOAD INC D ;RESET 0 FLAG

EX AFA'F

DEC D ;RESTORE D

DI ;THE INTERRUPTS MUST BE
OFF TO ENSURE THAT THE
TIMING IS CONSTANT. THEY
ARE NOT TURNED ON BY THE
ROM ROUTINE BEFORE RETURN

24 The Spectrum Operating System

LD A 0FH
OUT (FEH),A ;SET BORDER AND EAR PORTS
P 562H JJUMP TO MAIN LOAD ROUTINE

The OUT instruction sets the BORDER colour to white with the
three low bits; these can be changed as required to give a
different colour. Bit 5 should be left set as this initialises the EAR
port for indication of anything coming from the tape prior to the
leader.

A tape-loading error can be detected by the carry flag being
reset on return to the calling routine and, as an attempt to BREAK
will result in an immediate return, if the test break routine is
called after checking for errors this can be catered for.

Note: The interrupts will be off on return from loading.

The routine can also be used to read in a header, instead of a
main data block, by loading the A register with 0 prior to calling
it. This can be useful if you wish to create a different type of
header and read it with your own routine. This is demonstrated
in the DeBASE program in Appendix G.

Chapter Three

The 8K Interface ROM

With the addition of the 8K ROM in the Microdrive interface,
Sinclair have opened up the possibility of expansion in the form
of sideways ROM as used in the BBC microcomputer, as well as
an easy route to expansion of the Sinclair BASIC. The first thing
that needs to be understood is the mechanism by which the Z80
CPU can be used to address memory outside its normal direct
addressing range of 64 kilobytes.

The CPU has two sets of information lines — A 1-16 (which it
uses to tell the memory which byte it wishes to use) — called the
address bus, and D 0-7, the data bus, which is used to read and
write to the memory location pointed to on the address bus.
Normally it would be impossible to access outside the 64K range,
50 some form of interception must be made which substitutes a
different bank of memory in the same address range.

This is quite easy to do by choosing a byte of memory, looking
for its address on the address bus, and when a match is made
switching to the alternative memory. Execution will then
continue at the next address as the program counter will move on
to point to the next location as normal, but the data will be fetched
from the new bank of memory.

In the Spectrum this is done by looking at the address bus for
the program counter addressing location 8, which is the error-
handling routine. Since this address is reached only by a restart
(RST 8), the top of the stack will always hold the address of the
instruction following the calling instruction (i.e. the retum
address). This is fetched by the shadow ROM routine, and the
contents of that memory location examined. Values in the range
00 to 1Ah cause a return to the 16K ROM as these are normal error
codes, but numbers between 1Bh and 32h are used as ‘hook
codes’. These call shadow ROM routines and will now be
detailed. To use a hook code use RST 8 followed by DEFB hook
code. All locations relate to the shadow ROM.

26 The Spectrum Operating System

Inputs
Get Key: Hook Code 1Bh, Location 6617 (19D9%h)

This is similar to the GET command in some BASICs (although
the Sinclair BASIC does not have this command). It waits until a
key is pressed and then returns with the code of the key pressed
in the A register. The maskable interrupt should be on as the 16K
ROM routine is used to scan the keyboard.

RS232 Input: Hook Code 1Dh, Location 2945 (B81h)

To use this routine, first the BAUD rate must be set using the
system variable BAUD 23747/8 (5CC3/4h) calculated as 3 500 000/
(26 x baud rate) — 2, 3 500 000 being the clock frequency of the
Spectrum. Next SER_FL 23751 (5CC7h) should be set to 0, and
then the input routine can be called. The A register will hold the
code of the character received and the carry flag will be set. The
routine will wait for only a certain period for a code to be
received. If it has to wait too long, or if the space key is pressed, it
will return, but without the carry flag set.

Network Input: Hook Code 2Fh, Location 6705 (1A31h)

Before use, a network channel must be opened and made current
by the use of the Open Channel routine described later (see
Network Output section). This routine will read a packet from the
network, on entry the IX register should be set to the start of the
network area and IX + 11, IX + 12, and IX + 13&14 must be set to
the correct values for the block to be received (see the details on
the network header in the section on Network Qutput using hook
code 30H). The block number in [X + 13&14 will be incremented
after each block is successfully received.

It would appear that it was intended that the carry flag should
indicate if a packet has been read or, if there was an error, when
the return to the calling routine is made. However, the carry flag
can be corrupted by the resetting of the border colour on exit from
the routine. A return will be made from this routine when a
packet has successfully been received, with the carry flag reset. If

The 8K Interface ROM 27

the time allowed for a packet to be received has elapsed, there is a
checksum error. Alternatively, if BREAK is pressed, the carry flag
would be set.

Because of the problem inherent in this routine, it is easier to
use the 16K ROM routine at 5606 (15E6h). Remember to preserve
the IX register before calling this routine as it would be corrupted
otherwise. The carry flag will be set if the A register does not hold
areceived code.

Outputs
Print to Screen: Hook Code 1Ch, Location 6636 (19ECh)

To use this the character code must be in the A register prior to
calling the routine. This routine is a direct equivalent to the 16K
ROM routines for setting output to stream 2 (main screen) and
RST 16 printing to current stream, which actually uses these 16K
ROM routines. Used in connection with the Get Key routine (see
Inputs section above) you can create a sort of ‘dumb terminal’.
The program to do this would look something like this:

RST 8
DEFB 1BH
RST 8
DEFB 1CH

The first RST 8 will wait for a key to be pressed and return with the
code in the A register, and the second RST 8 will echo the
character to the main screen (or whatever output to stream 2 has
been directed to).

Print to the Printer: Hook Code 1Fh, Location 6652 (19FCh)

This is identical to the print-to-screen routine above except that it
uses stream 3 (normally the printer) instead of stream 2.

RS232 Output: Hook Code 1Eh, Location 3162 (C5Ah)

Again this is used by putting the code to be output in the A
register, but using the RS232 output port on the interface. The

28 The Spectrum Operating System

baud rate is picked up from the system variable BAUD and the
border colour from the system variable IOBORD (see Chapter 4
for the settings of these). No information will be sent unless the
DTR (Data Terminal Ready) line is high.

The main entry point called by the hook code allows any value
of the A register to be output; care therefore needs to be taken to
avoid sending control codes unintentionally. The other useful
entry point is at 3132 (C3Ch) which looks for unprintable ASCII
codes and intercepts them: any codes below 32 (20h) will cause an
immediate return, except for code 13 (0Dh) (carriage return)
which will be output and followed by a line feed code 10 (OAh).
Codes from 128 (80h) are treated according to their type. Graphics
characters will be output as a '?* and tokens will be expanded by a
call to the 16K ROM routine at 3088 (C10h), which requires 165
(A5h) to be subtracted from the code prior to its being called.

Network Output
Open Channel: Hook Code 2Dh, Location 3753 (EA9%h)

Before any data can be sent or received on the network, a network
channel must be opened. This is done by using this call after first
setting D STR1 23766 (5CD6h) and NSTAT 23749 (5CC5h) system
variables to be the destination and sending station numbers,
respectively. A network channel will then be created at the end of
the CHANS area, and everything from the address contained in
the PROG 23635/6 (5C53/4h) system variable to that in the
STKEND 23653/4 (5C65/6h) system variable will be moved up by
276 bytes and the relevant system variables will be reset,
assuming there to be room below RAMTOP 23730/1 (5CB2/3h). If
there is not enough room, an error will be caused.

On return the IX register will point to the start of the new
channel. The newly created channel is temporary and signified as
such by bit 7 of IX + 4 being set. To make it permanent this bit
should be reset, and it can now be used to send by loading
CURCHL 23633/4 (5C51/2h) with the address in the IX register
and using the RST 16 (10h) routine in the 16K ROM to output
data, a byte at a time.

After the final data has been passed to the RST 16 (10h) routine,
the channel should be closed by the use of the hook code 2Eh

The 8K Interface ROM 29

routine (see Close Network Channel below), which will send any
remaining buffer contents and reclaim the buffer area. It will not
close any streams attached to the network channel, and care must
be exercised to ensure that other streams and channels are not
corrupted.

Send Packet: Hook Code 30h, Location 3530 (DB2h)

This CALL allows a ‘packet’ to be sent over the network. Before
use a network channel must be opened, the header and system
variables must be set up, and the data to be sent placed in the
buffer. To open a network channel use hook code 2Dh (see details
above).

On calling this routine, first a ‘scout’ is sent which claims the
network if it is free. Then the header is sent followed by the main
data block. The header is held in the front of the network channel
and is addressed by the IX register which points to the first
location in the channel. Bytes IX + 00 to IX + 10 are set up by the
channel-operating routine and bytes [X+ 11 to IX + 18 are the
header. The header is made up as follows:

IX+11 The station receiving,
IX+12 The station sending
IX + 13 & 14 The block number
IX + 15 1 for the last block otherwise (1
IX+16 The length of the buffer (0-255)
IX+17 Checksum for the data block
IX + 18 Checksum for the header
IX+194&20 USED FORRECEIVING ONLY
IX+19 The position of the last code taken from the buffer
IX+20 The number of bytes available in the buffer

IX + 21 to IX + 275 are the data for sending, up to 255 bytes.

The checksums are created by the routine itself so do not have to
be inserted and IX + 15 is loaded from the A register on entry to
the routine, but all the other details must be set by the user. In
addition to setting the header, the system variables D_STR1
23766 (5CD6h) must be the destination station number and
NTSTAT 23749 (5CC5h) the sending station number, On each call
to this routine the block number will be incremented. The base

30 The Spectrum Operating System

address of the network channel is returned in the IX register by
the channel open routine.

Close Network Channel: Hook Code 2Eh, Location 6692 (1A24h)

[f this routine is called after a send operation, it will transmit any
data remaining in the network buffer, marking it as an end-of-file
black, but after a receive operation it will discard any remaining
data in the buffer. The 270 bytes of the buffer area will then be
reclaimed using the 16K ROM routine at 6632 (19E8h) but the
channel information is left.

Microdrive Output

Open Channel/Open File: Hook Code 22h, Location 6953 (1B28h)

Before data can be sent to a Microdrive, a Microdrive channel and
a map area for the drive selected must be created. Hook code 2Bh
was intended to serve this purpose, but there was an error in the
program, although this hook code can be used to perform the
operation. First set D_STR1 23766/7 (5CD6/7h) to contain the
drive number (1-8), N_STR1 23770/1 (5CD4/5h) the length of the
file name and T_STR1 23772/3 (5CD6/7h) to the start address of
the file name in memory. The H'L' register pair must then be
saved and the hook code can then be called.

The channel will be opened as a read channel if the file name
exists, otherwise it will be opened as a write channel. To make the
channel a permanent one, the data must be incorporated into the
STREAM s information. The following subroutine achieves this:

EXX ;SAVE THE RETURN ADDRESS TO
BASIC

PUSH HL

EXX

LD A.S ;S IS THE STREAM NUMBER FOR THE
CHANNEL

RLA ;DOUBLEIT

The 8K Interface ROM 31
LD HL,5C16H ;BASE ADDRESS OF STREAMS

LD D,0 ;OFFSET FOR S STREAM TQO THE DE

LD E,A ;REGISTER PAIR

ADD HL,DE ;NOW HL = STREAM LOCATION

PUSH HL JSSAVEIT

RST 8 ;CALL HOOK CODE

DEFB 22H ;22 (OPEN CHANNEL/FILE)

PUSH HL ;ON RETURN FROM THIS ROUTINE
HL = STREAM DISPLACEMENT

XOR A ;THE OPEN CHANNEL ROUTINE
LEAVES THE

RST 8 ;MICRODRIVE MOTOR RUNNING

DEFB 21H ;SO IT MUST BE TURNED OFF

POP DE ;DE = STREAM DISPLACEMENT

ror HL :HL = STREAM LOCATION

LD (HL),E ;SET S STREAM TO CORRECT
DISPLACEMENT

INC HL

LD (HL),D

RES 7(IX+4) ;ON RETURN FROM THE HOOK
CODE 221X = START OF CHANNEL
AREA. RESETTING (IX + 4) MAKES

THE CHANNEL PERMANENT

EXX ;RESTORETHE RETURN ADDRESS TO
BASIC

ror HL

EXX

RET ;FINISHED

To write to or read from a Microdrive, the channel created must
be made current by loading the system variable CURCHL 23633/4
(5C51/2h) with the base address, returned in the IX register after
opening the channel. The cartridge can then be written to with
the 16K ROM RST 16 (10h) routine, or read from with the 16K
routine at 5606 (15E6h), which returns with each character in the
A register. If it is required to SAVE, VERIFY, MERGE, or LOAD
with the Microdrive as opposed to using the cartridge as a file,
this is explained later in this chapter.

32 The Spectrum Operating System

Write Record: Hook Code 26h, Location 4607 (11FFh)

This hook code will write the contents of the Microdrive buffer to
the next free sector on the Microdrive cartridge. Before calling the
routine, the buffer must contain the information to be saved, the
IX register must point to the start of the Microdrive channel.
[X + 11 must contain the length of the data, IX + 13 the sector
number (starting at 0 for the first sector of a record and auto-
matically incremented each time a record is either sent or
received), IX + 14 to IX + 23 the record name and IX + 25 the drive
to be used. Locations [X + 82 to IX + 593 are available for the data
to be placed for sending.

Write Sector: Hook Code 2Ah, Location 6801 (1A91h)

This performs the same action as above but looks for a sectorof a
record with the sector number in IX+ 13 and, if it exists,
overwrites it with the information currently in the buffer. If the
sector does not exist, a ‘FILE NOT FOUND’ error will be
generated. No check is made as to whether the sector is free or
not, so care must be exercised to ensure that nothing that you
want is already on the sector.

Close Microdrive Channel: Hook Code 23h, Location 4777
(12A9h)

This hook code performs the same action as the Close Network
Channel (hook code 2Eh) but for the Microdrive and on entry the
IX register must hold the base address of the file. If the channel
was used for sending, any information left in the buffer will be
sent as an ‘end of file’ message and the buffer will then be
reclaimed, or if it was a read channel anything left in the buffer
will be lost as the channel is reclaimed.

Erase File: Hook Code 24h, Location 7534 (1D6Eh)

This will erase a Microdrive file whose name is written in
memory and pointed to by T_STR1 with name length N_STR1 on
Microdrive D_STR1.

The 8K Interface ROM 33
Microdrive Input

All the following ‘read’ routines return with the Microdrive motor still
running and the maskable imterrupt off.

Read Print Record: Hook Code 27h, Location 6679 (1A17h)

This will read a record from a print file, the record number of
which is held in IX + 13. The IX register must point to the start of
the Microdrive channel, [X 4 25 must hold the drive number and
IX + 14 to IX + 23 the record name. Assuming the record sector to
be present, it will be read into the buffer otherwise an error will
be caused.

Read Next Print Record: Hook Code 25h, Location 6665 (1A09h)

This is as above but, when used after the previous Hook Code, it
will automatically read in the next record of a print file, if there is
one. Otherwise an error will be caused.

Read Record Sector: Hook Code 28h, Location 6731 (1A4Bh)

This will read a record from a file. The IX register must point to the
start of the Microdrive channel, IX + 13 should be set, the record
number (within the file) IX + 25 must hold the drive number and
IX + 14 to IX + 23 the file name. Assuming the record sector to be
present, it will be read into the buffer, If it is a print file, a return
will be made with the carry flag reset and the record in the
Microdrive buffer area. Should the record be other than a print
record the carry flag will be set and the record cleared from the
buffer.

Read Next Record Sector: Hook Code 29h, Location 6790 (1A86h)

This is as above but for the next sector of a file. [t is similar to
Hook Code 25h.

34 The Spectrum Operating System
Motor on/Motors off: Hook Code 21h, Location 6135 (17F7h)

The A register should be loaded either with 0, to tum off any
motors that are running, or with the drive number whose motor
is to be started. If the drive is not present, an error will be caused.
If the drive is present, the motor will be started and a return
made, with the interrupts off.

Reclaim Microdrive Channel: Hook Code 2Ch, Location 4292
(10C4h)

The Microdrive channel area currently pointed to by the IX
register will be reclaimed. Any streams currently using the
channel will be closed and the Microdrive map area is also
reclaimed if not in use from another channel. All memory above
the reclaimed channel up to RAMTOP is moved down by the 627
bytes freed by the reclamation.

Keyscan: Hook Code 20h, Location 6657 (1A01h)

This returns with the carry flag set if any key 1s being pressed.

Insert Variables: Hook Code 31h, Location 6568 (19A8h)

This inserts the extra system variables needed for the Interface 1.
In fact, it is a single RET instruction as the variables are created
automatically when the first 16K error occurs.

ROM 2: Hook Code 32h, Location 6564 (19A4h)

Perhaps this is the most useful of all the hook codes as it allows
the 8K ROM to be paged in at will; therefore any routine can be
called. To use it the location of the routine you want accessed
must be placed in the system variable HD_11, the hook code can
then be used. Unfortunately, the only register that can be passed
directly by this hook code is the A register, but this is no real
problem.

The 8K Interface ROM 33

When the hook code is used, the address in HD_11 23789/90
(5CED/Eh) is put on the machine stack followed by the retum
address for the 8K ROM to 16K ROM switchover (1792 (700h)). If
you make the address in HD_11 point back to your own program,
you can then 'POP’ the two return addresses off the stack and
have the 8K ROM paged in, with your program in control. Any
registers can now be used freely with 8K routines. To return to the
16K ROM all that you need to do is to CALL 1792 (700h), and the
8K ROM will be switched out.

Note: Many routines look at the syntax/run flag in FLAGS 23611
(5C3Bh) 1Y + 1, and cause a return to the BASIC interpreter in
syntax time, Some of the Microdrive routines also return to
BASIC via the address in ERR SP 23613/4 (5C3D/Eh) if they are
completed successfully, or via an 8K ROM error if they have
failed. The 16K error can be diverted to point back to the calling
routine by altering the address in ERR SP so that it points to the
return address of your routine on the machine stack. This is
demonstrated in the DeBASE program in Appendix G, in the
Microdrive SAVE/LOAD routines.

The following routines are called by the RST 8 DEFB 32h hook
code after putting the location into HD_11.

Catalogue Cartridge: Hook Code 32h, Location 7256 (1C58h)

Before use, save H'L’' registers. D_STR1 must contain the
Microdrive number and S_STR1 the stream number for the
catalogue to be printed to. The call can then be made and after the
catalogue has been done H'L' registers are restored.

Format Cartridge: Hook Code 32h, Location 7022 (1B6EH)

Once again, before use the H'L' registers must be saved. N_STR1
must hold the length of the name to be given to the cartridge, and
T_STR1 the address of the first character of the name when the
routine is CALLed. The H'L’ registers should be restored
afterwards for a successful return to BASIC.

e

36 The Spectrum Operating System

Run: Hook Code 32h, Location 2709 (A95H)

This is the simplest of the routines. It loads a program from
Microdrive 1 called ‘Run’. All that is necessary is a jump to the
routine in ROM. This can be made after the 16K ROM has been
paged out in the way described in the Hook Code 32h section
above.

The following routines for SAVEing, LOADing, VERIFYing and
MERGing all require a header to be set up before they can be
used. The details of the make-up of a Microdrive channel are
given in the Microdrive and Interface 1 manual (see pages 47 and
48) so I shall not repeat this detail here. [shall, however, explain
how a header is made so that the Microdrive can be used from
machine code.

Making a Microdrive Header

The Microdrive header is made up in much the same way as the
tape header described in Chapter 2, but it is not necessary actually
to set up the header in the Microdrive channel, as there is a
routine in the ROM which will do this for you. All that has to be
done is to set the system variables correctly. The subroutine to do
this within your program would look something like this:

LD HL,23782 ;HD_00

LD (HL) , T iT=0 for a program: 1 for a
numeric array: 2 for a string
array: I for code

INC HL

LD DE,LEN ilength of the main data block
LD (HL) ,E

INC HL

LD (HL),D

INC HL

LD DE,START jstart of data to be saved or dest
LD (HL) ,E jwhen loading. 0 if information on
INC HL scartridge is to be used

LD (HL),D

the rest of this need only be carried out for
BASIC programs and arrays. Otherwise jump to GO_ON

The 8K [nterface ROM 37

INC HL

LD DE,DATA sprogram length or variable name as
LD (HL) ,E sdescribed in chapter 2 in saveing
INC HL jand loading

LD (HL),D

INC HL

LD DE,AUTO jauto start line number, if any
LD (HL),E jotherwise a number over 10000
INC HL
LD (HL),D
GO_ON LD HL,2376% ;imake it a microdrive operation
LD (HL),"M" it must be a captial letter
SET BIT,(IY+124);bit 4 to load, bit S to save
bit & to merge, bit 7 to verify
LD HL,NLEN slength of file name (max 1O
letters characters or tokens)
LD (23770),HLithis 15 NSTR1
LD HL,NAME ;start address of file name
LD (23772) ,HL: T_STR1
LD HL,DRIVE ;the drive number (1 - 8)
LD (237466) ,HL;D_STRI
BIT 5,(I¥+124);is it a save operation
JF NI,1E7FH ;if so go into save routine in ROM
JP 08AF ;else ROM load/verify/merge routine
NAME DEFS 10 ;10 spare bytes for file name

The subroutine above must be CALLed from the main
program. The RETumn after the operation has been pertormed is
from the ROM routine to your calling routine, via the address on
the machine stack pointed to by ERR SP (see the DeBASE
program in Appendix G for details of how to ensure areturn). The
16K ROM will be paged in by the SAVE or LOAD routine.

Any errors in the setting up of the header will cause either a
BASIC error or a machine crash, so great care must be taken. As
with most 8K ROM routines, it is important to save the H'L'
registers before using the routines and restore them afterwards.

When a machine code program using ROM routines is being
written, it is very important to remember which ROM will be
switched in at any given time. Not only are all the routines in
ROM changed, but all the ReSTarts in the 8K ROM are different
from those in the 16K ROM.

It is possible to have a free exchange between the two ROMs by
using Hook Code 32h from the 16K ROM and RST 10h from the 8K
ROM. The use of Hook Code 32h has already been explained, but

38 The Spectrum Operating System

details of how to use RST 10h and the other ReSTarts (RST) in the
8K ROM are given below:

RSTO POP HL ;REMOVES THE RETURN
ADDRESS FROM THE
MACHINE STACK
LD (IY+124),00 ;THISISFLAGS3
1 700H ;700H IS THE RETURN TO
THE 16K ROM

The address at the top of the stack at this stage should be the
return to the routine that originally called the 8K ROM.

RST8 LD HL,(CH_ADD);THIS HAS NO EFFECT
WHEN CALLED FROM 16K

ror HL ;THE ADDRESS OF THE
ERROR CODE

PUSH HL ;SAVEIT AGAIN

P 009AH ;THIS WILL CHECK WHAT IS
BEING EXECUTED AND

EITHER RETURN TO A 16K
ERROR, EXECUTE A HOOK
CODE OR ACCESS A
CHANNEL.

This is of no practical use when the 8K ROM is switched in.

The RST 16 (10h) in the 8K ROM CALLs a 16K ROM routine, the
address of which is held in a DEFined word (DEFW) after
ReSTart. After the 16K routine has been executed control is
returned to the address after the DEFW in the CALLing routine.

RST 16 LD (5CBAH),HL ;SAVEHL FOR
RESTORATION AFTER
RETURN
(10H) POP HL ;COLLECT IN HL THE

ADDRESS OF THE DEFW

PUSH DE ;SAVE DE ON MACHINE
STACK

IR 0081H

The 8K Interface ROM 39

0081H LD E,(HL) ;PUT THE ADDRESS TO BE

CALLED IN THE

INC HL ;16K ROM INTO DE

LD D,(HL)

INC HL ;HL NOW HOLDS THE
RETURN ADDRESS AFTER
THE DEFW

EX (SP)HL MAKE THIS THE NEW
RETURN ADDRESS

EX DE,HL

LD HL.O ;THIS WILL LET THE RST 8
ROUTINE KNOW

PUSH HL JTIS ARETURN FROM A
SKTO A 16K CALL

LD HL.B ;THE ERROR RESTART

PUSH HL :ONTO THE STACK FOR A
LATER RETURN

LDy ' HL,5CBYH ;THE START OF THE
SUBROUTINE

PUSH HL ;ONTO THE STACK FOR A
RETURN

P 0700H ;A RET INSTRUCTION
THAT SWITCHES IN THE
16K ROM

0700H RET ;PAGE IN THE 16K ROM

AND RETURN

I have given the full listing for this as it is an interesting method
of transferring control.

When the RETurn at 0700h is made, switching in the 16K ROM,
the address collected from the stack is 5CB9h. This address
contains 21h, the instruction LD HL,NN. As can be seen above
the NN was the value in HL when the ReSTart was made. The
next location — 5CBCh — contains CDh, the instruction CALL
NN. Again this address was loaded above, from the DEFW after
the RST 16 (10h). The return from the 16K routine will be to 5CBFh
which contains 22h, the instruction LD (NN),HL. The NN in this
case is 5CBAh, so the new value in the HL register is saved where
the original value was. Finally there is the instruction RET. This
will be a return to the address on the top of the machine stack,

40 The Spectrum Operating Systent

now 8 (i.e. the error ReSTart). This time when the address for the
DEFBs is ‘POPped’ off the stack it will be 0. This will tell the ROM
(8K now) that the HL register has to be loaded from (5CBAh), and
after this there is yet another RETurn, this time to the address
after the two DEFBs after the RST 16 (10h), seemingly so long ago.

The following ReSTart can be used to generate the shadow
ROM error messages in the same way as the RST 8 in the main
ROM:

RST 24 BIT 7.0Y+1) ;THIS IS FLAGS
(18H) RET ;THE ZERO FLAG WILL BE
SET IF A BASIC LINE IS
BEING CHECKED FOR

SYNTAX
RST 32 RST 24 ;CHECK IF SYNTAX OR
PROGRAM RUN
(20H) R Z,0068H ;THIS WILL RESET THE

STACK POINTER TO THE
ADDRESS IN ERR_SP SET
X_PTRTO CH_ADD AND
RETURN TO THE MAIN
ROM LINE INPUT
ROUTINE VIA THE CLEAR
CALCULATOR ROUTINE,
AND INDICATE THE
POSITION OF THE
ERROR.

IR 003AH ;THIS WILL GENERATE AN
ERROR REPORT. THE
SHADOW ROM ERROR
CODEWILL BE
COLLECTED FROM THE
BYTE AFTER THE
RESTART.

This ReSTart can be used to generate a 16K error by loading
ERR_NR with the error code before calling it.

The 8K Interface ROM 41

;THISIS TV FLAG
(28H) JR 0040H JTHIS WILL CHECK IF THE
ERROR OCCURRED IN
SYNTAX OR RUN TIME. IF
IN RUN TIME IT WILL
RETURN TO THE 16K
ERROR ROUTINE
OTHERWISE IT WILL
JUMP TO 0068H, AS
EXPLAINED ABOVE.
;CHECKS TO SEE IF THE
INTERFACE
(30H) VARIABLES ARE PRESENT
AND IF NOT INSERTS
THEM.
RST 56 EI ;THIS IS THE NORMAL
MASKABLE INTERRUPT
(38H) WHICH WOULD SCAN
THE KEYBOARD IF THE
16K ROM WAS PAGED IN.
RET NOTE THAT THE
KEYBOARD WILL NOT BE
SCANNED WITH THIS.

RST 48 JP 01F7H

The non-maskable interrupt routine at 102 (66h) consists of the
single instruction RETN.

More 8K ROM routines are discussed in Chapter 7 but there are
few routines that are of use for other purposes. Their use and
locations have already been detailed in the hook codes section.

Chapter Four

The System Variables

The BASIC interpreter requires some means of keeping track of
where information is stored, and what it is supposed to be doing,
since it is located in ROM (Read-Only Memory) and has to use
RAM (Random Access Memory) to store this information. Since
the ROM is unalterable, the addresses of the system variables
have to be predefined in such a way that they can be accessed on a
regular basis. In the Spectrum, this is achieved both by having
their locations fixed in particular area of memory and also by
indexing them with the IY register, which always points to
5C3Ah (ERR NR).

16K System Variables
KSTATE: Locations 23552-23559 (5C00h-5C07h)

These locations are used in reading the keyboard. They can be
divided into two sets of four, and each set is treated the same as
the other. Which set is actually used depends upon the state of the
other set.

The CAPS SHIFT value of a key being pressed is stored in the
first location of each set or, if no key is pressed, 255 (FFh) which
flags the set as free for use. The count down to a set being free is
stored in the second byte, initially set to 5, free when 0. The
repeat delay is in the third byte, initially loaded from REPPER.
The ASCII code of the key pressed when a set was in use is in the
last location of that set until the countdown to the set being free
reaches 0. In order to try to make some sense of this I will explain
the routine that uses these variables.

If a key is pressed, the scanning subroutine looks to see
whether the first set is empty. If it is it will then use this set,
otherwise it will look at the second set. When a set is free then the

The System Variables 43

CAPS SHIFT code of the key being pressed will be saved in the
first location. The second location is set to 5 (the countdown to
free, which also serves to debounce the keyboard), the third
location is loaded with the repeat delay REPDEL. The ASCII code
of the key pressed is decoded, saved in the last location and
copied into LAST K, bit 5 of FLAGS is set to signal a new key
press and a return to the calling routine made. When neither set is
free then a counter in the second byte of each set is decremented
and the calling routine is returned to

Once one of the counters reaches 0, the code of the key being
pressed (if any) is saved and a comparison is made between the
code of the keys in the two sets. If they match a key is being held
down and then the routine allows for repeating of the key. This is
not the key-debouncing routine, but the repeating key routine.
The repeat delay being held in the third byte and initially loaded
from the system variable REPDEL.

Once the delay for the first repeat is over (the routine must be
called the number of times set by the delay counter), if the match
has been continuous then the third byte is loaded from the
system variable REPPER, the code is again passed to the system
variable LAST K, bit 5 of FLAGS set and a return to the calling
routine made. On subsequent calls to the keyboard-scanning
routine, the whole process is repeated but with the shorter delay
from REPPER until the codes no longer match. If the keys do not
match then the treatment is the same as for a free set.

The net result of all this is that there is a two-key rollover,
which allows fora second key being pressed before the delay fora
repeat on the first set has elapsed, avoiding the loss of the second
key if it is not held down long enough for the original set to
become free.

LAST K: Location 23560 1Y — 50 (5C08h)
This contains the code of the last key pressed.

REPDEL: Location 23561 'Y — 49 (5C09h)

The number of times the kevboard-scanning routine must be
called before a key repeats is contained at this location.

s

44 The Spectrum QOperating System
REPPER: Location 23562 1Y — 48 (5C0Ah)

This contains the number of times the keyboard scan must be
called before a repeating key repeats.

DEFADD: Locations 23563/4 1Y — 47 (5COB/Ch)

These locations hold either the address of a user-defined function
being evaluated or 0.

K DATA: Location 23565 1Y - 45 (5C0Dh)

This is used as temporary storage of the colour information when
colour controls are being entered (i.e. the second byte, the colour
number, after the E shift).

TVDATA: Location 23566/7 IY — 44 (5COE/Fh)

These are as above but for output and used with AT and TAB
values as well, hence the two bytes.

STRMS: Locations 23568-23605 1Y — 42 (5C10h-5C35h)

These contain the addresses of the channels attached to streams.
Initially streams —3 to 3 are in the first 14 bytes, but the infor-
mation for extra streams (up to a total of 19) is added when they
are opened, in the relevant place.

CHARS: Locations 23606/7 1Y — 4 (5C36/7h)

These contain the address of the theoretical start of the character
set, each character comprising of eight bytes; in fact, 256 less than
the actual start as all characters are addressed relative to this
position by multiplying their ASCII code by eight and ASCII1 0-31
are not printable and thus are handled differently, not from this
table.

The System Variables 45

The last valid ASCII code is 127 (7Fh), but the Spectrum uses
the remaining 128 values of the full eight-bit range for tokens.
These are dealt with separately and do not comprise part of this
character set.

RASP: Location 23608 [Y — 2 (5C38h)

This contains the length of the buzz generated when a basic line
exceeds 22 lines or memory has run out.

PIP: Location 23609 1Y — 1 (5C39h)

This contains the duration of the beep wheneverakey is pressed.

ERR NR: Location 23610 [Y + 0 (5C3Ah)

This contains one less than the report code that will be generated
on an error. It can be used to generate your own reports or use the
resident reports for your own purposes (see Chapter 2 for details).

FLAGS: Location 23611 1Y + 1 (5C3Bh)

Bit 0 is set to suppress a leading space when a token is being
printed if a space immediately precedes it, but is reset ifa space is
to be printed.

Bit 1 is set when stream 3 (normally the printer) is to be used for
output from the RST 16 routine, but is reset for stream 2 (normally
the main screen).

Bit 2 is set when printing is to be using L mode and is reset for K
mode.

Bit 3 is set to signal L mode, normally when getting an input, but
is reset to signal K mode.

Bit 5 is set if anew key has been pressed since it was last reset (see

e

46 The Spectrum Operating System

details on Scanning the Keyboard in Chapter 2 and for KSTATE
system variable).

Bit 6 is used to indicate if an expression is numeric or a string,
being set for numeric and reset for a string, and is used by the
BASIC interpreter.

Bit 7 is reset when the BASIC interpreter is checking a line for
syntax on entry and is set when the program is being run

TV FLAG: Location 23612 [Y + 2 (5C3Ch)

Bit 0 is set if handling the lower screen and is reset for the main
screen,

Bit 3 signals that the current mode may have changed and needs
to be rechecked.

Bit 4 is set when an automatic listing is being printed, otherwise
it is reset.

Bit 5 signals that the lower screen needs to be cleared (e.g. when a
report is about to be printed).

ERR SP: Locations 23613/4 1Y + 3 (5C3D/Eh)

These locations hold the address on the machine stack of the
RETurn to be used in the event of an error in a BASIC command
being executed. It is picked up by an error ReSTart and frequently
changed by BASIC. It can be changed from machine code to make
an error go to your own routine, as demonstrated in the DeBASE
program in Appendix G, in the Microdrive SAVE/LOAD section.
If an error occurs this must be reset and the error cancelled by
making ERR NR hold 255 (FFh). Note that 0 OK is counted as an
error.

LIST SP: Locations 23615/6 IY + 5 (5C3F/40h)

LIST SP is used to save the address of the stack pointer so that it

The System Variables 47

can be restored after automatic listing is completed. This is
necessary because the listing can be terminated at different
places, with different amounts on the machine stack (e.g., by a‘n’
in response to a ‘Scroll?’.

MODE: Location 23617 IY + 7 (5C41h)

This determines the cursor used in an input, but it will only affect
the first key press except when changed to force the graphics
mode. However, it can be useful to get different cursors for input
(e.g., if you POKE MODE with 32 you will get a flashing graphics
input). Experimentation is the best way to make use of this
facility as the system will not crash.

NEWPPC: Locations 23618/9 1Y + 8 (5C42/3h)

This contains the line number of the next statement to be inter-
preted.

NSPPC: Location 23620 IY + 10 (5C44h)
This is the number of the statement in the line to be evaluated

next. Poking first the line number then the statement number
forces a jump in execution to that place.

PPC: Locations 23621/2 1Y + 11 (5C45/6h)
This contains the line number of the statement currently being

evaluated. Also it is used by an auto-run program loaded from the
header.

SUBPPC: Location 23623 1Y + 13 (5C47h)

This contains the statement number currently being evaluated.

48 The Spectrunt Operating System
BORDCR: Location 23624 [Y + 14 (5C48h)
This contains the value for the border colour #8 plus the attri-

butes for the lower screen. Bits 7 and 6 can be used to make the
lower screen flash or bright

E PPC: Locations 23625/6 IY + 15 (5C49/Ah)
E PPC contains the number of the current line (i.e. the line that

will be displayed with the cursor and brought into the editing
area addressed by E LINE by an EDIT command).

VARS: Locations 23627/8 IY + 17 (5C4B/Ch)
This contains the address of the start of the variables area. When

it is used in conjunction with E LINE, the total length of a BASIC
program's variables can be calculated.

DEST: Locations 23629/30 1Y + 19 (5C4D/Eh)
This contains the address of the first letter of the name of the
variable currently in use. If a new variable is to be used, it is the

80h end marker immediately before the address in E LINE where
the start of a new variable is being placed.

CHANS: Locations 23631/2 1Y + 21 (5C4F/50h)

This contains the address of the start of the channel information
area in which the details for open channels are kept.

CURCHL: Locations 23633/4 1Y + 23 (5C51/2h)

These locations hold the address of the start of information in the
channel information area for the channel currently in use.

The System Variables 49
PROG: Locations 23635/6 IY + 25 (5C53/4h)
This is the address of the start of the BASIC program area, which

will be the byte following the channel information area and any
input/output buffers being used by Interface 1.

NXTLIN: Locations 23637/8 1Y + 27 (5C55/6h)

This is the address of the start of the next BASIC line in a program.

DATADD: Locations 23639/40 1Y + 29 (5C57/8h)

This is the address of the terminator of the last data item used, or
the start of the line given by a RESTORE command, or the first
afteritif it does not exist. This keeps track of which data item is to
be used next and if there are no more data after this pointer it will
cause an ‘out of data’ error.

E LINE: Locations 23641/2 IY + 31 (5C59/Ah)

E LINE is the address of the start of the editing area, which will be
the start of any line in the edit area.

K CUR: Locations 23643/4 1Y + 33 (5C5B/Ch)

This is the address of the cursor in the current line. It is used to
edit or to create a new line in the edit area.

CH ADD: Locations 23645/6 [Y + 35 (5C5D/Eh)

This is the address of the next character to be interpreted by the

BASIC interpreter (n.b., any numerics are marked by a CHRS 14
and these are skipped).

X PTR: Locations 23647/8 IY + 37 (5C5F/60h)

These locations hold the address at which BASIC syntax has

50 The Spectrum Operating System

failed when entering a new BASIC program line, marked by a ‘"
Itis also used to store information temporarily by the interpreter.

WORKSP: Locations 23649/50 1Y + 39 (5C61/2h)

This is the address of temporary workspace, the first byte of free
space created by a CALL 5717 (1655h) Make be Space routine (see
Chapter 5 for details, given in the section on Standard Streams).

STKBOT: Locations 23651/2 1Y + 41 (5C63/4h)

These locations are the address of the bottom (start) of the calcu-
lator stack. This is explained fully in chapter 8.

STKEND: Locations 23653/4 IY + 43 (5C65/6h)

This is the address of the top (end) of the calculator stack. Again it
1s fully explained in Chapter 8.

BREG: Location 23655 1Y + 45 (5C67h)

This is the B register for use by the calculator (see Chapter 8 for
further details).

MEM: Locations 23656/7 1Y + 46 (5C68/9h)

MEM provides the address of the calculator memory area (see
Chapter 8 for further details).

FLAGS2: Location 23658 IY + 48 (5C6Ah)

Bit 0 is set if it is unnecessary for the main screen to be cleared
when a line is being input into the editing area.

The System Variables 51
Bit 1 is set if the printer butfer has been used by a 16K ROM
routine and is reset after it is cleared by the Clearing Printer
Buffer routine described in Chapter 2.
Bit 2 set signals that the screen is clear.

Bit 3 set signals that CAPS LOCK is on.

Bit 4 set signals that K channel is in use.

DF SZ: Location 23659 1Y + 49 (5C6Bh)

This is the number of lines allocated to the lower screen. It can
cause the BASIC system to crash if set to less than three since one
spare line is always left between the main screen and any reports.
If there is nowhere for the reports to be printed, the interpreter
hangs up.

S TOP: Locations 23660/1 I'Y + 50 (5C6C/Dh)

This address contains the line number of the first program line ta
be listed by a BASIC LIST command.

OLDPPC: Locations 23662/3 1Y + 52 (5C63/Fh)

This address holds the line number containing the statement

after that at which a BREAK or STOP was executed (i.e. the line
that will be interpreted aiter a CONTINUE command).

OSPCC: Location 23664 1Y + 54 (5C70h)

This is as above but provides the statement number within the
line,

FLAGX: Location 23665 IY + 55 (5C71h)

The FLAGSX system variable is a rough equivalent of the FLAGS

52 The Spectrum Operating System

system variable (location 23611 (5C3Bh)) and is used in its place in
the interpreter when INPUT commands are being executed.

Bit 11is set if the BASIC interpreter is handling a new variable.

Bit 5 is set when the 16K ROM is in input mode and is reset when
in editing mode.

Bit 6 is set if a string is being handled.

Bit 7 is set if the BASIC interpreter is dealing with an INPUT LINE
command.

STRLEN: Locations 23666/7 1Y + 56 (5C72/3h)

These locations hold either the length of an existing string
variable that is currently being used or, for a numeric or new
string variable, the low byte will hold the letter of the variable (in
the form described in the section on SAVEing and LOADing, see
Chapter 2).

T ADDR: Locations 23668/9 1Y -+ 58 (5C74/5h)

This normally holds the address of the next item in the syntax
tables located from 6728 (1A48h) in the main ROM. However, it is
also used for other purposes by some routines.

SEED: Locations 23670/1 1Y + 60 (5C76/7h)

This is the seed for arandom number. It is taken from the low two
bytes of FRAMES if a RANDOMIZE command has no number,
otherwise it is taken from the RANDOMIZE number.

FRAMES: Locations 23672-23674 Y + 62 (5C78h-5C7Ah)

Al this address, a three-byte frames counter is held. It is set to 0
when the Spectrum is first switched on and is incremented each

The Svstem Varmbles 53

time the normal interrupt routine is called. The least significant
byte is in 23672 (5C78h).

UDG: Locations 23675/6 1Y + 65 (5C7B/Ch)

This is the address of the first User-Defined Graphic,

COORDS: Locations 23677/8 1Y + 67 (5C7D/Eh)

COORDS provides the X and Y coordinates of the last point
plotted. This can be used to reset the start position for DRAWing
or CIRCLE without having to PLOT the start: X (across) is in
23677 (5C7Dh).

P POSN: Location 23679 1Y + 69 (5C7Fh)

This contains the column number of the next position to be used
in the printer buffer (as S POSN: Locations 23688/9 1Y + 78 (5C88/
9h) below but for printer).

PR CC; Location 23680 IY + 70 (5C80h)

This is the low byte of the printer buffer current address. In effect,
this is identical to DF CC: Locations 23684/5 1Y + 48 (5C84/5h)
and the printer buffer can be moved by changing the so-called
unused byte below, which is in fact the high byte of the PR CC
system variable. Unfortunately this is reset at the end of each
print line to point to the original address; care therefore needs to
be exercised if it has been moved.

NOT USED: Location 23681 I'Y + 71 (5C81h)
In effect, this is not used if the printer buffer is in the normal place

(see PR CC: Location 23680 1Y + 70 (5C80h)) but not free for use,
except as above.

54 The Spectrum Operating System

ECHO E: Locations 23682/3 1Y + 72 (5C82/4h)

As S5 POSN: Locations 23688/9 1Y + 78 (5C88/9h) this is the
column and line number for the next print position, but for the
input buffer. It is used when entering a BASIC line.

DF CC: Location 23684/5 IY + 74 (5C84/5h)

This contains the address of the top pixel line of the next print
position. DF CC can be used to change the position of normal
printed characters, by altering this to the next line down, but it
can cause unexpected effects since the RST 16 (10h) routine
simply adds 256 (100h) for each subsequent pixel line of a printed
item. The Spectrum screen map in the appendix can be used to
see the effect when moved down by more than one pixel line.

DFCCL: Locations 23686/7 IY + 76 (5C86/7h)

This is the lower screen version of DFCC: Locations 23684/5
1Y + 74 (5C84/5h).

S POSN: Locations 23688/9 I'Y + 78 (5C88/9h)

These locations hold column and line number for the next PRINT
position on the main screen and set up by the CALL 3545 (DD%h)
routine detailed in Chapter 2 (where 33 is left column and 24 is top
line).

SPOSNL: Locations 23690/1 I'Y + 80 (5C8A/Bh)

Like S POSN: Locations 23688/9 1Y+ 78 (5C88/9H), these
locations hold the column and line number for lower screen.

SCR CT: Location 23692 I'Y + 82 (5C8Ch)

This holds 1 more than the number of times the screen can be
scrolled without a ‘scroll?” question. [t should always be kept to a

The System Variables 55

high value since a machine code program could be broken into or
crashed, if a negative response is given.

ATTR P: Location 23693 1Y + 83 (5C8Dh)

This provides the global attributes for any screen printing,
plotting, drawing, etc. It is set by a BASIC colour statement and
can be loaded from within a machine code program, in which
case all subsequent colours will be changed.

MASK P: Location 23694 Y + 84 (5C8Eh)

This is used as a mask to discriminate between transparent colour
items and colour items to be taken from ATTR P: Location 23693
IY + 83 (5C8Dh). Forany bitsetto 1, the attribute bit will be taken
from the screen attribute for the current position, otherwise it
will come from ATTR P.

ATTR T: Location 23695 [Y + 85 (5C8Fh)

This provides the temporary attributes, set up by a colour item
printed by a RST16 (10h) instruction.

MASK T: Location 23696 I'Y + 86 (5C90h)

This is used as a mask to discriminate between transparent colour
items and colour items to be taken from ATTR T: Location 23695
I'Y + 85 (5C8Fh). For any bit set to 1, the attribute bit will be taken
from the screen attribute for the current position, otherwise it
will come from ATTR T.

P FLAG: Location 23697 IY + 87 (5C91h)

This is the flag used to discriminate between the print parameters
for any output to the screen by the ROM. The even bits are
temporary bits, whereas the odd ones are permanent bits, each
relating to the same items.

56 The Spectrum Operating System

Bit 0/1 is set it OVER 1 is to be used.
Bit 2/3 is set if INVERSE is to be used.
Bit4/5 is set if INK 9 is to be used.

Bit 6/7 is set if PAPER 9 is to be used.

MEMBOT: Locations 23698-23727 [Y + 88 (5C92h-5CAFh)
This is the area used by the calculator to store values which

cannot conveniently be kept on the calculator stack (see Chapter
8).

Not Used: Locations 23728/9 1Y + 118 (5CB0/1h)

RAMTOP: Locations 23730/1 IY + 120 (5CB2/3h)

The main use of this address, which contains the address of the
last byte of the BASIC area, will probably be to ensure that the
calculator stack has sufficient space (see Chapter 8). It is set by a

clear number command from BASIC which also initiates the
machine stack to this address.

P-RAMT: Locations 23732/3 IY + 122 (5CB4/5h)

This contains the address of the last byte of physical RAM.

8K System Variables

There now follow the BK ROM system variables which are only
present when inserted by the Microdrive interface.

The System Variables 57
FLAGS3: Location 23734 1Y + 124 (5CBé6h)
Bit 0 is set if an extended command 1s being executed.
Bit 1is set if a CLEAR# 1s being executed.

Bit 2 is set if the ERR SP system variable has been altered by the
8K ROM.

Bit 3 is set for NETWORK routines.

Bit 4 is set for LOAD routines by the 8K ROM.
Bit 5 is set for SAVE routines by the 8K ROM,
Bit 6 is set for MERGE routines by the 8K ROM.

Bit 7 is set for VERIFY routines by the 8K ROM.

VECTOR: Locations 23735/6 I'Y + 125 (5CB7/8h)

This contains the address to be jumped to if syntax has failed both
the 16K and the 8K ROM interpreters. It is normally set to 496
(1FOh) which will cause a 16K ROM error. It can be changed to
point to routines which check syntax further. This is covered in
Chapter?7.

SBRT: Locations 23737-23746 (SCB9h-5C2h)

Strictly this is not a system variable but a short subroutine used
by the 8K ROM to call 16K routines. The full details of this are
given in Chapter 3 with the RST 16 routine in the SK ROM.
BAUD: Locations 23747/8 (5CC3/4h)

This is the value used to set the BAUD rate for RS 232 input/
output. It is calculated as follows:

58 The Spectrum Operating System

3 500 000

——— 7= BAUD
26 % baud rate BAY

3 500 000 being the clock rate of the Spectrum. This can be used to
send or receive at non-standard baud rates. The default value is
12 (0Ch) which gives a baud rate of about 19 200.

NTSTAT: Location 23749 (5CC5h}

This is the network station number currently assigned to the
Spectrum.

IOBORD: Location 23750 (5CCéh)

This holds the colour for the border during input/output
operations, and is loaded with the colour number. It is normally
for black, but can be changed.

SER_FL: Locations 23751/2 (5CC7/8h)

This is used during R5232 input. The first byte isa flag, set to 0 on
entry to the input routine and set to 1 when a byte has been
received. The second byte is the received byte, on return from the
input routine.

SECTOR: Locations 23753/4 (5CC9/Ah)

This is used by the 8K ROM to count Microdrive sectors.

CHADD._: Locations 23755/6 (5CCB/Ch)

This is the 8K ROM equivalent to CH_ADD (Locations 23645/6)
for the 16K ROM. It is used to store the address of the CH_ADD
address while the extended syntax is being checked and then
replaced if necessary.

The System Variables 59

NTRESP: Location 23757 (5CCDh)
NTRESP is the response code given to the network.

The next eight bytes make up the network header which is
explained in Chapter 3.

NTDEST: Location 23758 (5CCEh)

This contains the station to which network output is directed.

NTSRCE: Location 23759 (SCCFh)

This contains the station sending on the network.

NTNUMB: Locations 23760/1 (5CD0/1h)

This contains the number of the network block currently being
passed.

NTTYPE: Location 23762 (5CD2h)

This holds the identifier for a network block, 0 for a normal block
or 1 for the final block.

NTLEN: Location 23763 (5CD3h)

This holds the length of the network block being transmitted.

NTDCS: Location 23764 (5CD4h)

This contains the checksum for the data block to follow.

NTHCS: Location 23765 (5CD5h)
This holds the checksum for the seven bytes of the header.

The next eight bytes make up the first file specifier.

60 The Spectrum Qperating System

D_STR1: Locations 23766/7 (5CD6/7h)

For Microdrive transactions, this provides the drive number (as
two bytes).

For network transactions, this provides the destination station
number.

For RS232 transactions, this provides the baud rate.

(For a fuller description of the use of D_STR1 see Chapter 3, where
each use is discussed when explaining the routines which use it.)

S_STR1: Location 23768 (5CD8h)

This contains the stream number (0-15).

L_STR1: Location 23769 (5CD9%h)

This contains channel type in upper case.

N_STR1: Locations 23770/1 (5CDA/Bh)

N_STR1 holds the length of the file name.

T_STRI1: Location 23772/3 (5CDC/Dh)

T_STR1 holds the address of the start of the file name.

The next eight bytes are used by LOAD and MOVE commands.

The System Vanables 61

D_STR2: Locations 23774/5 (SCDE/Fh) to T_STR2: Location
23780/1 (5CE4/5h)

These eight bytes are the same as previous eight which make up
the first file specifier.

The tollowing bytes are direct equivalents to the header bytes for

the 16K ROM routines, but they are used by the 8K ROM (for an
explanation of their uses see Chapter 3).

HD_00: Location 23782 (5CE6h)

This holds the file type where: 0, program; 1, numeric array; 2,
string array; 3, code.

HD_0B: Locations 23783/4 (5CE7/8h)

The length of data is held in these locations.

HD_0D: Locations 23785/6 (5CE9/Ah)

This holds the start of data.

HD_0F: Locations 23787/8 (5CEB/Ch)

This holds the array name or program length.

HD_11: Locations 23789/90 (5CED/Eh)

This holds the auto-start line number. It can also be used by hook
code 32h (see Chapter 3).

COPIES: Location 23791 (5CEFh)

This dictates the number of copies made by a SAVE command.

Chapter Five

Input and Output
Ports and
Channels

The standard Spectrum has all the address and data bus lines
available on the edge connector at the back, and the BASIC allows
for communication with the outside world by means of the IN
and OUT commands. These use the IN A,(C) and OUT A,(C)
instructions on the Z80 CPU allowing the full address bus to be
used for discriminating which peripheral device is to be
controlled.

Port 254 (FEh) is used as an output for the BORDER colour, for
the tape output and to drive the internal loud (soft?) speaker. It also
handles the keyboard and the tape input. A brief resume of this
was given in the chapter on the 16K ROM, and I shall discuss it
fully later in this chapter.

Port 251 (FBh) runs the ZX printer and is used for both input and
output.

Port 247 (F7h) passes data for both the network and the R5232
communications input/output.

Port 239 (EFh) controls the Microdrive and the handshaking on
the RS232 input/output of the Interface 1.

Port 231 (E7h) handles the Microdrive data for both read and
write.

This last port is one reason for some peripherals being incom-
patible with the Microdrive interface. The Spectrum manual
failed to mention that it would be used. I shall now consider the
details of the more useful ports in tum.

Input and Qutput Ports and Channels 63

Port 254 (FEh) 11111110 BIN

The keyboard is read through this port on bits 0—4. Each line of
keys is split into two sections of five keys and for each section the
key on the outside is read on bit 0 and the key nearest the middle
bit4. Each bit is returned high (1) unless a key is being pressed, in
which case the respective bit is low (0).

The address lines are used to determine which half row is read
by an IN instruction. The bit to be set low for each line is set out
below:

AD CAPSSHIFT toV 254 (FEH)

Al A to G 253 (FDH)
A2 Q toT 251 (FBH)
A3 1 to5 247 (F7H)
Ad 0 tob 239 (EFH)
A5 P toY 223 (DFH)
Ab ENTER toH 191 (BFH)
A7 BREAK/SPACE toB 127 (7FH)

It is unfortunate that bits 5-7 of the data read in are set in an
unpredictable manner and, in fact, the reading of the keyboard
has been changed in issue 3 Spectrums, giving rise to some
problems in programs which employ scruffy keyboard scanning
which fails to exclude these. The Spectrum’s own keyboard-
scanning routine ignores them. This last fact opens up possi-
bilities for their use for other purposes: for example as defined
function keys as found on the BBC and other computers, scanned
by an interrupt-driven routine.

It is possible to read more than one line of the keyboard at a
time, by setting the relevant bits low before reading in the data
lines, but this does not allow discrimination between the
different lines of keys.

Note: Extreme care needs to be used when reading for more than
one key pressed at a time. Sinclair have not put any protection
against feedback between lines on the keyboard. This means that
if, for example, the ‘A", ‘S’ and ‘W' keys are pressed at the same
time, a scan of the line Q to T will show Q as being pressed, even
though it is not. This is because while pressing two keys on

64 The Spectrum Operating System

different address lines but with the same data bit the lines are
effectively connected together. Therefore any other key pressed
on either line, will set the respective bit low on both lines, so long
as both the other keys are being pressed.

Bit 6 is the input from the tape socket and has a tendency to stay
low, although it can be reset by an OUT instruction. Care needs to
be exercised since any output to bits (-2 will set the border
colour. The safest way of setting all bits to 1 is to output 248 (F8h),
but (1) it will only be temporary, and (2) it should never be
necessary if proper decoding is practised.

For the output, bits 0,1 and 2 control the border colour, bit 0
controls the blue, bit 1 the red and bit 2 the green, all colours
being made up from a mix of these.

Colour Number Binary
BLACK 0 00000000
BLUE 1 00000001
RED 2 00000010
MAGENTA 3 00000011
GREEN 4 00000100
CYAN 5 00000101
YELLOW 6 00000110
WHITE 7 00000111

Bit 3 controls the microphone socket. Remember that to get
anything more than a click this needs to be turned on and off
repeatedly to give a tone. The ‘MIC’ printed on the rear of the
Spectrum is slightly misleading, since this gives output to the
mic input of a tape recorder and plugging a microphone in would
be a waste of time.

Bit 4 controls the loudspeaker inside the Spectrum and the
same comments as above regarding use apply.

A program that demonstrates the use of the internal speaker
and the ‘EAR" input by reading speech or music in, storing it in
memory and allowing its subsequent replay through the loud-
speaker is given at the end of this chapter.

Port 251 (FBh) 11111011 BIN

Bit 0 INPUT is the busy line of the ZX printer, low (0) is busy.

Input and Output Ports and Channels 65

Bit1OUTPUT high (1) slows the motor, low (0) speeds it up again.
Bit 2 OUTPUT low (0) starts the motor.
Bit 6 INPUT high (1) if the printer is not connected.

Bit 7 OUTPUT high (1) does the actual printing, one bit at a time.

Port 247 (F7h) 11110111 BIN

Bit 0 OUTPUT serial data for both network and RS232;
INPUT serial data from network.
Bit 7 INPUT serial data from RS232.

Port 239 (EFh) 11101111 BIN

The write protect tab on a Microdrive cartridge can be checked by
IN A,(239) AND 1; the 0 flag will be set if the cartridge is
protected.

The presence of a drive can be checked by reading bit 2 of port
239, after selecting the drive to be checked; it will be reset if the
drive is present.

The RS232 DTR line is on bit 3 of port 239 and the CTS line is on
bit4 of port 239.

It is most unlikely that it will be necessary to use ports 247, 239
and 231, other than from within the 8K ROM with the exception
of checking the presence of an ancillary device.

The remaining ports are available for use by other ancillary
devices. Remember that if a printer or other interface is con-
nected it will use a port or ports for information transfer. Two of
the most common parallel printer interfaces are the MOREX
(which also has a bidirectional RS232 interface built in, and
which I can highly recommend) and the Kempston, which use the
following ports:

66 The Spectrum ();wmﬂng System

Morex Ports 251 (FBh) 11111011 BIN & 127 (7Fh)
01111111 BIN

Port 251 (FBh) 11111011 BIN

Bits 0-7 OUTPUT Centronics Data.
Bit 0 INPUT Centronics Busy.

Bit 1 INPUT RS232 DTR.

Bit 7 INPUT RS232 RX data.

Port 127 (7Fh) 01111111 BIN
Bit 0 OUTPUT Centronics strobe.
Bit 1 OUTPUT RS232 TX data.

Bit 2 OUTPUT RS232 CTS.

Kempston Ports 58047 (E2BFh), 57535 (EOBFH) &
58303 (E3BF)

The Kempston interface can be used only with IN (C) and OUT
(C) instructions since it looks at the full 16 bits of the address bus.

Routines to send a single character to each of these interfaces
Centronics output are given in the Useful Subroutines appendix.

Port 58047 (E2BFh)

Bit 0 INPUT is the busy line.

Port 57535 (EOBFh)

Bits 0-7 OUTPUTS Centronics data.

Input and Output Ports and Channels 67

Port 58303 (E3BFh)
Bits 0-3 OUTPUTS Centronics strobe.
Standard Streams

Stream K -3/253 (FDh) is a duplicate of streams 0 and 1.
Stream S —2/254 (FEh) is a duplicate of stream 2.

Stream R —1/255 (FFh) is used to write to workspace, and will
place the code currently in the A register into the address con-
tained in the system variable K CUR 23643/4 (5C5B/Ch), and
increment the address in K CUR. This is not as useful as it seems
at first, since the make room routine is called first, and this moves
up all memory above the address in K CUR as far as RAMTOP,
making the stream useless for putting anything into anywhere
above RAMTOP, or anywhere else that must not be moved. The
routine starts at 3969 (F81h) and the stream can be used only for
output; any attempt to use it for input will cause an error.

Stream 0 and Stream 1 K are normally attached to the lower
screen, and the keyboard. They also allow input to be made to
their channels.

Stream S 2 is for output only, normally to the screen.
Stream P 3 1s for output only, normally the printer.

There are 19 streams available and each has to be attached to a
channel; each stream has two bytes in the streams area of the
system variables, starting at 23569 (5C10h) for stream —3, con-
taining the displacement of the channel that it is attached to, from
the base of the channels area. Remember that the first stream is
—3 so that to find the address of the channel for stream 0 you will
have to look at 23574/5 (5C16/7h).

A channel consists of a minimum of five bytes; the first two
hold the address of the output routine, the second two the
address of the input routine and the final byte the upper case
letter of the channel code (S,K,P, etc.). The channels associated
with the Microdrive Interface are substantially longer than the
minimum and their format is shown in the handbook provided
with the interface.

w1

68 The Spectrum Operating System Iiput and Output Ports and Chamnels 69
Record and Play Back Routine FEmoEns e
Pazs | greorss 00

THIS SHORT FROGRAM ALLOWS SPEECH

TO BE RECORDED FROM THE TAPE RECORDER INTD MEMORY

THROUGH THE EAR TNFUT

THE RECORDED 'SPEECH CAN THEN BE PLAYED BAC) THROUGH

THE SFECTRUM'S SPEAVER FROM MEMORY

THIS IS A VERY CRUDE PROGRAM BUT 1S QUITE EFFECTIVE

LIMIT EQU SO0 3 THE BOTTOM LIMIT OF AVAILABLE MEMORY

50 TIME EOU S s THE DELAY BETWEEN EACH EIT S = aErea 0
FOES FIRST EQU 44998 : THE FIRST BYTE OF MEMORY TD USE & =y
FDEE: DEB 45000 ” & g
FDES TIESFD START LD WLFIRST i CALCULATE THE AMOUNT OF MEMORY it B s A
FDEE 1iS0C3 LD DE.LINIT i WAILABLE FOR USE e rey Teuon el
FDEE ES PUSH HL HOLD FETe LINIT
FREE A7 sl LISTEN FDFs PAUSE
FOFO EDS2 SHC HL.DE g M
FUF2 ES PUSH KL Tie onos
FDF3 CI FOF BC 2
FOF4 EL POF HL Tanle usen: 170 rrom i -
FIOFS F3 U 3 INTERRUPTS OFF TOD ENSURE EVEN TIMING
FOF& JETF LISTEN LD A HTF 5 WALT FDF & SDUND
FDFE DEFE 1N A, (WFE)
FOFA CE77 BIT 6.8
FDFC 28SFB JR Z,LISTEN
FOFE €3 PUSH EC
FDFF 0s08 BYTEIN LD B.8 3 READ IN B BI1TS
FEOL 2B DEC HL
FEOZ DEFE HEAR N A, (HFE) A BIT AT A TIME
FEO4 17 RLA
FEOS 17 RL&
FEO& CBla L LY 3 AND TRANSFER 1T TO MEMORY
FEDB 1008 DINI FAUSE 3 FRUSE AND GET NEXT BIT
FEOA D! POF DE 1 BUT IF B BITS READ IN THEN CHED)
FEOB 18 DEC DE & ROOM AND DECREMENT COUNTER
FECC 78 L AD
FEOD B3 oR E
FEOE D5 PUSH DE
FEUF 20EE IR NZUBVTEIN 3 IF STILL ROOM GO BACH FOR ANOTHER BYTE
FEII Ci POF EC 1 OTHERWISE FINISH
FEIZ FE £t
FELS C3 RET
FE14 OF0S PAUSE LD C.TIME
FE16 0D DELAY DEE C
FEIT 20FD JR HZ.DELAY
FEI7 18E7 IR HERR
FEIB 21ESFD 470 SPEA LD HLFIRST 3 THIS IS THE SAME AS FOR LISTEM
FEIE 115003 480 LD DE.LIMIT
FE21 ES 450 PUSH HL
FE2Z A7 500 AND R
FEZ 510 SEC ML, DE
FE2S 520 FUSH HI
FE24 530 FOF BC
FE27 sS40 FOP L
FE28 550 FUSH BC
FE29 560 o1
FE2A 0 570 BYTEOT LD B, ¢ DUTFUT 8 BITS
FE2C 580 pEc ML
FE2D 550 LD AL (ML) NOTE ALL BITS ARE FUT DUT AND THIS
FEZE 400 RRCA 3 WILL CHANGE THE EORDER COLOUR
FE2F 10 RRCA
FEZ0 © &20 RRCA
FE31 430 BITOUT OUT (WFE),A 3 A BIT AT A TIME, AS READ N
= 840 RLCA

Chapter Six

Using the Interrupts

The start-up sequence in the Spectrum, which clears the memory
and sets the system variables, also initialises the interrupt
register to hold 63 (3Fh) and sets the interrupt mode to 1 (IM1).
The setting of the | register appears unnecessary since the IM1
mode has no use for it — because in this mode any interrupt does
a RST 56 (38h) — but the novel manner in which the ULA in the
Spectrum handles the display makes bits 6 and 7 of the I register
important.

On every machine instruction cycle, the Z80 executes a
memory refresh operation during which the contents of the I
register are put out on high eight bits of the address bus and the
memory request line is activated. The ULA generates an interrupt
each time it wishes to update the screen. This makes the CPU
execute the interrupt service routine, assuming the interrupts are
enabled. This is normally the keyboard scan and frames counter
update, but if the Interface ROM is switched in all that happens is
the interrupts are enabled and an immediate RETurm made,
without the keyboard being scanned or anything else done.

When the interrupt routine is completed the CP'U returns to
whatever it was doing previously. If this involves a read or write
instruction to the memory between 16384 (4000h) and 32767
(7FFFh), which the ULA checks by looking at the top two lines of
the address bus, and the MREQ line, the ULA stops the clock on
the CPU while it completes the screen update.

If the I register has the top bit reset and bit 6 set the ULA gets
confused, due to the refresh of dynamic memory during T3 and
T4 of an M1 (instruction fetch) cycle. This activates the MREQ line
and causes the I register to be put out on the top eight bits of the
address bus. The ULA then thinks that the CPU is doing a read or
write operation to this area of the RAM, even though it has tried
to stop this, and the ULA omits its own read to update the
display, causing break-up of the picture. The | register cannot

Using the Interrupts 71

therefore hold a value which has the top two bits set in this
manner, in other words any number from 64 to 127 (40h to 7 Fh)
inclusive, if this break-up of the picture is to be avoided.

By setting IM2, it is possible to use the interrupts for your own
purposes, so long as you do a RST 56 (38h) at the end of your own
interrupt-servicing routine, which will enable the interrupts
before retumning to the CALLing program — if you want the
keyboard scanned and frames counter updated — and end with a
RETT instruction.

If you have not used the RST 56 (38h) within the interrupt
routine, you must execute an El instruction before the RETI if you
want the interrupts enabled to CALL the interrupt service routine
again. Remember that you will have to reset the IM1 mode and
enable the interrupts before you return to BASIC unless you are
using a RST 56 (38h) within the interrupt routine.

The IM2 mode is somewhat convoluted. On receipt of an
interrupt, which occurs 50 (60 in the USA) times a second, the
CPU saves the address of the next instruction in the program that
it is executing on the machine stack, and disables any further
interrupts. It then looks at the location pointed to by the data
bus + (256 x the I register) and jumps to the address which is
contained in this location + (256 times the contents of the
following location). It is normally regarded as bad practice to
have bit 0 on the data bus high for use as a pointer in IM2 since the
vector should always start in an even numbered address, but
unfortunately with the Spectrum there is no choice.

Example. The I register contains 10 (OAh) and the data bus will
hold 255 (FFh). 10 x 256 = 2560 and 2560 + 255 = 2815, therefore
the address to be jumped to will be taken from the contents of
address 2815 + (256 x the contents of address 2816). Address 2815
contains 34 and address 2816 contains 128. You can see this for
yourself by PEEKing on your Spectrum, as these are in the ROM.
So the address jumped to will be 34 + (256 x 128), which is 32802.
Similarly, if the [register held 6:

6 % 256 = 1536, and 1536 + 255 = 1791.
1791 contains 221 and 1792 contains 113.
2221+ (113 x 256) = 29149, so the jump will be to 29149,

72 The Spectrum Operating System

Alternatively, if vou have a 48K Spectrum and the [register
held 200: 200 x 256 = 51200, and 51200 + 255 = 51455. So the jump
will be to the address that you put into this and the following
location, in normal Z80 fashion low byte first.

This can be represented by imagining the interrupt as an
invisible instruction in the program being run. At the moment of
the interrupt the invisible instruction is executed as if it were a DI
followed by a CALL instruction in the address immediately prior
to the address pointed to by the | register and the data bus, the
address being CALLed is in the next two bytes in the standard
Z80 low byte first order. The instruction, being invisible, cannot
place its own return address on the machine stack, hence the
address after the last instruction executed in your program goes
onto the stack, and it is this address that will be returned to after
the RETI instruction at the end of the interrupt service routine.

The RETI instruction must be preceded by an EI instruction.
The reason for the DI being incorporated in the CALL performed
by the interrupt is to ensure that, should the interrupt service
routine be longer in execution time than the delay between two
interrupts, the program does not become tied up ina loop.

It is quite easy to write a program which changes the address
jumped to by an interrupt by loading the vector bytes (the two
addresses looked at to determine where the jump is made to) with
the desired address within the program.

Note: Whenever interrupt routines are used it is of vital impor-
tance that any registers which are used by the interrupt routine
are preserved on entry, and restored before going back to the
main program. No attempt should be made to pass data to and
from the interrupt routine in registers.

Because of the limitation on the values that can be held in the |
register, there are only a limited number of addresses that can be
jumped to in the 16K Spectrum, and these are dictated by the
contents of the ROM. An added problem when using ROM-
vectored interrupts is caused by the Microdrive interface which
changes the vector whenever it is paged in. A list of the vectors
for the Issue 2 Spectrum and the Issue 1 Microdrive interface is
given in Appendix F, but if you are unsure which issue you have,
or you have a different issue, these must be checked. For com-
mercial software, it is dangerous to use ROM vectors as any
changes and future additions could make your software unusable.

Using the Interrupts 73

Typical uses of interrupt routines are SPRITE control and
CONTINUOUS SOUND within a program. Since it is known
how often an interrupt will be generated, it is easy to calculate the
speed of movement for a SPRITE and, since it will be indepen-
dent of any other operation within the program, the speed will
normally remain constant.

The use of ROM routines within an interrupt routine is compli-
cated by the possibility of the interface ROM being switched in at
the time of the interrupt, and this must be allowed for when the
routine is written. For example, if a SPRITE routine relies on a
16K ROM call to plot the sprite to the screen by use of the
PLOTting CALL at 8933 (22E5h) when the Interface ROM is paged
in, the CALL will be to 8933 in the Interface ROM. This is an
address that does not exist. This will inevitably cause the
program to crash.

One way of solving the problem is to incorporate into the
interrupt routine a check to see which ROM is present, The
easiest way of checking is to look at a ROM address which
contains a different value in each ROM. I tend to use address 20
(14h), which contains 213 (D5h) in the Interface ROM and 255
(FFh) in the 16K ROM. The appropriate action for each ROM can
then be taken.

If the ROM call is to the 16K ROM, it can be called directly when
the 16K ROM is present and via the RST 16 instruction when the
8K ROM is paged in. For the 8K ROM, this can be used with haok
code 32h (details are given in Chapter 3).

I have given a simple SPRITE program in Appendix G. This
program moves a group of four pixels, bouncing them off the four
edges of the screen, emitting a sound and changing the border
colour, demonstrating this way round the problem.

As a full understanding of how to use interrupts is so
important, if any use at all is to be made of them, 1 suggest that
you enter the program, using your assembler. The listing is taken
direct from my assembler to ensure that there are no errors; it is
slightly unusual in that hex numbers are prefixed by a # and binary
numbers by a % in the source code. The routine can be relocated
if a new vector is calculated and the I register is changed to suit.
Once you have entered and assembled the program, before
attempting to run it, turn back to this page and read on.

The first problem you may encounter is, if you have a 16K
Spectrum, that the vector will have to be ROM-based. Unfortu-

74 The Spectrum Operating System

nately at the time of writing this | have found no way that a 16K
Spectrum with the Microdrive Interface can be used.

Before doing anything further save both the source and the
object code to tape or Microdrive and, if you have a Microdrive,
remove the cartridge. To initiate the SPRITE the routine labelled
SETUP in the listing must be called. If the vector has not been
changed, RANDOMIZE USR 51457. You should now be able to
see a single black dot moving about the screen. Should it not be
there check vour code again. The presence of the SPRITE should
have no effect on anything else the computer is doing, so a
program can be entered and run as normal, as long as it does not
encroach on the memory used by the interrupt routine.

Some of the BASIC instructions that act on the interrupts can
now be demonstrated. Enter the BASIC line:

10 BEEP 5,60 : FORN = 1TO 100 : NEXT N: GOTO 10

When this is run you will see that the SPRITE stops while the
BEEP is being executed. Other commands which disable the
interrupts are those involved with SAVEing and LOADing,.

The SPRITE will travel at the rate of 50 pixels per second in the
UK (60 pixels per second in the USA), so in the UK it will take 3.5
seconds to travel from the bottom of the screen to the top.

Chapter Seven

Extending BASIC with
Interface 1

With the addition of Interface 1, any BASIC instruction which
fails the Sinclair syntax checking is normally vectored back to the
error-handling routines, via the address held in the new system
variable VECTOR. This can be changed to point to an address in
RAM. This allows a program to be written which can check
further, and act upon any instructions that it is programmed to
deal with. Before any use can be made of this facility it is neces-
sary to understand the method by which lines are checked, so
that the extra routine can make the same checks,

As soon as ENTER is pressed after entering a BASIC line into
the input buffer, the ROM interpreter is called into action. This
RUNSs the line, but stops short of actually doing the commands,
because the syntax flag (bit 7 in FLAGS) is reset. If any error
occurs, it is flagged with a ‘?’, and the error must be corrected
before the line can be inserted into a program.

The same process is carried out in run time but, since the
syntax flag is set, the command is acted upon. Remember that
whenever a routine in RAM is being used as part of the BASIC
interpreter, the 8K ROM will be paged in.

There are routines in both the ROMSs which check for the syntax
flag and return to the calling routine only in run time. These are
most useful when adding commands, as demonstrated by the
routines at the end of this chapter. The basic (no pun intended)
criteria for checking the syntax are given below, and ROM
routines have been used as far as possible.

The address of the character at which the syntax failed, so far as
the ROM is concerned, will be present in the system variable
CH_ADD on arrival at the extended syntax checker in RAM.,
Because of this it is important to ensure that the first character of
the added BASIC command fails normal syntax. If this was not

76 The Spectrum Operating System

the case, the interpreter would start execution during run time,
and it would be almost impossible to regain control. For this
reason, it is simplest to use a non-alphabetic character to start the
additional command, which gets the system out of the normal K
or command mode, ensuring syntax failure. The *" and !
symbols are ideally suited to this.

The first thing that must be checked is the command
characters. This is done by getting each character in turn and
ensuring that it is the one expected. The 16K ROM routine at 24
(18h) will get the current character in the a register, and the
routine at 32 (20h) will collect the next character and advance
CH_ADD by one. Each character can then be checked and, if it is
not correct, the error handler can be called in by jumping to the
original VECTOR which was 496 (1FOh).

Then:

1) If there should be a numeric expression next, the 16K
routine at 7298 (1C82h) can be used. This evaluates the next
expression as numeric; if it is not an error will be caused. In
run time it will also put the value onto the calculator stack.
If there should be two numeric expressions next separated
by a comma, the 16K routine at 7290 (1C7Ah) can be used.
This acts as above but stacks both numbers in run time.

If there should be a string expression next (either in quotes
or a §) then the 16K routine at 7308 (1C8Ch) can be used.
Again this acts as above, but generating an error if the
expression is not a string, and in run time stacking the
string parameters as described at the end of Chapter 8.

2

3

—

Note: In all three of the above routines, the first character of
the expression to be evaluated must be in the A register, and
CH_ADD must contain its address, before CALLing the routine.
After the evaluation, the A register will contain the first character
after the expression and CH_ADD its address. Mathematical
operators are allowed as are the use of variables in the expressions
evaluated, and this can be used to advantage to find details of
variables. For example, the expression X$(1,4 TO 9) or A*(B + (C/
(D + E))) would be allowed, the result being stacked in run time.

Extending BASIC with Interface 1 77

When evaluation is completed, a CALL 1463 (5B7h) will check
that the current character is the end (a colon or carriage return
code 13 (ODh)), and return to the interpreter in syntax time, or to
your routine for execution in run time, if it is, and generate an
error it not.

In run time, your routine will have to act upon the command,
collecting information from the calculator stack as necessary, and
then return to the interpreter via a |P 1473 (5C1h) instnfction,
with CH_ADD pointing to the next character for interpretation.

To demonstrate the addition of commands the following
program adds !CALLnn and !FRE. !CALLnn will call a machine
code routine at the address after the |CALL. !'FRE will return the
free memory.

'CALL RST 16

DEFW 24 i get character

o R A ik

JR NZILERROR ; if not allow error
CALL NEXT_CH ; get next character
e upw 3 is it C

JR NZ,'FRE i if not, jump and see

if it’s a 'FRE
CALL NEXT_CH
P "a"
JR NI,ERROR
CALL NEXT_CH

each character is
checked, the error is
allowed to pass if

CP i Dl a match fails
JR NI,ERROR

CALL NEXT_CH

CP AL

JR NZI,ERROR
JR ISCALL ; to reach here the word
must match
'FRE CpP b 4 ; same again for 'FRE
JR NZ,ERROR 3
CALL NEXT_CH

CP “R"
JR NZ,ERROR

CALL NEXT_CH

P “E"

CALL NEXT_CH

JR Z,ISFRE ; it is 'FRE

ERROR JP 496
ISCALL CALL NEXT_CH
RST 16

the original *VECTOR’

78 The Spectrum Operating System

DEST

ISFRE

FINIS
NEXT_CH

DEFW

CALL

RST
DEFW
JR '
LD
RST
DEFS
JR

CALL
LD
ADD
LD
SBC
PUSH

POP
RST
DEFW
RST
DEFW
JF
RST
DEFW
AND

7298 H

1463 H

16 i
11682
C,ERROR 3
(DEST), BC;
16

2

FINIS H

1463
HL, 00
HL, SP

R

evaluates next basic
expression as numeric.
causes error if not.

In run time value 1s
put on calc. stack
checks for end of

basic statement.

and returns only in

run time

stack to BC, see chap 8
carry set if over 45535
the address to CALL

and put it here

16K ROM will be present
when called routine is
executed

exits in syntax time
clear HL

add the address in 5P

DE, (23653)3this is STKEND

HL, DE B
HL

BC

16
11563
16
11747
1473
16

32
223

sub from address in
SP to give free space
for basic

result now in BC

stack BC, see chapt 8

prints value on stack
return to basic

ROM NEXT_CH routine
make it upper case

Extending BASIC with Interface 1 79

Normally extended BASIC commands or functions will be ended
by a jump back to the main interpreter as above and it is most
important that it is the 8K ROM which is switched when this
jump is made, otherwise the program will crash.

Chapter Eight

The Calculator

The Spectrum contains a powerful calculator in the ROM which
can be used to advantage by the machine code programmer. As it
has 66 different routines, 1 shall be examining in detail only the
more useful ones. To use the calculator it is important to under-
stand the form in which the Spectrum handles numbers, how to
place them so that the calculator can access them and how to
retrieve the answer to the completed calculation.

All numbers being used by the calculator are stored as five
bytes in either binary floating point representation or small
integer representation.

Small Integer Representation

The first byte is always 0.

The second byte is the sign, 255 (FFh) for negative or 0 for
positive.

The third and fourth bytes are the actual number in standard Z80
format, low byte first.

The final byte is always 0.

The number 0 is regarded as being positive

Floating Point Representation

The first byte is the exponent: this is the number of times the
binimal point has been moved to the left to make bit 7 set and to
the right of the binimal point, and bit 7 of the exponent shows
which way the binimal point has been moved. If it is set, the
point has been moved to the left, as in the example below.

Take the number 126 decimal, 7Eh, which in binary is
01111110. The binimal point (were we to show it) would be on the

The Calculator 81

right. It takes seven moves to the left to make the most significant
set bit on the right of the binimal point. To follow the process:

Omoves 0 11
Imove 011
Zmoves 011
3moves 0 11

and so on until
7moves 0,11 1

Any bits left to the left of the binimal point will always be reset
and so can be discarded, as can the binimal point since it is
known where it is and it will always be there for any number. We
normally do this ourselves with decimal numbers, albeit
unknowingly, by not showing a decimal point to the right of an
integer (a whole number) as everybody knows that that is where
it would be.

This process gives us the part of the number known as the
mantissa which, for the example given, is 11111100 in binary and
the exponent (the number of times the binimal point has been
moved to the left) is seven. The most significant bit of the
mantissa will always be set so this bit can be used to show the
sign of the number; it is set for a negative number and reset for a
positive number.

The exponent is expressed in signed binary, bit 7 set if the
binimal point has been moved to the left, and reset if it has been
moved to the right. Thus, for the example above the mantissa was
7, binary 00000111, but the point was moved to the left so bit 7
must be set giving 10000111 or 135 decimal. Now the number can
be shown in its full five-byte form:

Exponent Mantissa
Binary 10000111 01111100 00000000 00000000 00000000
Decimal 135 124 0 0 0
Hex 87 7C 0 0 0

Normally the number given in the above example would have
been stored in small integer representation, but it has been used
for simplicity.

The calculator uses its own stack on which it keeps any
numbers upon which it is working, and the first thing that must
be done before any calculations can be performed, is to put the

82

The Spectrum Operating System

numbers to be manipulated onto the calculator stack. This can be
tackled in three basic ways:

1)

2)

3)

A number can be placed on the stack from a register or
register pair, using a ROM routine to convert it to the form
that the calculator requires.

The number can be changed into the form that the calculator
understands and then put onto the stack.

The number can be written to memory in ASCII representa-
tion and the BASIC syntax checker used to read it and place
it onto the calculator stack in the correct form.

Each method has its own advantages and disadvantages and each
lends itself to different types of numbers. 1 shall now consider

thei

1)

2)

ruse in turn.

For small integers, there are two routines that can be used:

CALL 11560 (2D28h)

This is employed by putting the number to be transferred to
the calculator stack into the A register, Obviously the range
is limited to 0-255 (0-FFh) and the number must be
positive.

CALL 11563 (2D2Bh)

This will accept numbers in the range 0-65535 (0-FFFFh)
from the BC register pair. Again the number can only be
positive, unless the start of the routine is bypassed. The
CALL is then made to 11569 (2D31h) with the A register
holding 0, and the E register set to 255 (FFh) and the number
will be transferred to the calculator as negative.

For numbers in five-byte form ready for use by the calculator
the following routine is used:

CALL 10934 (2AB6h)

The five-byte representation of the number as described
above in Floating Point Representation must be in the
registers A, E, D, C, B; the exponent in the A register and the
mantissa in the other four registers in order.

3) ASCII representation

The Caleulatar 83
CALL 11419 (2C9Bh)

Whenever the BASIC interpreter comes across a numberin a
BASICline being entered, it places the five-byte binary form
of the number after the ASCII version, ready for use later
when the program is being run. The routine used for this
can be made to do the conversion for a machine code
program written by the user. This saves all the problems of
converting numbers manually or writing a routine to
convert them in your program, and is well worthy of
detailed consideration.

To use this routine to load the calculator stack the BASIC
system variable CH_ADD 23645 (5C5Dh) must contain the
address of the first character of the number to be stacked,
and the A register must hold the code of the character
pointed to by CH_ADD. The first character will normally be
the most significant digit of a decimal number but, because
the routine is that used for BASIC line scanning, it could be
the BIN token 196 (C4h) if the following digits are a binary
number. A binary number can only be evaluated to 16
digits, decimal 65535 (FFFFh). Any attempt to exceed this
will result in a jump to the BASIC error-handling routine. E
format can be used if it is so wished, and the number should
be arranged exactly as it would be in a BASIC line.

After the characters comprising the number, and the
exponent if used, a defined byte of value 13 (0Dh) should be
added. This lets the routine know that it has reached the end
of the number and that there is nothing else to look at.

There are two ROM routines the reverse of the two routines to
Stack A and Stack BC. These take the last entry on the calculator
stack and compress it into a rounded integer if possible. If the
number was too large then the carry flag will be set on return, and
if the number is negative the 0 flag is reset. For a positive number
the 0 flag will be set. The number will be deleted from the stack by
changing the pointer, but the DE register pair still points to it in
memory allowing it to be reclaimed if recovery was not success-
ful, although it is easier to duplicate the number before
attempting recovery, and then delete the copy on a successful
operation. The call addresses are:

84 The Spectrum Operating System

STACKTOA: CALL 11733 (2DD5H)
STACKTOBC: CALL 11685 (2DA5H)

There is also a reverse to the routine in (2) above located at
11249 (2BF1h) which returns the last value on the stack to the same
registers. This routine also deletes the number from the stack but
since it cannot fail to recover a number, the flags are not set. A
duplicate must be made on the stack if the number is still
required to be on the stack after recovery.

STACKTOA,E, D, C, B: CALL 11249 (2BF1H)

When numbers are generated inside the program the routine to
printa number from the stack can be used to ‘print’ the number to
a space in memory — as opposed to printing it to the screen —in
ASCII form. The maximum number of spare memory locations
that will be needed for a single number is 14.

This is achieved by writing a subroutine which places the
contents of the A register into the next memory location each time
it is called, opening a channel which points to your own sub-
routine, and making this channel current by putting its base
address in CUR_CHL 23633 (5C51h). The ROM routine at 11747
(2DE3h) can then be called to print the number. The subroutine
will then be called with each character of the number in turn,
which it places into successive memory locations, ready for use
later. Remember that the indexing for the address in which the
characters are being saved cannot be held in a register between
calls to your subroutine, nor can it be saved on the machine stack,
therefore two bytes of memory must be allowed for saving this
address. A program to do this might look something like this:

SET_UP LD HL,SPACE
LD (SP_WD),HL
LD HL, (23633) ;CUR_CHL

PUSH HL

LD DE,START ; make current channel to
LD C, (HL) ; your subroutine and save
LD (HL) ,E i original address for
INC HL i later restoration

LD B, (HL)

LD (HL) D

PUSH BC

The Caleulator 85

CALL 11747 i the routine to print

numbers
POP BC ; restore original address
FOP HL 5 and current channel
LD (HL),C i restare channel
INC HL i destination
LD (HL),E

5REST OF PROGRAM GOES HERE
START LD HL, (SP_WD)

LD (HL),A
INC HL

LD (SP_WD),HL
RET

SFACE DEFS 1&
SP_WD DEFW SPACE

This is the routine used above and mentioned previously. When
called it takes the top entry from the calculator stack and outputs it
in ASCII, as a decimal number, to the current stream. The
number is removed from the stack.

Whenever the calculator is used it is important to ensure that
the calculator stack is kept balanced. The calculator itself always
behaves in a predictable manner (when correctly used) and im-
balances can lead to erroneous results. Room must also be left
between RAMTOP and STKBOT for the calculator stack to expand
upwards and the machine stack to grow downwards without
their colliding.

Since some calculator routines use the calculator recursively, it
will be necessary to leave more space than that which will
apparently be used. It is best to err on the large side for the space
allowed because of this fact. Should there be any doubt as to what
is on the stack after completing a set of operations it can be
cleared by a CALL 5823 (16BFh), but remember that this will
delete everything that was on the stack.

Use of the Calculator

In order to understand how to operate the calculator, it may help
to think of it as a separate processor, with its own instruction set,
which is switched in by a RST 40 (28h) and switched out by an
ENDCALC, op-code 56 (38h).

86 The Spectrum Operating System

During the time that the calculator is switched on, its op-codes
are taken from the memory following the RST 40. These are a
series of DEFined Bytes in a normal Z80 program. When the
calculator gets an ENDCALC instruction, control is returned to
the Z80 and this continues execution of the program from the
address following the ENDCALC. Some op-codes require
operands, and some can be used only at the start of a series, since
they require the Z80 registers to be set in a particular manner in
order to operate.

Each time the stack is used its size changes by five bytes.
Therefore, every time a number is placed on the stack a check is
made to see that there is room. Should there be inadequate space
a BASIC error will be caused.

The calculator is not limited to numeric operation, it is also
used to perform the BASIC string and VAL functions. These will
be discussed later.

The op-codes that the calculator understands are set out below
with descriptions of their operation. In each case the change to
the calculator stack is given in bytes — five bytes are used for each
value — for the calculator’s execution of a single op-code.

X is the value below Y on the calculator stack, Y being the last
value put onto the calculator stack. The result of a calculation is
always left on the top of the calculator stack, and this result is
represented by Z. For example, for the subtract op-code (03) if
X =5and Y =9, X would be placed onto the calculator stack
followed by Y, the RST 40 (28h) would be followed by a defined
byte 03. After the operation, the calculator stack is —5, the
answer is on the top as Z. Therefore both X and Y have been
deleted.

Jumps are made from the location of the distance operand, the
standard Z80 manner.

Op-code Function Operation

00 JUMPTRUE Jumps the distance (25 complement
notation) in the operand (the defined byte
after the 00 op-code) if Y is non-zero.

(STACK CH. —5)

01 EXCHANGE Reverses the order of X and Y on the stack

(STACK CH. 0)

The Calculator 87

02 DELETE Removes Y from the stack. Z = X

(STACK CH. —5)
03 SUBTRACT X-Y=2Z (STACK CH. —5)
04 MULTIPLY X*Y=2Z (STACK CH. —5)
05 DIVIDE X/\Y=2Z (STACK CH. -5)
06 TOPOWER X'Y=2Z (STACK CH. -5)

07 BINARYOR XORY.Ilf=0thenZ = X, otherwiseZ =1
(STACK CH. —-5)
08 BINARY AND X AND Y. Both X and Y must be numbers.
If Y = 0 then Z = 0, otherwise Z = X. There
is a separate op-code to deal with strings
16 (10h)
(STACK CH. —5)

The sequence of op-codes from 09 to 14 (OEh) deals with numeric
values. Each code can be used only as the first operation after the
rst 40 (28h) as the b register must contain the op-code at the
moment the actual operation is performed.

There is a second set of op-codes for string comparisons; all

returnZ = 1liftrueorZ = 0 if false (STACK CH. -5).
09 Y<=X 10 (0AR)Y>=X 11 (0Bh)Y<>X
12 (0Ch)Y>X 13 (0Dh)Y<X 14 (0Eh)Y =X
15 (0FH) ADDITION X+Y=Z (STACK CH. —5)

In the following sequence of op-codes, one or both of the X and
Y values must hold the parameters of a string. Details of how to
get these parameters and put them on the calculator stack are
given later. The part or parts that are string parameters are shown
with a $ symbol.

Op-code Function Operation

16 (10h) $ ANDNo. X$andY.IfY = then Z$ will be an
empty string, otherwise Z$ = X$
(STACK CH. —5)

The op-codes 17-22 (11h-16h) are the string equivalents of op-
codes 09-14 (0Eh), called with the B register holding the op-code.
AgainZ = liftrueor Z = 0if false. (STACK CH —5)

88

17
20

23

24

25

26

27

The Spectrum Operating Systemt

(11h) Y$ <= X§ 18 (12h) Y$ >= X$ 19 (13h)
(15h) Y% < X$22

(14h) Y$ > X$ 21
(17h) ADDITION

(18h) VAL$

(19h) USRS

(1Ah) READIN

(1Bh) NEGATE

Y5 <> X§
(16h) Y5 =X$

X%+ Y$ = Z$. The two Strings are
concatenated in workspace and the
new parameters are retumed in Z$.
Remember that if there is
inadequate room for the two strings
to be copied into an expanded
workspace a BASIC error will be
caused (STACK CH. =5).
VAL$ Y$ = Z$. The new string is
created in workspace in the same
manner as above. The op-code
must also be contained in the B
register at the time of use. Any
errors will cause a BASIC error. This
is the routine used by the BASIC
interpreter and is subject to all the
syntax checking procedure

(STACK CH. 0)
Z = USRS. Againused by the BASIC
interpreter and subject to syntax
checking. Y$ must contain the
parameters of a $tring containing a
single letter from A to U. Z will be
the address of that user-defined
graphic on completion

(STACK CH. 0)
This routine allows a single byte to
be put into WORKSPACE through
any stream (0-15 (0Fh), taken from
Y. The byte is regarded as a string
and Z$ is the parameters of this
string. If the carry flag is not set by
the inputroutine, no action is taken
and Z$ is returned as a null string

Z = Y but with the sign changed
(STACK CH. 0)

28

29

30

(1Ch)

(1Dh)

(1Eh)

CODE

VAL

LEN

The Calculator 89

Z = CODE Y$. As used by the
BASIC interpreter (STACK CH. 0)
Z = VALYS. As used by the BASIC
interpreter and in fact accesses the
line scanner to get the result into Z.
Subject to BASIC errors.

(STACK CH. 0)
Z = LEN Y. This is easier to do
without using the calculator, all it
does is stack the length bytes of the
string parameters

(STACK CH. 0)

The following algebraic functions all return the answer (Z) on the
top of the calculator stack and the stack size is unchanged.

Op-code

31

45

(1Fh)
(20h)
(21h)
(22h)
(23h)
(24h)
(25h)
(26h)
(27h)
(28h)
(29h)
(2Ah)

(2Bh)

(2Ch)

(2Dh)

Operation
Z=SINY
Z=COSY
Z=TANY
Z = ASNY
Z=ACS5Y
Z=ATNY
Z=LNY

Z=EXPY
Z=INTY
Z=SQRY
Z=SGNY
Z = ABSY
PEEK

IN

USR No.

Z = PEEKY. As used by the BASIC
interpreter (STACK CH. 0)
Z = IN'Y. This performs the ZB0OIN
A,(C) instruction after taking Y
from the stack into the BC register
pair as an integer (STACK CH. 0)
Caution This will cause an execution
jump to the address Y. Used by
BASIC to jump to machine code.
The return address will be 11563
(2D2Bh), the stack BC routines

90 The Spectrum Operating System

46 (2Eh) STRS
47 (2Fh) CHRS

48 (30h) NOT

49 (31h) DUPLICATE
50 (32h) XMODY
51 (33h) JUMP

52 (34h) STK DATA

which will put the value in the BC
register on return on the calculator
stack. This is an interesting op-code
since it opens up the possibility of
using routines in ROM and RAM
recursively from within the
calculator (STACK CH. 0)
Z$% = Y. The top value on the
calculator stack is printed to
WORKSPACE and evaluated as a
string, the parameters of which are
then put on the calculator stack
(STACK CH. 0)
Z% = CHRSY.If0<Y<255thena
single space is made in
WORKSPACE and the value
transferred there as one byte. This
is then interpreted as a string and
the parameters returned as Z$
(STACK CH. 0)
Z = 1ifY = 0, otherwise Z = 0
(STACK CH. 0)
Y. Y is duplicated
(STACK CH. +5)
This returns Z = INT(X/Y) and
underneath Z (where X was
originally) X — INT (X/Y)
(STACK CH. 0)
This simply does the equivalent ofa
Z80 JR (Jump Relative) instruction,
but for the calculator. The jump
length is taken from the location
following the op-code. The
calculator stack is untouched
(STACK CH. 0)
This allows a value to be read in
from the locations following the op-
code. Bits 6 and 7 of the first byte
(the exponent) following the
op-code determines the number of

Z

]

54

55

56

57

58

29

60

61

62

(35h)

(36h)
(37h)
(38h)

(39h)

(3Ah)

(3Bh)

DEC JRNZ

Y<0
Y =10
ENDCALC

GET ARGT

TRUNCATE

FPCALC2

(3CH) ETOE.P.

(3Dh)

(3Eh)

RE STACK

SERIES

The Calculator 91

bytes which follow to make the
mantissa, 00 BIN for 1 to 11 BIN for
4. The floating point number is then
read to the calculator stack
(STACK CH. +5)
This isadirect equivalent to the Z80
DJNZ op-code, but for the
calculator. The B register is taken as
being BREG system variable. Not
safe to use, since this routine is
extensively used within the
calculator for its own purposes, and
the value of BREG cannot be
guaranteed (STACK CH. 0)
Z = 1ifY <0, otherwiseZ = 0
(STACK CH. 0)
= 1if Y >0, otherwise Z = 0
(STACK CH. 0)
Returns control to the Z80 at the
next address (STACK CH. 0)
Used internally to the calculator to
establish the value Y (which for the
purposes of Z being the result will
be Z) of SINY or COS Y
(STACK CH. 0)
Z = INTY, where Z is Y truncated
towards (0 (STACK CH. 0)
Used by the interpreter to perform a
single calculator operation. Of no
practical use for the purposes of this
book
Z = YE (Exponent) A register
(STACK CH. 0)
Z = the floating point version of Y,
where Y could have been a small
integer (STACK CH. 0)
Used internally to the calculator to
generate a Chebyshev polynomial.
Of no practical use as it is called by
the routines that need it

92 The Spectrum Operating System

63 (3Fh) STACKNO. Asabove, but used to stack
constants
64 (40h) ST MEM. Used to store in the memory area.
On entry the A register must hold
C0 to C5 according to which of the
five memory locations is to be used
(STACK CH. -5)
65 (41h) RECMEM. Recall from memory. The reverse of
the above routine
(STACK CH. +5)

For string operations the parameters can be passed to the
calculator stack using the routine at 10934 (2AB6h) mentioned
earlier, The BC register pair holds the length of the string, the DE
register pair the start address and the A register the name (in the
form mentioned in chapter 2 under SAVEing LOADing and
VERIFYing.

To assist with the understanding of the calculator a routine that
will allow experimentation with the calculator is given in the
Useful Subroutines appendix.

Appendix A

Hex to Decimal

Conversions

o LMo om ome oM a0 1% tm ne
1 s U e M SID SWs ST N sl
2 BROWE e B0 M 7 W w0 oM
3 18IS 00 NS 1 M8 1N LN (0N
L] W3 0 BB DIS2 DR i IR mn 1
5 W N 0T U AWM T NN 1M 1A
3 W) MM T e 2w
7 LT B T T T
8 TR L (L TR T S TTTT
9 7 IMEE GEMY MY W% N
3 LU I T o
B O ST AS R ATI
c WIS N0 (R IR SITe SN SIMBE S0l Sia0
D 5l TOSMEH ST M0 SN
E I SaN SHSE I sele e Mese SMu o Smm
F SR LR AN DTS A AN e BN

"

1o

W

{1]

B 1)

UL

538 Shaa

4

(]

(LK

(e

L

bt

1

198

W

Ha

s W

Aoitg

L

[

£

no sen

L]

3408

Wi

[y

ity

b

S108E

(]

94 The Spectrum Operating System

LSB Appendix B

L e 2o oMy B &S T e W R D) EF
O Gt g S G BT » The Spectrum
1 (TR S T - B oW ns wm ow oa
3 LA A T U D D SRR N SR SRR S
4 W & ¥ W @& B oMM 7T W MW WM A
5 B o0 o2 B oM ¥ m OO O®# OB W oW OB G Mo =
VARIABLE FIXED
& LU N TR T R VI S L IO A T B ')
7 o oue s | nour oo n i i
oo 0 n m moon 1 RAMT FEFFH OR 7FFFH
C] 1 Momoomomow W MW om Wow 2075 UG
9 “ (LU L T AL A BN RO T T T A N | 23730 RAMTLT
a L L L [O T T T AN ™ T T DN TN VO N - T T N LSS STK ENDL
B e m Mmoo W om B M s w I W W CALCULATORSTACK
c n Woom n M M W M m N M N W W STRBOT
] BN oM oW oW oW A M oW om o om om oW m WORKSPACE
E mom mo oM W™ M W om oW WM M W W M m (23644 WORKS!
F HoooWComoom oW oW M oW oM oW MmN M W B s EDIT AREA
141 E LINE
VARIABLES
HEX DEC 13627) VARS
1 1 BASIC
- - (13635) PROC
)
s CHANNEL INFORMATION
o - 236311 CHANS
MICRODRIVE MAPS
SCEFH 23731 LAST BYTE OF
5K SYSTEM VARIABLES
SCBOH 23733 LAST BYTE OF
16K SYSTEM VARIABLES
SBFFH 23551 L AST BYTEOF
PRINTER BUFFER
SAFFH 23295 LAST BYTE OF
SCREEN ATTRIBUTE MAP
STFFH 22527 LAST BYTE OF
SCREEN MAP"
IFEFH 10383 LAST BYTE OF
16K ROM

Appendix C

The Spectrum
Screen Map

The Spectrum screen is divided into 192 rows of 256 pixels, Each
line comprises 32 bytes of memory in ascending order. Below are
listed the addresses of the first byte of each screen line with the
address of the attribute that controls the first byte. Line 1

represents the top line on the screen.

LINE PIXEL ATTRIBUTE
1 A000H S800H A1
2 41004 a2
3 A4200H A%
4 4300H 44
5 44001 45
& 4500H a4
7 AG0OH 47
] 47004 a8
¢ 30201 SB2OH 49
10 4120H 50
1t 4220H 51
12 4320H 2
13 24204 3
14 A520H s4
15 46201 55
14 A4720H Sb
17 A0A0H SBAOH 57
18 a14a0H 58
19 A4240H 59
20 4340H 50
21 A340H 1
22 4540H 62
23 a540H &3
24 4740H &4
25 40860H S850H 65
24 A160H bb
27 424604 &7
28 42460H &8
29 44400 &9
30 A550H 70
31 2680H 71
32 47604 72
1z 40B0H S880H 73
34 4180H 74
35 42804 75
36 43BOH 78
37 A480H 7
38 4580H 78
19 4680H 9
AQ 4780H BO

40A0H
41A0H
42004
43A0H
48A0H

ALATH

40COH
41004
42C0H
43C0H
4400H

S8A0H

SBCOH

SBEOH

S900H

S920H

1s

130
131
132

134

1386

4840H
45404
ARA0H
4BAOH
4CA0H
4DA0H
4EAOH
4F40H
AB60H
49604
ansoH
4B&0H
ACHOH
4D60H
AEL0H
AFAOH
4BEOH
A980H
4ABOH
4B80H
ACBOH
ADBOH
AEBOH
4FBOH
48A0H
AFAOH
A/A0H
ABAOH
ACAGH
ADAOH
AEACH
4F AOH
A8COH
A9COH
AACOH
ABCOH
ACCOH
4DCOH
QECOH
AFCOH
SEECH
4FE0H
AAEOH
4BEOH
ACEOH
SDEOH
AEEOH
AFEOH

S100H
52004
S300H
S400H
S500H

57004

59404

59600

SPCOH

S020H
5120H
52204
SI20H
S420H
5520H
S620H
S720H
SO40H
S5140H
S240H
S340H
S440H
SS40H
SHA0H

Appendix C

SAZ0H

SABOH

SACOH

SAEOH

97

Appendix D Appendix E

The Keyboard Map The Spectrum
Character Set

D4 D3 D2 D1 Do Code Character Special Notes
254 (FEH) v C X 7 c/s 0&1 None Used only after INK, PAPER,
253 (FDH) [@ F D S 7 OVER, INVERSE, FLASH, BRIGHT
251 (FBH) T R E W Q AT or TAB
247 (F7H) 5 K 3 2 1 2-5 None Used only after INK, PAPER, AT or
239 (EFH) 6 7 8 El 0 TAB
5 -
i:: :BD::)' :—1 lJJ :: E’ E‘ZT 6 Does a TAB on the screen to the next
127 (7FH) B N M T3 Bl/s . half screen position,

7 EDIT Code returned by the keyboard

input routine is used if CAPS
SHIFT and 1 are pressed. Not
printable. Often the BELL code on
printers and terminals

8 BACKSPACE Code returned by the keyboard
inputroutine if CAPS SHIFT and ‘5’
are pressed. Can be printed to give
a backspace on the screen. Also
recognised by most printers, as it is
the ASCII backspace code

9 RIGHTSPACE Code returned by the keyboard
input routine if CAPS SHIFT and ‘8’
are pressed. Not usable to give a
screen rightspace as the Spectrum
does not update the print positions
after its use. ASCII horizontal TAB

code
10 DOWNSPACE As above but for CAPS SHIFT and
‘6", Is the ASCII code for line feed
11 UPSPACE As above for CAPS SHIFT and ‘7",

ASCII vertical TAB code

100 The Spectrum Operating System Appendix £ 101

12 DELETE As above for CAPS SHIFT and ‘(f codes 32 to 126 conforming to standard ASCIl and these are
ASCII Form Feed code shown in the Spectrum manual.

13 ENTER Returned when the ENTER key is

pressed, performs a carriage return Code 127 — the Spectrum copyright symbol —is the ASCll delete
and line feed when printed to the code, be careful!!
screen. Is also the ASCII code for
carriage return

14 Precedes a number in a BASIC
program line. Not of any practical

use. ASCII Shift Out code

15 Not used in the Spectrum. ASCII
Shift In code
16 Ink control code used to precede the

number for the INK colour. For
example to change the on-screen
printing colour for all following
characters to red, you would use the
RST 16 routine with the A register
holding 16 followed by 2. Note NOT
ASCII2 but value 2. This is
demonstrated in the DeBASE

program.

17 As above but for PAPER

18 As above for FLASH, the following
code can be only Oor 1

19 As above for BRIGHT

20 As above for INVERSE

21 As above for OVER

22 AT control code, must be followed
by the line and column values

23 As above but TAB, needing only

the column value

Codes 24 to 31 are not used by the Spectrum; code 27 however is
the escape code which is used by most peripherals, followed by a
letter to indicate the action required. While the CHR$ 27 has been
standardised as the escape code, the codes that follow it have not
been standardised.

The remaining codes are all character representations, with

Appendix F 103

16K ROM BK ROM
Appendix F Mk 2 Spectrum Mk 1 Interface
1 =51 13238 21965
1 =92 SETIN
1 =53
ROM Interrupt Vectors 2
A
I =59
I = &
I =85l Q
1 = &2 25%
1= 62 [y

16K ROM 8K ROM
Mk 2 Spectrum Mk 1 Interface

Appendix G

Useful Subroutines

Calculator Routines

To assist with the understanding and use of the calculator the
following routines will allow experimentation with the calcu-
lator. The first routine is for demonstration purposes.

EXX ; YOU MUST ALWAYS SAVE
HL

PUSH HI. ; IF ASUCCESSFUL RETURN IS
TO

EXX ; BEMADE

CALL PRSTK ; PRINT STACK START AND
END

LD BCX : FIRST NUMBER

PUSH BC : SAVEIT

CALL 2D2BH ; STACK X

POP BC ; RESTORE X

CALL 2D2BH ; STACK X AGAIN

CALL 2DE3H : PRINT X

LD A20H

RST 10H ; PRINT A SPACE

LD HL, NUMBER : BASE ADDRESS OF THE
NUMBER IN ASCII FORM

CALL STKNUM ; STACK NUMBER (THIS WILL
BEY)

RST 28H ; CALL THE CALCULATOR

DEFB 31H ; DUPLICATE Y

DEFB 38H ; TURN OFF THE
CALCULATOR

CALL 2DE3H ; PRINT Y

RST 28H ; TURN ON CALCULATOR

Appendix G 105

YOU CAN PUT A SERIES OF DEFINED BYTES HERE TO
EXPERIMENT WITH THE CALCULATOR

DEFB 38H ; END CALC

CALL 2DE3H ; PRINT RESULT

CALL PRSTK ; PRINT STKBOT AND STKEND
TO SEE [F THE STACK WAS
BALANCED

EXX ; RESTOREH'L’

POP HL

EXX

RET

NUMBER

DEFM "“1234.567""

DEFB 13 ; THERE MUST ALWAYS BE A
DEFB 13 TO LET THE
ROUTINE KNOW THAT IT

HAS FINISHED THE NUMBER

This subroutine will print the address of the startand end of the
calculator stack:
PRSTK LD BC, (23651) ; THIS IS STKBOT

CALL 2D2BH ; STACKIT

LD A, 'B"

RST 10H

LD war

RST 10H

CALL 2DE3H ; PRINT STKBOT
LD A, TH

RST 10H

LD v, Wik ihié

RST 10H

LD Y R

RST 10H

LD BC, (23653) ; THIS IS STKEND
CALL 2D2BH

CALL 2DE3H ; PRINT STKEND
LD A,0DH

RST 10H

RET

106 The Spectrum Operating System

This routine will stack a number in ASCII form.

ON ENTRY THE HL REGISTER PAIR MUST CONTAIN THE
ADDRESS OF THE START OF THE NUMBER TO BE STACKED

STKNUM LD DE, (23645) ; THIS IS CH_ADD

PUSH DE ; SAVEIT

LD (23645), HL ; POINT CH_ADD TO THE
START OF THE NUMBER

LD A, (HL) ; PUT THE FIRST
CHARACTERIN A

CALL 2C9BH ; STACK THE NUMBER

ror DE ; RESTORE CH_ADD TO
ITS ORIGINAL

LD (23645).DE : VALUE

RET

Morex and Kempston Interface Drivers

On entry to these subroutines the ASCII code to be output to the
Centronics lines should be in the A register. No expansion will
be made; see the section in Chapter 2 on EXPANDING TOKENS
FOR OUTPUT if it is required.

This is the Morex Interface Centronics Output Routine:

PUSH AF ; SAVE CHARACTER

CODE
BUSY IN A, (O0FBH) ; READ BUSY LINE FROM

PRINTER

AND 1 ; TESTBIT O

JR NZ,BUSY ; [FNOT LOW PRINTER
BUSY

ror AF ; RESTORE CHARACTER

OUT (0FBH), A ;SENDIT
LD Al ; STROBE PRINTER

Appendix G 107

ouT (7FH). A

XOR A
OUT (7FH), A
RET ; FINISHED

This is the Kempston Interface Centronics Output Routine:

PUSH BC . SAVE BC REGISTER PAIR
AS THEY ARE USED FOR
10

PUSH AF . SAVE CHARACTER
CODE

LD BC, 0E2BFH ; BUSY PORT

BUSY IN A, (O) : READ BUSY LINE

RRA : BIT 0 TO CARRY

IR C,BUSY ; IFNOTLOW PRINTER

' BUSY

POF AF : RESTORE CHARACTER

DEC B . CHANGE PORT TO 02BFH

DEC B

OUT (C) A . SEND CHARACTER

LD A,00EH : STROBE DATA FOR
SENDING

LD B.OE3H . CHANGE PORT TO
E3BFH, STROBE PORT

OUT (C)A - STROBE PRINTER

INC A

ouT (C), A

POP BC . RESTORE BC REGISTER
PAIR

RET : FINISHED

Interrupt Driven Sprite Routine

CaFF
CBFF

108 The Spectrum Operating System

CaFF

Ce01 Zeca

Cs2C

C 2RTDSC
€927 £5
€97 EDARBICY

€eiC Cs

C93D Coa7ce
€940 Cy

cose oD
€95C 20uC
C95E CEBD
Ce0 1BOE
C9s2 OC
C96% ™™
C944 FEFE
966 2002
C9s8 CECD

* T1455 CONTAINS THE INTERRUFT YECTOR

DEFW 51500

120 LD I.A

130 LD RC. ICOORDI

140 CaLL PLOT

150 I 2

160 RET

1 THIS 15 THE ACTUAL FROGRAM. STARTING AT THE
1 i WHERE THE INTERRUFY HAS BEEN ECTOREC

FIRST SAVE ALL REGISTERS THAT WILL BE USED

PUSH HL
FUSH BC
FUSH DE
FUSH &F

SAVE TV FLAG AS IT MAY BE ALTERED LATER

LD A,
PUSH aF

t23612)

280 LD R, 12348770
190 PUSH HL
00 LD EC,{COORD) : (THE SPRITE CO-ORDINATES)

410 PUSH BC : SAVE THEM
CALL THE ROUTINE TO PLOT THE SFRITE
AS EACH FLOT OF THE SFRITE IS OVER |
THE PREVIOUS FOSITION
CALL PLOT
FOF BCt

THIS WiLL

RESTORE THE

IS USED AS » FLAG REGISTER

THE SPRITE WHICH WAY 1T MUST MOVE
SET FOR UP, RESET FOF DOwr
SEY FOR LEFT &#ND RESET FOR RIGHT

LD He, (FLAG)

BIT O,L
Sea JR I,UF
S70 DOWN DEC B: MOVE SPRITE DOWN | FIXEL
580 JR NI.LEFT: IF JERD FLAG SET 1T HAS REACHED THE

BOTTOM OF THE SCREEN AND ITS
DIRECTION IS CHANGED

UF ONE FIXEL

HAS SPRITE REACHED TOF

IT HAS SO CHANGE DIRECTION
SAME CHECKS AGAIM FOR LEFT/RIGHT

Ce89 CS
c9sa 7A
c988 DS

€98 FEVA

C994 FEOL
€95C 2001
CR%E 0D

C99F

81400

C®A FDCEI28BA
CSas C5

CTA7 FEDS
C549 280C

THE NEW CO<DRD

NATES £OR

LD NODRDYEC =
LD (FLABY , HL
CALL FLOT ¢

e $ALL THE PLOTT!

270 {ARE NOW RESTO)

380

20

21

950 1 THE PEG

: BECAUSE
[
R

Gl

F

ISTERS ARE NOW R
Of

LODPL CF

LOORZ CF

LOOF4 LD

&F
POF DE
FOF EC
FOP H

$AND THE EORRD SCA

THE INTERRUFT WARE

€T wig
ET!
EFW 1

DEFUY

CING TO BE USED AS

E THE CO-ORDINATES AS
H

USH EBC

LooF LB AD

FUSH DE :
FTHE ACTUA
$70 CREATE A LARGER SPRITE
CF 4
JR I,L0OF4
cr 3

IR N2.LOOFE

1.L00PZ

z
&
zemzun

NZ.LODOF4

o
w
i
-

A TEST MUST NOW EE MADE TO SEE WHICH R,O,M,

A, (M0

1420 RES U, (IV+I) &
1430 PUSH BC

1330 CcF #DS:

1450 JR 7,ROM2:
1460 3

WHD SD ARE THE F

FLOT

FLOT IS MADE FOUR TIMES.,

Appendix G

THE SPRITE ARE

THE HEW SPRLTE

EMS VARTARLES

E

NED A4S 1T HAS NOT EBEEM

RELOCATED

A COUNTER. AS B 18 USE

THEY ARE CORR:

SAVE THE COUNTER

MOVING EACH TIME

IS PRESENT

FICK. A R.O.N, LOCATION THAT 1S

DIFFERENT 1N EACH R.O.M.

109

SIGMAL COLOURE TO BE FROM MAIN SCREEN

R.0.0. 2 1
MAIN F.0.m.

110 The Spectrum Operating System

1870

C9AE CDaDOD

C9AE FDCES7CE SET

C9BZ COES2D CALL
coEs 1808 I
C9E7 U7 RST
COBE AD DEFH
C9BA FOCESTCs SET
CREE 07

COBF FOCBS7EE

cHeT €1 FOF
osC3 o PoP
c9es 4 BEC
core 2oes IR
cses c FoF
cecs 78 LD
C9CA 47 AND
C9CE 280D 6
C9CD FEAE cr

Lo

FOF

rOR

C9EA £8 RET

IHNCREASE
COER TAFSCY Lo
C9EE 2C InNC

CoeF %ZFSC°

+ TO BET HERE THE MAN
§S0 DIRECT CALL D.)

CALL ®pap : COLLECT THE COLOURS FOR THE Fu

E INTERFACE R.D.M.

0.
B
con

P SET DVEF 1 WITH F FLAG
00 THE PLOT
JUMP THE TNDIRECT & 7O isb CRLLS

RESET OVER |
RESTORE LATE
END THE COUNTE

RESTORE STARTING FLOT FO
AMD SEE IF AN EDGE HAS B
REACHED

OND IF SO TAVE THE NECESSARY
ACTION

OTHERWISE RETURN

SAYE THE PLOT CO-CRDINATES
S0 THAT B CAN BE USED AS A COUNTER
SEND OUTFUT TO THE SPEANER

TO THE SFEAVER
(RFE) A ¢ REFEATEDLY CHANGINE THE STATE

7 PINGL : TO MavE A NDISE

BC

NOW SEE WHERE THE CaLL CAME FROM

HL NRET
AL
HL

PUSH HL

L

+ TIF THE RETURN WAS NO7 MGDE HERE EVERY ALTERNATE TIME
THIS ROUTINE WAS CALLED ONLY THE EVEN NUMBER COLOURS
WOULL EE SET

THE BORPER COLOWR. FITS 0-2

A, lcoLh

¢ AND SET THE BORDER

(8FE) A

C9F2 DOFE our
CSFe .9 RET
CaFS (0 DEFE

Appendix G 111

Fase T errors: (0

COL C9FS cONT)
COORD €98~ CPLDT
DOWN 948 FLAG
LEFT cos7 LOOF
LDDFY C995 LODPT C99A
LODFS CY9F MRET [C974

C
c

PING C%DR FINGL [90D
FLOT ceg7 RIGHT C%52
ROMZ cee? SETUP L9

up CoaF

Table useds 226 [0

DeBASE

DeBASE is made up from a number of separate routines building
up to a crude, but efficient, data base program, with routines for
saving to and loading from both tape and Microdrive.

The program will allow entries to be input, printed out, found,
erased and changed. There is no constraint on the number of
separate records nor on the size of each record, except that it must
fit on the screen without scrolling it. Any part of any record may
be found, and the cursor will be placed at the start of the details
that were looked for. A record may be changed, enlarged or
shrunk after its original creation, without destroying or altering
any other records. After a record deletion all space used by the
record is reclaimed.

The program uses only 1 byte of memory per character plus 1
byte per record for the end marker of the record; 32 000 bytes are
available for records as written, with plenty of room for added
facilities.

Pass | errors: OO

10 & THIS SUBROUTINE WILL PRINT ANYTHING WHICH STARTS WITH
20 3 A BYTE WITH BIT 7 SET UP TO THE NEXT BYTE WITH BIT 7 SET.
30 § IT HAS THREE MAIN ENTRY FOINTS AND TWO METHODS OF USE
40 3 IF THE A REGISTER HOLDS 255 (#FF) ON ENTRY, THE DE REGISTER
S0 & MUST HOLD THE ADDRESS OF THE FIRST CHARACTER OF A MESSAGE
40 3 WHICH MUST BE PRECEEDED BY A BYTE WITH BIT 7 SET.
70 3 FOR ALL OTHER VALUES OF A THE HESSAGE OF THAT NUMBER
B0 1 FROM A TABLE DF MESSAGES STARTING WITH A MARKER BYTE
90 & WILL BE PRINTED
100 3
110 ¢
FE24 120 #C1 ORE &2500
FAZ4 F3 150 PMESS FPUSH AF 3 THIS ENTRY POINT SETS THE PRINT POSITION
FAZ3 IS 160 FUSH DE ; TO THE TOP LEFT OF THE SCREEN

F424 ZEOZ 170 LD A2

Feze

FazB
FaZE
Faly

Fazl

The Spectrum Operating System

ChO11s

ul21ie
Chb9uD

Falsg
Faz?

Fazh I

FAZF 3

Fadl
Faqz
Fasz

Faaa 3

Faasg
Fade
Fadg
Faas
Fasc
FaaF
0001

Pass

L =4

110000
COoAOE
ce

2 errors:

Ca%¢e

FPMESS F&24

PRINT

Fass

FAS0
Fasg
FAas3
Fasa
Fase
Fasa
Fas9
Fasn
F4sE
FasD
F4asE
F4SF
Fas2

Faaa

I errors:

21CBF4
7E

FEFF
2006
2s

Tr

2B
IE6D
kel

ES
213275
01D0B4

20
430 PR

ENSURE MAIN SCREEN CURRENT, OTHERWISE
THE FRINT POSITION COULD BE SET

FOR THE WRONG SCREEN, LEAVING THE MAIN
SCREEN AT 1TS FREVIOUS FOSITION

LD EC.#1B21

CALL M1&01 1

CAaLL 3545 3 USE THE A.O.M. CALL DETAILED IN CHAFTER 2
FOF DE

FOP AF

PUSH aF @ THIS ENTRY LEAVES THE CURRENT FRINT
PUSH DE FOSITION AND USES THE MAIN SCREEN

LD A2

CALL ®r&ud

LD A,255 i SEY SCROLLS BEFORE scroll 7 MESSAGE

LD 12346920,/ ¢+ THIS IS THE SYSTEM VARIABLE SCR CT.
Lo 13 3+ ENTER (CARRIAGE RETURN AND LINE FEED!
RST i THE PRINT RESTART

FOF

POP

INC A 3 TH1S ENTRY USES THE CURRENT STREAM

DEC DE : SET DE TO FDINT TD THE START MARKER
IR I,PRINTF ; IF A WAS #FF THEN USE THE ADDRESS IN DE
A

LD DE,MESS-1 : POINT DE 70 THE START OF THE MESSAGES

INTFP CALL 3082 : FRINT MESSABE R.O.M. ROUTINE

449 RET
430 MESS. EDV 1
o0
MESS 000)
PRINAT FA33
PRINTF F44C
o

450 § THIS SUBROUTINE WILL SEARCH MEMORY FDR A STRING WHICH
460 3 MATCHES THE STRING STARTING AT SCHAR (SEARCH CHARACTER)
470 3 AND ENDING WITH A MARKER BYTE OF 255 (#FF)

4BC & IF A MATCH IS FOUND THE START OF THE RECORD CONTAINING
490 i THE MATCH 1S THEN FOUND, BY STEPPING BACK TO A BYTE
S00 3 WITH BIT 7 SET. IT IS THEN PRINTED BY THE PREVIOUS
510 § SUBROUTINE.

520 5

30 & IF THE END OF EACH RECORD 1S HARKED WITH A #8D

S840 i THEN IF THE CONTENTS OF SCHMAR IS #FF (IE FIND NOTHING)
90 3 ERCH RECORDS END WILL BE FOUND INSTEAD

G605

570 3 ON EXIT THE BC REGISTER PAIR WILL EITHER HOLD THE ADDRESS
580 i OF THE START OF THE RECORD CONTAINING THE STRING

590 i OR O IF THE STRING WAS NOT FOUND

8U0 &

810 3

420 MC2 ORG wFaSO

&30 FINDIT LD HL,SCHAR 3 THE MAIN ENTRY POINT

440 LD A, (HLY

&850 CP 'WFF

480 JR N2,SERRCH
&70 INC HL
B0 LD (HL),A

&0 DEC HL

T00 Lp A, %80

710 LD (HLI,A

720 SEARCH PUSH HL

730 LD HL,30002

740 Lo BC, 38000

m

D3

EDE1
2044

28
22€EF4
EDAECFS

EDSEF2F 4
a7
ED5Z
S04
3]

28
CB7E
29FB
€5

ES
CDsBOD

D0
ce

ZICBFa
ES

7E
ED4BECF 4
2AEEF4

0000
3275
3175

1

1030
1040

1090
1100
1110
1130
1130
1140
1156
1140
1
1180
1170

1200
1210

LOoK Mo
LOOYON

HAVEE

FOUND

(LN

BACKMO

0 SCHAR
LOCCNT
LOCFND
MEMFOS
LImiT
0 PMESS
PRINAT

Appendix G 113
FOP DE
PUSH DE
CPIR 3 LOOY. FOR THE FIRST CHARACTER
JR NI,NOTFND i 1F THE STRING 15 NOT FOUND
DEC H
LD (LOCFND}.HL : SAVE THE LOCATION WHERE FOUND
LD (LOCONT),BC § AND THE COUNT LEFT 10 6O
FOF DE
PUSH DE
ING WLt NOW EACH CHARACTER 18 TESTED IN TURN
Ex DE,HL
INC
Lo A, (HL)
ce 55 AND WHEN THE END OF THE STRING
JR T.FOUND 3 IS FOUND THEN THE STRING HAS
BEEN FOUND
Ex DE.HL
CF (ML)
dR I,MAYBE
LD ML, (LOCFND* : IF THE MATCH FAILS THEN LOCY
FOR THE FIRST CHARGCTER QBATM
INC HL
LD A, (SCHAR)
JR - LOOKON
FOF HL
LD HL,(LOCFND) & FIRST IT IS CHECKED IF THE FIND
DEC W 3 IS IN THE ALLOWED AREA
Lo (MEMFOS), HL
INC HL
FUSH HL
LD DE, {LIMIT)
AND A
SBC HL.DE
JR NC,NOTFND 3 AND [F NOT IT IS DISALLOWED
POF HL
DEC WL = BEFORE THE ENTRY Can BE FRINTED
BIT 7,(HL) t THE START MUST BE FOUND
IR 2.BACKMO
INC HL
PUSH HL
PUSH #L
CALL 3475 CLEAR THE WHOLE SCREEN
POF DE
LD A, ¥FF SIGNAL TO FRINT ROUTINE THE ADDRESS
CALL PHMESS : IN DE IS 70 BE USED
POF 8L
RET
Tl FRINT MESSAGE T
FRINAT
HL
BL, 0
HL, SCHAR ¢ THIS 1S THE ENTRY POINT TO LOOK FOR A
HL z FURTHER OCCURENCE OF THE FIND STRING
A, (HL)
EBC, (LOCCNT
HL, (LOCFNDY
HL
LODKON

DEFS
DEFW
DEFW
DEFW
DEFW
EQU

EQuU

30002
30001
62400
#FAZa
BF4TD

THE COUNT LEFT AFTER A SEARCM
i THE LOCATION OF & FIND
ONE BEFORE THE FIND LOCATION
THE LIMIT OF MEMDRY THAT CAN BE USED
HESSAGE FRINTING ROUTINE, SEE FREVIOUS
SUBROUTINE IN THIS APPENDIX

114

Fass

The Spectrum Qperating System

2 grrors:

BACKMO FAQE
FINDIT F4S0
LIMIT FaF2
LOCFND F4EE
LOOHON Fas?

nc2

t770

NOTFND FABL
FRINAT F4T3

Fass

FACE
F4CB
FALE
F4CF
Fapo
FaD1
Fap2
FaDs
FaDs
Fape

Fapa
FaDC
F4DD
FanF
F4E}

F4E3
FaES
F4E7
Fagy
F4ER
FAED
FAEF
FaFo
FaF1

F4Fz2
FaF3
FaF4
FaF?
FaFg
F4FA
F4FE
FaFD
F4FE
F4FF
F500
F301

F502
F305
F508
Fsoe
F509
FSoa
FS0B
FS0n
FS0E
FSOF
FS10:

1 errors:

CDCEF4
78

B1

ce

ES

=]
3EO2
CODSFa
3ETF

DBFE
iF
2030
3ETF
DBFE
CBSF
2826
3IEFE
DEFE
CeS?
20E7
ct
EL
€5
Cs
El
010000
CE7E
2%
0z
28FAQ
111
£s
ES
ci
ES
2002F5
A7

CONTLK FARE
FOUND Fagh
LOCENT F4EC
LOOKMO Fase

MAYEE F47%

MEMPOS F4FO

FRMESS FaZ4

SCHAR FACE

(0]

1360 5 THIS SUBROUTINE WILL ERASE A RECORD WHEN USED WITH THE
1370 5 PREVIOUS SUBROUTINE

1380 3

1390 3 ON EXIT THE BC REGISTERS WILL CONTAIN THE AMOUNT OF MEHORY
1400 3 RECLAIMED

1810

1420 3

1430 nC3 ORG #F4CE

1440 XREC CALL FINDIT 3 THIS 1S USED TO FIND

1450 XRECON LD AE & THE ENTRY TO EE ERASED
1880 bR C

1470 RET 2% BC = 0 IF NOT FOUND

1480 PUSH HL

14%0 FUSH BC

1500 Lk A2 MESSAGE 2

1510 CALL PRINAT

1520 CHECKB LD A4127 THIS IS DNE WAY OF SCANNING
153G 3 FOR REYS PRESSED., SEE CHAPTER I
1540 in Al IWFE)

1550 RRA

1550 JA NC,BREAK

1570 LD A, 127

1580 N A, (4FE)

1590 BIT 3,A

1600 IR T.NEXTR

1410 LD A.253

14620 IN A, (WFE)

1830 BIT 2.4

1880 JR NZ,CHECKE

1850 FOF BC

1660 FOF WL

1870 PUSH EC

1680 PUSH BC § BC = ETART OF RECORD

1890 FOF HL

1700 LD BC.O

1740 F_END BIT 7,(HL)

1720 INC HL

1730 INC BC ; THE END OF THE RECORD

1740 IR 1.F_END 3 HMUST BE FOUND

1750 POF DE 3 NOW EVERYTHING APOVE THE
1760 PUSH BC RECORD UP TO LIMIT CAN BE BROUGHT
1770 PUSH HL : DOWN TO DELETE THE RECORD

1780 POP BC

1790 PUSH HL

1800 LD HL, (LEMIT)

1810 AND A

1820 SEC HL.BC

1830 PUSH HL

1B40 POP BC

1850 POP HL

1850 LDIR

1870 POP BC j THE AMOUNT OF GAINED SFACE
1B8¢ RET

1890 BREAY POP WL 3 CLEAR THE STACK AND SHOW NOT FOUND
1900 POP BC

Appendix G 115

F3I1 01000 LD BC,u
FSia (9 RET

FS515 E1 HEZTR POF HL 3 REETORE THE OLD DETAILS AND LOOK OM
FSls C1 FOF EC

FS17 COATFS CALL CONTLF

FS1A CICEFA JF XRECON

Fass 2 srrors

*WARNINGs FINDIT absent
SWARNINGs PRINAT absent
SWARNINGs LIMIT apeent

*WARNING® CONTLI absent
Table used: 147 érom

Fass | errors
THIS ROUTINE ALLOWS ¥EYBOARD INFUT TO BE FLACED INTO MEMORY
A5 WELL A5 ECHOED TO THE SCREEN,

IT CATERS FOR FORWARD AND BACKWARD CURSOR MOVEMENT

AND INSERTION AND DELETION OF CHARACTERS

iT ALSD OFFERS A HELF PAGE AND A MENU

AS SHOWN MERE IT IS FOR USE WITH THE OTHER ROUTINES
IN THIS SECTION 4S5 A DATABASE,
BUT 17 CAN EASILY BE TAILORED TO SUIT MANY FURFOSES.

THE ROUTINE CHECKS FOR MEMORY OVER THE LIMIT BEING USED
AND WILL ETOP INPUT AT THIS STAGE

T HAVE PUT A SECOND INFUT ROUTINE IN FOR FIND INFUT
AS WELL AS EXTRA INFUT ROUTINES FOR SELECTION OF OFTIONS
TMIS 15 INTEMDED TO DEMONSTRATE THE DIFFERENT wavs

OF GETTING INFUT, AND SOME OF THE FPROBLEMS MENTIONED

IN THE MAIN TEXT OF THE BOOK

+ THIS 1S THE CALL ADDRESS FROM BASIC.

FSi1D MCa ORG #FSID

FSID JEAD 0 UER LD A,MAD : FIRST FREE MEMORY IS CHECKED
FS1F 2A1FFS 2240 LD HL, (WImIT)

FS522 EDSBR22FS 2250 LD DE, (CHPOS)

F526 AT 2260 AND A

F527 EDS2 2270 SBC HL,DE

F529 DIZT4FS 22 dF NC,NOTFUL

FS2C IEOY 2290 L A9 % MESSAGE 7

F32E COZEFS 2300 CALL PRINAT

FS31 C3DFF& 2510 JF PMESSA

F334 ES 2320 NOTFUL PUSH HL 3 AND ALL MEMORY ABOVE THE LAST RECORD
535 C1 330 POF BC 3 AND BELOW LIMIT IS CLEARED
F536 15 2340 PUSH DE RAND MARKED AS FREE

F537 EL 2350 POF HL

Fs38 13 2380 INC DE

F53% 17 370 Lo (HL) . &

FSIA EDBO 2380 LDIR

FS3C 2A22FS 2390 INPUTA LD HL, (CHFOS) ¢ AND THE START OF THE NEXT RECORD
F53F 28 2800 CEC

FSa0 7E 2410 LD A, IHL)

FS41 FEBD 2420 [~ L]

FS4% 2801 2430 JR I,ATBEE

FE45 23 2440 INC H

FS85 3480 2450 ATEEG LD (HL), #8D

FS48 2248FS 2450 Lo (CUPOS) ,HL ¢ IS MARFED, AND THE START NOTED
FS4B CD&BOD 2470 CALL 3435 : THE SCREEN 1S CLERRED

FS4E CDAEFS 2480 CALL OPENI

116 The Spectrum Operating System

FS51 01Zng 1450 LD EC,R1B21 ¢
F553 C 250 CaLL 7535
F557 3EO7 510 Lo Ry 8
F559 CDS9FS 2520 CALL PRINT
FSSC 3E01 2530 L0 a,1
FSSE CDSEFS 2540 CALL PMESS
FS&1 aAF 2350 X0 A

FS62 I262F5 2540 LD (WFLAG) A
FS65 012116 2570 LD $
F5&8 CODFOD 2580 CALL 2343

FS4E SEIE .
F540 D7

FS6E CDO2FT

FS71 CD4EFS 2620 INFUT CALL OFEN)
F574 CODABLD 26T0 INFL CALL K10AB 3

F377 380 2840 JR C.VEYFRE :
FS5739 FDCEO2SE 2650 RES 3, 11Y421 3
FZ7D 1BFS INFL

FS7F FEOB B

FSBi 2B4E 2. BACK1
FS8T FEOF

FS585 CAlIF7 2. RIGHTL
F588 FEOC 12 3

FS8A CASCF7 I.DELETE
FS80 FECS 197 &
FSBF Ca T

F5S0 FECD 205 ¢
FS92 CACFFT I, HELP
FS95 FECo 198

FS97 CRBEF7T 2780 JP 7,AND
FS¥A FECZ 790 cP 193 3
FES8C CADSF& 2800 ¥ 1,L00KM
FS9F FECC 810 cF 204 3

FSA1 CABTF7 820 JP 2,LPRINT
FSA4 2A4EFS 2830 LD HL.(Curos)
FSA7 23 2840 ING ML 3

FSA8 FI 2850 FUSH AF 3

FIAT JALIFS 2861 LD A, IWFLAG] &
FSAC a7 2870 AND A

FSAD 2804 JR 1.DFTHEN !
FSAF 7E LD A MHLY) 4
FSBO FESD EF wED

SBZ CR4OF7 2910 JF 2,ENDREC
FSBS F1 2720 DV THEN FOP AF

F3B& FEE2 CF 228 :

FSEB 283K JR Z,870F
F3EA 77 Lo (HLY A 3
FSEB 224BF3 Lo {CUPOS) KL 3
FSEE FEOD CF 12
F3CO 2006 JR NILFEYOUT 3
FSC2 CDC2FS CALL OPENZ
FSCS CDOZF7? CALL CURSOR
FSCB CDC2FS REYOUT CALL OPENZ
FSCE D7 4] RST 16

FSCC CDOZF7 CALL CURSOR 3
FSCF 18A0 JR INPUT 2

FSDL 2A48FS 3080 BACK1 LD

HL, (CUPOS! 3
F3Da 7E 3090 LD A (HLY 5
FSDS CB7F 3100 BIT 7,A
F3D7 z098 3l IR NZ,INFUT
FSD? FEOD 320 e 1
FSDE 21 3130 DEC HL
FSDC 2248F5 3140 LD (CUPOS),HL
FSDF 2008 3150 JR NZ.E_ON
FSEL CDELIFS 3160 CALL BACK 3
FSE4 1B&F 3170 IR FINRET ;
FSE& CDCIFS J1B0 B ON CALL DPENZ

AND THE PRINT FOSITION IN THE
LOWER SCREEN SET TO THE TOP LEFT
HESSAGE 7

THE COPYRIGHT
AND THE EDIT HODE FLAG IS CLEARED

SET LINE 2 COLUMN ©

THIE 15 THE KEYBOARD INPUT
ROUTINE, CARRY SET IF NEW KEY PRESSED
THIE IS Tv FLAB, SEE WAIT INPUT CHAF.Z

NOW ANY SPECIAL FUNCTION FEYS PICKED

CAFS SHIFT AND O
OR

STEP

NoT

0

NOW IT DS CHECKED THAT THE END OF @&
RECORD HAS NOT BEEN REACHED. !F IT HAS
NO MDRE INPUT IS ALLOWED

BUT IF NOT [N EDIT MODE 1T MUST BE
FREE MEMORY

STOP WHICH ENDS INPUT

THE CHARACTER CODE 1S FUT INTO THE
CURRENT MEMORY POSITION AND THIS IS
UPDATED FOR NEXT TIME

IF AN ENTER REMDVE THE OLD CURSOF

ECHD THE KEY TO THE SCREEN
AND MOVE THE CURSOR ALONG
GO BACK FOR THE NEXT PEY

THIS HOVES THE CURSDR AND CURRENT
HEMORY FOSITION BACK

BUT GOING BACK PAST AN ENTER
MEANS A RE-FPRINT AND CHANGE OF MODE

FSE? COOZF?
FSEC 3ECB

FSEE D7
FSEF CDO
FSF2 C371FS

Feli) COSBOD
F&13 AF
F614 3262F5
F&l7 JE04
F&19 COSEFS
F&1C CDAEFS
F&1F CODELS
Fe22 FEOD
F&24 CALDFS
F&D7 F&20
F429 FE&S
F&2B 2819
FeZD FE&&
2B1E
FE&T
CADSF&
FE?S
CA3BFE
16DF

F&lD CDAOFe
Fhal CDAOFS
FoAT 2A22F5

FedF CDAOF&
FaS2 CBS2FS
FeS3 78
F&Ss B1
F&57 CRDFF&
F&5A 0B
FaSB EDAZAEGFS
F&SF 2RSFFa
Fas2 AT
Fo& ED4Z
F&s5S 2245F8
Fo4B JEML
FbbA I262FS
F&aD CD4EFS
F&70 012118

31%0

20

ST0F

CALL CURSOR

Lo
RST
CALL
aF

DEC

3280 ENDIS LD

G0

INC

Lo

A8

16
CURSOR
INFUT &

PUSH HL 1

HL

A HLL 3
HL 3

LEEN

NI ENDIS
HL

(CHFDS |, HL
HL

A, (WFLAG
a

HL
NZ,STOFDON
(CHFOS) , HL

HL
A, .80
THLI LA

0 STOPON CALL 435 3

10R

A
(WFLAG) . &
a4z

CALL FMESS
MENUIN CALL DPEN1

CALL ®ISDE

KINFUT CALL FINFT 3

CALL IREC

Lo
anp
SBC
LD
*

HL, (CHFOS) 3
A

HL,BC 3
(CHFOS) JHL
PHMESS4

FINFUT CALL FINPT 3

CALL FINDIT
FINRET LD A,B 3

ok C

JF I,PMESSH

DEC BC

LD (CUPDS),BC 3

LD HL.(MEMPOS) :

anND A

SBC HL,EC

LD {(CURSF) HL

LD Al

LD (WFLAG).A

CALL OPENI

LD BC.#1821

Appendix G 117

BACK FOR NEXT CHARACTER

IF STOP IS PRESSED' THE END OF TwF
RECORD MUST DNLY EE MARKELD

IF IT WAS & NEW ENTRY. BUT IN wup
CASEE THE START OF FREE MEMOF
FOUND &ND THE FOINTER UFDATEL

THE SCREEN 1S CLEARED
THE HMODE FLAG CLEARED

AND THE MENU DISFLAYED

THE WATT INFUT ROUTINE, SEE CHAPTER I

THIS 15 THE ERASE ENTRY FDUTINE START
THE GRINED SFACE 1S ALLOWED FOR BY

MOVING THE START OF FREE MEMDRY
DOWN BY THAT AMOUNT

THE START OF THE FIND ENTRY ROUTINE

IF THE ENTRY IS NOT FOUND GOTO MENU

OTHERWISE SET EDIT MODE WITH THE
CURSOR UNDER THE START OF THE FIND

118 The Spectrum Operating System

F&73 COD9UD
F&76 JEOE
F&78 CDS9FS
F&7B 3EO7
F&7D CDS9FS
F&80 CDCIFS
F&BT 012118
F&84 CODIOD
F&BY EDD

4BLEF A

F&98 CT
F&99 CDITF7
F&SC Ci
F&D 0B
F&9E 1BF3

F&AD CD&BOD
F&As SE0S
F&AS CDSEFS
F&AB JEJE
F&hA D7
F&AE 2ICEFS
FBRAE 22AEFS
FaEl Z1ABFE

F&Ba ES
F&aBS CDAEFS
F&B8 CDDELS
F&BB EL
F&BC FEOD
F&BE 2B1&
F&Co FE2O
FeC2 I8F0
F&Ca 77
F&CS 2T
FbC& ES
F&CT COC2FS
F&CA D7
F&CE E!
F6CC ER
F&CD ZRAEFL
FsDO A7
FeD1 EDSZ
FaDI EB
F&D4 20DE 4I90
FaDé T&FF 4400
FeDB C¥ 4410
4420
4430
F&D9 CDDIF& 4440
F&DC C3S5F& 4450

24560
4470
FEDF 0&03 4480
F&EL CDA&CE 44390
F6EA JEO4 4500

F&E& CD2EFS asiu
FSEF C3ICF& 4520
as53I0
4540
4550
4560
4370

CALL 2545

Lo AR

CALL PRINT

Lo A7

CALL PRINT

CALL OPENZ

LD BC.#1821

CALL 3545

Lo A3

RST 14

CALL CURSDR

LD BC, (CURSF)
RIMORE LD 4,5

ok C

JP Z7.INPUT

FUSH BC

CALL RIGHTS

FOF EC

DEC BC

JF RIMORE

FINPT CALL 3435 :
Lo A5 3
CALL FMESS 3
Lo AL2 1
RST 1& 3
LD HL.SCHAR-3Z
Lo CIN_LIMI JHL
LD HL . SCHAR

NPUTF PUSH HL &
CALL OPENL
CALL WISDE

P 133
JR 1,SETFIN

IR C.INFUTF

LD fHLY.A

INC HL

PUSH HL

CALL OPENZ

RST 14

FOP HL

EX DE.HL

LD HL, fIN_LIHI

AND A

SBC HL,DE

EX DE.HL

JF NI, INPUTF
SETFIN LD (HL), 255

RET

e .

00km CALL CONTLE ¢
JE FINRET 3

PHESSS

CALL PRINAT
JP MENUIN

THE CONTROL CODES

THIE 15 SIMILAR TO THE INFUT

INPUT ROUTINE EARLIER BUT 17 DDES NOT

ALLOW ANY ALTERATIONS
AND LINITS THE INPUT BY STOFPING
WHEN THE FOSITION REACHES IN_LIM

THE ACTUAL INPUT SUBROUTINE

TERMINATED EY PRESSING ENTER

THIS LOOKS FOR A FURTHER OCCURENCE OF

A FIND STRING

CLEAR THE BOTTOM THREE SCREEN LINES
CHAFTER 2 EXPLAINS
THE MENU

DOVERL AND OVER Z REFRODUCE THE
SAME BASIC COMMANDS, BY FRINTING

COF7F&
F1

cs

CD17F7?
C371FS
CDC2FS
JRABFS

4580 OVER1 PUSH
4590 PUSH
asi0 LD
4510 RST
4620 LD
8830 RST
4640 FOF
4850 POP
4540 RET
4470 DVERO PUSH
4480 PUSH
4490 LD
a700 RST
4710 Lo
4 RST
4730 FOF
4740 FOP
a750 RET
4760 CURSOR PUSH
4770 CALL
4780 Lo
4790 RET
4800 Lo
2810 RET
a820 CALL
A830 FOP
4840 RET
4830 RIGHTT CALL
840 8
4870 RIGHTS CALL
4580 LD
4830 INC
4300 Le
4510 EIT
RET
cF
4930 RET
4950 cP
4980 JR
4970 cP
4984 RET
4990 ONRITE LD
CaLL
CF
IR
CALL
5040 Lo
S0S0 RITEON RST
5060 CALL
070 RET
5080
5090 3
S100 ENDREC PUSH
sS1e Lo
5120 CALL
5130 LD
5140 CALL
5150 El
5160 Lo
S170 WAITL HALT
s180 DINI
5190 FOF
5200 FOP
5210 REENTR LD
5220 DEC
s2%0 DEC
5280 INC
5250 JF
5260 ¢
5270 3

AF 3§
OVERL 3
A5

16

AE

16
OVERQ
AF

RIGHTS
INFUT
DFENZ &

HL, (CUPDS)

HL 3
A, (HL)

{CUPCS) , HL

CURSOR

13
1,RITEON
OVER1
A.32

16
CURSOR

A6
FMESS

B,50 3
WALTL

HL

aF

HL ,LOCFND

1HL}

tHL)
LOoOkM

AppendixG 119

THIS FRINTS THE CURSOR AND MOVES

THE PRINT POSLTION BACH OVER IT

THIS SUBROUTINE MOVES THE CURSOR

RIGHT ONE POSITION AND POINTS THE

MEMOTY POINTER TO THE NEW CHARACTER

IF ENTRY 1S ATTEMPTED BEYOND THE
END OF A RECORD A WARNING 15 FLASHED
THE BOTTDM OF THE SCREEN 1S CLEARED

JUST IN CASE IF THEY WERE OFF
THIS 1 SEC PAUSE WOULD BE FOREVER

120 The Spectrum Operating System
o
F75C 2ne8F3 528 BELETE L HL . (CUFOS)
FISF 23 52 ING HL
F7ail 7E LD A.tHL)
F7&1 CHYF BIT 7.A
F763 CI7IFS JF NZ,INFUT
Fles ES PUSH HL
F767 EY PUSH HL
F768 2AIFFT LT R WINITY
F7&E D) FOP DE
Fr4C AT anp A
F76D EDSZ SBC HL.DE
F74F €S FUSH HL
F770 €1 POP BC
FrrL ol FOF DE
F772 DATIFS JF . INPUT
F775 CA71FS JF 1. INFUT
F718 DS 440 PUSH DE
F779 E) 5450 POP ML
F774 23 546t INC ML
F778 EDEO sS40 LDIR
F77D 2A22F3 5480 LD HL, (CHPOS)
F780 28 Sas0 DEC HL
F78! 2222F5 LD {CHFDS) . HL
F784 ZA4EFS LD ML, (CUPDS)
Fr87 2= INC HL
F768 COEIFS 5530 CALL BACK
F78E CI35F5 9540 JP FINRET
5550 =
SS80
F78E 2A48FS 3570 AND LD HL,(CUPDS) :
F7v1 22 5580 INC
F792 ES 5550 PUSH HL
F792 JAIFFS Se00 LD HL, (LINIT}
F719& DI 810 POP DE
F797 A7 3820 AND B
F798 EDS2 5430 SBC HL,DE
F798 ES 5640 FUSH HL
F798 C1 5650 FOF BC
F79C DS 5640 FUSH DE
F790 EDSBiFFS Sa70 LD DE, ILIMIT)
F7A1 DS S680 FUSH DE
F7A2 EL 5450 POF ML
F7az 28 700 DEC ML
F7R3 EDBE 5710 LDBDR
F7a4 2822F5 720 LD HL, (CHPOS)
F7a% 23 §730 INC H
F7aa 740 Lo {CHFOS) . HL
F7AD El 5750 FOF ML
F7AE IE20 S780 LD A,32
F780 77 5770 LD (HLY A
F781 CDELFS 5780 CALL BACK
F7B4 CI55F6 5750 JF FINRET
5800 §
5610 &
F787 2AABFS 5820 LFRINT LD HL. (CUFOS) &
F7BA 23 Se30 NC HL :
F7BE CDE{FS 5840 CALL BACE 3
F7BE CS 5850 PUSH BC :
F7BF ZEOT SBa0 Lo A3
F7C1 CDOllé& sero CALL #i&0]
F7C4a DI 5880 POF DE
F7CS DS 5890 PUSH DE
FICé 1B SS90 DEC DE
F7C7 AF 5910 XOR &
F7Ca CDCBFT 5920 CALL PRINTP
F7CB c1 5930 FOP BC
F7CC CI35F4 5940 JF FINRET
2950
5960
F7CF CD&BOD 5970 HELF CALL 3435

THIS WORKS THE SAME AS THE DELETE
RECORD BUT FOR ONE CHARACTER

AND THIS IS THE SAME IN REVERSE

THIE USES STREAM THREE IN AN IDENTICAL
WAY AS STREAM 2 FOR THE SCREEN,

IF AN INTERFACE IS CONNECTED

WHICH RECOGNISES LPRINT IT WILL WORK

F7D2 JEOA 5980
F04 CDSEFS 5990
F7D7 SEBF
F70% DBFE
F7DB E&OT
F70D 20F8
F7DF
F7E2 2
F7ES 23
F7EE TE
F7E7 Z1ABF&
F7EA 77
F7ER 23
FTEC 3&FF
F7EE C353IF7

WAITE

Pazs 2 errors: 00
SUARNING® LIMIT absent
+WARNING* CHPOS absent
SUWARNINGs PRINAT absent
SWARNING® CUFOS absent
*WARNING+ OPENI absent
SWARNING® PRINT absent
*WARNING# FMESS absent
+WARNING# WFLAE absent
SWARNING® OPEND absent
#WARNING+ BACK absent
WARNING SAVEL absent
+WARNING# XREC absent
#WARNING® FINDIT absent
SWARNING* MEMPOS absent
*WARNING» CURSF absent
*WARNING#® SCHAR absent
SHARNING# IN_LIN absent
*WARNING® CONTLK absent
*WARNING® LOCFND absent
*WARNING® PRINTP absent

AppendixG 121

LD A410 : THE HELF PAGE
CALL PMESS
LD A, NBF

IN A, (WFE!

1
JR NI, WAITE
LD HL. (CUPDS)
LD (LOCFNDI,HL
INC MU
LD AL (AL
Ly HL , SCHAR
LD (HL),B
INC HL
Lo (HL) , 0FF
JF REENTR

Table used: 751 érom 1219

Pass 1 errors: (0

F7F1
F7FL

6130 ¢ THIS 1S THE START OF THE SAVE AND LOAD ROUTINES

6140
4150
A160
170
6180
&190
£200
JAFIFT &£210

t FIRST THE LENGTH OF THE RECORDS 1S CALCULATED,
1 WITH AN OVERHEAD FOR AN END-MARFER
+ AND LENGTH BYTES FOR RE-ENTRY AFTER LOADING

MCS ORG #F7FL
SAVEL LD HL,(CHPDS!

i FIRST THE END OF RECORDS IS PUT INTO
LD (29998) ,HL §

THE START OF THE AREA TO BE SAYED OR

F7F4 222E75 4220

F7F7 112675 5230 LD DE,29998 i LOADED

FI7FA A7 6240 AND A

F7FE EDS2 4250 SBC ML, DE

F7FD 23 6260 ING HL

FIFE 23 8270 ING HL

FIFF ES 6280 PUSH HL

FBOO JEOE &290 Lo Al

FBO2 CDO2FB 6200 CALL PHESS

FBOS 0419 &310 L B35 25 INTERRUPTS 1/2 SECOND

FBO7 FB 632 EL. 7 JUST IN CASE
6330 3
6340
6350 % THIS WOULD BE BAD PLANNING
4380 & BUT IT IS TO DEMONSTRATE THE
4370 & USE OF THE HALT FOR TIMING
4280 3

122

Faoe
FB0S

FBop
FBOD
FBOF
a1l
FBla
FBl&
Fs18
FB1A

Fass

The Spectrum Qperating System

b &390 HOLDIT HALT 3
10FD &40 DINZ HOLDIT ;
&810 3
64240 ;
JEBF 6430 SOLDEC LD A, WEF
DEFE 440 N A, (%FE)
Es02 L4550 anNp 2
CA1IFE ba50 JP 1,L0AD
JEFD 5470 LD A, #FD
DEFE LAB0 IN A, (NFE)
E&u2 L4390 AND 2
JOEF &S00 JR NI, SDLDEC
4510 ;
2 errors: OO0

WARNING CHPOS absent
*WARNING® FMESS absent
#WARNING® LOAD absent
SWARNING® M_OR_T absent
*WARNING® LORET absent
WARNING HLSAV absent
WARNING BCSAV absent
SWARNING® MHEAD absent

Table used: 243 from 521

F3ss | errors: O
4520 3
4520 3
4540 3
86550 DRG WFBIC
cy LS&0 SAVE POF BC
CDIDFS 5570 CALL H_OR_T :
£580 3 skl
8590
Fezo ! JF C,MSAVE
1IN CHAFTER 2
4650 3
FB22 TS 56400 TSAVE PUSH EL 3
8670 3
FE23 110D0C 6580 LD DE,13 3
FB26 AF 56940 WOR A
FE27 COC&04 5700 CALL 1222 ¢
6710 ¢
FB2A DI 4720 FOF DE ¢
FBZE DD2IZETS &730 LD 12,29998 :
&730 ¢
FB2F JEFF &750 LD A,NFF ;
F331 COCA04 6740 CALL 1222 3
FE34 FE &770 El 3
FB3S CI35F8 5780 JF LORET

Fass 2 errora: 00

SWARNINGs M_OR_T absent
*WARNING® LORET absent
#WARNING® HLSAY absent
*WARNING+ BCSAY absent
WARNING MHEAD absent
Table used: 160 from 407

TD HAKE SURE THAT S IS NOT TAKEN
FROM THE MAIN MENU FEYPUSH
NOW THE KEYBOARD 15 SCANNED

THIS IS THE DECISION MAKER FOF TAPE OR MICRODRIVE

RETURNS WITH CARRY SET IF M FRESSED
ALSOD SETS THE HEADER

THIS 15 T0 SAVE A HEADER AND & MAIN DATA BLOCH TO TAPE
THE HEADER 15 SPECIAL. SEE SAVEing % LOADing

EC = LENGTH OF THE MAIN BLOCH
I¥ IS ALREADY SET TO THE START
THE HEADER 1S ONLY 13 BYTES LONG
A TO BE 0 SIGNALLING HEADER
R.0.M. ROUTINE DETAILED IN CHAPTER 2
TD SAVE HEADER
RESTORE THE LENGTH OF THE MAIN BLOCK
POINT IX TO THE
ADDRESS TO START SAVEing FROM
SIGNAL HAIN BLOCK
USE THE R.0.M. ROUTINE AGAIN
IT RETURNS WITH INTERRUPTS OFF

Fags | errorsi 00

FB38 ORG

FB38 2149F8 LD

FESE 22EDSC LD

Exy

FB3F 223FFB 9006 LD

F342 D9 6917 Exx

FEAZ ED4I43F3 5920 Lo

FR47 CF 5330

FRag 32 &340

FB49 EL 5550

Faaa Et 5960

FBAE D1 £970

FBAC 2ATDSC 4780 Lo

FBAF ES 6990 PLSH
7000 1

FBSO Z1e/FB 7 Lo

FE53 ES 7 PUSH

FBS4 ED7I305C 70 LD

F858 DS 7040 FUSH

FBS% CY 705 RET

Fass T errors: 00

*WARNING® HLSAY absent

SWARNING# BCSAV absent

*WARNING® MHEAD absent

SUARNINGs LORET absent

Table used:s 124 from 287

Pass. 1 errors: @)

FBSA ORG
FB5A CDSAFB MSAVE CALL
FBSD COSOFB CALL
FE&0 CD&OFS CALL
FB&3 FDCH7CEE SET
F847 CD7FIE 71 CALL

7150 %

FB&A EI 7140 MSLRET POF
FB&E 223D5C 7170 LD
FB&E FE 7180 El
FB&F DY 7190 EXX
FB70 2A70FE 7200 LD
FEe7z b9 210 Exx

FB74 CS74FE

Pass 2 errors:

WARNING RSWAF absent
SWARNING® MHEAD absent
SWARNING* VARSET asbsent
WARNING HLSAV absent
WARNING LORET absent
Table used: 59 from 1BE

wFEg
HL . ROROUT

1227891 HL

THLSAY) (HL

(BCSAY) BC

HL, (23613)
HL 3

HL.MSLRET
HL 3
123812) 5P

DE i RESTORE

WFESA
REWAF
MHEAD
VARSET 3
S.(1v+124).
®IETF ¢

HL 3
123613) HL

HL, (HLSAV)

LORET

Appendix G 123

THIS FAGES DUT THE 14k R.O.M.
SEE CHAPTER 3 FOR FULL DETAILS

THE SUBROUTINE USED BY THE R.O.M.
15 USED BY HOD¥ CODE 32
50 SET 10 RETURN TO THIS ROUTINE
THE STACE 15 T0 BE MUCIED ABOUT
S0 IT 1S SAFER TMIS WAY

USE THE HOD¥ CHDE

THE TWO RETURN ADDRESEES

MUST BE REMOVED

AMD THE RETURN FROM THIS SUBROUTINE
THIS IS ERR SF SEE CHAPTER 4

SAVE THE POSITION OF THE ERROR RETURN
OM THE STACK FOR LATER

STACK THE NEW ERROR RETURN ADDRESS
AND FOINT ERR SP TD THAT
THE RETURN ADDRESS

THIS IS THE SUBROUTINE TO SAVE TO MICRODRIVE, SEE CHAF T

SET THE HEADER
AND THE SYSTEM VARIABLES
SIGNAL SAVE WITH FLAGS 3
IN FACT A CALL IS NOT NEEDED
AS RETURN IS VIA THE Leb ERROR (1 OF
RESTORE THE ERR SF SYSTEM VARTABLE
ERR SF
TOTALLY UNNECESSARY BUT SAFE

AND THE HL™ REGISTERS

NOTE THAT THE 14K R.O.M, 15 NOW
FAGED IN, BECAUSE OF THE RETURN VIA
A BASIC ERROF IN THE lék R.O.M.

124 The Spectrum Operating System

Appendix G 125

Fass 1 errors: 00 Fan4 CaLL 80z
Fan7? RET W 3 BREAI PRESSED
FB77 7240 #FE77 FBDa TESTHE LD 1K, 5CHAR 5 THE HEADER NAME 15 MOW CHECIED
FB77 21D9sC 7250 VARSET LD HL,23789 3 THIS IS DETAILED FULLY [N CHAPTER 3 FEDC LD HL,SCHARS LS
FB7A 364D 7260 LD (HL) , “M* F8DF LD B. L1
FB7C 210A00 7270 LD HL, 10 FBEL 7E TESTLE LD A, (HL)
FB7F 22DASC 7280 Lo 1237707 ,HL CcF {1 ’
FBAZ 2172F9 7250 LD HL,SCHAR+1 IR MI.TLOAD : MISMATCH SO WROMG HEADER
FBBS 220CSC 7300 LD (237720 ,.HL INC IE 3 THE HEADER MATCHES S0 DD THE LORD
FBEB 210100 7310 LD HL, i FBES ING HL
FBER 22D45C {1 LD (23746) (HL FBER DINI TESTLP
FBEE C9 RET FBEC LD 1%,29935
FEFO LD E.1WLI
FEFL 22 ING HL
FBFZ Sé LD Dy tHL
t THIS IS THE ROUTINE TO LDAD FROM A MICRODRIVE 3 SCF 3 SIGNAL LOAD
i FULL DETALILS ARE GIVEN IN CHAFTER 3 FBF& ZEFF LD A, #FF : HAIN DATA BLOCH
: FBF6 14 NG D
B FBF7 8 Ex AF BF "
FBEF 010000 HLDAD LD THE DETAILS ON THE HEADER ARE TO FBFe 15 DEC ©
FE92 CD92FB CALL BE USED AS THEY ARE NOT KNOWN FBFS F2 B1
FE9S CDASFE CALL FBFA CR&Z0S CALL #5s2
F8798 CO77FB cALL FEFD FE £1
FB9E FDCB7CES SET 4,(Iy+124) : THIS SIGNALS LDAD FBFE CD341F CALL BO20
FBYF COAFOB CALL WBAF & CALL THE LOAD ROUTINE F901 DO RET NC ; BREAN FRESSED
FEA2 CIAZFE JF MSLRET : IN FACT IT 15 UNLIKELY TD GET HERE F02 CI25FS JF LDRET : LOADED SO RE-ENTER
¢ THIS SETS THE MICRODRIVE HEADER, FULL DETAILS ARE IN THIS ROUTINE ASKS FOR THE FILEMAME AND IF MICRODRIVE
i CHAFTER 3 DR TAPE 15 TD BE USED
H
FBAS 21E&SC MHEAD LD HL,23787 FR0S CDZEF? DR T CALL SAVET
FBAB J&03 LD (HL), 2 F&GB C5 PUSH BC
FBAA 23 INC HL F90% DDES PUSH 1¥
FBAR EDSBSCFY LD DE, (BCSAV) FROE JEOC Lo A.12
FBAF 73 LD (HL)LE FOD COUDFF CALL PRINAT
FBEO 23 INC HL FRL0 3ETF O MIORTA LD A, #7F
FBB1 72 LD (HL},D FS12 DEFE m FEY
FBEZ 23 INC HL F914 E&O04 AND
FBE3 112E75 LD DE,29998 F316 37 i SCF
FBBS 73 LD (HL}.E F917 2808 8240 R I,HOTFIN
FEB? 23 INC HL F919 JEFB 850 LD A, WFB
FBEE 72 Lo tHL), D F918 DEFE 8360 IN R, (#FE)
FBBY 23 INC ML F71D E&10 8170 AND 14
FBEA 5680 Lo THL) , #80 F91F 20EF 8380 JR NI,MIDRTA
FBEC C9 RET F921 DDE1 8290 MOTFIN POF IX
F723 C1 FOP BC
F924 C9 RET
i THE LOAD DECISION BETWEEN MICRUDRIVE AND TAFE i
: i THIE PICKS UP THE LENGTH DETAILS FROM THE
s i START OF THE MEMORY LOADED
0 3 LDADING FROM TAFE AS DETAILED IN CHAFTER 2 & DR FROM WHAT WAS PUT THERE WHEN 1T WAS SAVED
FEED Ci 0 LOAD POF EC F925 2R2ETS B4%Q LORET LD HL, (299981
FEBE CALL M_OR_T FI28 2260F9 BSOO LD (CHPOS).HL
FBC1 & JR C,MLOAD FS28 CI2BF9 8510 Jp USR
FBC3 AF ¢ TLORD X¥OR A : S1GNAL HEADER 8520 3
Faca 37 SCF 3 SIGNAL LOAD 8520 3
FBCS LiloDoo LD DE, 13 8540
INC. D B5%0 i THIS ROUTINE CREATES A HEADER IN THE SCHAR AREA OF MEMORY
EX AF,AF 8560 3
FBCA DEC D 8570 3
Face o1 C171F9 8560 SAVET LD HL,SCHAR
FBCC Lo 1X, SCHAR+LS cs BSS0 PUSH BC
FBDO CALL #5&7 ES BLOD FUSH HL
FBD: FB I ES Beto PUSH HL

126 The Spectrum Operating System

F934 2603
F934 C5
F937 060a
F939 JE20
F9IB 23
FI:C 77
F920 10FC
FRIF ES
F80 2064F%
F9a3 Et
F94a)
F935 23
FRaa 7

Fre7 23
£938 70
F949 CDABOD
F94C ZEOD
FP4E CDAEFT
Fyal Ef
F952 23
F¥S3 CDS3F9
F954 2420
F958 DDE!
F95a Ci
F75E €9

FY5C GoLo
F9SE 0000
s

F992 80

F774 34454241
FSAD 8D

FF4E 1001
F9B0 50524553
F9C4 oD

FICS S820544F
FIE4 1000

F9Es 8D

F9ET 1002
FYES 4EAFS4T0
FRF2 1600
FeFa 8D

202020
FAUA ODOD
FAOC 50524553
FAlL 0DOD
FAIZT 46202020
FA21 0DOD
FA23 43202020
FAZZ 0DOD
FA3A 43202020
FAAD 0DOD
FRAF 4SAESALS
FALE ODOD
FA&D 53202020
FABS 1000
FABS BD

B&20 Lo (HL) .3
Baa PUSH BC
B&s0 LD B0
8450 LD A,32
B&60 SETHED INC HL
8670 LD (HL),A
8480 DINI SETHED
8650 FUSH HL
8700 LD GEIN_LIMI HL
870 FOP HL
a7 POF BC

g INC HL
8740 LD tHL),C
a7s0 INC HL
8760 LD HL),B
8770 CALL 3473
2780 Lo Al
8790 CALL FMESS
8800 FOF HL
8810 NG HL
8820 CALL INPUTF
8830 LD (HLY 32
8B40 POF IX
Bas0 FOP BT
B8&0 RET

8874a

8880

5890 3

8900 BCSAV DEFW O
8910 CUPOS DEFMW
8920 CHFOS DEFW 20001
8930 HLSAV DEFM 0
B940 IN_LIM DEFW O
8950 LINIT DEFW &2
8940 LDCCNT DEFW 0
B97(+ LOCFND DEFW O
E9H0 WFLAG DEFE O
B8990 MEMFOS DEFW 30001

7000 CURSP DEFW #1B21

9010 SCHAR DEFS 33

020 MESSHM] DEFE #80

9030 MESS DEFE #80

9040 MESS1 DEFM “DeBASE COPYRIGHT SGh 1984"

050 DEFE #8D
060 MESSZ DEFW 110
071 DEFM "PRESS SPACE TO ABORT"
0 DEFE
9090 DEFM TO ERASE OR N FOR MEXT RECORD*
9100 DEFW #100
7110 DEFB #8D
?1200 MESSI DEFW #4210
130 DEFM “NOT FOUND™
140 DEFW %10
150 DEFE #8D
9160 MESSA DEFW #4110
170 DEFM MENU*
Fia0 DEFW WODOD
2170 DEFM “PRESS"”
9200 DEFW #0DOD
210 DEFM "F TO FIND*
9220 DEFW #0DOD
9230 DEFM “E TO ERASE"
240 DEFW #0DOD
9250 DEFM “C TO CONTINUE SEARCH”
F2860 DEFW #0DOD
9270 DEFM “ENTER TO MAFE ANOTHER ENTRY*
9280 DEFK #0D0D
9270 DEFM “§ TO SAVE OR LDAD"
300 DEFW W10
9310 DEFE ®80

FD26

454E5445

ASAEAA20
oD
50qFS353
EL

100
50524553
1002
SIT44F 50
1001
ALAF5220
1002
S4aF20
1001
SAAF 2050
1002
52544550
1001

464F 5220
a6

1003
S94FSS20
80

1002
S94FS520

1060
ap
5748454E
oD
30524553
1002
4EAFSA20
1000
57494CAC
20202020
oooD
1002
414E4420
1000
S57494C4C
oD
41542054
0pOD
24454045
D
41542054
aDOD
494462054
ap
S94F5520
]
45554€043
0DOD
54484520
oD
4DAFSE4S
op
4T414E4E
0poD
1004
S0524553
100U
ar
50524553

¥320

750

MESSS

HESSE

0 MESS?

9580
590
400
9610
9420
7630
9880
9450
F660
9870
9680
2590
9700
9710
9720
730
9740
9750
9760
9770
9780
9750
2800
F8L0
9820
9830
9840
850
9B&0
9870
98B0
9890
9900
9910
2920
9930
940
9950
9960
7970
9980
9990
10000

0
HESSE

MCS
MESSY

MESS10

DEFM
DEFE
DEFW
DEFB
DEFH
DEFB
DEFM
DEFR
DEFW
DEFM
DEFW
DEFM
DEFW
DEFM
DEFW
DEFB
DEFM
DEFW
DEFM
DEFW
DEFM
DEFW
DEFM
DEFB
DEFW
DEFM
DEFE
DEFW
DEFM
DEFB
DEFM
DEFW
DEFE
DEFM
DEFE
DEFH
DEFHW
DEFH
DEFK
DEFH
DEFM
DEFW
DEFW
DEFN
DEFW
DEFH
DEFE
DEFM
DEFK
DEFM
DEFEB
DEFM
DEFW
DEFH
DEFB
DEFM
DEFE
DEFM
DEFW
DEFM
DEFE
DEFM
DEFB
DEFH
DEFW
DEFW
DEFH
DEFW
DEFB

10010 MESS11 DEFM

AppendixG 127

“ENTER DETAILS TO FIND"
#8D

“210

13

“END OF RECORD, NO MORE INPUT"
13

“FOSSIBLE

L

#1110

"FRESS "

210

“STOP

#1110

“FOR MENU,

»210

“ro
w10

“TO PRINTOR *

#210

"STEP *

®110

"FOR WELF"

#a0

LML

"YOU ARE IN EDIT MODE"

WED

2210

"¥OU JUST RAN OUT OF FEMDRY"

13

“SAVE THE RECORDS OR SOMETHING"

"o

480

"WHEN YOU ARE IN EDIT MODE"

13

"PRESSING "

#210

“NOT *

HoLG

"WILL FIND THE MEXT OCCURENCE DF THE LAST STRING®
® THAT WAS SOUGHT"

#0DOD

#210

“AND *

w010

"WILL INSERT A CHARACTER"

13

"AT THE CURRENT CURSOR POSIT
#ODUD

"DELETE WILL REMOVE THE CHARACTER"
13

"AT THE CURRENT CURSOR POSIT
#0DOD

"IF THERE 15 ND SPACE IN A RECORD"

13

“¥OU ARE ALTERING USE THE INSERT"
12

“FUNCTION TO MAME SOME SPACE."
#0DOD

“THE CURSOR KEYS ALLOW YOU TO"
13

"MOVE THROUGH THE TEXT BUT YOu“
1z

"CANNOT GO BACK PAST AN ENTER."
HopoD

#410

"PRESS ENTER TO RETURN TO TEXT"
wig

#80

"PRESS § 10 SAVE L TO LOAD"

128 The Spectrum Operating Sustem

FDZF 8D 10020

FDAu SOS24SST {0030 MESSIZ
FDSY oD 0

FDS4 4FS22054 10050

FD&1 8D 10040

FD&2 494ESOSS 10070 MESSIS
FD71 80 10080

FD72 BD 16090 TEND
Pass 2 grrors: 0O

SWARNINGS RSWAP absent
*WARNINGe MSLRET absent

DEFE #8D

DEFM "PRESS M FOR M/DRIVE"

DEFB 13

DEFM “OF T FOR TAFE
DEFE #8D

DEFM “INPUT FILE-NAME"
DEFB ¥80

DEFE #80

Index

address bus 25,62, 70
address lines 63
alegebraic functions 89
A register
calculator 82, 84
Interface 1 76
8K ROM routines 26-9, 34
16K ROM routines 3,9, 13,224
standard streams 67
ASC llcode 6,42-5, 82-5
Assembler program 1
assembly language programming 1
automatic listing 46-7

BASIC 2-3,5, 18-23, 46, 51, 75-9
error 18, 20, 22, 83, 86, 88
interpreter 42, 46, 49, 52, 88-90

BASIC LIST command 51

BBC microcomputer 25

BC register pair 2

beep 11-12

binary numbers 83

binimal point 80-1

block graphics 15

BREAK key 20

B register 4-6,17

buffer 11,30,32-3

calculator 80-92, 1046
CALL 10934 82
CALL 11419 83
CALL 11560 82
CALL 11563 82
op-codes 86-91
routines 104-6
use of 86-92

calculator stack 15-16, 18, 56, 82-92,

105

Call addresses 3-24
949 11
2878 15

2898 13
3082 12
3435 5
3438 5
3545 4
3582 §
3584 17
3652 17
3756 11
3789 11
3807 11
5598 10
5606 18
5633 3,6
5823 18
8020 4
8874 17
8933 6
9146 16

calling routine 43,75

CAPSLOCK 51

CAPSSHIFT 4,11,42-3

carriage return 100

carry flag 4, 10, 234, 26-7, 334, 83,
89

Catalogue Cartridge routine 35

Centronics 3, 65-6

channels 18, 30, 32, 62-9

channel type 60

characters 8-10

character set 99-101

Chebyshev polynomial 92

circles 15

Close Microdrive channel routine 32

Close Network channel routine 30

colours 44, 55, 58, 64, 100

command mode 76

Complete Spectrum ROM Disassembly
(Logan) 2

CONTINUOUSSOUND 73

COORDS 15-17

130 The Spectrum Operating System

C register b
current channel 18

data bus 25
Data Terminal Ready 28

DeBASE program 10, 13, 22, 24, 35

111-28
DE register 21
DEFined word 390
Dl instruction 72

Elinstruction 71-2
ENDCALC instruction 86
Erase File routine 32

E register 6

exponent §1

file name 60

floating point representation 80-2,

91
Format Cartridge routine 35

Get Key routine 26-7
graphics 11,13, 15

header 18-24,29, 59
dummy 22-3
microdrive 3641
hex to decimal conversions 934
Highsoft's Devpack 34
HL register 40
hook codes 25-36
Catalogue Cartridge (32h) 35
Close Microdrive Channel
(23h) 32
Close Network Channel (2Eh)
Erase File (24h) 32
Format Cartridge (32h) 35
Get Key (IBh) 26
Insert Vanables (31h) 34
Keyscan (20h) 34
Motor on/Motors off (21h) 34
Network [nput (2Fh) 26
Open Channel (2Dh) 28
Open Channel/Open File (22h)
30-1
Print to Printer (1Fh) 27
Print to Screen (1Ch) 27

30

Read Next Print Record (25h) 33

Read Print Record (27h) 33
Read Next Record Sector (29h)
Read Record Sector (26h) 33

33

Reclaim Microdrive Channel
(2Ch) 34

ROM2(32h) 34

R5232 Input (1IDh) 26

RS232 Qutput (1Eh) 27

Run (32h) 36

Send Packet (30h) 29

Write Record (26h) 32

Write Sector (2Ah) 32

H’ register 3

IMI mode 71

IM2 mode 71

indexing 84

INPUT commands 52

input routine 58

Insert Variables routine 34
Interface’l 75-9

interrupts 8-9, 11, 21, 41, 53, 704
interrupt vectors 102-3

I register 70-3

IX register 20-1,23,26-9, 324
IY register 2,3,9,15 42

Kempston Interface 3, 65, 106-7
keyboard 8-9

map 98

scanning 43, 63
key-debouncing routine 43
Key Input routine 10
Keyscan routine 34

LET command 2
line-drawing 16

line feed code 28

LOAD BYTES subroutine 22
loading 18-24

L' register 3

machine code program 1, 2. 38, 55,
80, 83
machine crash 38
mantissa 81,91
memory 25,42
memory map 95-7
memory request line 70
message printing 12-13, 21
Microdrive 30-1,56, 72,74, 111
channel 33, 36
header 3641
Interface 1,62, 67
microphone socket 64
MODE CHANGE flag 10

MOREX Interface 65, 106-7
Motor on/Motors off routine 34
MREQ line 70

network channel 28-9
Network Input routine 26
NN command 2
numbers 6-8§

Open Channel/Open File routine 30
Open Channel routine 26, 28
opening and closing streams 3

Picturesque Editor Assembler 1
pixels 11,17,54,73, 74, %
plotting to the screen &
ports

Kempston 66-7
Morex 656

127 66

231 62

239 62,65

247 62,65

251 62,645

254 624

57535 66

58047 66

58303 66

PRINT command 2
printer 11,45, 65

buffer 11,51,53

print positions 45
Print to Printer routine 27
Print to Screen routine 27
Programming the 280 (Zaks)

[¥]

random numbers 52
Read Next Print Record routine 33
Read Next Record Sector routine 33
Read Print Record routine 33
Read Record Sector routine 33
Reclaim Microdrive Channel
routine 34
record deletion 111
repeating key routine 43
ReSTarts 3841
RET instruction 40
RETI instruction 71-2
ROM 2 routine 34
ROM, 8K 2541
inputs 26-7
microdrive header 3641
microdrive input 33-6

Index 131

microdrive output 31-2
network output 28-30
output 27-8

ROM interpreter 75-7
R5232 Input routine 26
RS5232 Output routine 27

RST
10h 38
16(10h) 34
56(28h) 8

Run routine 36
run me 77

SAVE/LOAD RETURN routine 21
saving 18-21
screen 6, 10
clearing 17
lower 5
scrolling 5,17
whole 5
screen copy 11
screen map 54
scrolling 5,17
Send Packet routine 29
shadow ROM 25, 40
Sinclair BASIC 25-6
small integer representation 80
Spectrum Machine Language for the
Complete Beginner (Zaks) 2
Spectrum Pocket Book 7
SPRITE 734
standard streams 66-7
start-up sequence 70
stream number 60
string operations 92
subroutines 36, 38, 84, 104-25
calculator routines 1046
DeBASE 11-28
interrupt driven sprite
routine 107-11
Kempston Interface 1067
Morex Interface 106-7
syntax checking 88
syntax flag 75
syntax/run flag 35
system variables 1, 42-61
8K system 56-61
16K system 42-56
ATTRP 55
ATTRT 55
BAUD 26, 57-8, 60
BORDCR 48
BREG 50

132 The Spectrum Operating System
CHADD 49

CH_ADD 75-6,83

CHADD_ 58

CHANS 48

CHARS 44

COORDS 53

COPIES 61

CURCHL 10, 18, 48

DATADD 49

DEFADD 44

DEST 48

DF CC 54

DFCCL 54

DFSZ 51

D_STRI 60

D_STR2 61

ECHOE 54

ELINE 48-6

EPPC 48

ERRNR 45

ERRSFP 46

FLAGS 45

FLAGS2 50

FLAGS3 57

FLAGX 51

FRAMES 52

HD_0B 61

HD_0D sl

HD_OF 61

HD_00 61

HD_11 61

IOBORD 58

KCUR 49,67

KDATA 44

KSTATE 42

LASTK 43

LISTSP 46

L_STR1
MASK P
MASKT
MEM 50
MEMBOT 56
MODE 47
NEWPPC 47
NOTUSED 53
NSPPC 47
NTDCS 59
NTDEST 59
NTHCS 59
NTLEN 59
NTNUMB 59
NTRESP 59
NTSRCE 59
NTSTAT 58

N_STRI
NTTYPE
NXTLIN
OLDPPC
osrcc
P FLAG
PIP 45
PPC 47
P POSN
P_RAMT
PRCC 53
PROG 49
RAMTOP
RASP 45
REPDEL 43
REPPER 424
SBRT 57
SCRCT 54
SECTOR 58
SEED 52
SEED_FL 58
SPOSN 54
SPOSNL 54
S5TOP 51
STRLEN 52
STRMS #
S_STR1 A0
STKBOT 50
STKEND 50
SUBPPC 47
TADDR 52
TSTR1 60
TVDATA 44
TVFLAG 46
ubG 53

VARS 48
VECTOR 57,75-6
WORKS P 50
XPTR 49

60
59
49

51
51

55

53

56

56, h7

tape socket 64
tape-loading error
token code 13

24

ULA 70
verifying 21—

10
21

Wait Input routine
Wait Key routines
workspace 18

Write Record routine
Write Sector routine

Z80 6,70,72, 86

32

32

