SPECTRUM MACHINE
ANGUAGE FORJ

WK TRUE GHAFWICS DﬁLﬂl

SPECTRUM
MACHINE LANGUAGE
FOR THE ABSOLUTE
BEGINNER

Edited by
William Tang

i

7s Melbourne House Publishers

Published in the United Kingdom by:
Melbourne House (Publishers) Ltd.,
Church Yard,

Tring, Hertfordshire HP23 5LU
ISBN 086161 110 1

Published in Australia by:

Melbourne House (Australia) Pty. Ltd.,
Suite 4, 75 Palmerston Crescent,
South Melbourne, Victoria 3205.

Published in the United States of America by:
Melbourne House Software Inc.,

347 Reedwood Drive,

Nashville TN 37217.

Copyright © 1982 Beam Software

The terms Sinclair, ZX, ZX80, ZX81, ZX Spectrum, ZX Microdrive, ZX Interface, ZX Net,
Microdrive, Microdrive Cartridge, ZX Printer and ZX Power Supply are all Trademarks of
Sinclair Research Limited.

All rights reserved. This book is copyright. No part of this book may be
copied or stored by any means whatsoever whether mechanical or
electronic, except for private or study use as defined in the Copyright Act.
All enquiries should be addressed to the publishers.

Printed in Hong Kong by Colorcraft Ltd.

DCBA9B7654321

Contents

Finding Your way around Machine Language:

e e e e — — — — — — — — — — — — — — —

The Beginning 5
Basic Machine Language Concepts 11
The Way Computers Count 18
How Information is Represented 24
A Look into the CPU 30
This is All Very Well ... 39
How the CPU Uses its Limbs 43
Counting Off Numbers on One Hand 51
Flags and their Uses 58
Counting Up and Down 64
One Handed Arithmetic 69
Logical Operators o
Coping with Two Handed Numbers 79
Manipulating Numbers with Two Hands 83
Manipulating the Stack 91
Two fisted arithmetic 95
Loops and Jumps 99
Use of Subroutines 106
Block Operations 109

Instructions That are Less Frequently Used

Register Exchanges 115
Bit, Set and Reset 117
Rotates and Shifts 119
In and Out 122
BCD Representation 26
Interrupts 127

Restarts 128

Programming Your Spectrum
Planning Your Program
Features of the Spectrum

Monitor Programs
EZ-Code Machine Language Editor
HexLoad Machine Code Monitor

The FREEWAY FROG Program
Program Design

1 - Data base

2 - Initialisation

3 - Regular Traffic
Stage 4 - Police Car

5 — The Frog

6 - Control

Spectrum key Input Table

Screen display Map

Character set Table

Decimal /Hexadecimal conversions
Falg Operations Summary

Z80 Instructions by op-code

Z80 Instructions by mnemonics

130
135

145
153

161
164
ATZ
176
181
185
190

227
228
229
230
234
236
240

The Beginning

This book is designed as an introduction to the field of machine
and assembly language programming for the "Sinclair ZX Spectrum."

It may be that you are coming to this book with no clear idea of
what machine language programming is all about.

You may not even know what machine language is. You may not even be
aware that there is a difference between machine language and
assembly language, nor indeed how they differ from programming in
BASIC.

Don't worry, and don't be frightened by the jargon - we will
explain everything step by step.

First, let us look at the way a computer operates:

Programmer » Keyboard
TV Screen « Operating System
Central
Processing
Unit

What this diagram aims to show is that there is a barrier between
the programmer and the brain of the Spectrum, the Central
Processing Unit. It is not possible under normal processing for
the programmmer to tell the Central Processing Unit - usually
referred to as the CPU - what to do.

In the Sinclair machines, the CPU chosen is the Z80A chip, which is
a faster version of the popular Z80 chip. There are 4 chips - Z80,
6502, 6809, and 8088 - which have become widely accepted as CPUs
for microcomputers. The Z80 is by far the most popular chip.

I am sure it comes as no surprise to learn that the ZB80A does not
understand a word of 'BASIC'! Indeed no CPU has been designed so
that we can communicate directly with the brain of the computer.

If you think about it for long enough, you will realise that it
would be very difficult, if not impossible, in any case to give a
chip in a computer an instruction that would make any sense to a
human. Take the top off your Sinclair (if you dare!) and have a
look at the chip nearest to the speaker - this is the Z80A CPU.
Obviously this chip in your computer can only respond to electrical
signals that are passed on to it by the rest of the circuitry!

What is Machine Language?

The Z80 chip has been designed in such a way that it can accept
signals simultaneously from eight of the pins connected to it.

The designers of the Z80 chip constructed it in such a way that
different combinations of signals to the Z80 chip along these eight
pins would 'instruct' the Z80 to perform different functions,

Keeping in mind that what is really happening are electrical
signals, let's adopt a convention to represent these signals - for
example showing a 'l' if there is a signal to one of the pins, or a
'0'if there is no signal.

A typical instruction might therefore look something like:
a0 e W A R 5

Quite a long way from something like
‘Let A = A 4 1Y,
for example, isn't it!

Nonetheless, this is what machine language is all about. The name
says it all! It is a language for machines. Each manufacturer of
the different chips has designed a different 'language' for its
products!

At this stage you may be asking yourself - if this is what machine
language is all about, why bother? Why not accept the benefits of
someone else's work which allows me to program the computer in a
language I can easily understand, such as BASIC or COBOL?

The reason is because of the main benefits of machine language
which are:
% FASTER EXECUTION OF THE PROGRAM
* MORE EFFICIENT USE OF MEMORY
SHORTER PROGRAMS (in memory)
FREEDOM FROM THE OPERATING SYSTEM

L

All of the above benefits are a direct result of programming in a
language that the CPU can understand without having to have it
translated first. When you program in BASIC, the operating system
is the machine language program that is really being run by the
machine. The program is something like:

Next Look at next instruction
Translate it into a series of
machine language instructions
Perform each instruction
Store the result if required
Go to Next again

1f you are wondering where the computer finds this program, the
operating system, it is in the ROM. In other words, it is built
into the Spectrum. (ROM is the abbreviation for Read Only Memory,
memory locations whose content you cannot change, but can only be
read/PEEKed.)

Programming in BASIC can be up to 60 times slower than a program
written directly in machine language!

This is because translation takes time, and also the resulting
machine language instructions generated usually are less efficient.
Similarly, it is usually faster to drive yourself than to take
public transport; you can take shortcuts you know, instead of
following the public transport route which needs to cater for the
GENERAL public CASE.

Nonetheless, we would have to be among the first to admit that
programming in machine language does have drawbacks.

The main disadvantage of machine language are:
* PROGRAMS ARE DIFFICULT TO READ AND DEBUG
* IMPOSSIBLE TO ADAPT TO OTHER COMPUTERS
* LONGER PROGRAMS (in instructions)
* ARITHMETIC CALCULATIONS DIFFICULT

This means that you must make a very conscious decision of which
programming method you should use for each particular application.

A very long program for financial applications should be written in
a language designed to deal with numbers and one in which programs
can be easily modified if required.

On the other hand there is nothing quite so bad as an arcade game
written in BASIC - when you get down to it, it is just too slow.

Your own needs, the amount of memory in your computer, the response
time required, the time available for development, and so on will
determine your choice of programming language.

Thus, in summary, machine language is a series of commands which
the CPU can understand and which can be represented by numbers.

What is Assembly Language?

Quite obviously if machine language could only be represented by
numbers, very few people would be able to write programs in machine
language.

After all, wh

0o

Fortunately, we can invent a series of names for each of these
numbers. Assembly Language is just such a representation of Machine
Language so that it can be read by humans in a form that is easier
to understand than

4 LT Odil 1,

There is only one difference between Assembly Language and Machine
Language: Assembly Language is one level higher than Machine
Language. It is more easily read by humans than Machine Language,
but on the other hand, computers can't read Assembly Language.

It is not an adaptation of Machine Language such as BASIC. For
each Assembly Language instruction there is an identical (in
function) Machine Language instruction, and vise versa. ie. there
is a ONE-TO-ONE relationship between them. We can therefore say
that Assembly Language is EQUIVALENT to Machine Language.

Assembly Language makes use of mnemomics (or abbreviations) to

enhance readability. For example at this stage, the instruction
INC HL

may not mean much to you, but at least you can read it. If you

were told that 'INC' is a standard abbreviation (or mnemonic) for

INCrease and that HL is a 'variable', then by simply looking at

that instruction you can get a feel for what is happening.

The same instruction in Machine Language is

D10 001 1
Now obviously you can also 'read" that instruction in the sense
that you can read the number, but it isn't going to mean much to
you unless you have a table to look up or when your brain is
functioning almost like a computer.

Assembly Language can be converted directly to machine code by a
program or by you. Such a program is called'an ASSEMBLER. You can
see this as a program which performs the rather boring task of
translating your assembly language program into a sequence of
machine language instructions that the Spectrum will understand.
And we understand that an ASSEMBLER for the ZX Spectrum is already
available.

Nonetheless, such assemblers typically require 6K of memory, and
are therefore of limited use on a 16K machine. The Spectrum display
takes up 7K of memory, and after loading the Assembler you may have
only 4K of memory left for your assembly language program. (This
will means about 1/2 K of machine language program).

The alternative to an Assembler program is for you to do the
translation of the assembly language mnemonics into machine
language by hand, using the tables provided in this book.

It's hard, it's frustrating at first, it's inconvenient, but it's
wonderful practice and gives you a great insight into the way the
Spectrum CPU works.

We would in fact recommend that you try writing short machine
language programs in this way - ie writing them in assembly
language and translating it into machine language by hand - before
buying an Assembler program.

~
Ly

ol >
e e

AT

WS

CPU
The central processing unit of the computer. This is the chip
that does the controlling and calculating work in the computer.

Machine Language

The language understood by the CPU. For the Spectrum's CPU,
this is the Z80 machine language which is made up of about 200
'‘instructions',

BASIC language

A computer language designed to be intelligible to humans. When
a computer executes a command in BASIC, it needs to translate this
command into a series of machine language commands. BASIC programs
are therefore considerably slower than machine language programs
but easier to write.

Assembly Language

The human shorthand representation of the machine language
instructions so that each of the latter instructions can be
understood more easily. For example, HALT is the assembly language
equivalent of the machine language instruction 0 1 1 1 01 1 0.

Assembler Program

A program that translates assembly language instructions
(easily read and understood by human) into machine language
instructions (which can be understood by the computer eg the
Spectrum).

Read Only Memory (ROM)

A long machine language program usually known as FIRMWARE; a
program that has been FIRMLY built into the hardware of the
computer; it will remain there even when the power is off. For the
Spectrum, the ROM is in Z80 machine code, and was written
specifically for it. The ROM of Spectrum occupies from memory
locations O to 16383. You can only refer to the contents of these
locations, unlike the rest of memory which you can refer to and
change as desired.

10

BASIC Machine Language Concepts

WHAT IS THE CPU?

If we want to communicate with the computer we have to know what
sort of commands it will accept and what language the brains of the
machine (the CPU) talks.

Unless we know what sort of information the CPU understands we
can't really instruct the computer to perform remarkable tasks from
being a chess partner to an accountant looking after our accounts.

The CPU is no big mystery. 1 like to think of the CPU as a lonely
little fellow, sitting in the middle of your Spectrum, being ask to
do things all the time.

Especially calculations.

But the poor fellow doesn't even have a piece of paper and pencil
to keep track of what is happening. How does he do it?

The design of the CPU:

At this stage, I should probably tell you about the way that the
designers of the Z80 see things, and how the CPU is supposed to
handle them. The CPU has been designed to do extremely simple tasks
only, but he is able to do those tasks very quickly.

We mentioned above that the CPU doesn't even have pencil and paper,
and that is part of the design of the CPU. Any number he can't
remember or keep track of has to go in a box for safe keeping.

Let us look at one example - say you want the CPU to work out the
time in NEW YORK, knowing the time in LONDON.

Now given that the CPU doesn't know anything, first of all you have
to tell it what the time in London is: say 10 o'clock. The CPU has
nowhere to keep this information and doesn't know what you will ask
it to do next, so it puts that information away in a box, say box

#1.

Then you have to tell it the time difference between New York and
London, say five hours earlier, and it puts that away in box #2.

Comes the time for calculations, it races across to box #1, gets

the number, goes to box #2, performs the calculation, and puts the
result away, say in box #3.

"

The answer of course is 5 o'clock.

All of this racing between boxes, adding, substracting and so on
would be extremely tedious if the CPU had to do it all in its-head,
so it does exactly what you or I would do - it counts on its
fingers and toes.

The CPU's hands and feet are called Registers.

The Z80 chip in your Spectrum is remarkable in that it has a lot of
hands and toes - but we will get to that later.

To illustrate how exactly the CPU calculates the time difference in
the above exercise, let's call one of the CPU's hands '"'HAND A". How
does the CPU manipulate the contents of the box #1 and box #2?

The following sequence is pretty close to what the CPU would
actually do given the above instructions

* Count out the value of box #1 on the
fingers of Hand Aj;

* Subtract the contents of box #2 from what
he has already on his fingers;

* Look at the value on the fingers of Hand A
and store it in box #3.

Now if this is what truly happens, there are some pretty phenomenal
conclusions to be drawn from this:

1. The CPU would not be able to deal with
a number like 11,53 - it could only
deal in whole numbers.

2. The CPU would be limited in its
calculations to whatever number it
could count on its fingers.

This is indeed true.

The main consolation however is that the CPU has a lot of hands and
feet and can count on each of them separately, and that it can
count to 255 using only the 8 fingers of Hand A.

We will deal in the next chapter with the details of how the CPU
can count up to more than 8 on each hand while we can only manage
10 using two hands! Suffice it to say that each hand can count to

255 and each foot can be used to count to over 64,000!

The time difference exercise above has still not been represented

12

in anything like the language the CPU understands - all we have
done is describe the processes.

To let you have an early look into the exciting part of machine
language programming, let's now use mnemonics (Abbreviations) to
instruct the CPU at each step:

SETTING UP:

LD (BOX #1), 10 ;Load box 1 with 10

LD (BOX #2), 5 ;load box 2 with 5
CALCULATIONS:

LD A, (BOX #1) s:load A with box 1 contents

SUB A, (BOX #2) ;subtract contents of box 2

STORING THE RESULT:
LD (BOX #3), A ;load box 3 with A value

These instructions may seem a little terse at first, but after all,
mnemonics are mnemonics.
"LD" is an abbreviation for LOAD so that

LD A,1
for example, would mean load A with 1: that is count off 'one' on
the fingers of hand A.

We also use a rather clever image in these mnemonics by the use of
brackets: THE BRACKETS ARE USED TO INDICATE WZ WISH TO DEAL WITH THE
CONTENTS OF WHATEVER IS INSIDE THE BRACXETS.

It should be fairly easy to remember this on a visual basis because
brackets do look like they are meant to indicate a container.

So running through the mnemonics above, we load the contents of Box
#1 and #2 with 10 and 5, ...etc... to get the final result of 5 in
box #3.

All of this is fairly simple to follow and I am sure you can
understand that while you are doing this calculation, the numbers
on Hand '"A" are used to represent the time in New York. A minute
later they may be used to represent the number of employees in a
company, and at some other time how much money you have.

If you are used to the concept of variables from your BASIC
programming, you must leave that behind in machine language

programming.

The fingers of Hand "A" are not a variable in the same sense as in
a BASIC program. They are merely what the CPU uses to count with.

ONE OF THE BIG DIFFERENCES IN PROGRAMMING IN MACHINE LANGUAGE AND
PROGRAMMING IN BASIC IS THIS LACK OF VARIABLES.

13

You may realise that you can think of the BOXES we use to store
information as being similar to BASIC variables if we gave each one
a name.

Yes, you are absolutely correct, but these are not variables
either. They can be immensely useful and perform similar storage
purposes to variables, but bear in mind that these boxes are no
more than memory locations set aside for a specific purpose.

The way the CPU copes with negative numbers is different, and we
will look into that later.

What if the CPU runs out of hands?:

I should mention here that you would probably find the CPU a very
strange looking fellow were you to meet him in the street.

His hands have eight fingers each, and he has eight hands! He only
has two feet, but each foot has 16 toes, and he is extremely agile
with his toes!

He is therefore well suited for the large number of calculations he
is required to do, keeping track of all the numbers on his fingers
and toes.

Nonetheless, it is possible that in some cases the CPU will not
have enough hands to do the calculation it wishes to perform, or
that for one reason or other the programmer will wish the CPU to
stop in the middle of calculation to do something else.

The CPU can't just put the information away in boxes, because then
it would have to keep some hands free just to keep track of which
boxes it put the information in!

The Z80 CPU gets away with using a stack, which is one of those
tall spiky things that some people keep on their desks to store
bills, spare notes, etc. 1 am sure you have seen those stacks,
where you spike one piece of paper on, and then the next one, and
so on. It's a great filing system if you want the top piece of
paper only, but very inconvenient if you want one in the middle,
because you have to riffle through all the pieces of paper on the
stack.

As it happens, it's a very convenient system for the CPU because it
ever only needs to look at the top piece of information.

Whenever an interruption causes the CPU to stop doing its
calculations, it PUSHes all the information it has on its hands
onto the STACK, and as soon as the interruption is over, it POPs
the top bits off, and continues with its work.

14

In computer terminology, we call this spike a "STACK". When we put
a piece of information on the stack, we "PUSH" it on, and when we
get it off, we "POP" it off.

All kinds of information can be "PUSH"ed and "POP"ed on and off the
stack - for example in the middle of a complex calculation the CPU
may wish to save all the information on its many hands and feet,
and this would then involve many separate '"PUSH'"es. To retrieve the
information, there then needs to be many separate '"POP's.

For reasons best know to the designers of the Z80, our CPU likes to
keep the stack stuck to the ceiling. This means that the more
information is "PUSH"ed onto the stack, the further the stack grows
downwards.

The main advantage of using the stack to store temporary bits of
information is that the CPU does not need to remember which box the
information is in - it knows it is the last piece of information
"PUSH"ed on the stack. Naturally it needs to be a little bit
organised if there are many bits of information to be PUSHed and
POPed.

What can the CPU do?:

1 think it's worth considering at this stage the type of
instructions that the designers thought it would be useful to have
built into the Z80 chip.

Because the CPU has to be able to keep track of all its
calculations on its fingers and toes, there are only two kinds of
numbers the CPU can deal with:

* one handed numbers - ie numbers you can

count on one hand
* two handed numbers - ie numbers you can
count off on two hands.

You may find this difficult to believe, but the CPU cannot deal

with numbers larger than those it can count on two hands!

The types of instructions the CPU can perform are also very
limited:
* counting off numbers on one hand
* counting off numbers on two hands
* adding, subtracting, increasing, decreasing,
or comparing one handed numbers
adding, subtracting, increasing or
decreasing two handed® numbers
various manipulations on one handed
numbers - eg making the number negative
making the CPU skip to another part of
the program
* trying to communicate one handed numbers
to and from the outside world.

w

15

I am sure you will agree that this is a very limited set of
instructions, and yet using only such limited instructions you can
get the CPU to play chess, or to work out your wages!

Note that even such simple instructions as multiplication do not
exist! If you need to multiply two numbers in machine language you
have to write a program to co so.

This is why writing programs in machine language is so much slower
than writing programs in BASIC - you can only do things in tiny
little steps.

16

SUMMARY :

Registers

The CPU has a number of registers it can use for calculations.
Eight of these can be thought of as the CPU's hands, and two of
these can be thought of as the CPU's feet. Each 'hand' has eight
‘fingers', while each 'foot' has 16 'fingers'.

Memory Locations

The CPU can transfer information from its hands into or from
any other other hand, and into or from memory.

Specific memory locations can be set aside by the programmer to
represent specific information.

The Stack

The CPU can use the stack to transfer information the
programmer may wish to store temporarily. Information is
transferred to the stack by PUSHing the information on, and is
retrieved by POPping the information off.

Possible Instructions

The kinds of instructions the CPU is able to perform are only
the simplest type of information transfer and simple arithmetic
calculations. All programs must be made up of series of these
simple instructions.

17

The Way Computers Count

We mentioned previously that the CPU was able to count to 255 using
only eight fingers. How can this be when with 10 fingers we can
only manage to count to 10?7

It is certainly not because computers are smarter (they aren't) but
because the CPU is more organised in its information than we are:
why should raising your index finger have the same value (= '1')
as having your little finger raised?

It seems obvious that if you so wished you could represent two
different numbers in this way.

It is very much the same sort of thing as realising that the number
001 is different from the number 100. The plain truth is that
humans are not very efficient in the use of fingers for counting.

The CPU understands that not having a finger is of some information
and that which finger is raised is a valuable piece of information.

With only two fingers it is possible to devise a way to count from
0O to 3, as follows:

(V“PV\ 00 = 0 We can indicate not having a
finger raised as '0',

(T”V“f\ Ol =1 and having a finger raised
as 11%

C"/\’\ 10 = 2 This does not mean 11 = 3

CV“IV) 11 = 3 It means we chose to let the

representation 11 (or two
fingers) have the value 3.

We could just as easily have chosen a different representation.

There is a direct relationship between this and binary
Representation. The CPU'"s fingers are locations in memory and they
can be made to indicate on an off (or 'O' and 'l' as convention
dictates).

If we added a third finger to our example above we could represent
all the numbers from O to 7. Three fingers for all the numbers
from 0 - 7!

Four fingers would be able to represent all the numbers from O to
15! If you don't believe it, it would be a good exercise to write

out all the possibilities for four fingers being raised.

In order to simplify the notation of such numbers, and to avoid

18

confusion in trying to write down the number eleven as opposed to
indicating that two bits were set, a universal convention has been
adopted:

The numbers 10

15 are indicated by the letters A - F.

Decimal 10 = A
1= B
12 = c
13 = D
14 = E
15 = F

This means we write the numbers from 0 to 15 decimal as
0 1 2 3 4 5 6 7 8 9 A B C D E F
Simple, isn't it?

This way of treating numbers is called the HEXADECIMAL FORMAT.

To prevent confusion, some people write "H" after a hexadecimal
number (eg. 1OH). The "H" has no value, but serves to remind the
user of the hexadecimal convention.

In machine language programming, it is CONVENIENT to deal with
numbers in hexadecimal format.

This is only a convention and if you so wished you could write all
your instruction in normal decimal format. It is convenient for us
to use the hexadecimal format because:

l. It is easy to convert from this form to binary,
which tells us which bit (or finger) is doing what.

2. It gives us an easy means of seeing whether numbers
are one handed or two handed - ie 8-bit or 16-bit.

3. It standardises all numbers to sets of 2-digit
numbers. (We will elaborate on this)

4, It is the common convention and familiarity with
hexadecimal will allow you to read other books and
manuals more easily.

5. As the CPU is designed to process information
represented by binary numbers which are cubersome
for humans to read, we need a representation which is
more easily readable.

But it is only a convention and not a sacred rule.

The hexadecimal system, as we mentioned earlier, lets us represent
the numbers O to 15 using only 4 bits. Any 8-bit memory location

19

or 8-bit register can therefore be described by two sets of 4 bits.

(This is the same as saying that any combination of 10 fingers can
be represented by two hands of 5 fingers each.)

THE REASON WE ARE CONCERNED WITH 8-BIT MEMORY LOCATIONS AND 8-BIT
REGISTERS 1S THAT THIS IS THE STRUCTURE OF THE ZX SPECTRUM.

All memory locations and all single registers have 8 bits. This is
not hard to understand - it's like saying all humans have 5 fingers
on each hand.

Taking things one step at a time, let us become familiar with 4
fingers first:

1 111 = 2%%3 4 2%%2 4 2%%1 4 2%%0
=8 3+ 4 % 2 %1

Decimal 15

F (in hexadecimal notation)

1l

For those of you with a mathematical bent, you may notice that the
number each finger represents is multiplied by 2 as you go to the
left. If we number the fingers:

3 210

then the value of each finger is '2 to the power N' where N is the
finger number. Let's call a 4-finger hand a "handlet" (just as a
small cigar is a cigarette?)

Exercise:

What decimal and hexadecimal value do the following arrangement of
bits (or fingers) represent?
Decimal Hexadecimal

0010
0110
1001
1010
1100

It is important for you to become familiar with the hexadecimal
convention, and if you had difficulty with the concept, do read the

20

last few pages again before going on.

Let us examine what happens if we want a number greater than 157
Say 167 We would use the next finger on the left, as:

= 16 decimal = 10H (Hexadecimal)

The reason we write the number as 10H is that we divide the hand
into two '"4-bit handlets'. We can therefore easily denote each

handlet by one of the hexadecimal numbers representing O to 15 (0-9
& A-F).

In this way any 8-bit hand can be written as exactly two
hexadecimal handlets:

3 2 1 0 3 2 1 0
One One
Hexadecimal Hexadecimal
Digit Digit
Two ‘//
Hexadecimal
Digits

The '"handlet" on the left indicates 16 times as much as the
"handlet'" on the right. This is much the same way as in decimal
notation, the digit in the '"tens'" column is worth ten times as much
as the digit in the "ones'" column.

We convert numbers in decimal format such as 15 automatically to:
15 = (1*10) + 5
This is so automatic that we don't even think about it.

It is exactly the same thing in hexadecimal notation. To convert
back from hexadecimal notation to decimal notation, we multiply the
hexadecimal number on the left 'handlet' by 16. Using the example
above:
10H (1*%16) + O
16 Decimal

21

This is how we are able to count to 255 using only 8 fingers.
maximum is obtained when all fingers are held up:

el ot

FFH

(F*16) + F
(15%16) + 15 (in decimal)
255 (Decimal)

The smallest number is when no fingers are held up:
OOH = 0 Decimal

Note that all numbers, from the smallest to the largest require
and only 2 digits to define the number.

Try out for yourself any combination of 8 digits and see if you
convert it to hexadecimal notation, and then into decimal notat

It may seem a little strange and awkward at first, but you will
soon get the hang of it.

Also that when you count in hexadecimal, you do the same as in
decimal:

Decimal: 26 27 28 29 30 etc.

Hexadecimal: 26 27 28 29 2A 2B 2C 2D
2E 2F 516 1 o et

The values of the numbers in the decimal and hexadecimal series
above have different values of course. Note that after 29H you
2AH, not 30H!

22

The

2

can
ion.

get

The following BASIC program will enable you to input to your
Spectrum a decimal number and convert it to a
hexadecimal value.

100 REM decimal to hexadecimal conversion

110 PRINT '"Please input decimal value."

120 INPUT n : PRINT n

130 LET S$ = ' 135 LET n? = INT (n/16)

140 LET nl INT (n - n2*16)

150 LET S$ CHR$ ((n1 (= 9) * (n1 + 48) +
(n1)9)*(55 + n1)) + S$

160 IF n2 = 0 THEN PRINT : PRINT "HEXADECIMAL = 0"; S$
s M Hive FOR 1 = 1 “TO 200: NEXT I: RUN

170 LET n = n2: GO TO 135

Try converting the following numbers to theirs hexadecimal value
and use the BASIC program to test your answer.
i. 16384 memory address of the start of Spectrum
display file
if. 22528 memory address of the start of Spectrum
attribute file
iii. 15360 memory address of the start of Spectrum
character set
iv. 15616 address of the start of ASCII
characters in Spectrum

SUMMARY :

Decimal

The decimal notation is a convention of counting numbers in
groups of ten units at a time. These are represented by 0, 1, 2, 3,
4, 5, 6, 7,8, and 9,

Hexadecimal

The hexadecimal notation is a convention of counting numbers in
groups of 16 units at a time. These are represented by 0, 1, 2, 3,
4, 5, 6, 7, 8, 9, A, B, C, D, E, and F,

Sometimes an H is added at the end of a hexadecimal number to
remind us it is written in this format. For example, 1800H.

8-Bit Memory Locations

The ZX Spectrum is designed so that each memory location has 8
bits ('fingers'). Each memory location can store a number from O to
255 decimal. This is conveniently represented in the hexadecimal
format as a two digit number.

23

How Information is Represented

There is a big difference in information representation between
human and computer. Human information is mainly composed of numbers
and characters (alphanumeric information), whereas all information
in a computer is stored as groups of bits.

A bit stands for Binary digIT ("O0" or "1"); in the Z80A
microprocessor, these bits are structured in groups of eight. A
group of eight bits is called a BYTE.

This way of representing information using binary digits is called
the BINARY FORMAT. This is the structure of the language which the
280 and most microcomputer CPUs talk.

Basically, there are two types of information represented inside
the Spectrum. The first one is the PROGRAM. The second one is the
DATA on which the program will operate, which may include numbers
or alphanumeric text. We will thus discuss below these three
representations: PROGRAM, NUMBERS, and ALPHANUMERICS.

Program Representation

A PROGRAM is a sequence of instructions to the CPU to perform a
particular task which can be broken down into a number of
"sub-tasks'.

In the 280, all instructions are represented internally as single
or multiple bytes. Instructions represented by one byte are called
the "SHORT instructions'. Longer instructions are represented by
two or more bytes.

Because the Z80 is an eight-bit microprocessor, it can only deal
with one byte at a time, and if it requires more than one, it
fetches bytes successively from memory. Therefore, a single-byte
instruction will generally be executed more quickly than a two- or
three-byte instruction. Thus, as a general rule, it is always more
efficient to write your machine language program using single-byte
instructions where possible.

You can turn to the instruction set table in the Appendix and have
a look at the SHORT and LONG instructions. Don't worry if you can't
understand them, we will discuss each instruction in depth later
on.

24

Numeric Data Representation

* Integer Representation

We discussed earlier that because of the way the Z80 is designed we
cannot have a number such as 11.53. The CPU can only deal in whole
numbers. Also, by using only 8 fingers (ie an 8-bit number), we
could represent all the numbers in the range 0 to 255.

e.g. decimal 255 is represented by OFFH
the binary representation of which is 1111 1111

But what about negative numbers?

* Signed Integer Representation

Remember one byte is a HAND with eight fingers and a number is
represented by holding different fingers up.

Obviously, to represent signed integer in Binary Format, we have to
have some way of representing a positive or negative numbers. Let's
say that in order to represent a negative number, we adopt the
following convention (signed representation):

A NUMBER ON THE CPU'S HAND WILL BE CONSIDERED TO BE A NEGATIVE
NUMBER IF THE CPU HOLDS HIS THUMB UP. (in computer terminology, the
highest bit - bit 7 is on.)

So we have only seven fingers (bits) left to represent the value of
the number. That means the highest number we can have is no longer
255. In fact, half of the numbers which can be held on a single
HAND (a single byte) will be negative and half of them will be
positive (depending on whether the thumb is up or not).

The total number range possible on one hand if we allow negative
numbers will therefore be from -128 to +127. (Note that the total
number range that can be represented will still be 256 numbers).

Now comes the crunch: When is a number with the thumb up a large
positive number and when is it a negative number?

The answer is whenever you feel like it; You have to make a choice:
numbers can either be in the range of O to 255 or in the range
-128 to +127. They can't be both at the same time! It is up to
you, the programmer, to decide which convention you are using at a
particular time.

All the instructions will work equally well, whether you choose to
let the number contained in the registers or memory be all positive

25

or positive and negative.

* Choosing a Representation for negative numbers:

We have already decided that holding the thumb up will mean the
number is negative, and not holding the thumb up means it is
positive. Is this enough?

No. We need to decide which of the 127 possibilities of the
remaining 7 fingers will denote -1, which one -2, and so on.

We need a representation of negative numbers, such that when a
number is added to its negative we get zero. As an execise, let's
think about the number which when added to 1 gives us zero: (This
will obviously be -1, and we already know that the thumb - bit 7 -
will be up)

could it be=)?

0000 00O0O0 1000 001 O

Let's try 1 000 0001 - in other words, the same as +1, but
with the thumb up. To test if that is -1, let's try adding this
value to +1. From above the sum 10000010 is obviously not the right
answer! If it was right, the answer would have been 0 0 0 0O 0 0 O
0. Obviously, we need a number that will take that carry from Bit
0, and convert it to zeros all along.

You can try to do it yourself, and you will see that the only
number which will give us the right answer is

Dt Grmoal i b (FFH in hexadecimal)
To confirm this:

0000 OOO1
R T

r—-‘
(carry) 0000 00O0O
Is there a way that we can work out a general rule for the negative
of any number from this example? It looks as if though we might

have to get the opposite of the number and add one at the end.

Let's try this rule on another number, such as 3, say:

3= 0000 0611
opposite F e B 0 e
add 1 =) 1 . T T T L (FDH)

Let's add to this number to 3 and see what happens:
000 0000 1" 1
1 'L 1 k101

K’_-— —_——— -_
(carry) 0000 O0O0O0O It works!
We have found a way to represent negative numbers!
-0l =) FF
-02 =) FE

—-03 =) FD and so on.

The largost positive number is

DFE L1 1113 §= o7F 3=1'512] Decimatl
and the negative of this is
1000 0001 = 81 =) -127 Decimal

The real test of this rule is to see if by applying the rule to a
negative number we get back the positive again!

Let's try it out on -3 which we worked out above is FDH.

Number) e o s T |
Opposite 000 0010
Add 1=) 0 D SO0 O 0 151 =) 3

This is therefore a representation that works! We can apply it to
get the negative of any number.

16 - bit Negatives

Exactly the same reasoning applies to two handed numbers (16-bit
numbers), except that the thumb of only one hand needs to be shown
as 'ON' to indicate if the number is negative or not. (ie. bit 7 of
the high byte).

Convention:

e R R S

The computer terminology for this convention is called TWO's
COMPLEMENT. You can find 2's complement tables for negative decimal
numbers at the Appendix of this book.

Remember that this is only a convention! You still have to decide
at all times whether the numbers you are using are meant to
designate numbers in the range O to 255 or numbers in the range
-128 to +127.

Exercise:

i. If 127 (0111 111 1) is the highest positive

27

number which can be represented in this convention,
how would you represent -128?
ii. Find the highest positive 16-bits (TWO HANDS/BYTES)
and the highest 16-bits negative number? it
Find the 2's complement of the smallest
16-bit negative number 8000H. Why is it 800O0H?

Alphanumeric Data Representation

Sometimes, in machine language we do not want the numbers to be
instructions for the computer, nor do we want them to be numbers
for calculations. we may just want them to represent characters of

letters and numbers - eg. the title of your latest program, perhaps
called "THE WORLD'S NUMBER 1 PROGRAM".

Our convention to represent alphanumeric data, ie. characters is
pretty straightforward: all characters and numbers can be
represented on a single hand (ie in an eight-bit code).

In the computer world, there are two standards for alphanumeric
characters representation: The ASCII Code, and the EBCDIC Code.

ASCII stands for "American Standard Code for Information
Interchange' and is universally used in the microcomputer industry.
EBCDIC is a variation of ASCII used by IBM.

In the ZX Spectrum, alphanumeric characters conform to the ASCII
standard except for the pound (61H) and copyright (7FH) characters.
You can find an ASCII conversion Table in the Appendix. Compare it

with the character set table in appendix A of your Spectrum manual
pp 183-186.

Try this : PRINT CHR$ 33
and you will get a "!'"; because "!" is
represented internally by 21H.

HELP!: We have just shown that the CPU's hand can be said to show a
————— variety of things:
It could be - a program instruction to the CPU
- a number in the range 0 to 255
- a number in the range - 128 to + 127
part of a two handed number
an alphanumeric character

This is all true, and it is up to you, the programmer, to remember
just what it is the CPU's hand is supposed to be holding.

28

SUMMARY:

Memory Contents
The Spectrum's memory can store programs, numbers, or text, as

we desire. There is no way of telling which is which just by
examining the contents of a single memory location.

Programs

Program instructions are stored in memory as sequences of
bytes. Some instructions require only one byte, while others
require up to four bytes.

Numbers
Each memory location can be used to store either positive
integer numbers or signed integer numbers (numbers which can be

positive or negative), as we choose. The range of numbers is either
from O to 255 or -128 to +127.

Negative Numbers

A convention has been adopted that when we choose to have
memory store a signed (+ or -) number, the following rule shall
apply:

If bit 7 is on, the number is negative

If bit 7 is not on, the number is positive

To obtain the negative of any number, get the "2's complement'" and
add 1.

2's Complement

The 2's complement of any number is its opposite in binary
form. Any bit that is on becomes off, and vice versa.

29

A Lookinto the CPU

Introduction

We have said that the brain of the Spectrum is the CPU, the Z80A
processor. This is a faster version of the Z80 processor produced
under a licence from Zilog Inc.

The only difference between the Z80 and Z80A processors is that the
former processor is running at a clock speed of 2 Mhz/s (Megahertz
per second) while the later processor is running at a clock speed
of 3.5 Mhz/s. 'Clock speed' is merely a measure of how fast the CPU
is performing its calculations. In the Spectrum, 3.5 million clock
nulse signals are generated per second, ie one clock pulse every
C.000000286 of a second.

The fastest instruction the CPU can perform takes up 4 clock
pulses, while the slowest requires 21 clock pulses. That means,
that even if all instructions performed are the slowest ones, about
160,000 instructions can be performed each second!

A Physical View of The Brain

The processor in the Spectrum is a silicon chip with forty pins
numbered from 1 to 40. These pins are the communication lines
between the processor and the rest of the computer. For example,
the processor draws its power from the power supply through pin 11,
gets its clock signals from pin 6, sends addresses in or out
through pins 1 to 5 and pins 30 to 40, and sends data in or out
through pins 7 to 15 except pin 11. The rest of pins are for
control signals communication.

You may find yourself totally lost at this stage. But no need to
puzzle, it's really to our advantage that we don't know the
internal structure of the machine, and we don't need to know it to
use its capabilities. It's just the same as with a calculator. The
physical structure of the machine is 'transparent' to the users (in
other words we Gon't see it!). We are only interested in the
logical structure of the calculator, or in this case the Z80 chip,
and how we can use it to our purposes.

Logical View of The Brain

Logically, the Z80 can be divided into five functional parts.

They are i. the CONTROL UNIT
ii. the INSTRUCTION REGISTER
iii. the PROGRAM COUNTER
iv. the ARITHMETIC-LOGIC UNIT
v. the 24 USER-REGISTERS (the usable HANDS
and FEET of the CPU)

* CONTROL UNIT

We can see the CONTROL UNIT as a supervisor for the CPU's
processing. Its task is to time and coordinate the Input,
Processing, and Output of the particular job that the CPU is being
asked to perform, whether the instructions come from the ROM
program, or from your program.

* INSTRUCTION REGISTER

This is a HAND that the CPU uses to hold the current instruction
that it is going to perform. The whole task which comprises a
program must resicde somewhere in memory - either in the ROM or in
the RAM (Random Access Memory). You may recall that a program is a
sequence of instructions. Thus, to perform the task, the CONTROL
UNIT has to fetch each instruction in turn from the memory (either
ROM or RAM) and place it in the INSTRUCTION REGISTER HAND.

* PROGRAM COUNTER

This is really one of the Z80's FEET which tell the CPU where the
next part of the program is (the address of the next memory location
from which the CONTROL UNIT is going to fetch an instruction). It

is like an instructions warehouse manager keeping track of the
location of the next instruction to fetch out.

* ARITHMETIC and LOGIC UNIT

This is the calculator inside the CPU. It can perform both
arithmetic and logical operations. Out of all the basic arithmetic
functions as you and I know them, this unit can only perform simple
addition and subtraction, incrementation (adding 1) and
decrementation (subtracting 1), but not multiplication or division.
The unit can also compare one handed numbers, or perform 'bit'
operations such as rotating fingers around, holding specific
fingers up or down, etc.

As a byproduct of the calculations the ALU is asked to pnerform, the

calculations usually affect the status of the various FLAGS in the
FLAG register. This is discussed in more detail further on.

3

* USER-REGISTERS

These are the CPU's Hands and Feet, which you, the programmer, can
control.

There are twenty four User-registers within the Z80 microprocessor
- some are HANDs, and some are FEET.

The images we have been building up of hands, feet and boxes make
the processes easy to visualise and are a good representation of
what is going on, but computer buffs tend to look askance if you
say things like '"...and then the computer shifted its information
from its right hand to its left hand."

We will now give you the proper names for the CPU's hands and feet,
so that when faced with that situation, you will be able to say:
"D B,A"

To start off with, computer buffs refer to the hands and feet of
the CPU as ''registers'.

We mentioned earlier that the CPU has eight hands: these are
called A, B, C, D, E, F,In our world, the definition of a hand
is something with eight fingers.

The CPU has two feet: these are named IX and IY. The definition
of a foot is anything with 16 toes!

The naming of hands and feet is fairly easy to follow because if a
register has only one letter in its name then it must be a hand
(that is, contains 8 bits), while if it has two letters in its name
then it must be a foot (that is, have 16 bits).

Did you notice the smooth transition from fingers and toes to bits?
We will have you used to computer terminology in no time.

Actually the remaining two hands for the CPU after D, E, F,
....... are not named "G'" and "H" as one would expect but "H" and

The conventional way to represent all these registers is as
follows:

32

A E
B C
D E
H L
IX
1Y

Notice that "F" is paired with "A", but after that the rest follow
fairly naturally. The reason that registers are paired in this way
is that it is sometimes possible to make a foot out of two hands!

After all, if the definition of a foot is something with 16 bits,
then maybe we can fake it from time to time and use two 8-bit hands
to do the work of a foot. We therefore talk about ''register pairs"
such as BC, DE, and HL.

The reason the register pair "HL" was called "HL" instead of
something like "GH" was to help people remember which of the two
registers had the high number and which had the low number.

It's as if though you wished to represent the numbers 0 to 100 on
your hands and toes. You can easily set up your fingers to
represent the numbers O through 10, and similarly with your toes
(assuming that you are agile enough). One way you could denote the
number 37 in this way would be to count off 3 on your fingers and 7
on your toes. But there has to be some agreement on which is the
high number and which is the low number otherwise someone else
might think you meant to represent the number 73.

The "H" in "HL" stands for HIGH and the "L'" stands for LOW, so
there is no chance of confusion - right?

This diagram of register pairs also serves to indicate which
register in the other register pairs contains the high number:

B in BC
D in DE

because all the highs and lows are treated in the same order.

The feet (IX and 1Y) also have a special name: they are called
"index registers''. This has a lot to do with the fact that they
can be used to organise information in much the same way as a book
index is organised. Alternatively, you can view them as table
pointers.

33

OK, now that you understand the terminology, here are some special
points:

THE ACCUMULATOR (A register)

This 8-bits (single byte) register is the most important register

of the Z80. Its name dates back to the early generation of computers
when there was only a single register that could be used to
'accumulate' a result.

So, as we have advanced from the early generations of computers,

the accumulator continued to be used extensively for logical and
arithmetic operations. In fact, most computers are still designed in
such a way that many operations can only be performed using the A
register,

This is true of the Z80 chip, and the A register is a favoured
register. You can think of the A register as being like the CPU's
right hand, in the same way that most people can perform some tasks
more easily with their right hand than with the left hand.

The Flags:

Please note that "AF'" is not usually treated as a register pair.

The "F'" in this case is used to denote '"Flag Register'. This is a
hand with 8 fingers such that each finger indicates whether a certain
condition is met or not met and we will be dealing with this in a
separate chapter.

The HL Register Pair:

Of the three register pairs (BC, DE, HL), the HL pair is probably
the most important one. Besides giving the user the option of using
it as two single registers or as a register pair, the Z80 is
designed in such a way that there are certain 16-bit arithmetic
operations that can only be performed using the HL register pair.

Because of this particular hardware privilege, general register
pair operations usually will be faster using the HL register. This

makes HL preferable to use in machine language programming.

Maybe the HL register is the CPU's right foot?

An Alternate Register Set:

T thought that this might be a nice place to mention that the CPU
also has a spare set of hands!

Not really so much a spare set of hands (all right, alternate
register set, if you want the proper terminology), as a spare set
of work gloves.

It's like you had a set of stiff plastic gloves, so stiff in fact
that they retained the shape of your hand when you took them off.
If you had counted off the number 3 on your hand for example and
took off your gloves, then the glove would still retain the shape
of a hand with the number 3 counted off!

You can no doubt think of uses for such gloves immediately - you
could make a note of a number while wearing one set of gloves, swap
gloves and the old number would still be there when you needed it
on the other set of gloves!

The other glove is there if you want to use it and it won't forget
the impression of your hand when you took it off. Unfortunately
you can't just glance down and see what was the number you had
retained there. Nor, naturally, can the glove perform any
calculations without a hand inside the glove!

You actually have to swap gloves again to be able to use whatever
information the gloves retain.

The CPU has a spare set of gloves for each pair of hands (but not
for feet — who ever heard of gloves for feet?) but they are not
interchangeable between hands, just as you can't put a left glove
on a right hand.

The representation of all the registers is now therefore:

A - F (===) A' - F'
B-2C —— B' - C'
D - E (=== D' - E!
H-L —— H' - L'
IX
1Y

Note that the set of gloves you are wearing has the same name as
the hand it is for, while the spare set is always indicated with
the dash symbol.

The instructions still relate to what the hands are doing, ngt to
which pair of gloves you have on. So although we show the spare
set with a dash, there are no instructions such as LD A',1. The CPU
only works on your HANDS, not your gloves.

35

The only instructions involving the alternate register set are of
the "swap gloves now" type. For example:

1. 1D A, {(Box #1) ;Load A with contents of
;Box #1
2:« EX AF, AT’ ;Short for exchange -

; ie. swap gloves on AF
swith those of AF'

3. LD A,(Box #2) H
4. EX AF,AT! ; Another exchange
5. LD A,(Box #3) 5

You will note that in the above 5 instructions there are no
instructions which have specifically affected the alternate
register set but we have without doubt altered their contents.

This example is designed to illustrate the concept of the alternate
register set. Try to work out what is happening.
Do you know what will be in register "A" after each instruction?

For simplicity's sake, let's assume that the contents of the three
boxes are as follows:

(Box #1) = 1
(Box #2) = 2
(Box #3) = 3

Then the following is what happens after each instruction:

Register A Register A'
1. 1 Not known
2 Not known 1
N 2 1
4. 1 2
5. 3 2

Really quite simple, isn't it?

You will find that these EXCHANGE registers are particularly useful
when you run out of HANDs, rum out of registers and you don't want
to spare your hands/feet by storing what is on them onto the STACK
or into MEMory. We will follow through this point later.

Even More Registers?

Yes, there are even more registers, but you will probably not be
using these to any great extent.

The STACK POINTER

The STACKX POINTER is another foot the CPU has (2-byte addressing
register).

It always points to where the pile on the stack has got to. As the
stack grows, it grows downward from high memory locations to lower
memory locations.

You do not usually have to do anything about the Stack Pointer in
Machine Language programming. The CPU looks after it, and updates
it every time you do a PUSH or POP.

Note that it is a common mistake to forget to POP back a value that
you PUSHed on to the stack. You can be sure that this will cause
your program to ''CRASH".

The I Register

This is the Interrupt Vector register. In Z80O based systems other
than the SPECTRUM this register would normally be used to hold the
base address of a table of addresses for handling different
responses to an interrupt, for example, Input/Output requests.

However in the SPECTRUM this facility is not used and the I
register is involved in generating T.V frame signals. It is
unlikely you will ever have to use this register.

The R Register

The R register is the memory-refresh register. It is provided in
the Z80 to refresh dynamic memories automatically. As the ZE&0
processor is doing its job, the information stored in those parts
of dynamic memory which haven't been accessed recently will 'leak’
away because of a drop of voltage through time. Unless these memory
locations are refreshed (recharged), information storec originally
will disappear!

The R register serves as a simple counter that is incremented every
time a 'memory information retrieval cycle' occurs. The value in
the R register thus cycles over and over from O to 255.

This can be used by the hardware to ensure that all parts of the
memory are 'refreshed'. But don't worry - you never need to know
about it. That is something that Mr. Sinclair had to worry about
when he designed the Spectrum. We can just make use of his computer
without ever worrying about refreshes, etc.

From a programming point of view, you can think of the R register
as relating only to hardware and system usage. But sometimes you
can use it as a mean of obtaining a random number between O and
255. We will demonstrate this usage later.

37

SUMMARY :

-

User's Registers

There are eight main 8-bit registers in the CPU (A, F, B, C, D,
E, 4, L), and two 16-bit registers (IX and 1Y). Eight-bit registers
have only one letter in their name, while 16-bit registers have two
letters.

Register Pairs

Six of the eight 8-bit registers can in some circumstances be
used in pairs to operate on 16-bit numbers.

These are the BC, DE and EL register pairs. The name HL can
serve to remind us which is the High order byte and which the Low
order byte.

Preferred Registers

The 280 CPU is designed in such a way that some &-bit
instructions can only be performed by the A register, while some
16-bit instructions can only be performed by the HL register pair.

Alternate Register Set

The eight main 8-bit registers can be swapped with another
'alternate' set of registers.

The values stored in the main registers are retained by the CPU
while the alternate set is being used, but cannot be accessec.

Exchanging the register sets again allows us to operate on the
original values again.

This is all very well...

You have probably heard enough about the CPU and hexadecimal
notation, and it all seems so irrelevant. It doesn't explain how
you actually RUN a machine language program.

The ZX Spectrum is actually running machine language programs all
the time! (When it's on). It's just that you are not aware of it.
Even when you're not doing anything, just watching the screen,
trying to think of what to enter as the first line of your
revolutionary BASIC program, the Spectrum computer is busy running
under the control of a machine language program.

This program is the one that is stored in the ROM chip and is
referred to as 'the operating system'. For example, the part of
the program that is running when you're sitting there looking at
the screen does the following things:

Scan the keyboard for entry

Note that no key has been pressed

Display the present screen (empty)

Even when you are running a BASIC program, the CPU is still under
the instruction of the machine language program. This program is
of the 'interpreter' type as we have alread exlained: it looks at
your next BASIC instruction, converts it to machine language,
executes that part of the program, and then returns to interpret
the next instruction.

All this stops being true when you run your own machine language
program!

Total freedom from the operating system! The use of the 'USR'
function hands over total control of the CPU to whatever commands
you have placed at the USR address. It will interpret whatever it
finds there as valid machine language instructions.

This can be pretty terrifying as you could lose everything stored
in memory should you lose control. One error, one wrong character,
and you will have to turn the Spectrum off and start again from the
beginning.

There are no error messages to catch what you have done wrong, no
syntax checking for incorrect statements - so if you make the
slightest error, the hours of work you put in to enter your program
could be lost!

At the end of this book we have included a BASIC program which will

allow you to enter and edit machine language programs. Once you
have entered this program on your Spectrum, save it on tape as it

39

is more than likely that you will lose control of your machine
language program at least once.

On the other hand do not be afraid to experiment - you cannot
damage the computer with any machine language program you enter.
The worse that can happen is that you may have to turn your
Spectrum off and on again.

We will now just wet your appetite with the very simplest possible
machine language program. Load the BASIC "EZ Code Machine Language
Editor" found at the back of this book and RUN it.

The program will ask you for a loading address. This is asking you
where you will want the machine code to live. With this EZ-Code
program, you cannot use an address below 31500, so let's choose
32000. Enter the number 32000 then press (ENTER).

The screen will now show:

Command or Line (###):
This means the program is waiting for you to enter a command or a
new line of machine code.

Let's enter "1", then a space, then '"c" and then "9'". This is like
entering a line of BASIC numbered line number 1, but it is a line
of machine code. If everything is OK, then press (Enter). The
screen should now show you all the lines you have entered:

1 c9

and at the bottom of the screen the prompt
"Command or Line (###):"

At this stage you do not want to add any more lines, so let us
enter a command instead.

Enter the word '"dump', and then press (ENTER). What this command
does is to dump the machine code in the listing into the address
you have specified, namely 32000.

Congratulations: you have just entered a one instruction of
machine language program! You can check this was entered correctly
by now entering the command "mem'", followed by (ENTER). This
command allows you to examine memory, and it will ask you for a
starting address. Enter 32000 then (ENTER).

You will see the contents of memory locations from 32000 through to
32087. All should show 00, except 32000 which will show C9. Press

key "m'" to return to the main command input stage.

What the instruction '"C9'" means is: RETURN!

40

It's a little like riding a bicycle for the first time: you really
want to be let loose on your own, but as soon as you go a little
way you want to "return' to the safety of earth (or operating
system as the case may be).

Now we run the machine language program. To run any machine
language program you have dumped to memory, enter the command 'run'
followed by (ENTER).

What happened? Why did the screen come up with 32000 at the bottom
of the screen? This was the address used as the loading address you
used at the start.

Don't forget that the function of "USR" is to execute a machine
language subroutine. As part of this function, the value of USR on
return from the machine language program you placed in memory will
be the value of the BC register pair.

The answer lies in the way the Spectrum operating system (yes the
same one) deals with the "USR" function.

When the operating system encounters the "USR" function it loads
the address the user specified into the register pair BC - in this
case 32000.

The value of "USR'", as in
Let A = USR 32000
naturally gave the answer 32000!

This feature of the "USR" function will prove to be a very useful
one as it will enable us to monitor what is happening during the
runring of a machine language program.

Let us enter the following machine language program:

0B
c9

The way to enter this short two-instruction program is as follows:

Enter line 1 Ob by entering "1'", then space, then '"0", then '"b",
and then press (ENTER). Similarly enter line 2 c9. The listing
should show you that you have entered the lines correctly. Enter
the command "dump' and then the command '"run'.

This time the result will be 31999! This is because the

instruction "OB'" is "DEC BC" (abbreviation for decrease value of BC
ST G

41

Exercise:

Experiment with instruction that involve BC by looking up such
instructions at the table at the back. Can you work out what the
abbreviations mean?

Be careful to have the last line of all your programs as '"c9". This
is the RETURN instruction, and if you forget it, the program will
never return.

I1f that should happen to you, don't worry - your computer has not
been damaged. Just turn off the power and reload everything.

Exercise:

You can use the '"mem'" command to examine any part of memory. Try
various addreses where you think you might find something
interesting.

42

How the CPU uses its Limbs

Introduction

We have seen that your ZX Spectrum CPU has twenty four Hands and
Feet. Just which operations are allowed and how easy they are for
the CPU to perform is the key to machine language programming for
your Spectrum.

Imagine for a moment that you are the CPU:

Possibly like most people, you are right handed and there are
things you can do with your right hand that you are not quite so
adapt at with your other hand. There are also certain actions which
may be easy to perform one way, but more difficult another way -
such as picking something off a high shelf with your left foot and
passing it to your right hand is harder to do than if you used your
left and right hands.

It's the same in machine language - you can perform some tasks
easily one way, with more difficulty another way and it may be
impossible a third way. Knowing which combination of actions are
allowed is the key to success.

The equivalent hand on the CPU to your right hand is the "A"
register. Remember? The ACCUMULATOR, the hand that came into
existence as a result of genetic inheritence of early computers.

On the other hand (so to speak if you'll forgive the pun) you can
temporarily store what you have in your right hand onto any other
hand, foot and vice versa.

Computer boffins refer to this as "Register Addressing'.

But this is just a big name for saying transfer information from
one register to another.

Other examples would be LD A, B
LD H, E
and so on.

Please note that LD is the mnemonic (abbreviation) for '"LOAD'" and
that when you read assembly language a comma '"," is read as 'with".
Thus we would read

FILD ‘q; B||
as "LOAD A WITH B"
An assembly language instruction is read in the same order as a
normal English sentence would be.

43

There are also other combinations or ways other than register
addressing that information can be transferred from one register to
another or from register to memory.

The ways you can use the CPU's limbs:

One of the advantages of the Z80 processor is the large number of
limbs, and the possible combinations (addressing modes) that are
available.

Let's look at the combinations offered by the Z80:
* Immediate addressing

* Register addressing
* Register indirect addressing
4 Extended addressing

*

Indexed addressing

What a list of names? Don't worry, just remain confident and we
will step through them one at a time.

The list above does not cover all the possible combinations
possible - only those that apply to one-handed numbers!

Let's deal with each one of these possible contortions in turn:

* Immediate Addressing

The general form for this is
LD r, n
(or other instruction - we use LD as an example only)
We use the abbreviation 'r' to mean any 8-bit register and 'n' any
8-bit number.

Immediate addressing is a technique that involves only a single
hand. The actual data is a part of the instruction; this means the
CPU can execute the instruction IMMEDIATELY it receives the
instruction. It doesn't need to look in memory to find more
information in order to perform this instruction.

For example, count off 215 on hand "A'". I am sure you know enough
about the mnemonics by now to be able to write this as:
LD A, 215 or LD A, OD7H

Once again you can do this with any of the registers, with any
numbers whatsoever.

The format for the immediate addressing type of instruction is
shown below:

byte 1 instruction (telling the computer what
code is this instruction)

44

byte 2 n (the value of the actual
data for the instruction.)

Since there is one byte allocated for the actual data, the
limitation to the size of number you can specify is within the
range 0 — 255. If you don't understand this, refer back to chapter
on ""The Way Computers Count'.

We usually use immediate addressing to initialise counters and to
define constants needed in calculations.

Tmmediate addressing is easy to use in machine language
programming. However, it is the least flexible of all transactions
(addressing modes), since both the register and the data are fixed
at the time of writing a program. The equivalent BASIC instruction
would be

LET A = 5
Obviously we need this kind of instruction, but we couldn't write
entire programs this way!

Immediate addressing is convenient but does not solve any major
problems.

But at least we're starting to get someplace: we as programmers can
now specify which number gets loaded onto which registers.

* Register addressing

We dealt with this mode briefly earlier. The general format is
LD ‘v, T
(or other instructions)

This techique only involves two Hands; in short, this is passing
information from one hand to another.

The CPU will allow information passing between any two hands except
the "F'' hand (which we should not think of as a hand at all. It is
the 'FLAG' register and does not store numbers in the normal
sense).

Register address instructions only need one byte.

Instructions of this type are not only short (One byte), they are
faster as well. The time needed to execute them is the time taken
for 4 clock pulses, or less than 1 microsecond on the Spectrum.

There is a 'rule' in writing machine language programs that hand to
hand transactions (register to register transfers) should always be
used when possible to improve program efficiency in time and
storage.

45

* Register indirect addressing

LD G) A or LD A)
LD (HL), n

This powerful type of instruction causes the transfer of data
between the CPU and a memory location pointed to by the contents of
one of the 16-bit register pairs (Feet).

Register indirect addressing is faster than ordinary indirect
addressing, since the CPU need not fetch the address from memory.

dowever, we must load the register originally, and so register
indirect addressing is only advantageous when the program uses the
same or neighboring address many times.

For example, LD HL,SHAPE ;:load EL with start of
shape database
LOOP LD A,(BL) ;Petrieve a data
INC HL ;move pointer along

continue LOOP
until shape finished

* Extended Addressing

LD &, (nn) or LD (nn),A

Now we are looking at how to store ancd restore information from and
to vour Hand and Feet from memory.

In Extended addressing, the instruction from the program supply the
CPU with an address specified by two bytes.

I1f the transaction is to and from the accumulator, information
transfer will only affect the content of memory referred to by the
two-byte integer.

If transaction is to and from a register pair, both the contents of
memory location referred to by the two-byte integer and the next
memory location will be affected.

The format of this tyne of instruction is:

byte 1 op-code

byte 2 (possible additional op-code)

byte 3 low order value of the 16-bits integer
value

byte 4 high order value of that integer value

Now this is the way the program can read the memory into the user

46

registers. Again, it requires an absolute address; in other words,
the resulting program using this type of acddressing may not be

relocatable except when the absolute address the instruction is
referring to is relocatable.

eg. SHAPE DB NIy Nseeis ;shape data base

LD A, (SHAPE) ;load first byte of shape
in accumulator

* Indexed addressing

- ———

LD i LY L TY oy or LD CIREY e) r
(or other instructions)

This type of transaction involves a Foot of the CPU, the IX or IY
index register.

The CPU adds the contents of the index register to the address

supplied with the instruction in order to find the effective
address.

This is one of the instruction type in Z80 that has 16-bit opcode.
Another common 16-bit instruction type is the Block Load
instructions eg. LDIR (Load increment and repeat).

One typical usage of this type of addressing technique is to
perform Table operations.

The Index Registers can be used as pointer to the start of a table
of data. A displacement value is supplied in the instruction to
determine the address of the desired entry of the table the program
want to refer to.

eg. LD IX, TABLESTART :initialise pointer to
:start of table
ED A S (IX ¢ 3) ;refer to the third byte
;from the start of the
;table

The format of instructions of this type is:

byte 1 (op-code)
byte 2 (op-code)
byte 3 d ;displacement integer d

The number 'd' is an 38-bit number which has to be specified
together with the instruction and can not be a variable.
ie. the range of addressing is limited from -128 to 127 from the

47

address pointed to by the index register.

Indexed addressing is slower because the CPU must perform an
addition in order to obtain the effective acddress. Yet indexed
addressing is much more flexible since the same instruction can
handle all the elements in an array or table.

48

SUMMARY:

—— e e i ——

There are many ways that the CPU can fetch 8-bit information or
transfer it from 8-bit registers to memory:

Immediate addressing
Defining in the program the number to be
transferred to any register.

Register addressing
From any register to any other register

Register indirect addressing
Either using BC or DE to specify the address, and
A to hold the number to be transferred.
Or using HL to specify the address and defining
the number in the program

Extended addressing
Specifying the address in the program and using A
to hold the 8-bit number

Indexed addressing
Using IX or 1Y to specify the start of a table in
memory, and any register to hold the &-bit number.
The displacement from the start of the table must
be specified in the program.
The number to be transferred to memory can also be
specified in the program if desired.

These addressing modes are the only modes of transferring
information to and from memory. No other combinations are allowed.

49

Instructions For One-Handed Loading Operations

Mnemonic Bytes Time
Taken
LD Register, Register 1 4
LD Register, Number 2 7
LD A, (Address) 3 13
LD (Address), A 3 13
LD Register, (HL) 1 7
LD A, (BC) 1 7
LD A, (DE) 1 7
LD (HL), Register 1 7
LD (BC), A 1 7
LD (DE), & 1 7
LD Register, (IX + d) 3 19
LD Register, (IY + d) 3 19
LD (IX + d), Register 3 19
LD (1Y + d), Register 3 19
LD (HL), Number 2 10
LD (IX + d),number 4 19
LD (IY + d),number 4 19

Flags notation:

#
0
1

indicates
indicates
indicates
indicates

flag
flag
flag
flag

is
is
is
is

C

altered by operation

set to O
set to 1
unaffected

Effect on

Z PV

Counting off Numbers on One Hand

Since everything in the Spectrum CPU is designed around 8-bit hands
or 8-bit memory locations, it is obviously of major importance to
learn how to count off numbers on one's hands.

We discussed in the previous chapter some of the ways we can

tansfer information from hand to hand. We will now deal with each one
of these methods in more detail. You may recall one as being called
register addressing.

As we said, that is just a big name for saying transfer information
from one register to another.
Examples are:
LD A,B
LD §,E
and so on.

Remember the terminology involved: "LD" means 'load", "," means
"with'", and the mnemonic (abbreviation) instruction is read in the
same order as an english sentence.

We would thus read out loud something like:
LD A,B

as '"load A with B". The next example would be read as '"load H with
A

We can swap from one hand to any other hand as we mentioned
earlier. Apart from one exception (the Flags register, which is not
like the other registers), you can manipulate any hand to any other

hand. Even the seemingly stupid instruction "LD A, A" is
permitted!

A short shorthand of this is "LD r,r' where 'r" represents any
8-bit register except "F".

OF.: We now know we can shuffle information between hands, but
that's not going to do us much good without some original

information on those hands.

The second way that we can count off numbers on our hands is for us
to specify how many we want the CPU to count off on which hand!

For example, count off 215 on hand '"D'". 1 am sure you know enough
about the mnemonics by now to be able to write this as:

LD D, D7
(D7 is the hexadecimal representation of 215).

You may recall this was called immediate addressing. (Pretty

51

obvious, isn't it?).

Once again you can do this with any of the registers, with any
numbers whatsoever. The limitation being of course the size of the
number you can specify with 8 bits: 0 - 255.

A short shorthand of this is '"LD r,n'" where 'r" indicates any
register and '"n' any number. The previous convention of one letter
implies 8-bits still applies.

Mow we're starting to get someplace: we can now specify which
numbers get loaded onto which registers and we can spin them around
from hand to hand. But we still haven't learnt how to put any of
these numbers away into memory locations, and there are only so
many registers!

We showed you very briefly an example of "external addressing' when
we were doing the time difference exercise:
LD A, (Box #3)

The general mnemonic for this is:
LD A, (nn)

Don't forget that in our shorthand the brackets imply "the contents
of!,

Note two things about this:

1. You can only do it with Register A

2. You have to supply the number of the box as a two handed
(16-bit) number.

The reverse instruction is also valid. This is one thing vou will
notice about the Z80 - there is symmetry about the instruction set:
LD (nn),A

Do notice that these instructions only apply to Register "A" --
there are of course other instructions for the other registers but
none quite as clear as this one. It's the dominant hand concept
again.

Let us pause here for a nanosecond and consider what these two
instructions actually mean and do for us.

In the first place, the number range that can be defined by a two
handed number (nn) is from 0 - 65,535. This is 64K, and means that
the maximum memory that can be accessed by this instruction is only
64K! This means that all the memory - ROM, program, display, and
free memory - have to fit within 64K. On a "16K Spectrum" there is
actually 16K used by the ROM and 16K of RAM making a total of 32K.
The '"16K" refers to the RAM part only. On the "48K Spectrum', the
same 16K of POM is present plus 48K of RAM making a total of 64K.
It is not possible therefore for the Z80 to access more memory than

52

is available on a 48K Spectrum.

The instruction "LD A,(nn)" - which is read as "Load A with the
contents of location nn" - is a very powerful instruction. It
enables us to "read" the contents of any memory location, whether
in ROM, or RAM.

You can use this instruction to explore to your heart's desire,
even to a location where there is no memory - eg to try to see what
is beyond the 32K memory even if you do not have additional memory.
You will be surprised - it is not all zeros!

The reverse instruction "LD (nn),A" - which is read as ''Load the
contents of memory location nn with A" - will attempt to write to
any memory location as well, but will be restricted by the physical
limitations:

You can't write to a location that can't store that information,
such as in non-existent memory beyond the size of your system.

One of the limitations of this instruction is that we have to know
at the time of writing the program which memory location we wish to
examine or write into. The abbreviation '"nn" means a definite
number - eg. 17100 - and not a variable.

You can't use this instruction in the machine language equivalent
of a "For - Next'" loon. The main use for this instruction is
therefore for setting aside particular memory locations as variable
storage.
eg. define 32000 = speed

32001 height

32002 = fuel left
in a lunar lander type program.

You could therefore nlan a program where you got the fuel left,
decreased it, and stored the new amount of fuel back into that
location. You will know at the time of writing your program the
address of that memory location which serves to act as a stroehouse
for that information.

Let us be clear about this. Location 32002 is not a variable. It
is only a memory location which you use to store information.

When writing your assembly language program you would therefore
write something like

LD A, (Fuel)
and when you or the assembler program got to specifying the actual
machine code for this instruction you would replace '"fuel'" by the
hexadecimal address of the memory location you specified.

But what if we don't know the exact address of the memory location
where the information we seek is? Suppose we can only calculate

where that information is going to be? Because we need l6-bits to
specify the address of any memory location, we would need to store
it in a l6-bit register: this means one of the register pairs BC,
DE, or HL, or one of the index registers IX or IY.

One way we can do this is to have one of the register pair contain
the address of the memory location. Because the register contains
the information and because we don't have the address directly we
call this form of addressing register indirect addressing.

The mnemonic abbreviations for these are
LD r,(HL)
LD A, (BC)
LD A, (DE)

The English reading of these instructions is
""Load the register with the contents of the memory
location pointed to by HL"
"Load A with the contents of the memory location
pointed to by BC"
"Load A with the contents of the memory location
pointed to by DE".

Note that by using "HL'" as the pointer to our memory location we
can load to any register - even H or L, as strange as that may
sound - but that using BC or DE we can only load into the A
register.

This is because the HL register pair is the favoured register pair
in the same way that the A register is the favoured single
register.

Once again there is a symmetry to these instructions and we can
store information into memory locations in a similar way:

LD (HL),r

LD (BC),A

LD (DE),A

This is still called "Register indirect addressing' whichever
direction the information flows in.

Alternatively we could use the index registers IX and IY to point
to the memory location,
The short shorthand of these instructions is:

LD ¥, (IX + d)
LD 2, (IY + d)

"r'" is again any register, and ''d" is the ''displacement"
from the address pointed to by IX or IY. (Don't get the use of 'd"
confused — we don't mean register '"D" but d = displacement)

The number ''d" is a one handed number (8-bit number) which has to
be specified at the time of programming and cannot be a variable.
This is the weakness of this particular instruction and means that
its use is usually limited to reading and writing tables containing
data.

The symmetrical instruction is also available:
1D (1X + d),;x
LD (1Y + d),r

If this particular mode of addressing sounds a little complicated,
don't worry: you are unlikely to need it in your first few
programs.

The Z80 chip used in the Sinclair computers is nothing if not
versatile, and you can combine some of the ways of loading numbers
we described above.

For example, you can combine immediate addressing (ie. specifying
the number you want loaded) with external addressing (ie.
specifying the address to be loaded by using a register pair).

This is called - surprise, surprise - "Immediate External
Addressing'.

Unfortunately vou can only use the HL register pair and the short
shorthand is therefore:

1L.D (HL),n

This is useful as you can directly fill a memory location without
first having to load that value in a register.

A similar combination is possible with the index registers, called
"Immediate Indexed Addressing".

This is of more limited use, and the abbreviated form for these
instructions are:

LD (IX + d),n
LD (IY + d),n

55

Using These Instructions in a Machine Language Program

Let's try to put some of these '"LD" instructions into practice.

We know from the previous chapters that after returning from a
'USR' machine language program the value of the 'USR' is the
contents of BC. Let's run the following program:

(Load and RUN the EZ Code Machine Language Editor first, and set
the Loading address to 32000)

1 Oe 00

2 c9

Now use the DUMP command to place this code into memory.

From now on, we will no longer be giving you such explicit
instructions on loading and running machine language programs, as
it is a cumbersome method and does not give you any additional
understanding into the point of the program.

We will assume that by now you have enough familiarity with the
BASIC "EZ Code Machine Language Editor" and with the tables at the
back of this book to be able to enter a program. We will therefore
be showing all of our programs as follows:

OE 00 LD C,0
Cc9 RET

This notation gives you the machine code on the left side and the
Z80 assembly mnemonics in the right hand column. It also incdicates
very clearly which instructions require only a single byte (such as
RETurn) and which instructions require 2 bytes, etc. (you will
remember that some instructions on the Z80 can take up to &4 bytes!)

The other point is that we shall try to make all our programs
independent of origin (where the program starts in memory) so that
it does not matter what you specify as your loading address.

Nonetheless remember that these programs can be entered with the
"EZ Code Machine Language Editor' program at the back of the book
or any other loading program you may design yourself.

Before running this machine language program (you must ''dump' the
code into memory and then use the '"run' command in the EZ Code
program) what would you expect the result to be?

The program sets the 'c'" register in the register pair BC to zero,
and you know that BC starts off with the address of the program,
which is 32,000.

Will be answer be A. 0000
B. 22000
C. 31896

Now run the program. Was the answer what you expected it to be?

If you are unclear about why the answer was what it was, go back
and reread the chapter on "The Way Computers Count'.

Now try running the following program:

06 00 LD B,0
OE 00 LD C,0
c9 RET

This will give you the expected result of O as BC = 0 (both
registers B and C have been set to 0).

Exercise:

You might like to try a few fancy tricks, such as loading A with a
number, transferring to L, setting H to 0, and so on.

Exercise:

The attribute file starts at address 5800H. We can set HL to point
to the attribute file by the following program:

26 58 LD H,58H

2E 00 Lb L,O

This means that you can now change the colours in the display by
using the LD (HL),n command.

The structure of the attribute file is described in the Spectrum
manual. Let us set the first character to ink red, paper white,
flash on. This is
10111010 = BAH
so the next line of the program will read
36 BA LD (HL),BAH

Now you must never forget to return from the machine language
program, so the last line must be
c9 RET

RUN this machine language program. Did it work?

57

Flags and Their Uses

Flags are those nice buntings you can wave on state
0CCasionNS.eaceaans - wrong!

In machine language, the word "flag'" implies "indicator'". A flag
is something you put up if you wish to indicate to someone else
that a certain condition exists.

The obvious parallel is in boating where you run up a flag to
indicate distress, country, piracy or whatever.

The reason the designers of the 280 (and most CPU designers) use
flags in their machine language is to give the programmer
information about the status of the number in the CPU's dominant
hand (the 'A" register) or information about the last calculation
just performed.

You will remember that one of the CPU's registers is dedicated to
be a flags register — the 'F' register. You may also have noticed
at the start of the last chapter a table summarising the various
instructions to be discussed in that chapter, and that part of that
table was devoted to the effect each instruction would have on the
flags. (Fortunately none of the instructions discussed in the last
chapter affected any of the flags.)

The flag whose functioning is easiest to understand is the Zero
Flag.

This flag will be run up the flag-pole if the contents of the 'A'
register is zero.

There are many important decisions which will depend on whether 'A'
is zero. Note that the zero flag is either on or off. You can't
have an in-between result (shades of 'a little pregnant') so that
you would only need one bit to define the zero flag.

The same is true for all the other flags as well. They are either
on or off and require only one bit.

The Different Kinds Of Flags

The "F'' register is a regular 8-bit register and could therefore
accommodate 8 different flags. In practice however the designers
could only think of 6 flags!

8 g - H - P/V N c

+

Sign flag
Zero Flag

Half-carry flag

Parity flag
Overflow flag

v
Subtract flag

l

Carry
flag

Actually the designers thought of seven flags, but decided that one
register coulcd serve as both flags: the parity/overflow flag.

Let us now look at each of these flags in detail:

Zero Flag:

This is the flag we have already discussed above. Tts apnlication
is obvious, and the flag is usually set after an arithmetic
operation as it serves to indicate the contents of the 'A'
register.

Note carefully however that it is possible to have the 'A' register
contain O and for the zero flag not be set. This could easily
happen by using the

LD A,D
instruction. We mentioned above that none of the one-handed (8-bit)
load instructions have any effect on any of the flags. The zero
flag would NOT be set yet A would contain zero.

The zero flag is also set if the result of the 'rotate and shift"
group of instructions results in a zero.

As well, the zero flag is the only visible result of some testing
instructions, such as the '"bit testing' group of instructions. In
those cases the zero flag is put on if the bit tested is zero.

Sign Flag:

The sign flag is very similar to the zero flag and operates on very
much the same set of instructions (with the major point of
departure being the '"bit testing' group where the concept of a

59

negative bit is somewhat meaningless in any case).

Carry Flag:

This is one of the more important flags available in assembly
language, for without it the results of assembly language
arithmetic would be totally meaningless.

The voint to remember is that assembly language instructions always
refer to either one-handed (8-bit) or two-handed (16-bit) numbers.

This means that the numbers we are dealing with can be either:

8-bit ==) 0 - 255
16-bit =) 0 - 65535

or if you include carry,

S-bit ==) 0 - 256
l6-bit == 0 - 65536

Consider the situation where we carry out the following subtraction

200

Result = 255 101

This is a direct consequence of only having a limited number range
available, and the same thing can obviously happen with 16-bit
numbers.

We've already discussed that you can only count to 255 on one hand.
What happens if a register is already showing 255 and you add 1?
You might like to think of the register as operating the same way
as the distance meter of your car. Once you have reached the
maximum, it 'clocks' over and begins counting from zero again.

In the same way, if the register or car meter shows all zeros, and
you *turn it backwards, you will get the highest value showing, or
255 on an 8-bit register.

This is why the result of 200 - 201 gives 255. If we were car
dealers we would obviously like an indication that the meter has
clocked over, whether in a forward direction - in which case the
car has travelled further than it seems - or a backwards direction
- in which case the meter has been tampered with.

This kind of indicator exists in machine language programming and

is called the carry flag. Fortunately we do not need to worry about
registers being tampered with.

60

Ve have seen that the carry flag can be set by subtractions if

there is an 'underflow'. The carry flag can also be set by addition
operations if there should be an 'overflow'

It is therefore convenient to think of the carry bit as the %th bit
of the 'A' register:

Number Carry bit Number in bit form
132 - 1000 0100

+ 135 - 1000 0111
267 1 (o o 3 M S AT 0 A

But as we do not have 9 bits, the 'A' register would contain the
number CBHE {(Decimal 11) and the carry would be on (ie. = 1).

You can see that on subtraction borrowing from a 9th bit would
leave a 'l' there as well.

Using Flags in the

Machine Language Equivalent of "If ...Then..."

In BASIC we have the ability to construct 'IF ... THEN' situations
such as

1f A=0 then:.:.-
where what follows can be 'Let....'
or 'Gotoi.a'
or 'Gosub..'

Exactly the same kind of decision can be programmed in machine
language (except for the 'Let...'). Instead of saying "If A=0", we
merely look at the zero flag: if it is on, then we know A=0.

The three flags we have been considering to date are in the main
the only ones which allow us to make a choice in the next
instruction to be executed.

The format of such instruction is as fcllows:
For example:
JP cc, End

where 'JP' is the mnemonic for 'jump' and 'end' is a convenient
label.

The instruction is read in English as '"jump on condition cc to

61

The condition ''cc'" could be any of:
z (= Zero)

NZ (= Not zero)

P (= Positive)

M (= Minus)

¢ (= Carry set)
NG (= No carry)

The other three flags tend not to be of so much use in every day
programming. They are:

Parity/Overflow Flag:

This flag acts as the parity flag for some instructions, and as the
overflow flag on others, but there is rarely any confusion as the
two types of operations do not commonly occur together.

The parity side of it comes into effect during logical operations
and is set if there is an even number of set bits in the result.
We deal with this in greater detail in the chapter on logical
operations.

The overflow is a warning device that tells you that the arithmetic
operation you have just performed may not fit into the 8-bits.
Rather than actually telling you that the result needed a Sth bit,
this tells you that the 8th bit changed as a result of the
operation!

in the example above, adding 132 and 135, the 8th bit was 'l' prior
to the addition ancd 'Q' afterwards, so that the overflow would have
been set. But the overflow would also be set by adding:

64 B 100 0000
+ 65 0L 00 0001
129 1000 0001

Subtraction Flag:

This flag is set if the last operation was a subtraction!

Half-Carry Flag:

This flag is set in a manner similar to the carry flag but only in
the case of an overflow or borrow from the 5th bit instead of from
the 9th bit!

Both the subtract flag and the half-carry flag are of use only in
"Binary coded decimal' arithmetic, anc we deal with these flags in
the chapter on "BCD Arithmetic'.

62

SUMMARY:

Flags are used by the CPU to indicate certain conditions after
instructions.

here are six such flags, each of which can be said¢ to be ON or
OFF. The six bits renresenting these flags are six of the eight
bits in the F register. The other two bits are unused.

The conditions indicated by the various flags are
Carry
Zero
Parity or Overflow
Sign
Negate
Half Carry

Not all instructions affect each flag. Some affect all flags, some
only specific flags, while others have no effect on the flags.

63

Counting Up and Down

In the last chapter we examined the concept of flags, and in the
chapter before we found out how the CPU is able to load any desired
numbers onto its fingers and toes.

Let us now examine the simplest possible way to manipulate numbers
on one's fingers: we can increase the number representecd on our
fingers or we can decrease the number represented.

This is pretty rudimentary arithmetic, but it gets beyond loading
specific numbers onto your fingers. The action of counting up is
essentially: whatever number you have on your fingers, increase it
by one.

This can be used in such ordinary situations as census taking or
monitoring the traffic at a particular intersection.

Counting Up:

It is possible on the Z80 to increase the count on the fingers of
every single hand the CPU has. This is what we mean by the general
mnemonic:

INC r

"INC'" is read in English as '"increase'" and is therefore fairly
self-explanatory.

It is also possible to increase the count held on the toes of any
of the feet (including the register pairs, which are not really
feet, as we saw).

This increasing of the count on our toes is written as:

INC rr
INC IX
INC IY
where "rr'" denotes a register pair, such as 'BC', 'DE', or 'HL'.

Note again the simple way we have of denoting which operations are
using 8-bit numbers and which are 16-bit numbers:

The 8-bit numbers are denoted by a single letter, while

But the "counting up" instruction is in fact even more powerful
than this might indicate. It is possible to increase the count of
any memory location if we are able to specify its address using the

64

index registers or the 'favoured register pair', HL:
INC (IX + d)

INC (1Y + d)
INC (HL)

(where 'd' is the displacement - not the register D!)

Important note:

Remember carefully our convention of reading brackets:
brackets — mean—» 'contents of'

This is very important as there is a lot of similarity between the
instructions

INC HL

INC (HL)
but a world of difference in their execution.

The first would be read as 'increase HL" while tne secona would be
read as "increase the contents of the location whose address is
HL'. (This second reading is often abbreviated to '"increase the
contents of HL").

As long as you remember the rules of the mnemonic abbreviations you
will be saved from this kind of confusion. Let us examine how each
operates, and let's assume that HL = 5800H.

INC HL: Look at HL. 1Increase the count on its fingers
by one. Result:
HL = 58014
INC (HL): Look at HL. Find the memory location referred to by

this number. Increase the count in that location by one. Result:

HL = 5800H
(58004) = (5800H) + 1

These are significantly different operations. (You might like to
RUN both versions - 5800H is the start of the attribute file). Note
also that while 'INC HL' is an instruction acting on a l6-bit
number, 'IMC {(YL)' is an instruction which acts on an 8-bit number
only - the nunmber stored in location 5800H!

Decreasing the Count:

The symmetrical nature of the Z80 instruction set would almost
certainly ensure that everything you can increase you can also
decrease, and this is indeed the case:

65

DEC r

DEC rr

DEC IX

DEC 1Y

DEC (HL)

DEC (IX + 4)
DEC (1Y + d)

The mnemonic "DEC'" is read in english as ''decrease', and the same
careful attention to the use of brackets must be applied here.

Effect on Flags:

Because the increase or decrease instructions which operate on
8-bit numbers affect every flag except the carry flag, this is a
very good place to review the operation of the flags.

IMPORTANT NOTE: the increase and decrease instructions which
operate on 1l6-byte numbers do NOT affect any of the flags. Only
increase or decrease operations on 8-bit numbers affect the flags.

Sign: This flag will be set (=1) if bit 7 of the 8-bit
----- result is 1.
This means it will be on if the thumb is up using
our previous analogy. Note that this will happen
whichever convention you are using for the number.

Zero: This flag will be set (=1) if the 8-bit result is
----- zero.

Overflow: This flag will be set (=1) if the contents of
--------- bit 7 of the 8-bit number is changed by the
operation.

Half-Carry: This flag will be set (=1) if there is a carry
—————————— into or a borrow from bit 4 of the &-bit
number.

Negate: This flag is set if the last instruction was a
------- subtraction. Thus it is not set (=0) for "INC"
and set (=1) for "DEC".

Suggested Exercises:

Use the "LD'", "INC" and "DEC" group of instructions to return the
numbers you want as a result of the 'USR' operation.

This will give you familiarity with these instructions.

SUMMARY :

We can increase or decrease the contents in any of the 8-bit
registers or in any of the 16-bit register pairs or in either of
the 16-bit indexing registers.

We can also increase or decrease the contents of memory locations
whose address is specified by the HL register pair or by the
indexing registers.

Increasing or decreasing 16-bit numbers will not affect any of the
flags. Increasing or decreasing &-bit numbers, either in registers
or in memory, affect all the flags except the carry flag.

67

Instructions for One-Handed Arithmetical Onerations

Mnemonic Bytes Time Effect on Flags
Taken Z PV S5 N

(o

ADD
ADD
ADD
ADD
ADD

register
number
(HL)

(I3t 5 d)
(1Y + d)

=
W W o= N -~
O W NN
OO OO0

—

ADC A, register
ADC A, number
ADC A, (HL)

ADC A, (IX + d)

ADC A, (1Y + d)

> > P
Wwr~ M-
—
OO~
QOO0 OO0

SUB register
SUB number
SUB (HL)

SUB (IX + D)
SUB (IY + D)

w W~ N =
——

O WO N~
Pt ettt

SBC
SBC
SBC
SBC
SBC

register
number
(L)

(I1X + d)
(IX + d)

b
WM~
O D~ ~

—
S 3 I I S e H: T TR F I 3 3 HF I

[

CP register
CP number
CP (HL)

CP (IX + d)
CP (IY + d)

H I H F kI IR S Sk Tk Yk R Fe Sk 3 H: 3% e Sk 3k e 3
S Sk e e 3 S S SR IR e B R R S e H e R T Fe e Sk Y Sk
e e W e S 3k 3 Fe Sk T HE W Fe 3 I I I = W I I

Lo L = b
OO~ ~d B
3 e R
el e e

[—

Flags kotation:

indicates flag is altered by operation
indicates flag is set to O

indicates flag is set to 1

indicates flag is unaffected

I~ O 3

68

=+

S e R S T W Sk S B s R R S Rl i It Sk W e I

One Handed Arithmetic

One handed arithmetic is just our reminder that all of these
operations in this chapter involve only 8-bits and all of them must
be carried out through our dominant hand, register A.

It seems that only our dominant hand knows how to add or subtract!

This fact is so ingrained in the Z80 machine language mnemonics
that the abbreviation 'A' is even omitted in some mnemonics. For
example to subtract 'B' from 'A', we would normally expect to see
SUB A,B
but in fact the mnemonic is
SUB B.

Despite this limitation on arithmetical instructions (being
restricted to the A register), the Z80 language is very versatile
in what we can actually add to whatever number we have on our
dominant hand:

ADD A, r Add any single register to A
ADD A, n Add any 8-bit number to A
ADD A, (HL) Add the 8-bit number in the box whose

address is given by HL

ADD A, (IX + 4d) Add the 8-bit number in the box whose
address is given by IX + d

ADD A, (1Y + d) Add the 8-bit number in the box whose
address is given by IY + d

You can appreciate the extremely versatile range of possible
numbers we can add to whatever number is stored in A - any number,
any register and virtually any way we care to define a memory
location.

The one that is missing is
ADD A, (nn)
where we define the address in the course of the program.

As a result the only way to get such an instruction would be to
write:

LD HL,nn
ADD A, (HL)

Note also the favoured role of the HL register again. We cannot
specify the memory location using the BC or DC register pairs.

The other limitation implicit in all this is also the inherent
limitation of 8-bit numbers which can only hold values up to 255,

as we have already seen.

For example, LD A,80H

ADD A, 81H

will give a result of only 1 in 'A' but the carry flag will be set
to indicate the result did not fit in.

I1f the hexadecimal arithmetic confuses you, it's a good exercise to
convert the numbers to decimal and check the addition.

Hexadecimal addition and subtraction is the same as ordinary
arithmetic:

1 +1 2

142 =3

etc. but when you get to 149 you get
1 +9=A
1+A=B
etc. and when you get
= 1

1+ F

to 1+F you get

This is because the 'carry' into the next column happens when you
get a number bigger than 'F' instead of '9' as in decimal
arithmetic.

The results of our machine language program above would therefore
be as follows:

1G1H as 8 + 8 =16 — 10H

What can you do about this carry error?:

The designers of the Z80 have provided us with another instruction
similar to ADD, but which takes into account possible overflows
into the Carry.

This is a very useful instruction: "ADC", which we read as "ADD
WITH CARRY".

This is exactly the same as the "ADD'" instruction, with the same
range of numbers, registers, etc., which can be added to Register
'A', except that the carry is added on (if it is set).

This makes it possible to add numbers greater than 255 together, by
a chaining operation:

eg. to add 1000 (ie. O3EBH) to 2000 (ie. 07DOH) and store the
result in BC:

LD A,E8H ; Lower part of lst no.
ADD A,DOH ; Lower part of 2nd no.
LD C,A ;Store result in C

70

LD A,03H ;digher part of lst no.
ADC A,O07H :Higher part of 2nd no.
LD B,A ;Store result in B

After the first addition (E6 + DO) we will have the carry set
(because result was greater than FF) and Register A containing B8
(check this for yourselves!)

The second addition (3 + 7) will yield not OAH (= 10 decimal) as
might seem on the surface but OBH (=11 decimal) because of the
carry.

The final result is therefore OBB8H = 3000! This chaining could go
on to take care of any size number, and the result stored in memory
rather than in a register pair.

8-BIT SUBTRACTION:

This is exactly the same as 8-bit addition. Two sets of commands
exist, one for ordinary subtraction, and one for subtraction with
carry:

SUB s - Subtract s
SBC s - Subtract s with carry

The notation 's' is meant to denote the same range of possible
operands as for the add instruction.

71

COMPARING TWO 8-BIT NUMBERS:

Let us step back from machine language for a moment and consider
exactly what it is we mean when we compare itwo numbers:

We know what happens when the two numbers being compared are the
same — they are 'equal'. One way to denote this in an arithmetical
format would be to say that the difference between the two numbers
was zero.

What if the number being compared is greater than the first number
(comparison does imply relating two numbers: we compare a number
with what we already have on our fingers)? Then the result after
subtracting the new number would be negative.

Similarly if the new number is smaller, then the difference would
be positive.

We can use these concepts to devise a system of comparisons in
machine language. All we need are the flags and the subtract
operation. Suppose we wish to compare a range of numbers with 5,
say:

LD A,5 ;Number we have
SUB N ;Number being compared

Then we will have the following results -

If N= 5 Zero flag set, carry flag not set
If N <5 Zero flag not set, carry no: set
LES NS> vy Zero flag not set, carry flag set

It is therefore clear that the test for equality will be the zero
flag, and the test for '"greater than'" will be the carry flag. (The
test for '"less than'" is the atsence of GLoth fleas).

The only inconvenience of this method is that the contents of 'A'
have been altered by the operation.

Fortunately we have the 'CP s" operation. This is read in English
as "compare''. Note that it can only compare what we already have
in the 'A' register; the range of possible numbers to be compared
are the same as for addition.

"Compare' is exactly the same as '"'subtract' except that the

contents of 'A' are unchanged. The only effect is therefore on the
flags.

72

SUMMARY :

Eight-bit arithmetic on the Z80 is limited to
- addition
- subtraction
- comparison
and can only be performed through the A register.

Given this limitation, however, a wide range of addressing modes
exist.

Because of the inherent nature of 8-bit numbers, we must always be
careful about overflow. The carry flag (as well as all other flags)
is affected by arithmetical operations. We can use this as a
warning of overflow.

Additional instructions (add with carry and subtract with carry)
allow us to chain arithmetical operations to deal with overflow.

73

Instructions for Logical Operators

Mnemonic

AND
AND
AND
AND
AND

Register
Number
(HL)

(IX + d)
(1Y + d)

OR Register
OR Number
OR (HL)

OR (IX + d)
OR (IY + d)

XOR
XOR
XOR
XOR
XOR

Register
Number
(HL)

CIX +d)
(1Y + d)

Flages Notation:

#
0
%

Indicates
Indicates
Indicates
Indicates

flag

flag i

flag
flag

Bytes Time
Taken €

1 4 0
2 7 0
1 7 0
3 19 0
3 19 0
1] 4 0
2 7 0
1 7 0
d 19 0
3 19 0
1 4 0
2 7 0
1 7 0
% 19 0
3 19 0

is altered by operation

is set to O

is set to 1

is unaffected

74

R HE ORI e e K

3 W Fe H H I

S

e oFE W HHE W H Wk HHHEHRHRR

N

Q000 0000

CO0OO0O0O0

Effect on Flags
Z PV

H

D00 O e

SO o O 0

Logical Operators

There are three operations which are as valuable in the field of
machine (or assembly) language programming as the more commonly
used addition, subtraction, multiplication or division are in
ordinary arithmetic.

These are generally referred to as Boolean operators after the man
who formulated the rules of these operations. These operations are:

AND
OR
XOR

We are already familiar with the concept of operations which apply
to an entire 8-bit number, but the reason that these operations are
so valuable is they operate on the individual bits of the number
(or fingers of the CPU's hand).

Let us look at one of these operations, 'AND':

Bit A Bit B Result of Bit A 'AND' Bit B

=0 0
— -0 O
~ 000

It is obvious that the result of an 'AND' operation is to give us a
'l' only if A and B both contained a 'l"'.

In machine language, if you AND two numbers, the result is what you
would get if you 'AND'ed each of the individual bits of the two

numbers.

You may be asking yourself -~ '"What is the point of such an
operation?"

The 'AND' operation is extremely useful in that it allows us to
mask a byte so that it is altered to contain only certain bits:

I1f, for example, we wish to limit a particular variable to the
range of O - 7 only, we quite clearly wish to indicate that we want
only the bits O - 2 to contain information. (If bit 3 contained
information, the number would be at least 8).

eg. 0000 O0O101 =5

These bits must be '0O'.

1f we therefore take a number whose value we do not know and apply

75

the 'AND' operation with '7', the result will be a number which
lies in the range 0 - 7.

eg. 0110 1001 = 105
0000O0 0 115 = =)Mask
result of AND 0000 QL0 01 =1 =) in

range 0 - 7

Note that the Z80 chip only allows for the 'AND' operation to take
place with the 'A' register. 'A' can be 'AND'ed with an 8-bit
number, any of the other 8-bit registers, with (HL), with (IX+d),
or with (IY+d).

eg. AND 7 Note that as only the 'A' register
AND E can be acted on, it need not be
AND (HL) mentioned in the instruction.

The same range of possibilities and the restriction to Register A
is true for the other Boolean operations, 'OR' and 'XOR'.

The 'OR' operation is very similar in concept to the 'AND'
operation:

Bit A Bit B Bit A 'OR' Bit B
0 0 0

0 1 1

1 0 1

1 1 1

It is obvious that the result of an 'OR' operation is to give us a
'1' if either A or B contained a 'l’'.

Again you may be asking what is the point of such an operation.
The 'OR' operation is also extremely useful in that it allows us to
set any bits in a number: if, for example, we wished to ensure
that a number was odd, then quite clearly we have to set Bit O.

(The same result could be obtained by using the 'set' instruction).

LD A,Number
OR 1 ;make number odd

The above two lines would be a typical assembly listing.

The concept of 'XOR' - pronounced 'exclusive or' - is also easy to
understand but its actual use in programming is more limited.

The result of 'XOR' is a 'l' only if one of A or B contains a 'l'.

In other words, the result is the same as for the 'OR' operation in

76

all cases except when both A and B contain a 'l"'.
XOR =) OR - AND

Bit A Bit B Bit A 'XOR' Bit B
0 0 0
1 0 1
0 1 1
1 1 0

The last thing we must consider is the effect that these operations
have on the flags.

Zero Flag This flag will be on (=1) if the
result is zero

Sign Flag This flag will be on (=1) if bit 7 of
result if set

Carry Flag Flag will be off (=0) after 'AND'
'OR' 'XOR' ie. carry will be
reset.

Parity Flag This flag will be on (=1) if there

(Note that this is even no. of bits in the result:

flag also doubles D110 Y11 0=) OFF

as overflow flag) & gt S BT 1 01 0 =) ON.

Half-Carry Flag Both flags turn off (=0) after
YAND' *OR' *XOR'.
These flags are useful if 'BCD'

arithmetic is being used.

Subtract Flag

S S S S

Use of Boolean Operations on Flags:

There is a special case of the Boolean operators which is very
handy - the case of the register A operating on itself.

AND A A is unchanged, carry flag cleared
OR A A is unchanged, carry flag cleared
XOR A A is set to O, carry flag cleared.

These instructions are often popular because they require only one
byte to do what might otherwise require two, such as LD A,O.

The carry flag often needs to be cleared - eg. as a matter of
routine before using any of the arithmetic operations such as
ADC Add with carry
SBC Subtract with carry.
and this can easily be done by the instruction AND A without
affecting the contents of any of the registers.

77

SUMMARY:

There are three logical operators which are useful in machine
language:

AND

OR

XOR

These only operate on 8-bit numbers and one of these numbers must
be stored in the A register. The result of the operation is
returned in the A register.

Note that the meaning of the AND operation in machine language is
different to its meaning as a BASIC instruction.

The logical operators examine the individual bits of the two

numbers, and are therefore useful in masking numbers or setting
individual bits.

78

Coping with Two Handed Numbers

So far, we have been dealing only with one-handed (8-bit) numbers,
but we have talked about the fact that the CPU can also handle
two-handed (16-bit) numbers in some cases.

One case we have already mentioned is the index registers. These
"feet'" have 16 "toes" (16 bits), and can only handle 16-bit
numbers.

As well, we know that using two hands together, we can sometimes
hold a 16-bit number. We called these hands that go together
"register pairs'. They are BC, DE, and HL.

The CPU deals with 16-bit numbers in much the same way that you or
I would deal with heavy objects: we need two hands, we are not very

adept at manipulating such objects, and the way we handle them is
slow and limited.

Let us now examine the various addressing modes (possible
contortions?) available for dealing with 16-bit numbers.

Immediate Extended addressing:

LD rr, nn
(or other instruction)

This is the equivalent of 8-bit immediate addressing. It is merely
immediate addressing extended so as to accomodate 16-bit data
transfer.

As a general rule instructions that operate on 16-bit numbers are
longer and slower than those for 8-bits. For example, while 8-bit
immediate addressing instructions are 2 bytes long (one for the
instruction and one for the number), the extended version - ie
16-bit - requires three bytes.

The format for Immediate Extended Addressing is as follows:

Byte 1 Instruction

Byte 2 nl Low order byte of
the number

Byte 3 n2 High order byte of

the number.

We use this type of addressing instruction to define the contents
of a register pair, for example a pointer to a memory location.

79

Register addressing:

You may recall that register addressing is the name we give to an
instruction if the value we want to manipulate is stored in one of
the registers.

The same holds true for 16-bit instructions, except that there are
only a few instructions of this type in the CPU's repertoire. These
are mainly relating to arithmetical operations, and extremely
limited in the register combinations allowed.

€.2. ADD HL, BC

We will mention here again the preference the CPU has for its HL
register pair. This is where the muscle goes, and some instructions
can only be carried out by this register pair. This is true of the
arithmetical instructions, and we deal with this in detail in a
later chapter.

Register indirect addressing:

Register indirect addressing is the name we give to instructions
where the value we want is in memory, and the address of the memory
location is held by a register pair.

In the 280, this type of addressing is again mainly applied using
the register pair HL

e.g. JP (HL)

Extended addressing:

Extended addressing is similar in concept to register indirect
extended addressing, except that the value you want is not held in
a register pair, but in a pair of memory locations.

e.g. LD HL, (nn)
where nn must be specified at the program stage.

Exercises:

Using the EZ Code Machine Language Editor, enter the following
programs:

1. Immediate extended addressing:

010F00 LD BC,15 ;load BC with value 15
c9 RET jreturn

When this program is run, you will see that the value of USR on
return from the machine language program is 15, just as we defined
it.

Note how limited this type of addressing is: you must specify the
value of the number in the program.

2. Register addressing:

We will now add a line to the program above:

210040 LD HL, 4000H ;load HL with 16384
010F00 LD BC, 15 :1oad BC with 15

09 ADD HL, BC ;add the two numbers
c9 RET jreturn

If you run this program, you will still get the same answer as
above, namely 15! Why? Didn't we add 163847

The answer is that we did, but it all happened in the HL register
pair, so we didn't see any of it! To see what happened, we have to
add a few lines, as follows:

3. Extended addressing:

210040 LD HL, 4000H

010F00 LD BC,15

09 ADD HL, BC

22647D LD (7D64H),HL ;put HL in 32100 and 32101

ED4B647D LD BC,(7D64H) ;get value of BC from
332100 and 32101
c9 RET

This method of transferring information from HL to BC would not

actually be used in programming, as the PUSH and POP instructions
are more efficient, but it does illustrate what needs to be done
at times to overcome the limited addressing modes of the Z80 CPU.

81

" "

You can examine memory locations 32100 and 32101 using the '"mem

command to check on this program as well.

82

Manipulating Numbers with Two Hands

In the earlier chapters we have seen just how agile the CPU can be
in manipulating numbers on one hand, and we have just discussed the
way it can handle two-handed numbers.

The CPU's mathematical ability is such that he can perform very
complex calculations involving large numbers with only one hand.
Why then bother with two-handed numbers?

There will be times when you will find it is impossible to specify
everything you want with just 8-bit numbers. If we were limited to
just the range of 0 - 255 of the 8-bit numbers our computer would
indeed be a very limited machine.

The most glaring example of needing 16-bit numbers is specifying
the address of a memory location. We implied that such a
manipulation would be possible when we discussed instructions such
as LD A, (HL).

The slow way of doing things would be to load each individual
register in the register pair, as we did in previous exercises.

Fortunately for us there are some (but only a few) instructions on
the Z80 chip which allow us to manipulate 16-bit numbers. In this
chapter we shall be dealing with loading 16-bit numbers, while the
next chapter will deal with 16-bit arithmetic.

Specifying Addresses with 16-Bit Numbers:

Please note that all addresses must be specified by a 16-bit
number.

You just can't specify an address with only 8-bits, even if it is
only addresses from O to 255. The way the CPU works, it's not an
address unless it is 2 bytes of 8 bits each.

We implied this when we used the short shorthand of
LD A, (nn)

So also remember that 16-bits numbers are stored in register pairs
high number first (check again with our chapter on "A Look into the
CPU" . . . = "HL" stands for H = "high"; L = "low").

Storing 16-Bit Numbers In Memory

There is one facet of ZB0 design which is very difficult to explain
or justify:

Instructions For Two-Handed Loading Operations

Mnemonic Bytes Time Effect on
Taken G Z PV 5
LD Reg pair, Number 3/4 10 S =
LD 1X, Number 4 14 TR o =
LD 1Y, Number 4 14 O —
LD (Address), BC or DE 4 20 o e .
LD (Address), HL 3 16 . R o
LD (Address), IX 4 20 gl Ly o
LD (Address), 1Y 4 20 e LY =
LD BC or DE, (Address) & 20 S S
LD HL, (Address) 3 16 ek =
LD IX, (Address) 4 20 - = = -
LD 1Y, (Address) 4 20 SR =
Flags Notation:
Indicates flag is altered by operation
0 Indicates flag is set to O
1 Indicates flag is set to 1
- Indicates flag is unaffected

When loading 16-bit numbers into memory, the reverse convention
from that of register pairs is used.

The low bit is always stored first in memory!

Let us consider a situation where we place the contents of HL into
memory :

Before: Location Contents
32000 00

H L 32001 00

01 02 32002 00

Let us assume that HL contains the number 258 decimal = 0102H. The
memory locations are all empty.

After: Location Contents
32000 02

H L 32001 01

01 02 32002 00

The convention with 16-bit numbers stored in memory (and in program
listings) -is that the low bit is always stored first.

There is no justification for that decision except to say that this
was what the designers of the Z80 came up with and we now have to
live with it.

Please be sure to read this carefully and make sure that you are
familiar with this reversal of convention. It is likely to be the
single most important source of errors in programs:

In registers: High bit stored first
In memory and programs: Low bit stored first

It is not something that can be glossed over and ignored as every
time you deal with a 16-bit instruction in machine code you will
need to think carefully about the order of the low and high bits.

Do not however feel put off by this - life on the Z80 would be
virtually impossible without 16-bit instructions and it's a price
we have to pay.

You can check this for yourselves by '"running'" this instruction
using the "EZ Code Machine Language Editor'" and then examining the
contents of memory using the "mem'" command.

Loading 16-Bit Numbers

85

The 16-bit load group at its simplest comprises of loading a l6-bit
number in the register pair. The general mnemonic abbreviation is

LD rr, nn

Once again we are using the notation of 2 letters to indicate a
16-bit number. '"rr'" means any register pair, '"nn" any 16-bit
number.

For those of you without the benefit of an assembler - that is if
you have to convert the mnemonics into code by hand using the
tables at the back of the book - then the discussion we had on the
order of the 16-bit numbers in memory becomes crucial.

Even if you do have an assembler, you should be aware of these
reversals of order to enable you to '"read" the code when peeking
into memory.

Let us look at a specific example:
Load HL with 258

The mnemonic for this is
LD HL,0102H

The instruction for 'LD HL,nn' is, as you will find at the end of
the book,

21 XX XX

This means that ,the number OlO2H needs to be inserted in place of
the '"XX XX'. But because of the reversal rule, we do not enter
this as 1002H.

The proper instruction is therefore:
21 02 01
In our examples we will show you this as

21 02 o1 LD HL, 0102H (= 258)

You may not have problems entering our programs, but you must be
very familiar with this so that it is not a problem when you write
your own programs.

Other 16-Bit Load Instructions

As well as being able to load 16-bit numbers directly into the
register pairs we can also load 16-bit numbers directly into the
index registers (which are both l16-toe feet, as you will remember).

LD IX, nn
LD 1Y, nn

86

We can also manipulate information between a register pair and two

successive locations in memory. (This is the 16-bit equivalent of

loading the information from a single register into a single memory
location).

The general instructions are
LD (nn), rr
LD (nn), IX
LD (nn), 1Y

Remember that brackets are the shorthand for ''contents of'", so that
the last instruction would be read as 'load the contents of memory
location nn with the value in register IY'.

Because we are dealing with 16-bit numbers, we are actually loading
the memory location specified and the following memory location
into the register pair. It is not necessary to specify both
addresses (because the CPU can figure out the address of the second
location) but be careful not to confuse 8-bit operations with
l6-bit operations.

The reciprocal nature of many of the instructions is also apparent
here, and we can also load a register pair or index register with
whatever is in a specific pair of memory locations:

LD rr, (nn)
LD IX, (nn)
LD 1Y, (nn)

Exercise:

We know from the Spectrum manual that the start of spare space can
be obtained by looking at the contents of memory locations 23653
and 23654,

In BASIC we can determine this by using the line
PRINT PEEK 23653 + 256 * PEEK 23654

We will now perform the same task using machine language:
(23653 = 5C65H)

ED 4B 65 5C Lh - BC, (23653)
c9 RET

NOTE VERY CAREFULLY THAT THE NUMBERS ARE ENTERED LOW BYTE FIRST AND
YOU WOULD GET A TOTALLY ERRONEOUS ANSWER IF YOU WERE TO ENTER THEM
THE OTHER WAY AROUND.

On the Spectrum, we know that once the program is finalised the
position of the spare memory is fixed and we only need to determine

87

this once in each program.

We use the BC register to get the information because, as you will
recall, the value of USR is the contents of the BC register pair
when the machine language program has finished.

Note that "LD BC, (NN)" is a four-byte instruction!
You can use similar programs to determine the value of any of the

two byte variables listed in the Spectrum manual on pages 173 -
176.

e g LI
- ? .

We can load 16-bit numbers into any of the register pairs or into
the index registers either by specifying the 16-bit number or the
memory location where the 16-bit number is to be found.

Similarly we can transfer into memory a 16-bit number from any of
the register pairs of from the index registers.

The only point to note very carefully is the peculiar order that
16-bit numbers are stored by the Z80 CPU in memory (and therefore
in program instructions involving 16-bit numbers):

The low byte is always stored first !!!

Instructions for Stack Operations

———————————————— o S o e e e e e

Mnemonic Bytes Time Effect on flags

Taken cC Z BY SC N B
PUSH Reg pair 1 11 - - = =S
PUSH IX or 1Y 2 15 - - T AR
POP Reg pair 1 10 . .
POP 1IX or 1Y 2 14 - - S e =
LD SP, Address 3 10 L g e g
LD SP, (Address) 3 20 = R
LD SP, HL 1 6 L L Ty o
LD SP, IX or 1Y 2 10 - - et e gt

Flags Notation:

Indicates flag is altered by operation
0 Indicates flag is set to O

1 Indicates flag is set to 1

Indicates flag is unaffected

90

Manipulating the Stack

You may recall the image we developed in the beginning of the book
of the stack as being where the CPU was able to keep information
without having to remember the address of that particular
information.

One of the advantages, possibly inadvertent, of the stack
operations is that we can only PUSH and POP information in two
handed (16-bit) lots. This is because the stack is primarily
designed to remember addresses and we need to specify addresses as
16-bit numbers.

The general instructions for pushing information to the stack are
PUSH rr
PUSH IX
PUSH 1Y

and the general instruction for popping information back from the
stack are

POP rr

POP IX

FOP TY

These are exceptionally simple instructions, and you will note the
lack of need to specify an address.

For the ordinary register pairs - ie. not the index registers -
these instructions are only a single byte long and therefore very
economical in terms of programming space.

PUSH instructions are also not destructive: that is, the 16-bit
register still contains the same information after the PUSHes.

Note that because we can PUSH any register pair and POP any
register pair, the register you POP needs not be the same as the
one you PUSHed!

For example

PUSH BC
POP HL

The effect of these two instructions is to leave the contents of
the BC register umchanged but set the HL register to whatever the
contents of the BC register was at the time of the PUSH
instruction.

This effectively adds an instruction of the type

LD rr, rxr'
to the 16-bit load group which was conspicuously missing.

91

As each of PUSH and POP instruction for register pairs is only one
byte long, the cost in terms of memory is not expensive.

The other extra benefit is that we are able to PUSH or POP the
register pair AF! This is one of the few instructions where AF is
treated as a register pair, but it is obviously sensible because
there are many times when we would like to preserve the contents of
the flags.

What this means is that you can PUSH AF (in effect making a note of
what A and F are), perform calculations which may affect the flags
as an undesirable side effect, and then POP back AF, leaving the
flags unchanged.

Moving the Stack Around:

As you know, the real strength of the PUSH and POP instructions is
that we do not have to think about the addresses where the numbers
are PUSHed to or POPed from.

You will surely agree that it does not necessarily make sense that
the same area of memory should serve as a stack area whether you
have 16K of memory or whether you have 48K.

The way the CPU actually keeps track of the address of the stack is
by means of a '"stack pointer'", which can be thought of as a 16-bit
register. We mentioned this briefly in our discussion of
registers, but not in any of the LOAD, etc. instructions because it
is not a register that can be manipulated in the same manner as the
other registers.

The main thing one would want to do with the stack pointer is to
define its position in memory, and that is exactly the type of
instruction that is available:

LD SP, nn
LD SP, (nn)
LD SP, IX
LD SP, 1Y

You can examine the stack of the Spectrum by using the ''mem"
command of the "EZ Code Machine Language Editor'" program, and
looking in the last 30 - 40 bytes before RAMTOP.

e e e e e e s e e e s s o e e e g v st de s ek dede s e e e e de e e e sl de e e de e e e de e ek
Do not change the contents of the locations in the stack

Almost any change will cause your Spectrum to crash - the screen

will go blank and you will have to turn the power on again. This
is because the operating system places a lot of information it

92

requires on the stack and changes will cause it to bomb out.

For the same reason do not try to manipulate the position of the
stack pointer unless you are sure of what you are doing.

Note:

In a well organized program the number of POPs and PUSHes should
end up the same no matter which path the program follows. Any
miscalculation may lead to strange results.

Exercise:

We can use these instructions to examine the address at which the
USR subroutine is called from by 'POP'ing the value out of the
stack and into the return register BC. The following program shows
how:

Cc1 POP BC ;Get address in BC
C5 PUSH BC ;Put it back on the stack
c9 RET

Instructions for Two Handed Arithmetic

Mnemonic Bytes Time Effect on

Taken cC Z BV S§
ADD HL, Reg pair 1 11 # = = e
ADD HL, SP 2 11 # - - -
ADC HL, Reg pair 2 15 # # # #
ADC IX, SP 2 15 # # # #
ADD IX, BC or DE 2 L5 # - - -
ADD IX, IX 2 15 # - - -
ADD IX, SP 2 15 # - - -
ADD 1Y, BC or DE 2 15 # - - -
ADD 1Y, IY 2 15 # - - -
ADD 1Y, SP 2 1iS # - - -
SBC HL, Reg pair 2 15 # # # #
SBC HL, SP 2 15 # # # #

Flags Notation:

#
0
1

Indicates
Indicates
Indicates
Indicates
Indicates

flag is altered by operation
flag is set to O

flag is set to 1

flag is unaffected

effect is not known

Flags
N H
0 ?
0 1
o ?
o 1
o 2
4
0 ?
D
2 G
o ?
I
y I B

Two Fisted Arithmetic

One of the benefits of being able to have l16-bit capabilities on
what is effectively an 8-bit processor is that we can use the
16-bits to specify addresses, or to perform calculations involving
integer numbers up to 65,355 (or in the range -32,768 to 432,767 if
negative numbers are to be permitted).

In this light it is easy to see why in some early microcomputers,
like the original Sinclair ZX80, all arithmetic in BASIC was
limited to integer numbers in the range -32,000 to +32,000.

But even though we can perform some arithmetic with two hands, our
title for this chapter gives a hint of what is to come - two handed
arithmetic is a little clumsy compared to one-handed arithmetic.
The range of options is just not there!

Favoured Register Pair:

In the same way that the 'A' register is the favoured register in
8-bit arithmetic, so there is a favoured register pair in 16-bit
arithmetic, and it is the HL register pair.

This favoritism is not quite so pronounced as in the 8-bit case, so
we do not omit the name of the register pair.

Addition:

—_————————

The additions are quite straightforward:
ADD HL,BC
ADD HL,DE
ADD HL,HL
ADD HL,SP

But that is it!

Note that it is not possible to add an absolute number to HL - eg.
'Add HL,nn' is not permitted. To perform that kind of calculation
we need to:

LD DE,nn

ADD HL,DE

When you consider that this now ties up four of the 8-bit registers

out of a total of 7, you realise it's not something you want to do
too often.

Note also that there is no addition betwen HL and the index

registers. You will also remember that there is no LOAD
instruction which permits you to transfer the contents of IX or IY

95

to BC or DE, so the only way to do such an addition would be like:

PUSH 1IX
POP DE
ADD HL,DE

The one point of note is the 'SP' register - the stack pointer.
This is one of the very few operations where 'SP' is treated like a
proper register, but obviously you can't use it as a variable!
Think of what would happen to all the POPs and PUSHes if you varied
the contents of 'SP' at will!

Effect on Flags

16-bit arithmetic is where the carry flag really comes into a field
of its own, because as you can see from the table at the beginning
of this chapter, the only other flag that is affected by the 'add'
instruction is the 'subtraction' flag (and all we are saying is
that the 'add' instruction is not a subtraction!)

The carry flag will be set if there is an overflow from the high
bit of 'H' - any overflow from 'L' is automatically placed into 'H'
by the calculation.

Add With Carry:

Because of the limited nature of 16-bits, we are able to chain
additions just as in the 8-bit case. The instruction '"add with

carry" - mnemonic 'ADC' - operates in a similar manner to 'add'
and with the same range of register pairs:

ADC HL,BC

ADC HL,DE

ADC HL,HL

ADC HL,SP

16-Bit Subtraction

16-bit subtraction is also a very straightforward operation, but
there is no subtraction without carry: if you are not sure of the
status of the carry flag, be sure that your program includes a line
to clear the carry flag before any subtraction operation.

SBC HL,BC

SBC HL,DE
SBC HL,HL
SBC HL,SP

(That last instruction has obvious application: set HL to the end
of the memory used by your program, screen display and variables,

subtract SP, and the result (negative) will be the amount of free
space. Can you write a simple program to do that? See the end of
the chapter to confirm your solution).

Effect Of Carry Arithmetic On Flags:

You may have noticed that three other flags are affected by the
'add with carry' and 'subtract with carry' that were not affected
by the simple 16-bit addition instructions.

These are the zero flag, the sign flag and overflow flag. Each of
these is set according to the result of the operation.

Index Register Arithmetic:

Index registers are totally limited to addition without carry!

Furthermore the range of registers that can be added to the index
registers is extremely limited:

Adding the 'BC' or 'DE' register pair
Adding the index register to itself
Adding the stack pointer.

Solution to Memory Left Exercise:

The end of the memory space the program uses is defined by the
contents of the STKEND memory location. This is defined as 23653
and 23654 in the Spectrum manual.

Obviously if we load HL with the contents of that location we are
halfway there:

LD HL, (STKEND)
then subtract the 'stack pointer' (SBC HL,SP ?)

Because of the 'carry' we need to clear the carry flag. This is
most easily achieved by the 'AND A' instruction, which is covered
earlier in the book (p77).
§ AND A
SBC HL,SP

Three-quarter marks if you knew you had to allow for the carry but
didn't know how to do it. One-quarter marks if you forgot all
about the carry.

Because the stack pointer is in higher memory than the top of your
program (or else you are in diabolical trouble) the result will be
negative.

97

Let us now proceed to get the number of bytes left as a positive
number, using the 'BC' register ('DE' would be just as good for
this). We first want to shift HL to BC, but there is no 'load'
instruction to do this and we will need to use a push followed by a

pPop -

PUSH HL
POP BC
HL still has the same information as before, so HL = BC.
To get HL = -BC, subtract BC from HL twice (but don't forget that

the carry has just been set by the subtraction so must be cleared
again):

AND A

SBC HL,BC

SBC HL,BC
HL now contains the negative value of what it contained before -
ie. the positive number of bytes left.

We now need to get the number back into the BC register pair again
to get a result from the 'USR' function. To get HL back into BC:
PUSH HL
FOP BC.

and finally a return from the USR function:
RET

Did you get this right?
Notice how handy the stack is!

98

Loops and Jumps

Loops and jumps are what gives a computer program real power. Once
you have the ability to make decisions and to execute different
bits of programs as a result of previous calculations you are
really getting places.

This freedom can also cause problems, create programs which are
difficult to follow, and almost impossible to debug.

I would strongly suggest that you design your computer programs
carefully before writing any machine code, and that is why we have
included the chapter '"Planning Your Machine Language Program'. 1
emphasise this now because loops and jumps are what will entice you
away from good program design.

Machine Language Equivalent of 'GOTO':

In BASIC, you are familiar with the instruction 'GOTO', which
transfers control of your program to the instructions in the line
you 'GOTO'.

Nothing could be simpler to implement in machine language: just
specify the memory location where you would like the CPU to find'

the next instruction and you are half-way there.

The most simple instruction is "Jump To'":

JP XX XX
JP (HL)
JP (IX)
JP (1Y)

One of these instructions can also be made to be dependent on the
status of one of the flags, such as the carry flag. This
conditional jump instruction is:

JP c¢ce, tin
where cc is the condition to be met. If we had

JP Z,0000
for example, this would be read "jump if zero flag is set to
address '0000'. (This is the address the Spectrum jumps to when

you turn the power on, and as such a 'JP' to zero might be used in
a machine language program if you wanted to clear all the memory
and start again with 'K').

Now note that the CPU does not allow for any mistakes. If you say
'JUMP', it will jump. Because almost any code can be construed as
an instruction, the CPU does not care if you land it in the middle
of data, or in the second byte of a two-byte instruction: it will
read the byte at the address it finds and presumes that is the

start of the next instruction.

The way the CPU works out the jump instructions is really quite
simple: it has a little counter called the '"program counter" which
tells it where to find the next instruction to be executed. In the
normal course of programming (that is, without jumps) the CPU looks
at the instruction to be executed and adds however many bytes there
are to the instruction to the program counter.

Thus if it meets a 2-byte instruction, it adds 2, while a 4-byte
instruction will make it add 4 to the program counter.

When it comes across a '"jump" instruction, it merely replaces the
contents of the program counter with whatever value you have
specified. That is why you cannot allow any errors to creep in.

100

Long Jumps and Short Jumps

We can describe the above instructions to be the machine language
equivalent of a 'long jump' because the l16-bit address allows us to
jump to anywhere the Z80 chip can possibly go.

The disadvantage of the long jump is that:
A. Often we don't want to jump that far but still
have to use a 3-byte instruction.
B. We cannot easily relocate the program to another
part of memory because we are specifying
the absolute address.

It was mainly to overcome these two disadvantages that the 'short
jump' was introduced. This is referred to as a '"relative jump'" and
allows us to jump up to +127 bytes from our present position or up
to =128 bytes from the present position. ie. the distance jumped
can be specified in one byte!

Relative Jump Instruction:

JR d
where d is the relative displacement.

We can also make the relative jump dependent on some condition,
such as whether the carry is set, or the zero flag is set, for
example. These conditional jumps are written as

JR: cc,; d
where cc is the condition to be met.

The value of the displacement 'd' is added to the ''program
counter".

This means it takes the present value of the program counter and
adds the relative value you have specified. The value you specify
can be either positive - jumping forward - or negative - jumping
backwards. If you check back to our chapter on negative numbers
you will realise this means that relative jumps are limited to the
range -128 to +127.

Note that, when the CPU is executing a relative jump instruction,
the program counter is already pointing to the next instruction
which would be executed if the condition was not met.

This is because when the CPU comes across '"JR" it knows that it has
a 2-byte instruction to deal with and adds 2 to the program counter
- the program counter is therefore pointing to the instruction

after the relative jump!

Eg. In a program such as

101

Location Code

32000 ADD A,B
32001 JR Z,02H
32003 LD B,0
32005 Next LD HL,%4000H

The following is the way the CPU deals with the program if it
ignores the jump instruction at 32001 (ie. zero flag not set):

Load byte at 32000
Because the byte is only a l-byte instruction so set
program counter to 32001.

Execute instruction.

Load byte specified by Program Counter (32001)
Byte is part of 2-byte instruction so add 2 to
Program Counter to make it 32003

Get next byte to complete instruction

Execute instruction

Load byte specified by Program Counter (32003)
Byte is part of 2-byte instruction so add 2 to
Program Counter (now eaqual to 32005)

Get next byte to complete instruction

Execute Instruction

At location 32001 the program encounters the Relative Jump
instruction. If the zero flag is not set, as in our example above,
the CPU does nothing.

In general, the CPU executes jump instructions as follows:

If the zero flag is set, add 2 more to the Program
Counter (this would make it = 32005)

I1f the zero flag is not set, do nothing
(Program Counter remains = 32003)

In other words, the relative jump allows us to jump over the
instruction "LD B,0" in certain cases.

This also explains why there are two times shown for the time taken
for this instruction. It takes less time to do nothing than to

calculate the new program counter.

The CPU will therefore execute either the instruction at 32003 or
the instruction at 32005 depending on the zero flag.

It is also possible to make the relative jump negative as we have
already mentioned.

Exercise:

102

Because the relative jump is a 2-byte instruction, and the program
counter is pointing to the next instruction after the relative
jump, what would be the effect of an instruction which read:

JR =2

Machine Language "For Next' Loops:

You are, 1 am sure, familiar with the BASIC form of the
"For . « . Next" loops:

FOR I =1 to 6
LET C = G+l
NEXT I

The machine language equivalent is similar but takes a different
form. Let us consider how we could implement the machine language
loop using the arithmetic functions and the relative jump:

I.D: Byl ;Set counter to 1

LD A,7 ;Max. of counter + 1
LOOP INC C sC =C + 1

INC B sIncrement counter

CP B ;s Is B = A?

JR NZ,LOOP ; If not loop again

This will work, but note the following:

We are tying up 2 register pairs, one to increase, and one to hold
the maximum; and the instruction which increments the counter does
not set any flags on completion,

A much better way would be if we counted down!
We know that we have to do the loop 6 times, so why not set 'B' to

6 and count down?
This will give us:

LD B,6 ;set counter
LOOP INC C s 0 =C ¥ 1
DEC B ;Decrease counter
JR NZ,LOOP ;Loop is not finished

You can see that this is a much more efficient way of doing things.

The Z80 chip has a special instruction which combines the last two
lines above.

This instruction is written as:

103

DJNZ d
and is read as '"decrease (B) and jump if not zero'". (The d is the
relative displacement). This instruction is a 2-byte instruction
and therefore saves one byte on the above coding.

Because of the existence of this special instruction, the 'B'
register is usually used as a counting register.

The limitation of the 'DJNZ' instruction is that one can only count
up to 256. DJNZ instructions can however be nested, if required:

LD B,10H ; B=16
BIGLOOP PUSH BC ;Save value of 'B!
LD B,0O ;Set B=256

LITLOOP s vie s
;Whatever calculation

DJNZ LITLOOP ;Done 256 times?
POP BC ;Get back value of B
DJINZ ;Do bigloop 16 times

Exercise:

Try and write down on a piece of paper what would appear in each
register after each instruction in the above program.

Waiting Loops:

There are times in machine language programs when things happen so
fast it is necessary to just wait a little while.

Examples that spring to mind are sending information to a cassette
(the pips have to be spaced sufficiently far apart to be able to
read them later) or sending information to a typewriter (imagine
printing thousands of characters a second).

It is therefore useful to set up waiting loops using the DJNZ
instruction:

LD B, Count
WAIT DIJNZ WAIT

The instruction 'DJNZ WAIT' will cause the CPU to jump back to the
DIJNZ instruction as many times as required to set 'B' back to zero
before proceeding again.

This should give you the answer to our exercise of what happens
when you write

WAIT JR WAIT

You might be waiting quite awhile for the CPU to exit this loop!

104

Instructions for

Call and

Return Group

Mnemonic

Call address
Call cc,address
RET

RET cc

Bytes

[l S R L}

Time
Taken G

17 -
10/17 -
10 -
5/11 -

Z

PV

S

N

Note: cc is condition to be met for instruction to
The following are the conditions which can be used:

Flag

Carry

Zero

Parity

Sign

Flags Effected:

PE
PO

o=

Abbreviation

Meaning

Carry Set (=1)
Carry Clear (=0)

Zero Set (=1)
Zero Clear (=0)

Effect on Flags

be

Parity Even (=1)

Parity 0dd (=0)

Sign Minus (=1)
Sign Pos.

(=0)

executed.

Note that none of the flags are effected by the call or return

instructions.

Timing:

Where two times are shown,

the shorter time indicated is for the
case of the condition not being met.

105

Use of Subroutines

The use of subroutines is as easy in machine language programming
as it is in ordinary BASIC programs, if not easier.

In fact, remember that using the 'USR' function in your BASIC
program is really calling a subroutine: you will recall we need to
have a 'RETurn' instruction to finish!

Therefore it is very easy for you to test certain subroutines
independently of your main machine language program.

The major difference that you will face in implementing subroutines
in your machine language program is that it is necessary for you to
know the address where the subroutine starts.

This can cause a problem if you store the machine language routines
in a variable array, because the address of this variable is not
necessarily fixed. It also means that machine language programs
that use subroutines cannot easily be relocated to new positions in
memory.

Subroutines can also be called conditionally. This is the machine
language equivalent of the basic statement:

IF (condition) then GOSUB (line)

Care should be taken when in a subroutine so as to not affect any
flags or registers which are needed for the next comparisons. This
is so you don't branch off again on a following CALL statement,
"after returning to where you left off."

The difference is that the only conditions allowed are the status
of four of the flags:

Carry flag

Zero flag

Parity flag (also overflow flag)
Sign flag

Remember that all these flags are set according to the last
instruction which affected that particular flag.

It is therefore good practice to have 'CALL' or 'RETURN'
instruction immediately after the instruction which sets the flag.

eg. LD A, (Number)
CP 1
CALL Z,0ne
CP 2

CALL Z,Two

106

CP 3
CALL Z,Three

The above routine allows you jump to various routines depending on
the value stored in the location 'number', but note that it assumes

that the subroutines do not change the value in Register A !!!
(Why?).

A shorter routine is possible if you know that there are only the
above three possibilities for the value stored in 'number':

LD A, (Number)

CP 7

CALL Z,Two sk — D

CALL C,0One XL R =9 N =0
CALL Three s A) 2 =)A=3

This is because the instruction 'CP 2' sets both the zero and carry
flags and the call instructions do not affect any flags.

Similarly the use of the conditional return from a subroutine is
very useful. (But not considered to be good programming practice).

107

Instructions for Block Compare and Move Group

Mnemonic Bytes Time Effect on Flags
Taken ci Z BV 5 N B

LDI 2 16 - - # - 0 O
LDD 2 16 R W R e
LDIR 2 2116 "= = 0= B D
LDDR 2 21/16 —~ = 0 = 0 0
CP1 2 16 - # # # 1 #
CPD 2 16 - # # # 1 #
CPIR 2 21/16 - # # # 1 #
CPDR 2 21/16 - # # # 1 #

Flags Notation:

1Indicates flag is altered by operation
0 Indicates flag is set to O

1 Indicates flag is set to 1

- Indicates flag is unaffected

Timing:
For repeat instructions, the times shown are for each cycle. The

shorter time indicated is for the case of the instruction
terminating - eg. for CPIR, either BC = 0 or A = (HL).

108

Block Operations

You should by now be very familiar with the language your computer
understands - it's very much like learning a foreign language:
when you can think in that language you know you have mastered it.

This chapter covers the last set of very useful instructions - the
next few chapters deal with instructions that are nice to have
around and in some circumstances come into their own,” but in
general terms you should be able to write machine language programs
with what you already know.

Be sure however to read the chapter on planning your machine
language program!

The instructions covered in this chapter are by their very nature
able to leap tall buildings in a single bound, faster than a
speeding bullet - in other words, instructions which can operate on
a block of memory rather than just single 8-bit bytes.

Let's start with the simplest of these:
CP1

With your knowledge of the Z80 language, you should be able to
immediately recognise this as a member of the ''compare'" family, and
it is in fact an extended compare.

It is read in English as "compare and increase". (You will
remember that one can only compare anything with the contents of
Register 'A', and this does not need to be mentioned in the
instruction.)

"CPI" compares 'A' with (HL) and increases HL automatically. This
means that after the CPI operation, HL is already pointing to the
next location ready for a repeat.

With such an instruction we might be able to write a routine to
search all of memory for a particular match, as follows:

Search CPI
JR NZ, Search

In this way, unless a match is found (zero flag will be set as in
all compare instructions) the program will keep on looking.

Unfortunately this is not such a good idea because unless a match
is found the program will never end! Fortunately the designers of
the Z80 language thought of this and the CPI instruction also
automatically decreases BC!

We can therefore select at will the length of the block we wish to

109

search through and thus specify an end to the search.

Let's assume that the length of the block we are searching through
is less than 255 bytes long, so that the BC count would only be
stored in the C register, we could write:

Search CPI
JR Z, Found
INC C
DEC C
JR NZ, Search
Notfound cueaies
Found S laae. e

Obviously a different routine would be implemented if the length of
the block was more than 255 bytes. Note the use of the INC and DEC
instructions to test whether C = 0. These two instructions only
require one byte each, and as they both affect the zero flag the
net effect is to set the flag only if C was originally zero. The
other benefit is that this coding does not alter any of the other
registers.

Now we could also wish to search a block of memory starting from
the top rather than from the bottom, and we therefore have the
instruction:

CPD
which is read in English as 'compare and decrease'. The decrease
refers to HL of course, and the effect on BC is still the same!

Even more powerful than these two instructions are the real
supermen:

CPIR

CPDR

These are read as ''compare, increase and repeat'.
and "compare, decrease and repeat".

These 2-byte instructions are unbelievably powerful: they allow
the CPU to automatically continue searching through the block of
memory until either a match is found or the end of block is
reached. (Naturally we have to specify A, HL and BC before
starting, but even so this is unbelievably economical coding).

Because the instruction will stop for one of two possibilities (ie.
match found in middle of block or no match at all) we have to

ensure we use some code at the end to differentiate between the two
possibilities.

You should be aware however that no matter the speed of machine
language, CPIR and other similar instructions can be very time
consuming instructions.

110

CPIR, for example, requires 21 cycles for each byte to be searched.
Admittedly there are 3,500,000 cycles in each second, but even so
this means that searching through 3,500 bytes requires 1/50th of a
second.

This may not seem like a very long time to you but when you realise
that the screen is displayed every 1/50th of a second or so you
realise that it can be significant.

The remaining block operations are along the lines of
"Move it, Mate':

These are:

LDI LDIR
LDD LDDR

Obviously part of the '"load" family these are read as:
Load and increase
Load, increase and repeat
Load and decrease
Load, decrease, and repeat

Taking the simplest one first, 'LDI' is really a combination of the
following set of actions:

Load (DE) with (HL)

Increment DE, HL

Decrement BC

Note that this is the only instruction that will load from one
memory location to another without having to be loaded into a
register first.

The use of the 'DE' register as the destination address is very
clever - this way you never forget which register holds the
de-stination address!

The symmetrical instruction 'LDD' is exactly the same except that
HL and DE are decreased as loading proceeds. The difference
between 'LDI' and 'LDD' is more important when the two blocks (the
one where the information is and the one where the information is
going) overlap.

Suppose we are using this instruction in a word processing
application, and we want to delete a word from a sentence:

The big brown dog jumped over the fox.
153 ESE TR R 1R 857 291 130 55709 Tl Suids

If we want to delete the word 'brown' all we need to do is to move

111

the rest of the sentence to the left by 6 characters.
DE = destination = character 9
HL source character 15
BC count 24 characters.

Let us start with LDI: after one instruction we have

original = The big brown dog jumped over the fox.
move one char: d (---d
new = The big drown dog jumped over the fox.

and HL. = 10, DE = 16, BC = 23.

After 2 more instructions:
The big dogwn dog jumped over the fox.

And after all the instructions have been completed:
The big dog jumped over the fox.e fox.

(If we had wanted the portion after the full stop to be blanked out
this could have been achieved by adding blanks at the end of the
original sentence and increasing BC to say 30.)

I1f we now want to reverse the process and return the word 'brown'
to the sentence, we can't simply use 'LDI' again because we will
overwrite the information we want to shift:

eg. HL = Source = Character 9
DE = Destination = Character 15
BC = Count = 24 Characters

After one instruction we would have:

original = The big dog jumped over the fox.e fox.
move char d--=) d

new = The big dog judped over the fox.e fox.

After 6 instructions we would have:
The big dog judog juver the fox.e fox.

So far so good. But another three gives:
The big dog judog jud og the fox.e fox.

The problem is that we have overwritten the information we want to
transfer. You can verify this by trying to move one character at a
time yourslef by hand.

It is therefore better to use the 'LDI' instruction, with the DE
register pointing to the end of the sentence.x This will ensure the
information woll not be overwritten in the move.

The instructions 'LDIR' and 'LDDR' are even more powerful, able to

shift thousands of bytes around very quickly.

112

Exercise:

Write a short routine to transfer 32 bytes from the ROM part of
memory to the screen.

Note how the 32 first bytes in the screen are arranged.

Now try 256 bytes, then 2048 bytes.

113

Instructions that are
less frequently used

114

Register Exchanges

We briefly discussed in the first few chapters the idea of the CPU
having gloves it could put on or take off, and thus store some
information in a place that is more accessible than memory
locations.

You must remember that you cannot manipulate these alternate
registers and the analogy with gloves is a very valuable one.

While they will retain their shape, there is no way they can do any
arithmetic or counting by themselves.

The first instruction is:

EX AF ,AF'
This does exactly what its name suggests: ''Exchange the register
pairs AF and AF''". 1In the gloves analogy we would say '"Swap gloves

on the pair of hands AF'". In other words, put on the spare set of
AF gloves - you will remember the spare set is always denoted as
AF‘.

The next general swap gloves instruction is:
EXX

This instruction swaps the gloves on all other 8-bit registers as
follows:

B C B 6!
D E) D' E'
H L H' L'

This is therefore a very powerful instruction but its very power
makes it limited in use. This is because it acts on all the
registers at once and it is not possible to hold any value back.

(Except in register 'A' which is not affected by "EXX").

The only way around this problem is to write a short routine along
the lines of:

PUSH HL
EXX
POP HL

This means that you have saved the values of BC, DE and HL in the
alternate set of registers but still have HL's value to work with.

The last instruction in this group does not really fall within the

swap gloves type:
EX DE,HL

115

In this instruction DE gets the contents of HL and HL the contents
of DE.

This instruction is indeed very useful, because as we saw HL is a
favoured register pair in many applications and there are times
when the value we want to manipulate is in DE.

116

Bit, Set and Reset

So far all the instructions we have been dealing with have involved
the manipulation of 8-bit or 16-bit numbers.

The "Bit, Set and Reset' group allows us to manipulate the single
fingers on the CPU's hand (single bits of the registers) and/or
contents of memory locations. Because of the very tedious nature
of fiddling with single bits this is not a very commonly used group
of instructions.

Furthermore, it tends to take even longer to set a single bit in a
register or memory location than it does to change or examine the
entire 8 bits of that memory location or register.

Nonetheless there are times when you need to know whether a bit in
the middle is set or not, or even to set a bit. Note however that
many of the bit setting or resetting can be carried out using the
logical operators.

The "Bit, Set and Reset' group of instructions allows us to turn
any bit "on'" or '"off'" at will, or even just look at a specified bit
to see what its status is.

Let us look at the first set of instructions:

SET n, r

SET n, (HL)

SET n, (IX + &)
SET n, (1Y + d)

The "SET" instruction turns "on'" (ie. = 1) the bit numbered 'n'
(using the notation O - 7) in register 'r' or in the specified
memory location.

No changes are made to any of the flags.

The "RESET" group of instructions operate on exactly the same range
of registers or memory locations, but instead of turning the bits
"on'", it turns the bits "off" (ie. = 0).

The "BIT" instructions should really be read as "BIT?'" in English
as the function of this instruction is to test the contents of the
indicated bit.

No changes are made to the registers or memory locations but the
zero flag is altered according to the status of the bit tested.

If Bit
If Bit

0 then zero flag is set on (= 1)
1 then zero flag is set off (= 0)

I

17

This may seem confusing at first glance but think of it this way:
if the bit is zero, then the zero flag is raised; if the bit is on,
then naturally the zero flag would not be raised.

118

Rotates and Shifts

You can move them to the left, you can move them to the right, you
can shift those registers any way you like.

The trick is to differentiate between the various shifts and
rotations in order to know which one to use when, and to remember
that the 'carry' bit can often be considered to be a 9th bit of the
registers. (ie. the carry is bit number 8 if the bits are numbered
0-17).

Some rotate instructions go right through the carry (as the 9th
bit) so that the entire rotation goes through a cycle of 9 bits.

For example, let us look at 'RLA' (the meaning of each instruction
will be made clear later in this chapter):

W

< c <7 0 }—e—d

Other rotations involve only an 8-bit cycle, although the carry
flag is changed according to the bit which has to go the 'long way
round'. An example of this is the 'RLCA' instruction:

W

[e}+—17 o<

This means that in a left rotation as above the contents of bit 0
are transferred to bit 1, bit 1 to 2, etc., but the contents of bit
7 are transferred to both the carry bit and to bit 0. Compare this
with the 'RLA' instruction above where bit 7 gets transferred to
the carry bit and the carry bit gets transferred to bit O.

Left Rotations:

There are basically two types of left rotations:

* ROTATE LEFT REGISTERS - this is a 9-bit cycle rotation as
illustrated above for 'RLA'

RLA - "Rotate Left Accumulator"

RL r - "Rotate Left Register r"

L—IE—<—1 . <

119

* ROTATE LEFT CIRCULAR - the 'circular' means that the cycle is
only 8-bits as with the RLCA instruction illustrated above.

RLCA - Rotate left circular 'A"

RLC r - Rotate left circular 'r'

RLC (HL) — Rotate left circular (HL)

RLC {IX + d) - Rotate left circular (IX + d)
RLGC (LY + d) - Rotate left circular (IY + d)

v

[T -

As well as these two left rotate instructions there is a shift left
instruction available, but this can only operate on register 'A':

SLA - Shift Left Accumulator

5

This is different in that the contents of the carry bit are lost
and bit zero is filled with 0. This is effectively multiplying 'A"
by 2 as long as nothing is transferred to the accumulator. (Think
about 'SLA' if A = 80H).

RIGHT ROTATIONS:

Once again we have the two basic modes of rotations but this time
to the right. Exactly the same range of possible memory locations
and rotations can be spinned to the right as to the left.

RRA - Rotate Right Accumulator
RR r - Rotate Right Register

n

120

RRCA - Rotate Right Circular 'A'

RRC r - Rotate Right Circular 'r'
RRC (HL) - Rotate Right Circular (HL)
RRC (IX+d)- Rotate Right Circular (IX+d)

RRC (IY+d)- Rotate Right Circular (1Y+d)

™

— P——c]

A similar shift right is available as for shift left:

SRL r - Shift Right Logical Register 'r'

—if >3]

In this case this is pure division by 2 as long as we are using
unsigned numbers (ie. the number range we wish to represent is 0 —

255).

Because in some applications we use the convention to indicate

negative numbers by setting bit 7 to 1 (ie. giving us a range of

-128 to +127) there is an addition shift right instruction called
SRA r - Shift Right Arithmetic 'r'

As you can see this is also a
division by 2 but it preserves
the sign bit.

121

In and Out

In and out are just about a simple a concept as you could get in
machine language programming.

There are times when the CPU needs to get information from the
outside world ("No CPU is an island?"), such as from the keyboa:d
or from the cassette player.

As far as the CPU is concerned that's totally foreign territory and
as all good CPUs it will never leave home. The most it is prepared
to do is to open a door to allow deliveries. The CPU doesn't know
and doesn't care to know how a cassette player works.

All the relevant information is which door the cassette man is
going to be delivering his goodies to - there is a choice of up to
256 doors for the Z80 chip but the actual number available to a
particular CPU is a result of decisions made by the hardware
manufacturers. As far as the Sinclair is concerned there is only
the keyboard, the printer and the cassette player.

The other thing the CPU doesn't want to know about is how the data
is being transmitted. As far as it's concerned, if it's coming in
or going out, it's an 8-bit byte.

The keyboard and the cassette player are both on the other side of
door FEH (254 in decimal), so that to get data in from the keyboard
you use the instruction

IN A,(FE)

Now you may be asking yourselves how the 40 keys of the keyboard
are arranged so as to be represented by 8-bit bytes.

The answer is not what you would expect - the keyboard only returns
information from 5 keys at a time. It is the value of 'A' as the
door is opened which determines which set of 5 keys are going to be
examined!

The keyboard is divided into 4 rows, each comprising two blocks of
5 keys:

3 =) P 209 &S5 6 7 8 9 0 (=4
2 =) 6 W E R-T Q@ y-I1-0 P (=5
1 =) A S D F © H J K L N/L (=6
f=-]. SPFT Z X.8 % B N M . SPC (=7

You can see that there are 8 blocks of letters and we should
therefore be able to correlate this with the 8 bits of 'A'.

122

This is in fact the case:

All of the bits of 'A' are set to 'ON' except for one bit which
specifies the block to be read.

You can think of it as something like a secret handshake - as the
CPU goes to the door to get the information the handshake
determines which piece of information it gets.

Thus to read the keys in the block "1 2 3 4 5", it is bit 3 of 'A'
which should be off:
' e e D111 =F7

The contents of the keyboard are returned in 'A' with the
information coming into the lower bits of 'A":

je. Key 'l' -) Bit O of 'A"
Key '2' =) Bit 1 of 'A’

1f block 4 was chosen instead (ie. A = EFH) then the information
would come in as:

Key '0' =) Bit O of 'A’
Key '9' =) Bit 1 of 'A'

You can think of the information coming into 'A' from the outside
edges first, so that both 'O' and 'l' would both go to bit '0O' of
register 'A’',

For some games applications you may wish to allow all of the top
row to be read, and it is possible to read it all in one
instruction (rather than the two instructions which would be
required if we read one block at a time).

This is done by fooling the doorman into giving you two lots of
information at once:

eg. A =] S0, 1 1 =%
Note that both bits '3' and '4' are 'OFF'

This handshake tells the doorman that the CPU wants the information
from block 3 and block 4, and that is what it will get. Of course
the two lots of information get jumbled and it is not possible for
you to tell whether key 'O' or key 'l' was pressed, for example -
both would set bit 0 of 'A'.

ie. '1' or '‘0' =) Bit O of A
12' or '9' -) Bit 1 of A
etc.

This is useful in movement games because it enables keys '5' and

'8' to be used as the left and right direction arrows even though
they belong to different blocks in the keyboard.

123

Note that if you use the instruction

IN =, (C)
where register C specifies which door you want, then it is the
contents of register B which define which keyboard block is being
selected.

The other doors which may be of interest to you are obviously the
cassette input/output doors.

This is still door FE, as mentioned above. The major problem
involved is the timing of the data going out and going inj; this
kind of problem requires a lot of experience with machine language
programming and calculations of the time required for each
instruction path.

The OUT instruction is also used to generate sound on the Spectrum
and to set the border colour.

Page 160 of the Spectrum manual discusses the BASIC OUT
instruction, and machine code programming of the OUT command is
exactly the same. In other words, bits O, 1 and 2 define the border
colour, bit 3 sends a pulse out to the MIC and EAR sockets, while
bit 4 sends a pulse to the internal loudspeaker.

To change the border colour, load A with the appropriate colour
value and then execute the OUT (FE),A instruction. Note that this
is only a TEMPORARY change in border colour. To change the border
colour permanently, you must perform the above OUT instruction and
also change the value of the memory location 23624, which is the
operating system's variable BORDCR (see page 174 of Spectrum
manual).

The reason for this is that the hardware in the Spectrum (the ULA
chip in the Spectrum) controls the border colour, and that it
obtains its information by looking at the contents of that memory
location. You can stop the hardware from messing about with the
border colour only if you disable all interrupts (DI instruction).
Note that some of the subroutines in the ROM re-enable interrupts
(E1 instruction).

Creating your own sound:

You can create your own sound on the Spectrum, but there are some
limitations due to the hardware construction for users with only
16K of RAM.

Because the screen is constantly being updated, the hardware
regularly interrupts the Z80 from performing its tasks in order to
show what is on the display file. This is done by bringing the WAIT
line low.

124

The effect of this is that any program that requires exact or
regular timing is impossible as it is not possible to predict the
timing effects of these WAIT interruptions. The design of the
Spectrum is such that the Z80 is only interrupted if the Z80 is
trying to process information contained in the first 16K of RAM. No
such interruptions occur if the program and data the 280 is
accessing is in the ROM or in the upper 32K of memory.

To summarise this in layman's terms: you can produce sounds and
noises using the OUT command if you have a 16K machine, but not
pure notes. (It is possible to get around this by calling the ROM's
BEEP routine - see the chapter on the Spectrum's features).

To create sound, you need to send a pulse to turn on the
loudspeaker (and/or MIC socket if it is to be amplified). Then a
little while later, you need to send another pulse to turn it off.
Then a little while later, on again, ...

In this way sound is created. The total length of time between
turning the loudspeaker on and the next time you turn it on again
determines the frequency of the sound. The length of time you leave
the pulse ON, as opposed to the total time between pulses can give
you a minimal degree of control over volume.

Note that you must use a value of A for on and off such that the
border colour remains unchanged. Otherwise, you will get a banding
pattern similar to the LOADing pattern.

Exercise:

Write a routine which simulates an ambulance siren (frequency
increasing, then frequency decreasing). Note that you must sound
each frequency for a short period before moving on to the next
frequency.

125

BCD Representation

BCD stands for binary-coded decimal. This is a way of representing
information in decimal format.

In order to encode each of the digits from O to 9, only four bits
are necessary and six of the possible codes will not be used in
this representation.

Since four bits are needed to encode a decimal digit, two digits
may be encoded in every byte. This is called BCD representation.

eg. 00000000 is BCD representation for decimal 00.

10011001 is BCD representation for decimal 99. What is the
BCD representation for '"58"? "10"?
Is "10100000'" a valid BCD representation?

BCD ARITHMETIC

This strange convention in representing numbers can lead to
potential problems in addition and subtraction.

Try adding the following

BCD 08 0000 1000
B BCD 03 0000 0011
BCD 11 0000 1011

You will notice that the result of the second operation is wrong
and is an invalid BCD number. To compensate, a special instruction,
"DAA", called '"decimal adjust arithmetic'" must be used to adjust
the result of the addition. (ie. Add 6 if the result is greater
than 9).

The next problem is illustrated by the same example. The carry will
be generated from the lower BCD digit (the right-most one) into the
left-most one. This internal carry must be taken into account and
added to the second BCD digit.

The '"half carry flag ", H is used to detect this carry.

LD A, 12H ;load literal BCD '"12"
ADD A, 24H ;add literal BCD '"24"
DAA ;jdecimal adjust result

LD (addr), A ;store result

You will be unlikely to use BCD representation in your programming.
But it is good to know that the Z80 chip still supports this
representation and the DAA instruction will make the life of a
small group of BCD users simpler.

126

Interrupts

An interrupt is a signal sent to the microprocessor, which may
occur at any time and will generally suspend the execution of the
current program (without the program knowing it).

Three interruption machanisms are provided on the Z80: the bus
request (BUSRQ), the non-maskable interrupt(NMI) and the usual
interrupt (INT).

From programming point of view, we will only look into the usual
maskable interrupt (INT).

The DI (disable interrupt) instruction is used to reset (mask),
while the EI (enable interrupt) instruction is used to set
(unmask).

Generally, an ordinary interrupt will result in the current program
counter pushed onto the stack follows by a branch of execution to
the zero page of the ROM by the RST instruction. A RETI (return
from interrupt) instruction is required to return from the
interrupt.

In normal operation, the Spectrum has interrupts enabled (EI), and
in fact the programme is interrupted 50 times per second. This
interrupt allows the keyboard to be scanned by the ROM's routine.

You may wish to disable interrupts in your programs as this will
speed execution. You can still read the keyboard as long as you use

your own routine to do so.

Be sure to enable interrupts when you finish from your program, as
otherwise the system will not be able to read the keyboard!

127

Restarts

This is rather a "leftover" from the 8080 implemented for
compatibility. That is why you will be unlikely to use RST
instructions in your program.

The RST performs the same actions as a call, but allows a jump to
only one of eight addresses in the first 256 memory locations: OOH,
O8H, 10H, 18H, 20H, 28H, 30H or 38H.

The advantage of the RST instruction is that frequently called
subroutines can be called using only one byte. The RST instruction
also takes less time than a CALL instruction.

The disadvantage of RST instruction is that it can only be used to
call one of the above eight possible locations.

As all those locations are within the ROM, you cannot gain this
advantage in your own programs. It is possible however to make use
of the ROM's subroutines if you know what they do, and thus use the
RST instructions.

You will be able to know more about the RST instructions from our
book "UNDERSTANDING YOUR SPECTRUM'" by Dr Ian Logan.

128

Programming
Your Spectrum

129

Planning Your Program

Machine language programming is extremely flexible in that it
allows you to do anything at all.

Since all the higher level languages ultimately have to come down
to machine language, it follows that anything you can program in
Fortran or Cobol or any other language can be done in machine
language.

With the additional benefit that the machine language program will
be the faster one.

This total flexibility can however also be a trap to the unwary
programmer. With so much freedom, it is possible to do anything.
Unlike the SPECTRUM's BASIC operating system, for example, there
are no checks on whether the statement is a legal one.

Since all numbers you can enter will be an instruction of one kind
or another, the Z80 chip will process everything.

But even beyond the problems of checking whether the syntax is
legal, machine language programming has no constraints on your
logic - you can perform functions, jumps, etc. which would be
totally illegal in any higher level language.

It is therefore of the utmost importance to discipline yourself in
the design of machine language programming. I cannot recommend too
highly the concept of the 'top-down' approach in programming in
general, but especially in machine language programming.

The 'top-down' approach forces you to break down the problem into
smaller units, and enables you to check the logic of your design
without doing any coding for a long time.

Suppose you wanted to write a lunar lander program:
The very first approach might be something along the lines

INSTR Display instructions

Jump back to INSTR till ENTER pressed
DRAW Draw landscape, start Lander at top
LAND Move Lander

If fuel finished go to CRASH
Jump back to LAND if not ground

GROUND Print Congratulations
Jump back to INSTR for next GO
CRASH Print commiserations on bad landing

Jump back to INSTR for next GO

130

Notice how this 'program' is written totally in English. At this
stage, no decision has been made whether the program is to be
written in BASIC or machine language. Nor is it necessary to make
that decision - the concept of the Lunar Lander program is not
dependent on the coding.

Now comes the part of logic testing.
You play the part of the computer and see if all the possibilities
you wish to see included in the program are covered.

Are there any jumps to things you meant to write in but forgot? Is
everything there? Are some routines redundant? Should some of the
things be put into subroutines?

Let us look at the 'program' again - oh, oh: we forgot to allow any
way to finish the program!

The above logic might be fine for some applications, such as an
arcade machine, but in your program you may decide you would like

to be able to turn the program off.

We now change the last part of the program as follows:

GROUND Print Congratulations

Jump to Finish
CRASH Print commiserations on bad landing
FINISH Ask player if finished

If not, jump to INSTR
If yes, STOP

Note that we have used labels to describe certain lines in the
program. These are very valuable, the more so if you choose short
labels which are descriptive in their meaning.

Once this level is finished, you move one level down to do the same
thing to one of the lines or modules above.
This is why this approach is called the top down approach.

For example we can expand the 'finish' module above:

FINISH Clear screen
Print "Would you like to stop now?"
Scan keyboard for input
If input = yes then stop
Jump to INSTR

The other benefit of the top down approach is that you can test and
run a particular module on its own, so that it is ready for the
final program.

Let us go down one level further again, and look at the

Clear screen

131

line in more detail.

By this stage we do have to decide on what language we will write
the program in, and let us choose machine language on the Sinclair.

If you were writing in BASIC, all you would have to say is:
900 CLS

but in machine language that simple sentence, 'Clear screen' can be
deceptive.)

We might therefore do something like:
CLEAR Find 'screen beginning
Fill next 6144 positions with blanks

We still haven't done any coding, but obviously the approach is
based on machine language. Let's look more closely at exactly what

this clear screen routine is meant to do and what it will actually
do.

You may recall from the Spectrum manual that the screen is made up
of 6144 locations, and that there are a further 768 locations which
describe the attributes of the screen - paper colour, ink colour,
and so on.

The short program description above will indeed clear the screen
portion, but does not have any effect on the attribute file. If not
all the screen has the same paper colour, or if some character
positions have flashing or bright set 'on', then the clear screen
routine above will clearly be inadequate.

We need to work on the attribute file as well. (Note how much more
complex certain tasks can be in machine language than in BASIC.)

We therefore need to expand the program to read
Find screen beginning
Load next 6144 bytes with blanks
Find attribute file beginning
Load next 768 bytes with paper/ink desired

The next level down is the one where you must finally do the
coding, so let us look at filling the screen with blanks:

CLEAR LD HL,SCREEN ;Screen start
LD BC,6144 ;Bytes to clear
LD D,0 ;D=blank

LOOP LD (HL),D ;Fill blank
INC HL ;Next position
DEC BC ;Reduce count
LD A,B
OR C sTest It BGC = 0
JR NZ,LOOP ;Again if not end

132

Now you can deal with programs of such length quite easily and in
this way build up very complex programs indeed.

By the way, vou no doubt understand now why machine language
programs tend to be so long and why people invented the higher
language programs!

Exercises:

— i =~

There are more ways than one to write any particular routines, so
let us look at the simple clear screen routine written above.

This could be handled by several different approaches.
Exercise 1:

Can you think of a way that would enable the loop to blank 6144
positions without using the BC register, but using the B register
only so that we may make use of the 'DJNZ' instruction?

Exercise 2:

Can you think of a way that would enable the 6144 positions to be
blanked using the more powerful 'LDIR' instruction?

Think carefully of what 'LDIR' does: it is not always necessary to
have 6144 blank positions elsewhere!

Answers:

More than one possible answer can be "right" - the only test is
does it work? In other words does it do what YOU want?

Using DJNZ:

CLEAR LD HL,SCREEN
LD A,O
LD B,24 ;Set B=24
BIGLOOP PUSH BC ;save value
LD B,A ;Set B=256
LITLOOP LD (HL),A 3
INC HL 3Fill in 256 blanks
DJNZ LITLOOP
POP BC ;Get back value of B
DJNZ BIGLOOP ;Do it until end

We have been able to use 24 times 256 (=6144) to clear the screen.

133

Points of note are:
We can set B =

0 to go through the DJNZ loop

256 times. (Why?)

This procedure would not normally be used in a
program unless we were also using register C
for other purposes.

Using LDIR:

CLEAR LD HL,SCREEN ; Source
PUSH HL
POP DE
INC DE sDEST = HL + 1
LD BC,6144 ;How Many
LD (HL),O ;lst POS = 0O
LDIR ;Move it

Note that we have found DE = HL +1 by getting DE = HL and

increasing DE. This can be
value of SCREEN +1 into DE

The reason this LDIR works

achieved more easily by loading the
directly but this requires 1 more byte!

is because we are using the fact that

the data is overwriting the block to be written as we proceed. This
is using in a positive manner the problem we discussed in the Block

Move Chapter.

If you add up the memory required, the first method requires 14

bytes,

the second 16 bytes, and the last 13 bytes.

134

Features of the Spectrum

It is time then to have a look into features of your ZX Spectrum

that are useful when you develope machine language programs for
it.

Input - keyboard

As far as input to the Spectrum is concerned, we will ignore
cassette input and concentrate on the keyboard.

The keyboard is the only input which provides real-time
communication. It can dynamically affect the processing of any

program, either the operating system in ROM or the user's program
in RAM.

Logically we can see the keyboard as a two dimensional matrix with
eight rows and five columns as in appendix A.

Each of the forty intersections represents a key of the keyboard.
In their normal state (when they are not pressed), they are always
in a high mood ie. the intersection is set as 1.

When a particular key is pressed and 'pressurized" the intersection
corresponding to that key will be reset to a low mood ie. O.

Knowing the relationship between the keyboard and this inner matrix
representation, we can derive a logical way of testing key pressing
which can be used in machine language programming.

In BASIC, when we scan the keyboard we need to provide an address
for that particular half row of keyboard where the desired key
resides before using the IN function as described in chapter 23
(p 160) of the Spectrum manual.

Similarly, in a machine language program, we need to load into the
accumulator a value corresponding to the address of the half row of
keys we want to test. The required value for each half row is
listed in the leftmost column of the table in appendix A.

eg. For the "H - ENTER" half-row we load A with value BFH

LD A, BFH
The value in A will then be used to fetch the byte which contains
the state of that particular half-row of keys and return to A when
the INPUT instruction is issued.

eg. The port used is the FEH port

IN A, (FEH)

135

Since there are five keys per half row, we are only interested in
the five low order bits of the returned byte in A.

If no key is pressed in that half-row, the value of the low order
five bits will be (2%%4 4+ 2%%3 4 2%%2 4 2%%] 4 2%%0 ie. 16 + 8 + &4
+2+1=31).

register A = xxx11111 when no key is pressed.

If we want to test whether the rightmost bit is pressed, we check
to see whether that bit is low.

There are two ways to test that:
i. Use Bit test instructions, eg BIT O, A
I1f the bit is low (not set) then the Zero flag will
be set.
ii. Use Logical AND instructions AND 1
1f the bit is low (not set) then the result will be
zero and the Zero flag will be set.

The first method is easier because the particular bit we want to
test is specified directly in the Bit-test instruction. But it has
a shortfall in that if we want to test two keys of that half-row we
will need to use two Bit-test instructions and possibly two
relative jumps.

eg. To test bit O and bit 1 using the first method

BIT O, A ;test bit O of A set or not
JR Z, NPRESS ;jump if not pressed
BIT 1, & ;test bit 1 of A set or not

JR Z, NPRESS ;jump if not pressed

do whatever if both are pressed

NPRESS .

The second method of testing using logical AND requires a little
more logic. To test bit O we use "AND 1"; to test bit 1 we use "AND
2"; to test bit 2 we use "AND 4" and so on.

To test two keys, we use "AND x'" where x is the sum of the value we
will use when testing each one key individually.

eg. To test both bit O and bit 1 of A are set:

AND 3 ;test both bit 0 and bit 1
;1s set
CP 3 ;test if both set

136

JR NZ,NBOTH ;s jump if not both pressed

To test if either bit 0 or bit 1 of A are set

AND 3 sjtest either bit O and bit
;1 is set
JR Z ,NOTONE ; jump if not one is pressed

Exercise:

To summarise what we have learnt relating to the keyboard, can you

code a machine language subroutine trapping the (ENTER) key pressed
for your Spectrum.

You will need to

a. check the row address that needs to be loaded into A,
b. send it to the input port FEH.
c. test the bit that is set by the (ENTER) key.

137

Output - Video Screen display

The Video screen display is the main source of output for the
computer to communicate to the user.

The following machine language program will demonstrate the way the
screen memory of the Spectrum is organised:

210040 LD HL,4000H ;load HL with start of
;display file

36FF LD (HL), FFH ;fill that screen location

110140 LD DE,4001H ;load DE with next byte
;in display

010100 LD BC,!1 ;BC contains number of
;bytes to be transferred

EDBO LDIR ;move a block length BC
;from (HL) to (DE)

Cc9 RET ;end of program

Load the above program into your Spectrum and run the machine code
program. The way it is written above, one byte only will be
transferred from (HL) to (DE).

Now change the fourth line to read LD BC, 31 (011F00). You may be
surprised at which are the first 32 bytes of the screen display.
Note how a very thin line has been drawn across the top of the
screen. The first 32 bytes of the screen memory relate to the first
byte of each of the first 32 characters.

Now change that line to read LD BC,255 (O1FF00). Again you may be
surprised. The next byte after the 32nd one is not.on the second
row of dots on the screen! It is the first byte of the 32nd
character! And so on up to the 256th character.

Are you prepared to predict where the next byte would go? Change
that line to LD BC, 2047 (@1FF@7) and run the program. You will
find that the top third of the screen only has been filled.

You can experiment with this, using different values for BC up to
LD BC, 6143 (@1FF17). In this way you can watch the way Spectrum

organises the screen.

The screen memory is actually divided into three lots.

i. Memory 4000H - 47FFH — first eight lines.
ii. Memory 4800H - 4FFFH === second eight lines.
iii. Memory 5000H - 57FFH === third eight lines.

Not only that, but you will recall that each character of the
Spectrum is composed of eight 8-bit bytes which makes up 64 dots.

138

eg. For the character " ! ", its character represntation is

0 00000000 OH
16 00010000 10H
16 00010000 10H
16 00010000 10H
16 00010000 10H
0 00000000 OH
16 00010000 10H

0 00000000 OH

The organisation of the Spectrum screen display memory is such that
the first 256 bytes from 4000H to 40FFH correspond to the first
byte of each of the 256 8-byte character of the first eight lines.

Then the next 256 bytes from memory location 4100H to 41FFH
correspond to the second byte of each of the 256 8-byte character
of the first eight lines and so on.

Thus, the memory location of the eight bytes corresponding to the
first character of the screen is:

lst byte 4000H

2nd byte 4100H

3rd byte 4200H

4th byte 4300H

5th byte 4400H

6th byte 4500H

7th byte 4600H

8th byte 4700H

Strange, isn't it? But we have to accept the Spectrum the way it is
built.

Can you write down the eight bytes that correspond to the 3lst
character of the third line of the screen? You can refer to
Appendix B, the screen memory map.

(405EH, 415EH, 425EH,...,475EH).

To follow on the concept we have developed about the screen
display, the memory locations that correspond to the first
character of the second eight lines lot is:

4800H, 4900H, 4AOOH, 4BOOH, 4COOH, 4DOOH, 4EOOH, 4FOOH.

Similarly, the first character of the third eight lines lot has its
eight-bytes in memory locations:
5000H, 5100H, 5200H, 5300H, 5400H, 5500H, 5600H, 5700H.

There are some advantages, however, in using machine language. The
apparent complexities are worth overcoming. As a trivial example,
in BASIC, if you try to PRINT into the input section of the screen
(the bottom two lines), the BASIC system will object most
violently. But in machine language you have full access to the

139

whole screen.

If you observe the screen display organisation more closely, you
will see that the High Order Byte of First Byte (HOBFB) of each

character determines which lot of the three memory portions the
character is in.

For example,if 40H =(HOBFB (41H char is in first
eight lines lot
if 48H =(HOBFB (49H char is in second
eight lines lot
if 50H =(HOBFB (51H char is in third
eight lines lot

Not only that, the low order three bits of the HOB (High Order

Byte) determines which byte of the eight bytes of the character it
belongs.

Things starting to blurr now? Turn to appendix B and try to observe
the relationship between memory locations and the display screen
(if any?!!).

Try the following example,:

Suppose we are given an address as 4A36H. The High Order Byte of
the address is 4AH so:

i. we know that it is within the screen display memory
since its value is in between 40H and 58H.

ii. its binary representation is 01001010

iii.from the lower three bits we know that it belongs to
the third byte of a character position on the screen.

iv. if we made the lower three bits zero, then the value
of the HOB would be 48H. Thus we know this belongs to
the second eight lines lot, ie the middle portion of
the screen display.

The conclusion we can reach is that the byte given refers to the

third byte of a character in the middle portion of the display
memory.

Which character of the middle portion does the byte belongs to? To
answer this question, we'll need to know the value of the Low Order
Byte of the address.

We know the LOB of the address is 36H. So the address refers to
character 36H (48+6), the 54th position away from the first
character of the middle portion.

Since each line has 32 characters, the position referred to is in

140

the second line of the middle screen display portion and is the
(54-32+1)th character of that line.

The conclusion we can make is that the byte given is the third byte
of the 23rd character of the 10th line from the start of the
screen.

Exercise:

Which byte of which character does the address 564FH refer to?

Exercise:

Can you write a short routine to write an exclamation mark to the
screen? The bytes that make up this character are given above.

141

Output - Video display attribute

T S T e

The display attribute memory is easier to understand than the
display memory because it has a one-to-one relationship with the
screen display characters.

The attribute file is located in memory from 5800H to 5AFFH. It is
768 bytes, which correspond to 24 lines of 32 character each. In
other words, there is one attribute byte for each character
position.

Thus, 5800H corresponds to the attribute of the first character of
the first line, 5801H the second character, 5802H the
third,...581FH the thirty second character of the first line.

Similarly, 5820H holds the attribute of the first character of the
second line, 5840H of the third line, ... and 5AEOH the attribute
of the first character of the last line of the screen.

We know that for each character position on the screen, there is a
corresponding attribute byte in the attribute memory, made up as
follows:

attribute byte b b bbb bbb

bit 0 - 2 represents the ink colour of the
character O to 7.

bit 3 - 5 represents the paper colour of the
character 0 to 7.

bit 6 Bright if 1, normal if O.

bit 7 Flash if 1, not flash if O.

Exercise:

What is the address of the attribute byte that corresponds to the
first byte of the middle screen section? What is the address for
the first byte of the third section? Answers are given on the next
page, but try to work it out for yourself.

Exercise:

Can you write a subroutine that converts a given address on the
screen to its corresponding attribute address.
eg. 4529H

You must in effect determine which character of this screen this
belongs to, and then add this to 5800H.

The following program shows a short method of achieving this:

142

LD HL, 4529H
LD A, H
AND 18H

SRA A
SRA A
SRA A

ADD A, 58H
LD H,A

You may need to think about

;load the given address to HL
;load the high order byte to A
;trap bits 3 and 4 to
;determine which portion of the
;screen the address belongs
;jshift right accumulator
;jthree times - ie divide by 8
;result can either be 0,1 or 2
;jdepending whether H was

: 48H, 50H or 50H

jtransform to attribute memory
;HL contain attribute address
;ie H = 58H, 59H or 60H

;L remains the same!!!

this for a while!

The way the program works is related to the answer of the first

exercise:

1st char. of 1lst screen section
1st char. of 2nd screen section
1st char. of 3rd screen section

2nd char. of lst screen section

etc. L

4000H Attribute address
4800H Attribute address
5000H Attribute address

L

4801H Attribute address

€LCs oo

This should make things a little clearer!

143

H

5800H
5900H
5A00H

59¢1H

OQutput - Sound

Another real time communication that your Spectrum microcomputer
offers is sound. It would be a waste if we didn't make full use of
this facility.

In machine language on the Spectrum, there are two major ways of
generating sound.
i. Sending signals to the cassette output port 254 for
certain duration of time using the OUT instruction 254.
eg. OUT (254), A
ii. Set HL, DE to certain values and call the ROM sound
routine used to generate sound.
The input parameters are:
DE - duration in sec * frequency
HL - (437,500 / frequency) - 30.125
Then
CALL 03B5H.

The first way of sound generation has the advantage of being free
from any ROM calls. It is shorter in terms of time to execute. But
... there is always a BUT!

Since the ULA is constantly accessing the first 16K memory of the
RAM to perform the video display, your program, if it resides
within the first 16K, will frequently be temporarily interrupted.

1f the program is generating sound, the sound will be in bursts of
unpredictable duration. One solution is to move the part of the
program that generates sound to the higher memory region if you
have a 48K machine.

If you haven't got a 48K machine, then you can still generate sound
using this method, but it will not be 'clean sound'. You have to
use the second method of sound generation (of calling the ROM
routine) to get that result.

Note that as we send values to output port 254, it will also affect
the border colour, and turn the MIC on, as well as the loudspeaker
depending on what value is sent. Refer to chapter 23 (p 160) of
your Spectrum user manual.

On the other hand, the ROM routine for generating sound in effect
allows you to use the BEEP command from your machine language
program. You can think of the DE register pair as holding a value
for the duration of the sound, and HL a value for the frequency.
Experiment with different values for HL and DE until you get the
sound you want.

The limitation of this method of course is that you are restricted
to whatever sounds you can create with the BEEP command.

144

Monitor
Programs

EZ-Code Machine Language Editor

This is a machine code monitor program that allows you to:

i. INPUT your machine language program module in
either a fully assembled format
or a semi-assembled format with all relative
jump and absolute jumps expressed in the

form of line number.

ii. LIST the source input program module.

iii. DUMP the input program module into the specified
memory address.

iv. EXAMINE a range of memory locations.
v. SAVE EITHER the "source module"
OR the dumped program in fully machine
code format.

vi. LOAD a saved '"source program' from the cassette.

vii. RUN the dumped machine program module.

PREREQUISITE for the EZ-code

Before using this monitor program to input any machine language
programs, you must assemble your assembly language program. You do
not need to calculate relative or absolute jumps!

Your program module must not be greater than 800 bytes or more than
200 instructions.

You cannot load the final program below memory 31499 (in order not
to wipe off the EZ-code program.)

CONCEPT behind the EZ-code

The concept behind this program is to enable you to enter machine
code instruction in a numbered line format, much like the listing
of a BASIC program.

Each line of the "source program" (the name of the lines of machine

145

code) has a line number and up to 4 bytes of machine code.

A major benefit is therefore the ability to "edit" any line. The
"source program'' can also be SAVED separately to tape, allowing
work in progress to be saved.

A major innovation in this program is the ability to insert
relative jumps or absolute jumps without having to calculate the
numbers involved in any jump can be made by referring to the line
number you wish to jump to!

This means that changes can be made without problems even within
the scope of a relative jump.

The machine code of the '"source program' is transferred to memory

by the '"dump' command. The resulting machine code can also be SAVED
to memory.

EZ-code Instruction Summary

Note that the first question the program will ask you is
"Loading address'.

This is the address where you wish the machine code program to go.
This cannot be below 31500.

e ale ale afe
e

?

Entering LINEs %%
i. To ENTER lines of '"'source program':

(line-no)(blank)(maximum of 4 bytes in Hexadecimal)
(ENTER)

eg. 1 210040 will insert the machine code instruction
LD HL,4000H into line number 1.

ii. To EDIT a line:
(line-no)(blank)(retype new bytes)(ENTER)

eg. 1 210140 will change line number 1 to the instruction
LD HL,4001H.

iii.To DELETE an instruction line:
(line-no) (ENTER)

eg. 1 (ENTER) will delete line number 1.

146

iv. To specify RELATIVE or ABSOLUTE jump

(line-no)(blank)(jump instruction)("lower case "L"'")
(line-no) (ENTER)

eg. 1 c312 represents the instruction JP to line 2.
2 1811 represents the instruction JR to line 1.

dedkedek COMMANDs Yedededke

i. dump(ENTER)
* dump the source listing into the memory starting
from the specified LOADING address.
* this must be done before running the machine code
program.

abbreviation: du

ii. exit (ENTER)
* exit from the EZ-code and re-enter BASIC system.

abbreviation: ex

iii.list (ENTER)
* list the first twenty-two instruction lines of the
source listing.
* press any key except ''m'" and '"'BREAK'" to continue
listing

abbreviation: 1li

list#(ENTER)
* list twenty-two lines of the source listing
starting from line number #, a number between 1 and

200 inclusively.
abbreviation: NO ABBREV

iv. load(ENTER)
* load a source listing module from the cassette
replacing the existing module.

abbreviation: lo

v. mem(ENTER)
prompt: Starting address:

* enter memory address you want to start displaying
from.
can be from O to 32767 for 16K Spectrum or O to
65535 for 48K Spectrum.
* press '"m" to exit memory examine mode.

ks
riy

147

abbreviation: me

vi. new(ENTER)
* clear the current module and re-run the EZ-code.
* this is useful when you want to start coding in
another program module.

abbreviation: ne

vii.run(ENTER)

* run the dumped program module from LOADING address
you specified when you start running the EZ-code
program or when you LOAD a new source listing.

abbreviation: ru

viii.save (ENTER)
* save either the source listing or dumped machine
code onto cassette.
prompt: Enter name:
enter the name you want to use.
Source or Machine code: (s or m)
enter s for source listing saving
enter m for machine code saving
Start tape, then press any key.
make sure that the cassette lead is properly
winded.

press any key when the cassette is ready.
abbreviation: sa

1. If you don't want the result of BC register returned
after running, change line 3090 to
3090 IF k$="ru" THEN LET L=USR R

2. To restart the EZ-code
Either wuse RUN and resulting with all vaiables
reinitialised
Or use GOTO 2020 which returns the prompt
“"Command or Line(###): '".

3. All numeric entry except machine instruction
code has to be in decimal format.

4. To enable you to insert additional lines in the current
listing, it is good to space out the listing.
ie.instead of entering instruction lines as 1, 2, 3

enter as 1, 5, 10 etc.
This will makes the input of the module more flexible.

148

EXERCISE on EZ-code

Enter the following codes.

210040 LD HL,4000H ;fill screen
110140 LD DE,4001H

OlFF17 LD BC,6143

3EFF LD A, OFFH

77 LD (HL), A

EDBO LDIR

3JE7F LOOP:LD A, 7FH ;jtrap BREAK key
DBFE IN A, (OFEH)

E601 AND 1

20F8 JR NZ, LOOP

c9 RET

To enter the above code using EZ-code:

(RUN)
Loading address: 31500(ENTER)
Command or Line(###): 1 210040(ENTER)
Command or Line(###): 5 110140(ENTER)
Command or Line(###): 10 O1ff17(ENTER)
Command or Line(###): 15 3eff(ENTER)
Command or LIne(###): 20 77(ENTER)
Command or Line(###): 25 edbO(ENTER)
Command or Line(###): 30 3e7f(ENTER)
Command or Line(###): 35 dbfe(ENTER)
Command or Line(###): 40 e601(ENTER)
Command or Line(###): 45 20130(ENTER)
(This is 20 then lower case 'L", then 30. In other words
JR NZ, line 30)
Command or Line(###): 50 c9(ENTER)
Command or Line(###): list(ENTER)
Command or Line(###): dump(ENTER)
Command or Line(###): mem(ENTER)
Starting address: 31500(ENTER)
m (this is the key to exit the memory
display mode)

Command or Line(###): run(ENTER)

(BREAK)

Note how there must be a space after the line numbers.

149

m
)

ZCaD

Copyvr

100
110
120
120

140

1000
1G10
1020
1030
104G
1050
10460
1076

1080

1090
1100
1110
1120
11Z0
2000
2010
2020
2030
2040
2050
2040
2070
2030
2090

2100

2110
2120
2130

2140

2150
2140

21462

E
ight (c) 1982 by William Tang and A.M.Sullivan

REM machine

REM machins _ code_monitor

GO TG Q000

DEF FN d{(ss) = {(s% > “9@')¥{ CODE s%-55)
+{s% <= "9")x(CODE s$—48)—(s% > “"")%Xx3I2

DEF FN o(0%) = (0% = "ca'")+(O%F = "da")
+{0% = "2a")+ (0% "fa)+{0s = "g2%)

+(0% = "d2")+(0% = "e2")+(0s = "F2")
+(D$ = ll‘::Il))_((D$ = "__—'E““]"'{DE — ":_"‘—.t:,")
+(0%$ = "28")+(0% = "20")+(0s = "18")

+0%E = “10%))
REM
FEM INY LINE_ _FPRINTING.routine IRU
CLS ¢ FRINT AT ze, 253 INVERSE onj FLASH on3i "LISTING
LET F = ze # PRINT AT z=, ze;
FOR J = pll 74O pl12
IF Cs{J, on) = "__." THEN S0 TO 1110
FRINT TAE tr— LEN STR$ J3 J35 TAR frj; "_.“:
IF C%¢(J, tw, on TO on) = "1"
THEN PRINT C${J, on)+" “+C$(J, tw)+Cs(T, tr)
: GO TO 1930
PRINT C$(J, on); "."3 CE(J, tw)s "_ "
5 ES(d, by " o735 ESA
LET F = F+on
IF F = 22 THEN &0 TD 1120
NEXT J
RINY &F =, 255 Y "
RETURN
REM
REM INVY main_ routine IT2U
INFUT “"Command . .or . Linae(&###) = _": A%
IF A%(TO fr) = "_ . .." THEN GO TO mr
IF A%{gn) > "@" THEN GO TO ZIQQ0Q
LET k¢ = "" 2 FOR K = on TO Fr
IF AS(K TO K)Y = " _ " THEN GO TO Z020
LET k% = k$S+A%(K TO K)
NEXT K
IF K =3 0R VAL k$ = za OR VAL k% > 1n
THEN GO TO mr
LET J =VAL ks ¢ LET n = J
: REM line _ number .must .be 3 . bvies
LET A% = a3 (K+on TO)
1 ET ks = "9
FOR K = on TO LEN A%
IF AE(K TO K)Y <> " "
THEN LET k3 = ks+As(K TO E)
NEXT K
LET A% = k%
IF As{on) = "1" THEN GO TO mr

150

2170
2180
2190
2200
2210
2220
2230
2240
2250

22460

2270
2280
2290

2300

SO0

NKNKNNRRN
DR T I B R
)«

B AR

"

2400
ZGGO
2010
I0Z0
030
2040
050
I04A0
070
3080
00
100
31190
A0
A40G10
4020
GO3ED
4040

4050
4060
5000
5010
2020

CLS * FOR I = on TO 7 STEF tw

LET E = INT (I/tw+on)

LET C#(J, K) = A%(I TO I+on)

NEXT 1

IF C$(n, on) = ", ." THEN 60 TO 2250

IF n <« TP THEN LET TP = n
IF n > BF THEN LET BP = n
GO TO 2320
IF n £> BPF THEN GO TO 2280
IF BF = on OR C$(BP, aon) <> “_.."
THEN GO TO 2320
LET BF = BP-on * GO TO 2260
IF n £> TP THEN 60 TO 2320
IF C${TP. on) <> *".." THEN GO TO 2320
IF TP <> BP AND TP <> 1In THEN LET TP =
: GO0 7O 2290
LET TF = on
LET pp = n

IF n < TP THEN LET pp = TP ¢ GO TO 2380

LET numlip = ze

TP+on

IF pp = TF OR numlp = 11 THEN GO TO 2380

IF ESipp. onl <2 tazt
THEN LET numlp = npumlp+on
LET pp = po—-on + GO TO Z350
LET pll = pp ¢ LET pl2 = EP
GO SUR 1000
+ REM print .a_.block of lines
G0 TO mr
REM
REM LHY Commandsk¥XxkXXExkxxixxy IRU
LET k2 = A%(TO tw}

IF k¢ = "du" THEN GO TO 5000

IF k% = "eu" THEN STOF

IF k% = 11" THEN GO TO 4000

IF k¢ = "1po" THEN GO TO 7000

IF k% = "me" THEN GO TO 6000

IF k% = "ne" THEN RUN

IF k% = "ru" THEN PRINT USR R
IF k% = "gsa" THEN GO TO BOOG

3 TG mr

REM

REM LIHY List_ routinefxxkxkkxxixxx THU

LET plil = TP ¢ LET pl2 = BP

LET n1 = CODE A%(& TO 6)

IF LEN A% > fr AND ni1 > 47 AND ni < 58
THEN LET pll = VAL A%(5 TO 8)

GO SUE 1000

GO TO mr

REM

REM I0Y DUMP routineXXXxXxxkxxxx THU

CLE = PRINT AT ze, 253 INK onj; INVERSE on

: FLASH ons: "“DUMPING" = LET G = R

151

S0O30
5040
S050
SGA0
S5G70

SO80
oS00

9100
=110
5120

S120
D140
o150
S140
S170
5180

n
fosd
P
le

5200
5210
o220
S230
5740
S2a0
S260
85270

2280
S290
SO0
93140

A

J B

0
O

thrn

o

5740
2390
S340
o370

IR0

FRINT AT on, ze;

FOR J = TF TO BP

IF C$(J, on) = " _." THEN GO TO S470

IF C#(J, tw, on TO on) <> "1" THEN 80 TO S380

FOKE G: ze * PDKE G+on. ze 3 POKE G+tw, ze

: POKE G+tr, ze

LET j1 = VAL (C$(J, tw, tw TO tw)+CH(J. tr))

PRINT TAR tr— LEN STR% J: INVERSE onj J
5 TAR fr i INVERSE ze3 " _ "

P CH(J; on)+" ["+C(J, tw)+CH(J, tr)
- =

IF 31 < ze OR 31 > 1In THEN GO TO S440

LET CJ = FN O(C%<(J, on))

PRINT TAB 17- LEN STR$ jl; INVERSE on3 jl
i TAR 183 INVERSE ze; "_."3; C%(jl, on)
el S PR EPRE - R R NN v T I R
5 CE(31, fris

IF ABS CJI <> on THEN GO TO S440

LET dd = (31 > J)=(j1 < J)

LET ja =6 ¢# LET dp = ze

IF 31 = J THEN GO TO S27C

LET 1l = J+dd

LET nl = ze % IF C%(cl, on) = = __"

THEN GO TO 5220

IF C%(cl, tw, on TO on) <> "1*

THEN LET ni1 = on+(Ce(cl, tw) <> “_ . ")
FLLRlel . tr) £ % & _uy
+IC%icly $r) <> B 1)

: 6O TO 5220

LET TJd = FN o(C${(cl, on))

LET n1 = (TJd = on)xtr+(TJd = —on) ¥tw

IF ¢l = 31 AND dd > ze THEN GO TO S270

LET dp = dp+ni

IF €1 = j1 THEN GO TO 5270

LET ¢l = cl+dd

GO TO S5iR0

IF ©0 = on THEN LET ja = ja+dd¥dp+(dd > ze) xtyr

+ 60 TO S310

IF dd > ze THEN LET dp = dp+2

IF dp > 126 AND dd < ze THEN GO TO S440

IF dp > 129 AND dd > ze THEN GO TO S440

LET V = 16% FN d(C$(J, on, on TO orn))

+ FN d(C2{(J, on, tw TO tw))

POKE G, ¥ = LET G = G+on

IF CJ = on THEN FOKE G, ja- INT {jasnkl rak

* LET B = G+on * POKE . INT (ja/ak)

= LET & = G+on ¢ GO TO 5340

IF dd < ze THEN LET dp = —-dp

LET dp = dp—tw ¢ POKE G, dp 2 LET G = G+on

FRINT “ok"

0 TG 5470

FOR I = on TO 7 STEP tw

152

5390
5400

5410
5420
5430
5440
5450
S460
5470
5480

6000
6010
6020
60ZF0
6040
6050

6060
&O70
6080
&090
6100
5110
6120
6130
&£140
6150
6160

L2200
7000
7010
7020
7030

7040
7050
70460
7070
7080
7090
7100
7110
7120
7130
7140
7150
8000
8010

LET K = INT (I/tw+on)

LET V = 16% FN d(C$(J, K, on TO on))
+ FN d(C$(J, K, tw TO tw))

IF V < ze THEN GO TO 5440

POKE G, V

LET 6 = G+on

NEXT I

GO TO S470

PRINT "xx"

NEXT J

FRINT AT Ze, DS TaasnakAA

: GO TO mr

REM

REM INY Memory.displaykxxsxxixx THU
INFUT "Starting.address =+ ."5 dm

CLS = PRINT AT ze. ze;

LET G = dm *= LET F = ze

LET F = F+on

: PRINT TAE 5— LEN STR% G5 G 5 TAE 635

FOR 1 = on TO fr

LET V = PEEK ©

LET H = INT (V/16)

LET L = V-16xH

PRINT D% (H+on): D$(L+on)3 " _ "3

LET 6 = G+on

NEXT I

FRINT *_."

IF F <> 22 THEN GO TO &050

LET k% = INKEY$ = IF k¢ = "" THEN GO TO &£150

IF k% <> "m" AND k% <> "M" THEN LET F = ze

¢+ FOKE 22692, gk—on = GO TO &050

POKE 23692, on *: PAUSE 20 : GO TO mr

REM

REM INY LOADX XXX XXXXxXXkxxxkxxx TRU

CLS

INFUT
"Load ,array $:Prescs_ any_ key.when ..ready. . "
3 k$

FRINT AT ze. 255 INVERSE ons5 FLASH ons "LOADING"

LOAD "source" DATA C$()

FOR I = on TO 1n

LET TP = 1

IF C$(I, on) <> "_.." THEN GO TO 7100

NEXT I

FOR I = 1n TO on STEF -1

LET BP =1

IF C$(I, on) <> "_ ." THEN GO TO 7140
NEXT I

PRINT AT ze, 295 “"aassaaa"

GO TO 9150

REM

REM JHY SAVEXXXXXXXXXXXXXXXXxXx JTRLJ

183

8020 INFUT "Enter .name * _."3; n%$

-

B80O30 IF n$ = "" THEN GO TO 8020
8040 INFUT

"Source .or .Machine.code * _(s.or.m)"

4

5 k%

B80S0 IF k$ <> "s" AND k% <> "m" THEN GO TO 8040
B060O IF k$ = "s" THEN SAVE n$ DATA C$() :+ GO TO mr
8070 INPUT "Starting.address = _."; ss
8080 INPUT “Finishing,address = . "5 s¥
8090 LET sb = sf-ss+on
8100 SAVE n$ CODE ss, sb
8110 GO 70 mr
000 REM
9010 REM initialisation
9020 LET ze = PI - PI = LET on = PI 7 PI

2 LET tw = on+on * LET tr = on+tw

¢ LET fr = tw+tw = LET gk = 256

2 LET mr = 2020 ¢ LET 1ln = 200
9025 BORDER 7 # PAPER 7 = INK on = INVERSE ze

: OVER ze * FLASH ze : BRIGHT ze

¢+ BEEP .25, 24 =+ BEEP .25, 12
Q030 DIM A% (15) * DIM 0% (tw)
Q040 LET TP = 1n # LET BF = on

¢ REM 1line.number .buffer
050 DIM C¢(ln, fr, tw) *: REM holds.code
Q060 FRINT AT ze, 203 INVERSE onj3; FLASH on

5 "INITIALISING"

Q070 FOR I = on TO 1n
080 FOR J = on TO fr
Q090 LET C%$(I, J) = " "
Q100 NEXT J
9110 BEEF .01, 20
120 NEXT I
9130 PRINT Al 20y 207 “wasssscisaaas"
2140 LET D% = "0123456789ABCDEF"
150 CLS * PRINT "Lowest .address = . "j; 31500
9160 INPUT "Loading.address :."5 R : PAUSE 20
9170, IF R < 31500 THEN GO TO0 9160
9180 CLS * GO TO mr

154

Hexload Machine Code Monitor

This BASIC program can be a monitor program on its own as it can be
used to WRITE hexcode onto the memory, LIST memory, MOVE memory
content around, SAVE the memory onto cassette and LOAD from the
cassette to memory.

On the other hand we can use Hexload as a semi-linking loader for
code created by the EZ-CODE program. This is because EZ-code can
only be used to input small modules of less than 800 bytes and
less than 200 instructions.

So for large programs, we use EZ-code to develop the modules and
save each module as machine code on cassette.

Then we use HexLoad, which is a much smaller BASIC program, to load
these modules and link them together by moving the modules into
their appropriate memory locationms.

We will actually apply this technique as we develop the FREEWAY
FROG program.

Concept behind Hexload

The concept behind Hexload is extremely simple.

The monitor program actually set the RAMTOP of BASIC system to
26999.

That means you can input your machine code program anywhere betweem
memory locations 27000 to 32578 for 16K Spectrum and 27000 to 65346
for 48K Spectrum.

Hexload is a straight forward machine code monitor program.
It offers basic monitoring functions like:
WRITE onto memory in Hex format

SAVE from memory to cassette

LOAD from cassette to memory

LIST memory contents from a starting address

MOVE memory contents from one locations to another.

Hexload Instructions Summary

1. WRITE
Write code in HEX format onto the memory.

Procedure:

a. Input start of memory where you want to write to in
decimal format in response to the prompt.

155

The address is limited to 27000 - 32578 for 16K
27000 - 65346 for 48K
eg. Write to address: 27000(ENTER)
b. Enter codes in hex format.
c. Press '"m" to return to main menu.

2. SAVE
Save memory to cassette.

Procedure:
a. Input memory from which saving starts, can be any
address 0 = 32767 for 16K

0 - 65535 for 48K
b. Input number of bytes to be saved.
c. Input name of the module to be saved.
d. Press any key when the cassette is ready.
e. Option of verifying the module saved on to the
cassette.
It is good to verify so as to ensure that
there is no corruption of the module during the
saving procedure.

3. LOAD
Load machine code module from cassette.
Procedure:

a. Input memory address to which the module is start
loading. The address is limited to same range as in
write command.

b. Enter the name used when the module is saved.

If you are not sure of the name, just press
(ENTER).

4. LIST
Display memory contents starting from an address.
Procedure:
a. Input address start listing from.
Can be any address as in SAVE command above.
b. Type any key to continue the display.
c. Type "m'" to return to main menu.

5. MOVE
Move memory contents from start address to finish
address into new memory address.
Procedure:
a. Input move from memory, any address as in the range
of SAVE command.
b. Input move until memory, any address as in the
range of SAVE command.
¢. Input move to memory, address range as in WRITE
command.
d. You can even copy the ROM into RAM by using this
command.

156

eg. Move from memory: O(ENTER)
Move until memory: 1000(ENTER)
Move to memory: 32000(ENTER)

this will move ROM O to 1000 to RAM address 32000.
NOTES: Any of the input in above commands which breaches

the address range will result in the input being
reprompted.

EXERCISE:

Try using this monitor to input the module we have developed
with EZ-code.

157

HEXLOAD
Copyright (c) 1982 by William Tang and David Webb

100 REM
110 REM monitor ,program
120 CLEAR 26999 *# LET ze = Pl - PI

: LET on = FPI 7/ P1 2 LET tw = on+on
2 LET gk = 256 = LEY 1m = 27000
: LET mr = 140 2 LET wl = 3240
130 GO SLR 2000
140 CLS
2 PRINT "Start . of .machine_.code _area = "
: 1m
150 PRINT "menu" * PRINT
+ PRINT

rasaNrite machIPDE L CO0P e ws min ey b
160 FPRINT
: PRINT
Y rasaSave . maching .code: .. A
170 PRINT
: PRINT
M sazaload.s omachine CofP. s are s nan
lBO PRINT
3 PRINT
B e aatastE o o mariNe CO0B. a2
190 PRINT
: PRINT
N daalIDVE L cMACI NS S COR s se s a
200 PRINT
: PRINT
"Flease .preass anpropriate key, "
210 LET g% = INKEYS%

220 IF g% = "m" OR g% = "M" THEN STOF
230 IF g% = " OR g% < "1" DR g% > 5"
THEN GO TD 210
240 CL S5
= PRINT “"Start .of .machine _ cods area = "
: Im

250 G0 TO 200x VAL g%
JO0 REM IHY WriteXkXXxXXxXXXrxXixix TRU
310 INPUT "Write_to_.address "5 d
320 IF d > mm OR d < 1m THEN GO TO X10
330 PRINT 2 PRINT "Write _ Address *# ."% d

= PRINT “To.return.to_menu_enter ""m"""
340 LET ag = "

IS0 IF a%$ = "" THEN INPUT "Enter hex. .code "
: as
360 IF asdon) = "m" OR as{opn) = "M"
THEN GO TO mr
70 1IF LEN a$/tw <> INT (LEN a€/tw)
THEN FRINT "Incorrect _entry _ "3
: GO TO wl

158

280 LET c = ze
320 FOR + 16 TO on STEP —15
400 LET a CODE as%((f = 146)+twX(f = on))
410 IF a < 48 OR a > 102 OR (a > 57 AND a < &5)
OR (a > 70 AND a < 97)
THEN PRINT "Incorrect_ . entry.":
: GO TO wl
420 LET c = c+fXx({a < 58)%x(a—-48)
+{a > &4 AND a < 71)%(a-05)+{(a > 26)%x(a—-87))
NEXT # = PDOKE d, c *# LET d = d+on
FRINT a%(TO tw)i; " . ."5
LET a% = a%(Z T0O)
IF d = UDG
THEN FRINT
"Warning =you_.are_.now.in_.the_ user
graphics_.area!"
s 60 TO wl
470 IF d = UDG-20
THEN FRINT
"Warning *you_.are.now.in_ routines
memory area!'"”
: GO0 TO wl
480 GO TO wl+on
H00 REM IHY SavelXxkdororiokkxkkxxxixx TRU
610 INPUT "Save _ M.C. .from_,address "3 a
L£20 INPUT "Number ,of .bytes . to_be.saved "3 n
6£Z0 INPUT "Name_ of .the_.routine "3 a%
640 SAVE a%$ CODE a, n
650 PRINT "Do.you_.wish _ to_.verify?"
&60 INPUT v
&£70 IF v <> "y" THEN GO TO mr
680 PRINT "Rewind.tape.and.press_ ""FLAY""."
490 VERIFY a%$ CODE a, n
700 PRINT "0.K." = PAUSE SO
710 GO TO mr
Q00 REM IHY Load¥dookkiookkkkkxkkkxx JTRU
210 INPUT

"Load \M.C. ,to_ address_ starting... *."

e

H bbb
P
131::113|:|

446

s 4
920 IF a > mm DR a < 1m THEN GO TO 210
30 INPUT "Program.name ="5 a%
240 PRINT “"Press . ""PLAY"" .on_.tape."
950 LOAD a% CODE a =« GO TO mr
1200 REM IHNHY Listxkxkxxkkxkkxkxkxkxkx JTRHU
1210 LET a%$ = "0123456789ABCDEF"™
1220 INFUT "List ,Address ="3 d
1230 PRINT "Press_ ""M"" _to_.return _ to_Menu."
1240 LET a INT (PEEK d716)

= LET = PEEK d—16% INT (FEEK d/16)
1250 PRINT ;5 TAB 75 as(a+on)i; a%{(b+on)
1260 LET d d+on
1270 IF INKEY$ = "m" OR INKEY$ = "M" THEN GO TO mr
1280 60O TO 1240
1500 REM INY MoveXXxiXxrikkrxikkxkkxx ITRU

159

ool

10 INPUT "Move . from_.meamory *."; £m
1T20 INPUT “Move,until .memaory = _%;
(530 INPUT “Move . to.memorv = %35 +m

1540 IF tm > +m THEN 20 TO 14610
= tm

D2 IET wp = um+tm—+m

FOR T = um TO +m STEF —-on

POXE o, PEEK I

LET mp = mp-on

MEXT I

B0 TQ mr

LET RT = PEEK 23732+akX PEEK 23733
IF RT = ASS35 THEN LET min = 65347
: LET UDE = 453467
I

IJ“ J
tel) o
i 1':| k

™~ o

"
]

ool
D000

o T L T oo S o T T R

o JY) -

2

F RT = 32747 THEN LET mm = 32579
LET UDB = 22599

200 LET n1 = INT (UIDGE/gik)

2040 POKE 23675, LDG3-nikak ¢ POKE

2050 FETURN '

160

The
Freeway Frog
Program

Program Design

This program is about frogs hopping their way home by crossing from
one side of a highway to the other.

There are trucks and cars and motor bicycles on the highway with
police cars frequently patrolling the highway.

Scores are given by the number of moves hopped from one side to the
other side.

You must understand the game very clearly because you are the
programmer.

This is merely the problem definition stage.

Unless we can clearly define and understand the problem it will be
very hard for us to know where we are heading in the later stage of
the design and development of the whole project.

FREEWAY FROG program structure

Now we can apply what we have learnt about TOP DOWN MODULAR program
design. We proceed from very high level and divide the whole
program up into well-defined logical modules.

They are as follows:

1. INITIALISATION
perform all initial tasks.

2. TRAFFIC FLOW
control of traffic on the highway.
This can again be logically subdivided into
i. regular traffic flow eg. trucks, cars and
motorcycles.
ii. irregular flow traffic eg. police car.

3. FROG

control the movement of the FROG, crash testing as
well as home testing.

4. GENERAL PROGRAM CONTROL
this part of the program takes care of the score
calculation and display, testing for termination of
the game.

161

5. TERMINATION
perform the house keeping job before returning from
the program.

Developing the FREEWAY FROG program

In developing the FREEWAY FROG program we have divided it into six
stages. The division into these six stages follows very closely to
the logical breaks shown above.

With each stage of development, we will have testing to ensure each
stage is working before proceeding to the next stage.

The six stages will be:

1., Data Base design

involving the design of objects shape, the creation of
database for each object and variables that the program will work
on.

2. Initialisation
involves the setting up of the screen, and the
initialisation of various variables.

3. Traffic flow

here we develop only the regular traffic flow and test it
separately from the irregular police car appearance which involves
different logic.

4. Police car
we develop and test the police car movement.

5. Frog

this will involve testing of frog movement, moving the frog
by blanking the old frog and drawing the new frog, test for
crashing, calculating scores ...etc.

6. Program control
handles updating of highscore, restart of game, abortion of
game, return from the program.

Before we proceed to develop the stages of FREEWAY FROG, we will
introduce here a BASIC program which will adds up thecontents of a
block of memory and generate the sum as a ''checksum".

You may find this checksum useful to check for data entry errors.

9000 REM
9010 REM checksum

162

9020 INPUT "From address: '";f
9030 INPUT "To address : "3t
9040 LET s=0

9050 FOR I=f TO t

9060 LET s=s+PEEK I

9070 NEXT 1

9080 PRINT "Checksum: '";s
9090 GO TO 9020

Enter the start of the memory block, then the end of the memory

block which you want to do the checksum in decimal value.
The BASIC program will generate the checksum value.

163

Stage 1-DataBase

%%% Design of object shape ¥*¥¥*

As this is a two way traffic game, we need to design two truck
shapes: a left truck shape and a right truck shape etc...

For the FROG, there will be four possible directions and so there
will be four shapes, one for each direction.

Let us adopt the following convention for position of an object and
for drawing each object:

I1f the shape is composed of four characters

C D
A B

the position pointer will be pointing to character A.

Character A is drawn first, then character B ...until the whole row
is finished.

Then we'll draw the next row up. That is, repositioning to one line
above to character C.

Thus, we will organise the shape database as
Shape ABCD
Don't forget that each character shape is defined as eight bytes.

1f we adopt the principle of drawing each character from top byte
to the bottom byte, then we will need to organise the shape
database also from top to bottom. Thus, the shape database will
look like this:

Shape al, aZ, a3, ak; ad, ab, al, abk
b1, b2, b3, b4, b5, b6, b7, b8
cl; e2, €3, eh, 5, ¢, cl, cB
di, 42, 43, 44; 45, db, 47, 48

Let's adopt another principle that when we draw a shape, we will
draw the whole shape into its screen memory location first, then we

change the attribute file.

We will therefore store the attribute data that relates to that
shape after its screen memory data.

Unlike the shape, for each character there is only one
corresponding attribute data byte.

164

So, to cater for the attributes data we have four attribute data
bytes after the above thirty two shape data bytes. (for a four
character shape).

%%% Tnput of object shape ¥¥*%

label line# from(H) to(H) from(D) to(D) chechsum

_ -— —_——— ————— A ————

FRGSHP 120 69AFH 6A36H 27055 27190 18085

LBIKE 340 6A37H 6A76H 27191 27254 3647
LBATT 430 6A77H 6ATEH 27255 27262 28
RBIKE 460 6A7FH 6ABEH 27263 27326 3355
RBATT 560 6ABFH 6AC6H 27327 27334 28
LCAR 600 6AC7H 6B26H 27335 27430 5073
LCATT 730 6B27H 6B32H 27431 27442 36
RCAR 770 6B33H 6B92H 27443 27538 4902
RCATT 900 6B93H 6BO9EH 27539 27550 12
LTRUCK 940 6B9FH 6C76H 27551 27766 22023
LTATT 1230 6C77H 6C91H 27767 27793 87
RTRUCK 1280 6C92H 6D69H 27794 28009 21834
RTATT 1570 6D6AH 6D84H 28010 28036 87
BLANK 1620 6D85H 6D88H 28037 28040 0

Module from 27055 to 28040, 986 bytes, checksum is 79197.
Suggested name 'shapdb",(shape database).

All the above objects except the Frog can be grouped into SHAPE
data bytes followed by attribute data bytes.

The reason why the Frog shape database is not of that format is
because we have decided that the frog has only one colour at any
one time, either GREEN when it is alive, or RED when it is dying,
or YELLOW when it reaches home.

In this game, we use BLACK (0) as the paper colour except for the
highway boundary and the top information line where we use WHITE
(7) as paper colour.

For objects that move only on the highway, paper attribute will be
0 and the ink colour will be that given in its database.

Before we input the shape data base into memory and store it onto
cassette, it is assumed that you understand character
representation in memory.

We will now explain the assembler listing using the example of
shape FROGl, starting at line 160.

In line 160, you will see

69B7 6F 160 FROGI DB 111.15.,31,159,220,216,120,4%8
OF 1F 9F DC D8 78 30

165

69B7 is the memory address in hexadecimal format

6F is the start of the eight bytes of the current DB
instruction in Hexadecimal value.
The hexadecimal value of the next seven bytes are
in the next line between line 160 and line 170.

ie OFH, 1FH, 9FH, DCH, D8H, 78H,30H.
160 is the line number of the assembler listing.
FROG1 is the label. This is for our benefit only.
DB is a mnemonic. It means that what follows is a

sequence of bytes. (Similar to DATA in BASIC).

111,15,31,159,220,216,120.48
are the bytes to be loaded into the memory.

Now let's build the FROG1 shape.

00 00000000 00000000 00
01 00000001 10000000 80
23 00100011 11000100 C4
25 00100101 10100100 A4
6F 01101111 11110110 F6
4F 01001111 11110010 F2
DF 11011111 11111011 FB
FF 11111111 11913111 FF
6F 01101111 11110110 F6 .
OF 00001111 11110000 FO
1F 00011111 11111000 F8
9F 10011111 11111001 F9
DC 11011100 00111011 3B
D8 11011000 00011011 1B
78 01111000 00011110 1E
30 00110000 00001100 ocC
Remember :

i. we draw the bottom row first from left to right.

ii. Then we draw the next row up.

iii.For each character, we draw the eight bytes from top to
bottom.

iv. Then at the very last, we fill in the attributes.

FRGSHP in line 120 defines one of four pointers pointing to the
four shapes of the frog. In the program, we will therefore be able

166

to find the correct shape given the direction of the frog.

DEFW is a mnemonic that means we want to define a 2-byte
"nn". The least significant byte is first while the most
significant byte is next.

*%%% Input of shape database *¥%%

Use the Hexload program to input lines 120 to 1590 in the assembler
listing. Enter only the hex bytes as shown in column 2.

Remember to save and verify the code before you proceed to the next
part of this stage!

%% Design of the objects database ¥¥%¥

We have decided that there will be a regular flow of six vehicles
in the two lane of the highway.
These are randomly distributed between the two lanes.

Object database will store information about the current status of
the traffic:

For example, for each object we need to know:

Existence, Movement cycle count, Direction of movement, whether
it's partly on the screen or not, Position pointer,

Shape database pointer, Attribute database pointer,

Number of Rows the shape occupies,

Number of column the shape occupies.

The database carries this information about each object in each
game cylce.

The first six group of databases from program line 1710 to 2040
represent the six vehicles that are going to be on the highway.
When any vehicle moves off the highway, another vehicle will be
generated randomly.

One simple way is to prepare the initial information for each
possible vehicle and store this in memory.

When a new vehicle is generated, we just go to the corresponding
memory locations and restore the database.

We will apply the same principle to the Police car and the Frog.
Therefore, when we build up the object database, we need not build

up the temporary database, as this will be initialised by the
program.

167

* temporary database memory ma
p y b p

Format: for the six existing vehicles, the frog and the police car:

Existence DEFB 1 byte
Cycle count DEFB 1 byte
Direction DEFB 1 byte
Real/abstract DEFB 1 byte
Position DEFW 2 bytes
Shape pointer DEFW 2 bytes
Attribute DEFW 2 bytes
Row DEFB 1 byte
Column DEFB 1 byte

TOTAL 12 bytes

label line# from(H) to(H) from(D) to(D)

OB1EXT 1710 6E25H 6E30H 28197 28208
OB2EXT 1800 6E31H 6E3CH 28109 28220
OB3EXT 1850 6E3DH 6E48H 28221 28232
OB4EXT 1900 6E49H 6E54H 28233 28244
OBSEXT 1950 6E55H 6E60H 28245 28256
OB6EXT 2000 6E61H 6E6CH 28257 28268
PCAREXT 2070 6E6DH 6E78H 28269 28280
FRGEXT 2180 6E79H 6E80H 28281 28288

As mentioned above, these are only temporary working storage. The
information that they contain changes as the game proceeds.

There are two other major temporary working storage area.
They are used to store what is underneath the frog and the police
car respectively.

label line# from(H) to(H) from(D) to(D)

FRGSTR 1650 6D89H 6DACH 28041 28076
PCSTR 1660 6DADH 6F24H 28077 28196

We do not need to define any of these locations - only allow for
them. We only need to build up the following database.

The object database is organised in the following way:

FRGDB frog database
DBINDEX other object database index
RBDB right bycycle database
LBDB left bycycle database
RCDB right car database
LCDB left car database
RTDB right truck database
LTDB left truck database

168

LPCDB left police car database

LPCATT left police attribute database
RPCDB right police car database
RPCATT right police car database

label line# from(H) to(H) from(D) to(D) checksum

FRGDB 2260 6E81H 6E88H 28289 28296 561

DBINDEX 2320 6E89H 6E94H 28297 28308 1734
RBDB 2400 6E95H 6EAOH 28309 28320 640
LBDB 2470 6EA1H 6EACH 28321 28332 692
RCDB 2540 6EADH 6EB8H 28333 28344 523
LCDB 2610 6EB9H 6EC4H 28345 28356 760
RTDB 2680 6EC5H 6EDOH 28357 28368 584
LTDB 2750 6ED1H 6EDCH 28369 28380 809
LPCDB 2820 6EDDH 6EE8H 28381 28392 955
LPCATT 2890 6EE9H 6EF4H 28393 28404 30
RPCDB 2930 6EF5H 6FOOH 28405 28416 379
RPCATT 3000 6FO1H 6FOCH 28417 28428 30

Module from 28289 to 28428, 140 bytes, checksum 7697.
Suggested name is 'objdb'". (object database).

We know that all objects except the FROG have a twelve bytes
database.

The meaning and contents of each byte is:

* Existence (1 byte)
- set to zero when the object is nonexistant.

- set to value n where (n - 1) is the number of cycles
that the object will wait before it is allowed to move.
n value for left and right cycle is 2
left and right car is 3
left and right truck is 6
police car is 1
frog is 8

in other words, the police car moves every cycle,
the motorcycle move every alternate cycle etc.

* Cycle count (1 byte)
- initially set as 1 so that it is ready to move straight
away and decrement by one every cycle.
- when it reaches zero, the object will be allowed to
move and the count will be reinitialised
to the value held in the existence byte.

* Direction (1 byte)

- all left to right traffic (ie. top lane traffic) will
have direction value zero.

169

- all right to left traffic (ie. bottom lane traffic)
will have direction value one.

* Abstract/Real flag (1 byte)

- this defines whether objects is partly off the screen

- all left to right traffic will start off with value
zero (abstract).

- left to right traffic will change this to one when
their position points to the real screen 4820H.

- all right to left traffic will have flag start off with
value one (real); the object has a position pointing to
the screen. ie 48DFH.

- as the right to left traffic moves off the screen,
ie.when the position pointer moves from 48COH to 48BFH,
this will be changed from real to abstract.

5

Position pointer (2 bytes)
- 2 bytes pointer storing the current position of the
object.

* Shape pointer (2 bytes)
- 2 bytes pointer pointing to the shape database of the
object.

H

Attribute pointer (2 bytes)
- 2 bytes pointer pointing to the attribute database of
the object.

* Row (1 byte)
- store how many rows the object shape occupies.

*

Column (1 byte)

- store how many columns the object shape takes.

- this value includes two columns of blanks, one at each
end of the object.
The purpose of these two extra columns of blanks is to
avoid the traffic getting too close to each other.

Now you can key in the object initialise database from listing 2270
to 3010.

You can use EZ-code or Hexload to enter this module.

1f you use EZ-code, remember to save the source listing as well as
the dumped listing.

#*%%% General database *¥¥%

We have covered so far the database from 69AFH to 6FOCH
(27055 to 28428).

Now we are going to build up the rest of the database and we

170

classify this as 'general database'.

This is organised as below:

line 500 to 630 SOUND
660 to 690 SCORE MESSAGE
720 to 1210 GENERAL

label line# from(H) to(H) from(D) to(D) checksum

PCTON1 500 6FODH 6F10H 28429 28432 282

PCTON2 510 6F11H 6F14H 28433 28436 166
HOMTON 540 6F15H 6F3CH 28437 28476 2565
SCRMS1 660 6F3DH 6F42H 28477 28482 540
SCORE 670 6F43H 6F48H 28483 28488 288
SCRMS2 680 6F49H 6F53H 28489 28499 732
HISCR 690 6F 54H 6F58H 28500 28504 240

Module from 28429 to 28504, 76 bytes, checksum 4813,
Suggested name 'gendb'". (general database).
You only need to input from line 500 to line 690.

From line 720 to line 1210, memory 6F59H to 6F82H
(28505 to 28546), these are all variables used by the program.

Line 1100 to 1150 are instructions with mnemonic EQU. This assigns
a value to the corresponding label and is used by the assembler
program. You do not have to enter anything.

Conclusion

Now we have covered the whole database area from memory
69AFH TO 6F82H (27055 to 28546).

Examine all modules that you have built, their names, their memory
range before you proceed the next stage of the building up of the
FREEWAY FROG program.

You should have now developed three modules:

name from mem to mem length checksum
shpdb 27055 28040 986 79197
objdb 28289 28428 140 7697
gendb 28429 28504 76 4818

Note that the database occupies nearly 1400 bytes!'!

171

Stage 2-Initialisation

LR T
TR A

In this module, we set up the highway, the score

Screen Setup

*hdkkx

as well as initialise all control variables.

We will do it in
clear the
Secondly, put in
Thirdly, display

First,

three parts.

screen and put in the highway.
all the frogs.

the score.

This module includes the following routines:

routine line#

i e e

INIT
CLRSCR
DRWHWY
HIGHWY
FILHWY
LINEUP
DISASC
SCRIMG
FINAL

Module

spread from 28547 to 30749, 2201 bytes.

from(H) to(H)

7328H 7349H
776FH 7786H
77FEH 781DH

from(D) to(D)

Suggested name "init". (intialisation).

display, the frog

checksum

Enter first CLRSCR, DRWHWY, FILHWY, FINAL into their corresponding
memory locations.

Then enter INIT routine. Enter three bytes of zero for the
following lines instead of the CALLs because the routine which are
called haven't been developed yet.

address(H) address(D)

6FAFH
6FBAH
6FCOH
6FCBH
6FD6H
6FDCH
6FE7H

28591
28602
28608
28619
28630
28636
28647

Then enter the following codes into memory starting from 32000.
Save the module from 28547 to 30598, 2052 bytes before running the
code in memory 32000.

172

F3 DI ;Disable interrupt

D9 EXX ;Preserve HL'

E5 PUSH HL

D9 EXX

CD836F CALL INIT

3E7F KEY LD A,7FH ; TRAP SPACE KEY
DBFE IN A, (FEH)

E601 AND il

20F8 JR NZ,KEY ;loop if not press
CDFE77 CALL FINAL ;finalisation

D9 EXX srestore HL'

E1l POP HL

D9 EXX

FB EI ;jenable interrupt
c9 RET

You should see the screen blacken and four white linesappear on the
screen.,

The following is a brief description of what each routine does.

INIT

set border colour to black

initialise frog-crash flag, frog existence, gameflag
number of frog

set rahdom ROM pointer

set frog station (also initial position of frog) to
50ACH

call clear-screen

call draw highway

call line-up frogs (five of them)

load score message

print score

load high score message

print high score

initialise all objects as nonexistent

initialise chase flag, siren sound flag and score

DRWHWY
fill top highway line (32 characters of 40AOH)
fill middle highway line (32 characters of 4860H)
fill bottom highway line (32 characters of 5020H)
*remember that highway is white paper black ink
unfill top two-character bytes of top highway
(therefore, they are white)
unfill bottom two-character bytes of bottom highway
(they are also white now)
redraw middle two-bytes of the middle highway

173

FILHWY
initialise fill character ()FFH)
set loop count to 32 (one line 32 characters)
draw one character (8 bytes)
move pointer to next character each time

FINAL
set white border
blank screen
set screen attribute file to white paper and black ink

I1f everything is fine, save the module first from memory
location 28500 to 30800, 2300 bytes.

Now enter LINEUP, DRWFRG routines. Check the checksum and save the
whole module again under the same name, same addresses.

Then change memory from 6FAFH (28591) to 6FB1H (28593) to that it
corresponds to line 1430 of the assembly listing.

ie. CD 55 70.

Run 32000 and you will see five frogs line up at the left bottom of
the screen.

The following are descriptions of what these two routines do:

LINEUP
set frog direction to 1 (facing right)
set frog shape to FROG2
set attribute number to 2 (green)
if no frog left
then return
else
for number of frog
push BC, DE, HL onto stack
draw the frog by calling DRWFRG routine
pop HL, DE, BC from stack
update draw position

DRWFRG
draw shape using convention discussed earlier
calculate attribute pointer
fill attribute of frog

174

Now input DISASC, SCRIMG routines. Check the checksum and save the
module again as above.

Now change the memories referred to by the following lines in the
assembly listing to the correct codes shown on the listing.

line# 1470, 1490, 1530, 1570, 1590, 1630.

Run 32000 and you should see the whole screen set up with highway
drawn, frog and score displayed.

2RER»

175

Stage 3 -Regular Traffic

In this stage, we develop the regular flow of traffic.
ie. all traffic except police car:

Traffic control (including regeneration of traffic)
regenerate traffic
Moving traffic
moving control
drawing traffic
determine drawn shape

Below is a table of all routines in this module.

name line# from(H) to(H) from(D) to(D) checksum

TFCTRL 3090 70BDH 70D8H 28861 28888 2587
REGEN 3320 70D9H 710EH 28889 28942 5673
MOVTRF 3700 710FH 71AEH 28943 29102 14831
MVCTRL 4720 71AFH 7208H 29103 29192 9222
DRAW 5560 7209H 7295H 29193 29333 13923
RSHAPE 6630 7296H 72D6H 29334 29398 6803
RANDNO 15050 77CCH 77DDH 30668 30685 2194

Module from 28861 to 30685, 1824 bytes.

Suggested name '"'regtrf'. (regular traffic).

Again, it is useless to generate a total checksum of the whole
module because the memory range covers some undeveloped memory
area. But it is important that you check the checksum of each
routine after entering it.

We develop this module in two parts.

Firstly, the draw routine for traffic.
Secondly, the traffic control and draw control.

Input DRAW, RSHAPE routines into their memory region, checksum and
save them.

176

Then entering the following testing program starting from memory
32000.

F3 DI

D9 EXX

ES PUSH HL

D9 EXX

CD836F CALL INIT

3E03 LD A= 3 ;row count
32606F LD (ROW), A ;store in ROW
3E09 LD K, 9 ;column count
325F6F LD (COLUMN), A ;store in COLUMN
11926C LD DE, RTRUCK ;right truck shape
216A6D LD HL, RTATT sright truck attri
226A6F LD (ATTPTR), HL;store in ATTPTR
3E01 LD A, 1 ;set to real pos
212248 LD HL, 4822H ;top lane

CD0972 CALL DRAW ;draw shape

3E7F KEY LD A, 7FH ;key trap

DBFE IN A, (OFEH)

E601 AND 1

20F8 JR NZ, KEY

CDFE77 CALL FINAL

D9 EXX

El POP HL

D9 EXX

FB EI

C9 RET

Load the database modules in the order they are created.
Load the init module.

Load the routines you developed in this stage.

Save memory 27000, 4000 bytes into 'frog' module. This will
includes all routines you have developed so far.

Enter and save the above test routine in memory 32000.

Run 32000 and you should see the screen set up and a right truck on
the top lane as well.

You can change the parameters in the program above between CALL
INIT and CALL DRAW to test all other object shapes.

Below is a brief description of the two routines.

DRAW
Similar logic to DRWFRG

RSHAPE
trap lower 5 bits of low order byte of position
parameter
subtract from 1FH and add 1

177

trap lower 5 bits again
determine SKIP and FILL depending on real or abstract
calculate attribute position and store in ATTPOS

Enter TFCTRL, REGEN and MVCTRL routines in their memory region and
save the whole module.

Edit the testing routine as follows:

DI

EXX

PUSH HL

EXX

CALL INIT
CDBD70 MOVE CALL TFCTRL

CDOF71 CALL MOVTRF
3E7F LD A, 7FH
DBFE IN A, (OFEH)
E601 AND 1
20F2 JR NZ, MOVE
CGALL FINAL
EXX
POP HL
EXX
EI
RET

By now you should realise that we save the whole stage module while
we are developing that stage.

Once a module is fully developed and tested, it will be merged
together with previous modules and saved into the "frog' module.

We test the modules by a small testing program starting from memory
32000.

After you have done all the housekeeping work for your modules,
test run the new "frog'" module.

If everything is correct, you should see the whole screen as before
plus all traffic moving at a very fast speed in the two lanes. This
is because there is no delay between each program cycle.

A short description of the routines.

TFCTRL
load generation flag
if not regeneration
decrement flag count
return
else
regenerate the first nonexistence object by calling

178

the REGEN routine
return

REGEN

save existence database pointer

generate random number O to 5

test the first two character of the screen position
where the object is created

if the sum of the attributes of those two position is
not equal to zero

then return (traffic jam)

else
determine the initialise database
load into temporary working database
set regeneration cycle count to 2
return
MOVTRF

for all existing objects
decrement cycle count
if count reaches zero
reload count from existence
move one character left or right
store new position in NEWPOS
test attribute correspondence of the front of
objects
if any nonzero ink
if not green
set jam flag
else
set crash flag
if jam flag set
load cycle count with 2(move one cycle
later)
return
else
store new position
call MVCTRL (move control)

MVCTRL
if edge reached
change real/abstract flag
if left moving
if on edge (position low order byte = 1FH)
if abstract flag
set non exist, return
else
goto L1
else

179

goto L1
else
get end of object
if reach end of screen (low order byte is OCOH)
set non exist, return
Ll1: refill cycle count
retrieve shape pointer
store attribute pointer in ATTPTR
retrieve ROW and COLUMN of shape
DRAW from new position.

RANDNO
push HL,BC onto stack
retrieve what random pointer pointing to in ROM
update pointer (move down ROM)

Score & HIGH S5CGRE 0/

2R

Score % HIGH SCORE o

180

Stage 4-Police Car

In this stage, we will introduce the POLICE car into the program.
The POLICE car will be generated randomly and enter with SIREN
sounding. It moves every cycle and there is no traffic jam in its

course. It will overtake any regular traffic before it.

That is why the program needs to save what is underneath the police
car and put it back when the police car moves on.

Below are all routines in this module.

name line# from(H) to(H) from(D) to(D) checksum

RESPC 9560 7450H 74C1H 29776 29889 11011
POLICE 7930 734AH 73DEH 29514 29662 15769
STRPC 8830 73DFH 744FH 29663 29775 10615

There are routines which are called in this module which has been
developed in previous modules.

Module from 29514 to 29889, 376 bytes.
Suggested name '"police'".

Enter POLICE and STRPC routines. Checksum and save them in the
"police" module.

Then edit the testing program to the following:

DI

EXX

PUSH HL

EXX

CALL INIT

MOVE CALL TFCTRL

CALL MOVTRF

CD4A73 MOVE1 CALL POLICE

LD A, 7FH
IN A, (OFEH)
AND 1

20F5 JR NZ,MOVE1
CALL FINAL
EXX
POP HL
EXX
EI
RET

Load the '"frog'" module, then the 'police' module.

181

Run the testing program. You should see the POLICE car moving very
fast on the highway.

If you want to put in other traffic as well, change the relative
jump to JR NZ, MOVE.
Remember to recalculate the displacement offset. (EFH).

As it moves, you would see the POLICE car wipe off the traffic
shape as it overtakes them. It may be so fast that you wouldn't
notice.

But you can tell when some traffic starts to run into the wvehicle
in front of them.

Let's look at these routines:

POLICE
if police car non-exist
get a random number
if not a mutiple of 31
return
else
set chase flag
determine top or bottom lane randomly
load corresponding initial database.
get direction
store position pointer
retrieve position
move and store NEWPOS
set ROW, COLUMN, REAL/ABSTRACT flag, POS before
call RSHAPE
get resulted ATTPOS and test head of shape for green
if green attribute
set crash flag
blank front of police car
call STRPC (for storing of what's underneath policecar)
update position database
call MVCTRL (for moving on and off the screen)
turn off chase flag if non-exist

STRPC

set HL points to NEWPOS

set DE points to PCSTR (police car store)

store position and 5 byte of information starting from
ROW variable

store according to SKIP/FILL format
all screen memory first
then attribute file

182

Enter the RESPC routine and merge with the previous two routines.
Save the whole module as '"police".

You need to edit the testing program again to test the storing and
restoring.

Although we included the STRPC routine we are not sure that it
saved the correct data underneath the police car. Only the RESPC

can help us to know that, because it puts what was stored back onto
the screen.

change the tesing program to the following:

MOVE CALL TFCTRL

CD5074 CALL RESPC (i s s iima
CALL MOVTRF
CALL POLICE

LD A,7FH
IN A, (OFEH)
AND 1
20EC JR NZ,MOVE

Adjust the relative jump before you test run the module with
Erog'.

You should see the POLICE car overtaking vehicles without wiping
them off.

The RESPC's logic is as below:

RESPC
return if police car nonexist
restore the position and 5 bytes into variables
starting from ROW

restore screen memory then attribute according to
SKIP/FILL format
return

Finally, enter SIREN routine, checksum and merge it with the rest
of the '"police" module.

Load "frog' module then reload the new '"police' module.

Edit the testing program in memory 32000's as following:

183

CALL INIT
MOVE CALL TFCTRL
CALL RESPC
CALL MOVTRF
CALL POLICE

CD8777 CALL SIREN (———————
LD A,7FH
IN A, (OFEH)
AND 1
JR NZ,MOVE

Run the testing program and you will find the whole traffic flow
will slow down. This is because of a constant delay either because
of the sound output or a downcount delay loop.

SIREN
trap (ENTER) key pressed
if pressed
change siren to no siren or vice versa
if no sound
go to DELAY
else
if no police car
go to delay
else
determine the correct tone database
load onto DE, HL
call 03B5H
return
DELAY: down count 6144

Merge this module with '"frog'" in the memory and reload in "frog".

Scare @ HIgH SCORE

]

184

Stage5-TheFrog

In this stage we develop the frog routines.
We need to regenerate the frog when a frog dies.

We also need to handle the frog movement, save what is underneath
it and restore what was stored back when the frog moves.

We also need to handle the frog crashing or home run and calculate
score.

We build up this module in three parts as below.
Regenerate and move frog
store and restore what is underneath
handle crashing, homerun and score

All routines within this module is as follows:

name line# from(H) to(H) from(D) to(D) checksum
FROG 10280 74C2H 74E2H 29890 29922 3818
REGFRG 10520 74E3H 750FH 29923 29967 4079
MOVFRG 10770 7510H 75D5H 29968 30165 19943
RESFRG 11870 75D6H 7627H 30166 30247 8492
STRFRG 12440 7628H 7690H 30248 30352 10136
CRASH 13160 7691H 76A6H 30353 30374 2767
FRGDIE 13280 76A7H 7707H 30375 30471 9965
FRGTON 13890 7708H 771CH 30472 30492 2435
CALSCR 14040 771DH 776EH 30493 30574 8106

Module from 29890 to 30574, 685 bytes.
Suggested name "frgrtn" (frog routine).
Enter FROG, REGFRG, MOVFRG, RESFRG, STRFRG and CRASH routines.
Edit the testing program as following:

CALL INIT
MOVE CALL TFCTRL
CALL RESPC
CALL MOVTRF
CALL POLICE
CALL FROG e s
CALL SIREN

185

LD A,7FH

IN A, (OFEH)
AND 1
JR NZ ,MOVE

Since we haven't entered the FRGDIE routine yet, replace the coding
in line 13190 of the assembly listing by
00, 00, 00

Run the testing program and you should be able to move the frog.
The controls are "1'"=up, "a'=down, "“i'=left, "p'=right.

When the frog crashed, it will simply disappear because the FRGDIE

routine which handles the dying procedure of the frog hasn't been
put in yet.

The description of these few routines are as following:

FROG
the control routine for the whole FROG module.

if frog crashed
goto CRH
else
set score-flag to no score (0)
call REGFRG
decrement cycle count
if count non zero
return
else
reset cycle count
call MOVFRG
if not crash

return
CRH:call CRASH routine
return
REGFRG

if frog does not exist
load frog initial database to working database
update frog station to three position left
initialf'se OLDFRG and NEWFRG to FRGPOS
initialise frog storage area to O

return

MOVFRG
initialise registers
C - absolute movement
B - frog direction

186

DE- frog shape
test frog movement
1 - up, a - down, i - left, p - right
store shape, direction
if absolute move is zero
return
else
restore old frog position
calculate new frog position and store
test up screen position, right screen, bottom screen,
frog station
if valid
store position into NEWFRG
set score flag.
restore OLDFRG
if OLDFRG equal NEWFRG
return
else
call RESFRG
set OLDFRG equal NEWFRG
move stored direction, shape pointer to frog
database
call STRFRG
return

RESFRG

restore underneath frog based on OLDFRG position
memory first then attributes

STRFRG
store underneath frog based on NEWFRG position
draw frog while drawing as well

CRASH
reset crash flag
set frog nonexist
call FRGDIE routine (dying procedures)
call RESFRG routine (place back what was underneath)
decrement number of frog

After you have saved up all the modules, enter the CALSCR, FRGDIE
and FRGTON routine.

To test the crash handling routine, replace 13190 of the listing by
the following instruction:

7698 CDA776 CALL FRGDIE (30360)

187

Edit the testing program to the following:

CALL FROG
GALYL . CALSUR (e
CALL SIREN

Merge the routine in the "frgrtn'" module and run memory 32000
together with the '"frog' module.

When the frog crashes, it will flash red and vanish.

FRGDIE
test frog reaches home or die
set die tone, red colour attribute
if reaches home
add one to third digit of score
(bonus 100 points)
call DISSCR (display score)
set home tone, yellow colour attribute
draw frog based on OLDFRG, FROGSH, and attribute just
set by call DRWFRG
flash frog with the attribute five times

FRGTON
call TONE1 (tone code from SIREN routine)
move up or down the tone database depends upon attibute
used to flash the frog (if yellow then down db)
(if red then up db)

CALSCR
if frog non-exist
return
else
if score flag not set
return
else
if go up
add one to tenth digit of score
(10 points)
else
if not within the highway
return
else
add one to tenth digit

188

readjust all score digits
build up score printing image
display score printing image

Scsre " HIGH SCORE a

3core i1aa HIGH SCORE 2

Ex ’
mﬁm

a4 g

LB R D

189

Stage 6-Control

In this stage we develop the control routine for the whole program.

The main control is that when the game is finished, high score is
updated and the game is restarted automically.

In any cycle, the user can abort the game by pressing the space
key.

You will find that line 180 to 440 of the listing looks very
similar to the testing program we have been developing.

Routines left for program are as follows:

name line# from(H) to(H) from(D) to(D) checksum
START 180 6978H 69AEH 27000 27054 8427
OVER 15200 77DEH 77FDH 30686 30717 2491

Now enter these routines into the memory. Save them together with
the '"frog' module and save the whole module as "frog".

Run 27000 instead of 32000 and you will have the whole program
working.

OVER
compare all digits of HISCR and SCORE+1
for the first nonequal digit
if HISCR digit is lower
update HISCR to SCORE+1
else
return
return

Congratulations and I hope you enjoyed the development of the
FREEWAY FROG program.
Store 1140 HIGH SCORE 1146

:]

» W -

REREN 190

&IT7R

6978
£979
6974
6978
697C
597F
6982
6985
6988
698B
6£98€
6991
6994
6997
6998
6994
599D
L99F
69A1
6943
£945
69a7
6904
4£9AB
69AC
494D
690E

H&FAF

694F
L£9R1
69B3
£9BS
49B7
&9BF
69C7
&9CF
&9D7
LODF

&FE7

F3

D2

ES

D9
CDE3I&F
CDED70
CcCDS074
CDOF71
CD4Aa73
CDhC274
CD1p77
coa777
IATTEF
A7
2005
CDDE77
18DD
JE7F
DEFE
E&01
2008
CDFE77
Do

E1l

D9

FEB

ce

B769
D769

F769

1766

6F

OF 1F
F&

FO F8
00

01 23
0o

80 c4
1F

1F 1F
FE

Fa Fg
38

9F

Fe

25

A4

7F

00100
00110
00120
Q0130
00140
00150
00160
00170
a0180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
Q0290
00300
0O0OF10
ODE20
00330
003Z40
00350
O0ZH0
O0Z70
Q03z80
00ZP0
Q0400
00410
Q0420
00430
00440
00450
00440
00470
00100
00110
Q0120
00130
00140
00150
00160
DC DB
00170
3B 1R
00180
&F 4F
00190
Fo /F2
00200
FC C1
00210
€0 9C
00220

R L T

ORG
START DI
EXX
PUSH
EXX
AGAIN CALL
MDVE CALL
CALL
CALL
CAaLL
cAaLL
CALL
cAaLL
LD
AND
JR
CALL
JR
CONTIN LD
IN
AND
JR
caLL
EXX
FPOP
EXX

RET

sRRKKRRAK KK

FRGSHP DEFW

DEFW

DEFW

DEFW
FROG1 DB
78 30

DE
1E oC

DB
DF FF

DB
FE FF
FROG2 DB
71 38

DR
FO CO

DR

EXEEALkkXk FREEWAY FROG X*XXXKXEXX

27000
:DISABLE BASIC SYSTEM AFFECTING
i THE KEYBDARD SCANNING

HL sPRESERVE THE HL® REGISTER PAIR
s POP BACK BEFORE RETURN

IMIT sINITIALISATION

TECTRL 3 TRAFFIC CONTROL ROUTINE
RESPC s RESTORE UNDERMNEATH

MOVTRF 3MOVE TRAFFIC

POLICE POLICE CAR ROUTINE

FROG ;s FROG MODULE

CALSCR ;CALCULATE AND DISFLAY SCORE
SIREN sSIREN OR DELAY

A, (GAMFLG) sFINISH WHEN NO FROG
A

NZ,CONTIN

OVER s HIGHSCORE MANAGEMENT

AGAIN ;NEW BGAME AGAIN

A,7FH ;3 TRAP SPACE KEY PRESSED

A, (OFEH) :SCAN KEYBOARD

1

NZ,MOVE

FINAL 3RESET SCREEN AND BORDER COLOUR

HL sRETRIEVE HL~

sENABLE INTERRUFPTS
tRETURN TO BASIC SYSTEM

FROGDEB/ASM kXXX XXXX

FROG1 s UFP FROG
FROGZ2 :RIGHT FROG
FROGS : DOWN FROG
FROG4 sLEFT FROG

111,15,31, 159,220, 216,120, 48
246,240,248, 249,59, 27,30, 12
0,1,35,37,111,79,223,255

0,128, 196, 164, 244, 242,251, 255
31,31,31,127,252,193,113,54
254,244,248, 240, 192, 156,240,192

56,113, 193,252,127,31,31,31

LFEF
&FF7
&9FF
&ADT7
LHAOF
&6AL7
6ALF
6AZ27

6AZF

LAZT

6A47
6HALF
6A57
6ASF
6ALT7

&6ALF

&AT77

6AT7B

6ATF
&ABT7
&ABF
6A77
6AFF
6ART

6ARF

00
o7
00
o7

cC1

C

aF

F2

D8

1B

1F

F8

83

00

o1

co

(e e]

o7

o7

00

3F

CE

00

0o

0F

FC

CoO

Fé

B

OF

FE

03

00

51

EA

00

00

EO

57

8A

Qo

a7

7F iF
00230
FO F8
00240
25 23
00250
A4 C4
00260
9F 1F
00270
F? FB
00280
03 39
00290
3F 83
00300
OF 1F
00310
FE F8
D020
00330
00340
00 00
00350
A9 70
Q0360
DS CE
00370
00 00
00380
00 00
00390
03 04
00400
EO 70
00410
00 00
00420
00430

00440

00450
004460
Q0 00
00470
AB 73
00480
95 OE
00490
00 00
00500
00 00
00510
07 OE
00520

iF

Fa

iF

EE

FROGZE

01

80

OF

FO

00

o0

&F

Fé&

FROG4

OF

8E

2F

FO

0=

iC

7F

FO

i
LBIKE

00

70

OE

77

00

00

20

04

00

00

1F

FF

00

§
LBATT

i
REIKE

Q0

70

g

EE

00

20

04

00

00

FF

DE

DE

DE

DE

DB

DB

DE

DB

DRB

DB

DB

DE

DE

DE

DB

DB

DE

DE

DE

DB

DB

DB

DE

DE

DE

DE

192,240, 156, 192, 240,248, 244, 254
PNS, 298, 79, 111, 37:35,1:0
255,251,242, 246, 164, 196, 128,0
48,120,216,220,159,31,15,111
12,30,27,59, 249, 248, 240, 246
127,47,31,15,3,57,15.3
240,240,248, 254, 63, 131, 142,28
3,15,57,3,15,31,47,127

28,142, 131, 63, 254, 248, 240, 240

0,0,0,0,0,0,0,0
21,63,115,81,169,112,112,32
254,252,252,234,213,206, 14,4
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
1,3,1,0,3,4,14,31
128,192,192,224,224,112,119,255

0,0,0,0,0,0,0,0

0,7,7,0

0,7,7,0

0,0,0,0,0,0,0,0
127,63,63,87,171,115,112,32
248,252,206,138,149,14,14,4
0,0,0,0,0.0,0,0
0,0,0,0,0,0,0,0

1,3,3,7,7, 14,238,255

128,192,128,0,192,32,112,248

&AB7

6ABF

HACE

&AC7

&6ACF

6AD7

&AET

6AEF

6AF7

6AFF

6BO7

&6BOF

&B17

&6B1F

&B27

6B2D

6B33

&B43

&B4RB

&B5S3E

&B5SE

&BLZ

Co

00
Q7

07

00

o0

07
FF
80
FF
Fo
FE
00
00

o0
00

00
(10]
(a4}

00
00

o0

00
06
00
Q0

80

o7

o7

00

3
g

g
g

g
8

00

00

00

Qo

FF

bE

FF

Q0

o0

Q0

00

00

07

9F

FF

9F

00

F2

FF

F9

Co 20
00530
00 00
00540
00550
005460

00570

00580
00590
00&00
00 00
00A10
OF 02
004620
&F F7
00630
FE FE
00640
&F F&
004650
00 00
00660
00 GO
Q0470
00 00
00480
Q0 QO
00&90
00 3F
00700
00 00
00710
00 00
00720
007320
06 00
00740
06 00
00750
00760
00770
00 00
00780
F& 6F
00790
FF 7F
00800
Fé& EF
00810
FO 40
00820
00 00
00830
00 OO0

70

T e can

[~ae o

F8

BATT

00

60

oo

&0

00

00

00

0o

Ci1

co

00

CATT

L]
RCAR

00

OF

o

06

04

o0

00

DE

DE

DB

DE
DE
DE
DB
DE
DB
DB
DB
DB
DE
DB

DB

DE

DB

DE
DE
DE
DR
DB
DB

DB

0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0

0. 0,37, 15%5,2,0,0
7,255.255,159,111, 247, 240,94
128, 255, 255, 255, 255, 254,0,0
240,254,255,159, 111, 246,240,964
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0.0,0
0,0,0,0,0,63,97,193
0,0,0,0,0,0,128,192

0,0,0,0,0,0,0,0

0, &, by byby, 0

0.0,0,6,6,0

0,0,0,0,0,0,0,0
15,127, 255, 249,246,111,15,6
1, 255, 255, 255, 255, 127,0,0
224, 255, 255, 249, 246, 239,15, 4
0,0,192,224,240,64,0,0
0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0

&B7E

LBET

4&BER

6BF3

6899

&B9F

6BAT7

&BAF

&BR7

&BEBF

&BC7

&BCF

&BD7

&BDF

&BE7

&BEF

&BF7

&BFF

&CO7

&COF

&C17

&C1F

&C27

6C2F

&CE7

i OO0

Qo
Q0
o0
(818]
00
[ale
Leln
00

00

-

o0
02

00

(el

00

00

02

00

1F 2

FE

FF

FF

FF

FF

FE

00

00

07

FA

FF

FF

FF

FF

FE

Qo

00

00

06

00

00

02

00

oo

7F

FF

0o

00

00

04

09

Fa

FF

FF

FF

FF

FE

00

QUB40
00 00
Qu8sS0
00 FC
QOBA0
00 OO0
Q0870
00 00
00830
00 00
008390
00900
02 00
00910
a0 00
00920
00930
0040
00 00
00950
3D ZB
009460
ES D8
00970
046 OF
00980
00 00
00990
00 00
010060
04 OF
01010
32 7A
01020
00 00
01030
00 Q0
01040
11 131
01050
FE FC
010460
FF FF
01070
FF FF
01080
FF FF
01090
FF FF
01100
FE FE
01110
00 00
01120
aG 00
011320

o1

86

]
LTRUCK

00

OF

7A

00

1F

FC

FF

FF

FF

FF

FE

00

3 0

a0

06

00

Qo

LF

F8

FF

FF

FF

DE

DB

DE

DE

DE

DE

DB

DB

DE

DE

DE

DE

DB

DB

DE

DE

DB

DE

DE

DR

DE

DB

DB

De

DB

DB

0,0,0,0,0,0.1,3
0,0.0,0,0,252,134, 131
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0

0.,0,0,0,0,0,0,0

052. 2,252, 0

0,2,2,0,0,0

0,0,0,0,0,0,0,0
31, 31:31:62,61,07, 5,1
248,252,254,127, 184,216,192, 128
255, 255, 255, 255, 6, 15, 15,4

255, 255, 255,0,0,0,0,0

255, 255, 255,0,0,0,0,0

255, 255, 255,0,6,15,15,6
254,254,254, 4,50, 122, 122,48
0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0
0,0,7,9,17,17,31,31

2, 2,250,250, 254, 252, 252, 248
255, 255, 255, 255, 255, 255, 255, 255
2ss, 255, 255, 255, 255, 255, 255, 255
255, 255, 255, 255, 255, 255, 255, 255
255, 255, 255, 255. 255, 255, 253, 255
254,254,254, 254, 254, 254, 254, 254
0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0

&CEF

&C47

&C4F

6C57

&CSF

6Ca7

6C6F

&C77

&C80

&C89

&cez2

&HC9A

&CA2

&CAA

&CB2

6CBA

6CC2

&6CCA

&CD2

&6CDA

&CE2

6CEA

&CF2

6CFA

&£DO2

&DOA

OO0

00

03

03

7F

FF

FF

FF

FF

TE

F8

Qo0

7F

FF

FF

FF

FF

QO

00

00

00

00

(ale}

00

05

o5

05

00

20

00

00

FE

EE

7C

8

FF

FF

FF

FF

o0 00
01140
Q0 00
01150
00 FF
011460
00 FF
01170
00 FF
01180
o0 FF
01190
o0 FE
01200
00 00
01210
01220
01230
05 05
01240
05 05
01250
05 05
01260
01270
01280
00 00
01290
4C SE
01300
a0 FO
01310
00 00
01320
00 00
01330
&0 FO
01340
iD 1B
01350
BC DC
013460
00 00
01370
00 00
01380
7F 7F
01390
FF FF
01400
FF FF
01410
FF FF
01420
FF FF
01430

Q0

FF

FF

FF

oS

i
RTRUCK

Lele)

SE

FO

00

00

FO

00

7F

FF

FF

FF

FE

00

00

FF

FF

FF

FF

FE

Lol

oC

00

0o

[-14]

80

00

00

7F

FF

FF

r

FF

DB

DE

DB

DE

DB

DB

DB

DE

DB

DB

DR

DR

DB

DR

DR

DB

DE

DB

DE

DB

DB

DB

0,0,0,0,0,0,0,0

0,0,0,0,0,255,255, 255
0,0,0,0,0,255, 255, 255
0,0,0,0,0,255,255, 255
0,0,0,0,0,255, 255,255
0,0,0,0,0,254,254,254

0,0,0,0,0,0,0,0

0, R B T Dy Dy T 5, O
043:3:5,545:5,5.,0

0,0,0,5,5,5,5,5.0

0,0,0,0,0,0,0,0
127,127,127,32,76,94,94,12

255, 255, 255, 0, 96, 240, 240, 96
25T, 200, 29050, 0;0,0,0

2355, 255, 255,0,0,0,0,0

255, 255,255, 255, 96, 240, 240, 96
31,63, 127, 254,29,27,5, 1
248,248,248, 124,188, 220,192, 128
0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0

1275127, 127, 1 27, 127 127,127, 127
255, 255, 255, 253, 255, 255, 255, 255
255, 255, 255, 255, 255, 255, 255, 255
255, 255, 255, 255, 255, 255, 255, 255
255, 255, 255, 255, 255, 255, 255, 255

648,648,95,95, 127,63, 63, 31

&D12
&D1A
&6D22
&D2A
&aD32
&D3IA
&D4z2
6&D4A
&D52
&D5A

&D62

aD6&A
&D7E

6D7C

&D85

0024
0078

6E2S
6E26
&E27
6EZ8

&EZR
&E2D
&LE2F
&EZ0
&EZ1

&E3S
&E3ZT

00 EO

Q0 00

00 00

00 00

00 00

00
05 05
00
05 05

838
g

00

00
o0
0000
0000
0000
00
00
00
00 00
0000
Q000

00

00

00

00

05

05

05

00

7F 3F
01440
88 88
01450
Q0 00
014460
00 00
01470
00 7F
01480
00 FF
01490
00 FF
01500
o0 FF
01510
00 FF
01520
00 00
01530
00 00
01540
00 00
01550
01560
01570
05 05
01580
05 05
01590
0S5 05
01600
01610
014620

014630
01640
01650
014660
014670
01680
01690
01700
01710
01720
01730
01740
01750
01760
01770
01780
01790
01800

01810
01820

3F 1F

DE
F8 F8

DE
00 00

DB
00 00

DB
7F 7F

DE
FF FF

DE
FF FF

DE
FF FF

DE
FF FF

DE
00 00

DE
00 00

DE
00 00

E

RTATT DB

03 0Z 00
DE

03 03 00
DE

00 00 00

:
BLANK DE

an an

FRGSTR DS
PCSTR DS

H

5

sXEXXRXXE DATA

]

OBIEXT DEFE
DEFE
DEFB
DEFB
DEFW
DEFW
DEFW
DEFE
DEFB

OBZ2EXT DE

DEFM
DEFW

0,0,274,144,136.136,248,248

0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,127,127,127
0,0,0,0,0,255, 255, 255
0,0,0,0,0,255, 255, 255
0,0,0,0,0,255,255,255
0,0,0,0,0,235, 255, 255
0,0,0,0,0,0,0,0
0, 00,0, 0,0,0,0

0,0,0,0,0,0,0,0

035,5:5,5: 5. 3,3, 0
0,5:5,5:5,523,3,0

0,5:5:45:5,5,0,0,0

=

!0!0!

o

36 s 4x8+4

120 3 12x8+12+7

BASE XXXEXEXX

COo0OOO0

Q ;0B2 FPOS REAL/ARBRS FLAG

:OBJECT 1 EXISTENCE
:CYCLE COUNT
s DIRECTION,
sOBJECT 1 FOS REAL/ARS
sPOSITION COUNTER

; SHAPE FOINTER
;ATTRIBUTE POINTER

o ;ROW COUNTER

0 :COLUMN POINTER
o

6EZ9
&E3R

6E41
6EA4T
6E45
&E47

6EA9

&E4D
&E4F
6ES1
6ES3

6ESS

&EST
6ESE
&ESD
6ESF

6E41

6ELS
bELT
6ELT
bE&LE

&6E6D
6ELE
bE6F
&E70
6E71
6E7Z
6E7S
&E77
&E78

&ETQ
&ETA
&6E7B
&E7C
6E7E
6E80

6EB1

6EB4
6EBS

Q000

Q0

00

Q0

00 00 00
Q000
Lalslaly
[elelals

a0

00

00

00 00 00
Q000
Q000
Q000

o0

00

00

00 00 00
0000
0000
Q000

00

00

OO

00 00 00
0000
0000
0000

00

00

00
00
00
00
0000
0000
0000
02
06

00
00
00
0000
0000
Q0

o8

08 01
ACS0
B7469

01830
01840

01850

01860
01870
01880
01890

01900

01910
01920
019320
01940

01950

01960
01970
01980
01990

02000

02010
02020
02030
02040

02050
02060
02070
02080
02090
02100
02110
02120
02130
02140
02150
02160

02170 3

02180
02190
Q2200
02210
02220
02230
02240
02250
02260

02270
02280

OB3EXT

OBAEXT

OBRSEXT

OB&EXT

i
PCAREXT

PCARCYC
PCARDIR
FCARRAFP
PCARFOS
PCARSHF
PCARATT
PCARROW
PCARCOL

’

FRGEXT
FRGCYC
FRGDIR
FRGFOS
FROGSH
FRGATR

:
H
FRGDB

FRGS5TN

DEFW
DE

DE

DEFW
DEFW
DEFW
DE

DE

DEFW
DEFW
DEFW
DE

DE

DEFW
DEFW
DEFMW
DE

DE

DEFW
DEFW
DEFW

DEFE
DEFE
DEFE
DEFE
DEFW
DEFW
DEFW
DETR
DEFE

DEFB
DEFE
DEFEB
DEFW
DEFW
DEFB

DE

DEFW
DEFW

,0,0,0

, 0

0
0
0
0
0
0,0,0,0
0
0
0
0

y O

0 sPOLICE CAR DATARASE

0

0

Q

0

O

o

2

()

Q ;s FROG DATABASE

0

0 50:UP 1:RHT 2:DWN 3:LFT
0

)

0

8,8,1

SOACH s INITIAL POSITION OF FRODG
FROG1

6EB8

6HEBT
LEBE
&E8D
&EBF
6EF1

6EFE

&6EFS

&LER9
&E9R
&EFD
&EFF

&EAL

&EAS
6EAT7
&EAT
&4EAR

&EAD

&EEB1
&LEBZ
&EBS
&EB7

&EB?

&EED
&EBF
&EC1
6EC3

&ECS

&ECY
&ECE
&ECD
&ECF

FOEE
Al&LE
ADSE
BR&E
CS6E
D1&E

o2
01 00
iD48
7F&6A
BF &4A
0z
04

02
01 Q1
DF 48
I76A
776A
02
04

03

01 Q0
1E48

I34R

FZ6B

02

06

03
01 O1
DFag
C7&A
27468
02
06

0&
01 00
ig48
F26C
&A&D
0=
09

00

01

00

o1

D0

02290
O2F00
02310
02320
02330
02340
02350
02360
02370
02380
02390
02400

02410
02420
0Z243F0
02440

02450
02460
02470

02480
02490
02500
02510

02520
025ZF0
02540

02550
02560
02570
02580

02590
02600
02610

02620
02630
02640
Q2650

02660
Q2670
02680

02690
Q2700
02710
Q2720

02730
02740

5
i
DEBINDEX

DE

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

DB

DEFW
DEFW
DEFW
DB

DB

DEFW
DEFW
DEFW
DB

DE

DEFW
DEFW
DEFW
DE

DE

DEFW
DEFW
DEFW

DE

DEFW
DEFW
DEFW
DE

REDE
LEDB
RCDE
LCDE
RTDB
LTDE

2,1,0,0

481DH
REIKE
RBATT

2,1,1,1

48DFH
LEBIKE
LBATT
2,4

X 1.0.0

4818BH
RCAR
RCATT
oL

T Autad

48DFH
LCAR
LCATT
2,6

&6,1,0,0

4818H
RTRUCK
RTATT
3,9

sATTR. TOTAL B8 CHARS

sRIGHT BYTE DE
;LEFT BIKE DB
sRIGHT CAR DB
sLEFT CAR DB
sRIGHT TRUCK DB
sLEFT TRUCK DB

sEXT CNT DIR RAF

; POS
sRIGHT BIKE
sATTRIBUTE
;ROW COL

&ED1
&EDS
&ED7

&EDY
&EDEB

&EDD
&EE1
&EE3

&EES
&EE7

6EEY?

6EEF

6EFS
LEF9
6EFB

&EFD
6EFF

&FO01

&F 07

&FOD

&F11

&F15
&6F19
&F1D
6F21

6F 25

06
01

01

DF4gB
FF&B
776C

03

01
01

01

DFa8
C76A
E?&6E

02
06

00

05

00

01
o1

05

00

00

1B48B
336B
016F

0z

00

5885

29

17
00

46
00
5D
00
7C
00
AR
00
DE

05

0S5

FO

8c

cC7

Al

Fi1

01

01

05

05

00

o5

00

01

03

0a

02

01

02750

02760
02770
02780
02790

02800
02810
02820

02830
02840
02850
028460

02870
02880
02890
05 00
02900
a5 00
02910
02920
02930

02940
02950
029460
02970

02980
02990
03000
05 00
Q03010
00 00
03020
030320
00480
00490
00500

00510
00520
00530
00540
00550
00560
00570

00580

LTDE

[~ e s

FCDE

-

H
LPCATT

X me cam

FCDB

) e e

PCATT

H
5
H
j
PCTON1

PCTONZ

HOMTON

DB
DEFW

DEFW
DEFW

DB
DEFW
DEFW

DEFW
DB

DE

DB

DEFW
DEFW
DEFW
DB

DB

DB

DE

DE

DE
DE
DB
DE

DB

ai11,1
48DFH
LTRUCK

LTATT
I.?

;00
48DFH
LCAR

LPCATT
2,6

0,5,5,5,5,0

0,0,0,5,5,0

1,1,0,0
481BH
RCAR

RPCATT
2,6

0,5,5,5.5,0

0,5,5,0,0,0

41,0,0F0H, 1 tFIRST FOLICE CAR TONE
23,0,8CH,3 :SECOND POLICE CAR TONE
46H, 0, 0C7H, 4 sFROG REACH HOME TONE
SDH, O, 8CH, 3

7CH. 0, 0A1H, 2

OAAH. 0, OF 1H, 1

ODEH, O, 6DH,4 1

&F 3D

&FA4ZE

£F 49

6F54 =

0005
bHFSE

&FSF
&F 60
HF61
&F &2
SFAS
LF &S
bF A
AF&B

&F6A
&F&C
&F&E
&F 70

6F71

LF72
aF73
&F74
&F TS

&F77
&F78
LF74

a0 AD

Q1 BF
02 88

02 SE

49 a7
45 20

30 EO

o0

o0
(e}
00
GO
0000
00
0000
Q000

GO00
0000
2000
00

00

00
Q0
QoGO0

01
0000
[8151419]

01

00

06

00

GOS530

Q0LQO0

00A10

Q020

QO<0

004640
DOLS0
Q0L40
&5 20
00470
30 30
004680
20 53

00&0
30

0OTO0
00710
DO720
Q0730
Q0740
00750
QOTEH0
00770
00780
Q0790
Q0800
00810
Q0820
Q0830
DO240
Q0850
00860
Q0870
00880
00890
00900
00910
00920
00930
00940
00950
00940
Q0970
00980
Q0990
Q1000
Q1010
01020
01020

DIETON DR

H
H
SCRMS1 DM

SCORE DE
SCRMSZ DM
43 4F 52

HISCR DE

H

IMAGE DS
UFDWN DEFB
]

COLuUMN DB

ROW DB
SKIP DEFE
FILL DEFEB
ATTFOS DEFW
ATTR DB

DRWFPOS DEFW
STRPOS DEFW

H

ATTFPTR DEFW
NEWFOS DEFW
FOSPTR DEFW
GENFLG DEFBR

H
JAMFLG DEFR

H

5

CHASE DEFE
SOUNDF DEFB
TONFLG DEFR
RND DEFUW
i

GAMFLG DEFR
OLDFRG DEFW
NEWFRG DEFW

28H.1,9,1

8BH. 1,0BFH, O

OFH, 2,88H,0

OCOM, 2, SEH. O

84H.35,43H,0

‘Score

sFROG DYING TONE, REVERSE

Z0M. 30H, I0H, Z0H, SOH, TOH

*HIGH SCORE *

JOH, 20H, 30H, 30H, 30H

2000 OQO0O0O000QOD L=l

o

000

DD e

sFRINTING IMAGE OF SCORE
sSET WHEN FROG MOVES UP OR DOWN

sVARIABLE STORING SHAPE COLUMN
sVARIABLE STORING SHAPE ROW
;CHAR SKIFPFPING DURING DRAW

; CHAR DRAWN

:HOLDING THE ATTRIBUTE FILE PTR
sATTR OF CHARACTER BLOCK DRAWN
:DRAW POSITION

;STORE POSITION

sNEW TRAFFIC OBJJECT POSITION
sTRAFFIC FOSITION DATABASE FTR
; TRAFFIC REGENERATION FLAG

:SET TO 1 AS TRAFFIC MOVE JAM

:SET WHEN POLICE CAR APPEARS

s SET WHEN USER WANT SIREN SOUND
sDETERMINE WHICH SIREN TONE
sFOINTER TO ROM FOR RANDOM NO

:END IF ZERO
;O0LD FROG POS
;NEW FROG POS

&F7C 00 01040 CRHFLG DEFB (o] sSET 7O 1 WHEN FROG WAS CRASH
&F7D 00 01050 TEMDIR DEFB 4] :FROG TEMFORARY NEW DIRECTION
&F7E 0000 01060 TEMPOS DEFW 4] sFROG TEMFPORARY NEW POSITION
AFB0O 0000 01070 TEMSHP DEFW O sFROG TEMPORARY NEW SHAPE
01080 3
01090 3
9020 01100 BOTHY1 EGU S020H $0,38. 0,39
5120 01110 BOTHYZ EGU 2120H
4680 01120 TOPHY1 EOQOU 46A0H 350,128, 0,129
4740 01130 TOPHYZ EGU 47A0H
4840 01140 MIDHY1 EOQU 4B&OH $x,B3. x,84
4Cs0 01150 MIDHYZ ERU 4C60H
01160 3
01170 3
2CO00 01180 CHRSET EGU JCO0OH sFIRST 254 BYTES NOTHING
01190 3
01200 :
&F82 05 01210 NUMFRG DEFB S sNUMBER OF FROG
01220 3
01230 3
&FRI AF 01240 INIT XOR a ;000 FOR D2 D1 DO
&F24 D3IFE 01250 ouT (OFEH) ,A sSET BDRDER COLDUR
&FB& T2485C 012560 LD (23624),A 3 TO BLACK
&FB9 E27C6F Q1270 LD (CRHFLG) ,A
AHFBC 3I279&E 01280 LD {(FRGEXT) . A sSET FROG NON EXIST
&F8F 3EC 01290 INC o]
&F0 Z2T7T76F 01300 LD (GAMFLG) . A s SET GAME FLAG
LHF9F ZEOS 01310 LD A.S : INITIALISE FRODG NO
&FFS 32B26F 01320 LD (NLIMFRG) , A
&FF82 EDSF 01330 LD AR : GENERATE RANDOM PTR
LF9A ELSF 01340 AND 3FH sFOR THIS CYCLE
&F9C &7 01350 LD H; A sPTR POINTS TO ROM
&FID EDSF 01360 LD AR
LF9F AF 01370 LD L.A
LFAD 22754F 01380 LD (RND) , HL
6HFAT 21AC50 01390 LD HL , SOACH sINIT FROG STATION
LFAL 22844E 01400 LD (FRGSTN) . HL
AFAS CDD772 01410 CALL CLRSCR sCLEAR SCREEN ROUTINE
&FAC CDORT7Q 01420 caLL DRWHWY ; DRAW HIGHWAY
AFAF CDSS70 01430 CALL LINEUP sLINE UP ALL EXIST FRDGS
6FBZ 210040 01440 LD HL . 4000H s MESSAGE LOCATION
AFRS 113D&AF 01450 LD DE . SCRMS 1 ;:L0OAD SCORE MESSAGE
HFBB 0604 01440 LD B. &
AFBA CD2873= 01470 CalLL DISASC sDISPLAY ASCII CHARACTER
AFBD 21444F 01480 LD HL . SCORE+1 sFRINT SCORE
&FCO CD&F77 01490 caLlL SCRIMG sCONVERT TO FPRINTABLE
M
HFCE 210640 01500 LD HL . 4006H
AFCS 11594F D1510 LD DE . IMAGE
AFCT 0405 01520 LD B, S
AFCEB CD2B873X 01530 CALL DISASC
AFCE 210E40 01540 LD HL . 400EH :HIGH SCORE MESSAGE
&FD1 114946F 01550 LD DE, SCRMS2
LFD4 O4LOR 015460 LD B, 11
&FD& CD2B73 01570 CALL DISASC
SFDS 21546F 01580 LD HL . HISCR
AFDC CD&F77 1590 CALL SCRIMG

&FDF
&FE2
&FES
6FE7
AFEA
&AFED
AFFO
LFF2
HFFZ
&FF4
&FFS
&FF7
LFFA
&FFE
&FFE
7001
7004
7004
7008
7004/

700B
700E
7011
7014
7017
701A
701D
7020
7022
7024
7027
702A
702D
7030
7033
7036
7038
703A
703B
703C
703D
7O3E
7040

7041
7043
7044
7046
7047
7048
704A
7048
704C

2119430
11596F
0505
CDZB73
2125s8E
110C00
Qa07
AF

77

ig
10FC
32726F
i
I2734F
21436F
11444F
OEOS
ILI0
EDBO
cCe

21A040
CD4170
216048
CD4170
212050
CD4170
21A0446
11A047
AF
CD3870
212050
112051
CD3B70
216048
11604C
3ECE
0620
Ll

12

23

13
10FA
ce

01600
01610
01620
01630
014640
014650
014660
01670
014680
014690
01700
01710
01720
Q1730
01740
01750
017460
Q1770
01780
01790
01800
01810
01820
01830
01840
01850
01860
01870
01880
01890
012006
01910
01920
01930
01940
01950
019460
01970
01980
01990
02000
02010
02020
02030
02040
02050
Q2060
Q2070
02080
02090
02100
02110
02120
02130
02140
02150

INTLP1

L R

RWHWY

HIGHWY
HWYLOFP

FILHWY

FILHYL

FILCHR

CALL

EXX
PUSH
LD
LD

DJINZ

HL, 4019H
DE. IMAGE
B.S
DISASC

HL, OB1EXT
DE, 12

B,7

A

(HL) . A
HL . DE
INTLP1
(CHASE) , A
A
(SOUNDF) . A
HL , SCORE
DE, SCORE+1
c,S
(HL) , 30H

HL , 40A0H
FILHWY

HL , 4840H
FILHWY

HL , SOZ0H
FILHWY
HL, TOPHY1
DE, TOPHY?2
A

HIGHWY

HL , BOTHY1
DE, BOTHY2
HIGHWY

HL , MIDHY1
DE,MIDHYZ2
A, 195
B,32

(HL) ,A
(DE) , A

HL

DE

HWYLOF

A, OFFH
B,32

HL
B,.8
(HL) , A
H
FILCHR

:SET ALL OBJ NONEXIST

sSET NO FOLICE CAR CHASE
;SET SIREN ON

s INITIALISE SCORE TO
tASCITI ZERO ie 3I0H

:INIT SCORE TO 30H

sFILL TOP HWY
sFILL MIDDLE HWY
sFILL BOTTOM HWY

s REVERSE BUILT HIGHWAY

3BIN 11000011
;3228 BITS

704E
T04F
7030
7051
7053
7054

70355
7057
705A
705D
7060
7062
7045
7068
7069
706A
706R
7060
706D
TOLE
7071
7072
7073
7074
7075
7076
7077
7079

7078
707C
707D
7FO7E
TO7F
7081
7082
7084
TOBS
7084
7087
7088
7084
708R
708C

El
23
Do
10F3
D9
ce

3E01
I27BLE
11D769
2A844E
IE04
32656F
3AB26F
a7

cs

47

cs

DS

£s
CD7A70
El

021460
02170
02180
02190
02200
Q2210
02220
02230
02240
02250
02260
02270
02280
02290
02300
02310
02320
02330
02340
02350
Q2360
Q2370
02380
02390
02400
02410
02420
Q2470
02440
02450
024460
02470
02480
02490
Q02500
02510
02520
02530
02540
02550
02560
02570
02580
02590
02600
02610
02620
02630
028640
02450
02660
02670
a2680
02690
Q2700
02710

W AN me caE ad an

-

LINEUF

DRAWLN

[& an wn ss s as

RWFRG

FRGLFPO

FRGLP1

FRGLF2Z

KXXRXXXXE

FOFP HL
INC HL
EXX
DJINZ FILHYL
EXX
RET
KXXXXEXR LINEUF XXXRKXXEEKX

draw all frogs left on the screen

LD
LD
LD
LD
LD
LD
LD
AND
RET
LD
FUSH
PLSH
FPUSH
caLL
FOP
FOP
DEC
DEC
DEC
FOP
DJNZ
RET

similar to DRAW routine

A, 1
(FRGDIR) ,A
DE.FROG2
HL, (FRGSTN)
A.3
(ATTR) , A

A, (NUMFRG)
a

z

B,A

BC

DE
HL
HL
HL
BC
DRAWLN

DRWFRG SEXkRXXX

a,2
AF, AF’
HL

HL

s

HL

B.8

A. (DE)
(HL) . A
DE

H
FRGLP2
HL

HL

c

s RIGHT FROG

sRIGHT FROG SHAPE
sFROG STATION

: (PAPER 0) 28+ (INK 4)

;s NUMBER OF FROG
s TEST FOR ND FROG LEFT

sNUMBER OF FROG TIMES

;s DRAW FROG ROUTINE

3 TWO ROW FROG SHAFPE
:STORE FOS PTR
sCOLUMN COUNT

s DRAW CHARACTER

sNEXT BYTE OF THE CHAR

s CURRENT POINTER
sMOVE TO NEXT CHAR FPOS
sDECR COLUMN COUNT

708D
708F
7090
7091
7092
7094
70946
7097
7098
7094
709C
709
709F
70A1
70A2
70A4
70AS
70A6
70A8
70AA
70AC
70AE
70BO
70B1
70B4
70BS
70B6
70B7
70B9
70BA
7OBB
70BC

70BD
70C0
70C1
70C2
70C4
70CS
70Cé
70C%
70CC
70CE
70CF
70D1
70D4
70D5
70D&
70D8

21706F

02720
02730
02740
02750
Q2760
02770
02780
02790
02800
02810
02820
02830
02840
02850
02860
02870
02880
02890
02900
02910
02920
02930
02940
02950
02960
02970
02980
02990
03000
03010
03020
03030
03040
030350
03060
03070
03080
0090
03100
03110
0X120
03130
03140
0X150
03160
03170
03180
03190
03200
0X210
03220
03230
03240
03250
03260
03X270

JR NZ,FRGLF1
POF HL
EX AF , AF’
DEC A
LD C,32
JR Z,FRGATT
EX AF, AF’
AND ©
SBC HL, BC
BIT O,H
JR Z,FRGLPO
LD A,H
SURBR 7
LD H,A
JR FRGLPO
FRGATT FPOF HL
LD A,H
AND 18H
SRA A
SRA i~
SRA A
ADD A, 58H
LD H,A
LD A, (ATTR)
LD (HL) , A
INC HL
LD (HL) , A
SBC HL, BC
LD (HL) ,A
DEC HL
LD (HL) ,A
RET
i
s¥KERXXEREE TFCTRL $X3X%%8%
-
5 Traffic control routine
i
TFCTRL LD HL , GENFLG
XOR A
CpP (HL)
JR Z, GENER
DEC (HL?
RET
BGENER LD HL,ORIEXT
LD DE, 12
LD B, &6
TCTRLP CF (HL)
JR NZ ,NSFACE
CALL REGEN
RET
NSPACE ADD HL , DE
DJINZ TCTRLP
RET
]
H
;EREEXXRRE REGEN fXXkxxix

sROW PTR
sDEC LINES OF CHAR
;LOAD FROG ATTRIBUTE

sMOVE 32 CHAR/1 LINE UF
: TEST CROSS SCR SECTION

sUF ONE SCREEN SECTION

;POS PTR
sCONVERT TO ATTRIBUTE PTR

;FILL FROG SHAPE ATTR
sNEXT CHARACTER
;ONE LINE UP

sNEXT CHAR LEFT

s CHECK REGENERATION FLAG

s IF ZERO, TEST GENERATE
s DECR GENERATION FLAG

;START OF TRAFFIC DB
512 BYTE DATABASE

:6 DB PAIRS

3 TEST EXISTENCE

1 REGENERATION ROUTINE

Q3280

03290 3 regeneration of TRAFFIC

OZITO0 g INFLIT: HL=>DE FAIRS

03310 3
7009 ES 0EZ20 REGEN PUSH HL
7uDs CDCC77 OZEI0 RANDI CALL RANDNO ; RANDOM NUMBER ROUTINE
70DD E&LOT 03340 AND 7 ;s GENERATE RANDOM NUMBER
7ODF FEDS 03350 CFr & sFROM O TO S5
70E1 IOF7 3360 JR NC,; RAND 1
JOEZ 012159 03370 LD BC,5921H ; TWO CHAR TEST
JOES 212059 OZZB0 LD HL , 5920H ;s TEST JAM
70E? CB47 03390 BIT O, A ;0DD NUMBER IS LEFT
7OEE 2804 0Z40G JR Z,RTRAF sRIGHT TRAFFIC
70ED 2EDF 03410 LD L, ODFH
7JOEF OEDE 0Z420 LD C,ODEH
70F1 87 03470 RTRAF ADD A, A ;6GET DBINDEX FTR IN DE
TOFZ SF 0OZ440 LD E: A
7O0F: OA 0Z450 LD A, (BC) :TEST 2 CHAR AHEAD
7OF4 84 0Z460 ADD A, (HL)
TOFS A7 03470 AND A s ZERO PAPER, ZERO INK
70F& 2802 Q3480 JR Z,L0DADDE s IF 0, INITIALISE NEW OBJ
70F8 E1 03430 FOFP HL ;1 IF JAM, RETURN
70F9 C9 03500 RET
70FA 57 03510 LOADDB LD D,A ;s A=0
FOFB 21896E 03520 LD HL , DEINDEX sGET DB
vOFE 1% 03530 ADD HL,DE
70FF SE 03540 LD E, (HL) s GET CORR DATABASE
7100 23 03550 INC HL
7101 S4 Q3560 LD D, (HL}
7102 EB 03570 EX DE, HL : SOURCE
7103 D1 03580 FaF DE sDESTINATION
7104 010C00 03520 LD BC,12
7107 EDBO 03600 LDIR
7109 IEO2 03610 LD A2 :SET REGENRATION FLAG
710B I2706F 03620 LD (GENFLG) ; A iSKIF FOR 2 CYCLES
710E C9 03630 RET

03640 3

02650 ;

03660 E¥EXxxsx MOVTRF REXXKNLX

03670 ;

03680 ; MOVE TRAFFIC ROUTINE

03690 :
710F D9 02700 MOVTRF EXX
7110 21256E 03710 LD HL,DB1EXT
7113 110C0O0 03720 LD DE,12
7116 0AO& 03730 LD B, &6
7118 ES 0X740 MTRFLF PUSH HL
7119.D9 a3750 EXX
7i1A E1 03760 FOF HL s EXISTENCE
711B 7E 03770 LD Ay (HL) s SKIF WHEN NO EXIST
711C A7 03780 AND A
711D CAA771 Q3790 JP Z,NXTHMOV
7120 23 03800 INC HL sCYCLE COUNT
7121 35 03810 DEC (HL) ;:DECR CYCLE COUNT
7122 C2A771 03820 JF NZ,NXTMOV

7120 23 038320 INC HL s DIRECTION

7126
2127
7128
7129
712C
712D
712E
712F
7130
7131
7133
7134
7135
7139
713A
713D
713E
713F
7142
7143
7144
7147
7148
7149
7144
714B
714C
714E
714F
7150
7152
7154
7156
7157
7159
715B
715C
715E
7160
7162
7164
7166
7167
716A
716B
7T16E
7171
7172
7173
7175
77
7179
7178
717D
7180
7182

7E

23

23
226E6F
SE

23

56

iC

A7
2802
1D

1D
EDS3&CEF
08
010500
09

1803
22716F

03840
03850
03840
03870
03880
03890
03900
03910
03920
03930
03240
03950
039460 LDPOS
03970
03980
0Z990
04000
04010
04020
04030
04040
04050
04060
04070
04080
04090
04100
04110
04120
04130
04140
04150
04160 RTOL
04170
04180
04190 TESTAH
04200
04210
04220
04230
04240
04250
04260
04270
04280
04290
04300 TAHLOFP
Q4310
04320
04330
04340
04350
04360
04370
04380
04390 JAM1

A, (HL)
HL

HL
(POSPTR) , HL
£, (HL)

HL

D, (HL)

.LDPOS

mmMNDM

(NEWPOS) , DE
AF, AF’
BC,S

HL, BC

A, (HL)
(ROW) , A
HL

A, (HL)
(COLUMN) , A
&

c,A

AF, AF®

a

DE, HL
NZ . RTOL
HL, BC
a.L

40H

NC . MOVEOK
TESTAH
A.L

OCOH

C. MOVEDK
a,H

18H

a

a
a
A, S8H
H,A

BC, 32

a
(JAMFLG) , A
A, (ROW)
aF,aF”

AL (HL)

7

7, TFROG1

4

NZ, JAM1
a; 1
(CRHFLB) , A
TFROG1
(JAMFLG) , A

sOLTOR, 1 RTO L

;POS PTR
:RESTORE FOS

;MOVE RIGHT

iMOVE LEFT
:MOVE LEFT

;sRESTORE OBJ LENGHT

s ROW

: COLUMN

i TEST DIRECTION

sRIGHT TO LEFT

s FIND HEAD OF TRUCK
:LOB

;s TEST RIGHT EDGE

:SKIP TEST AHEAD IF OFF
: TEST AHEAD

sNEW POS, AHEAD AS WELL
s TEST LEFT EDGE

:SKIP TEST AHEAD
sCOVERT TD ATTR

:INITIALISE JAM FLAG

sRETRIEVE ATTR

1 JUMP IF BLACK INK

: TEST FOR GREEN, FROG
:JAM IF NOT A FROG
sMOVE IF IT IS FROG
:SET FROG CRASH

:SET JAMFLG NON ZERO

7185
7186
7188
7189
718A
718C
718F
7190
7192
7193

7194 -

7195
71946
7197
71798
7194
719D
7iAa1l
71A2
71AZ
71A4
71A7
71A8
7149
71AA
71AD
71AE

T1AF
71BO
71B1
71B2
71B4
71B&
71B7
71B8
71BA
71BB
71BC
71BD
71BE
71iCo
71C1
71C3
71C5
71Cé
71C7
71C8
71C9
71CB
71CC
71CD

D9

180D
2ALELF
EDSB&CEF
73

23

72
CDAF71

;UPDATE ROW
3 TEST TRAFFIC JAM

1MOVE IF NO JAM
;ELSE STOFP MOVE ONE CYCLE

;LOAD 2 TO CYCLE COUNT

sRETRIEVE PTR TO POS

s STORE NEWFOS IN DB

s MOVEMENT CONTROL

Tratfic movement control routine

04400 TFROG1 AND a

04410 SEC HL, BC
04420 EX AF , AF’
04430 DEC A

04440 IR NZ, TAHLOP
04450 LD A, (JAMFLG)
04460 AND A

04470 JR 7 , MOVEOK
04480 EXX

04490 INC HL

04500 INC CHL)
04510 INC (HL)
04520 DEC HL

04530 EXX

04540 IR NXTMOV
04550 MOVEOK LD HL, (POSPTR)
04560 LD DE, (NEWPOS)
04570 LD (HL) ,E
04580 INC HL

04590 LD (HL) , D
04600 CALL MVCTRL
04610 NXTMOV EXX

04620 ADD HL, DE
04630 DEC B

04640 ap NZ,MTRFLP
04650 EXX

04660 RET

044670 ;

04680 ;EERREEEE MVCTRL AXKKEXKK
084690 ;

04700 3

04710 ;

04720 MVCTRL DEC HL

04730 DEC HL

04740 LD AE

04750 AND 1FH
04750 IR NZ , CHGRAF
04770 LD A, (HL)
04780 INC A

04790 AND 1

04800 LD (HL) ,A
04810 CHGRAF DEC HL

04820 LD A, (HL)
04830 AND A

04840 JR NZ, TOLEFT
04850 LD AE

04860 AND 1FH
04870 JR NZ , DRWOBJ
04880 INC HL

04890 LD A, (HL)
04900 DEC HL

04910 AND A

04920 JR NZ , DRWOBJ
04930 EXX

04940 LD (HL) ,A
04950 EXX

: DE= >NEWFOS,
:LOB POS

; TEST EDGE

; CHANGE REAL ABS FLAG

HL=>DR PTK

sPT DIR

sRIGHT TO LEFT
s IF TO RIGHT AND ABS
;s GET RAF

;PT TO DIR

s IF ABSTRACT, DIES

sSET NON EXISTENCE

71CE
TiCF
71D2
71D3
71D4
71D5
71D&
71D8
7109
71DB
71iDcC
71DE
71DF
T1EOQ
71E1
71E2
71E3
71E4
71ES
71EA
71E7
71ER
71E9
71EA
71ER
71EC
71ED
Z1EE
71EF
71FQ
71F1
71F2
71F 6
71F7
71F8
71FB
71FC
71FD
7200
7201
7202
7205
7208

co
ZASF&F
aF

ER

09

7D
FECO
ER
2005
D2
3600
Do

c9

D9

7E

23

T

2R

D?

2

ES

23

23

23

SE

23

56

23

4E

23

46
EDA4Z46ALF
23

7E
3I2606F
23

7E
I2SF&F
E1

7E
2ALCLF
CDO972
cCe

A5
04970
04920
249390
Q5000
a5010
05020
05030
05040
05050
05060
05070
05080
05090
035100
05110
05120
05130
05140
05150
05160
05170
05180
05190
05200
05210
05220
05230
05240
05250
05260
Q5270
05280
05290
05300
05310
05320
05330
05340
05350
053460
as5370
05380
05390
05400
05410
05420
05430
05440
05450
05460
05470
05480
05490
05500
05510

TOLEFT

DRWOBJ

I I T I T TR T)

EXXAXEXXX

RET
LD

ADD

INPUT

VAR

DRAW

AL (COLUMN)
C,A
DE, HL s TEST END OF OBJECT
HL,BC ;s TOUCHES LEFT EDGE
AL
QCOH
DE, HL
NZ . DRWOBJ

sOBJECT NONEXIST AS
(HL) , 0 11T MOVES OFF SCREEN

{HL)Y . A sREFILL CYCLE COUNT

HL iFT TO RAF

E, (HL) sRETRIEVE SHAPE FTR

C, (HL) sRETRIEVE ATTR PTR

B, (HL)
(ATTPTR) , BC

HL

A, (HL)

(ROW) , A

HL

A, (HL)

(COLUMN) , A

HL

A, (HL) s RAFLAG
HL, (NEWPDS)

DRAW

EEXEEREX

HL=>START OF DISPLAY POS
DE=>PTR TO SHAPE DB

A =>POSITION REAL/ABSTRACT FLAG
C =>NO. OF COL TD BE DISPLAY
COL FASS AS VAR

COLUMN, ROW, ATTR, DRWPOS
SKIFP, FILL

7209
720C

7210
7211
7212
7215
7216
7218
7219
7214
721B
721C
721D
721E
T21F
7220
7222
7224
7226
7227
7228
722B
722C
722E
T722F
7230
7232
7233
7234
7235
7236
7238
7239
T23A
723C
723D
T23F
7240
7241
7242
7243
7245
72446
7247
7249
724B
724D
724F
7250
7232

7253

CD9672
IAL0LF
08

DS

ES
3AL16F
aF
0600
09

87

87

87

aF

EB

09

EB
CBA44
2804
3E07
as

67
3A626F
A7

05520
05530
05540
05550
05560
05570
05580
05590 LPO
05600

05610

05620

05630

05640

05650

05660

05670

05680

05690

05700

05710

05720

05730

05740

05750

05760

05770 NOSKIP
05780

05790

05800

05810 LP1
05820

05830 LP2
05840

05850

058460

05870

03880

05890

05200

05210

05920

03930 NXT
05240

05950

05260

05970

05980

05920

Q6000

06010

06020

08030

06040

06050

06060

06070 MODDE

) e an an as

A,BC,DE,HL, A"

RSHAPE
A, (ROW)
AF , AF”
DE

HL

A, (SKIP)

~DITN

Z,NXT
HL

LP1

AF, AF’

HL

DE

A
Z,LDATTR
AF, AF’

a

C, 20H

HL, BC

O,H

7, MODDE
AH

7

H,A

A, (COLUMN)

sRETURN ROW/COL ATTFTR

$STORE LINE FTR

1SKIP POS PTR
sMULTIPLE OF 8 BYTES

;SKIP SHAPE FTR

;CROSS SCREEN SECTION?

:IF YES, MOVE UP

sCOLUMN TO BE FILLED
1FILL CHARACTER

sFILL CHARACTER BYTES

tNEXT CHARACTER

:RESTORE LINE FTR
s SHAFPE DB PTR
:UPDATE ROW COUNT

;CLEAR CARRY

tONE LINE UP
:CROSS SCREEN SECTION?

7256 a7 06080 ADD A.A
7257 87 06090 ADD A,A
7258 a7 06100 ADD A.A : UPDATE SHAPE DB
7259 4F 06110 LD C.A
7254 ER 06120 EX DE, HL
725B 09 06130 ADD HL, BC
725C ER 06140 EX DE.HL
725D 18B1 06150 JR LPO
705F 28636F 061460 LDATTR LD HL ., (ATTFPOS)
7262 EDSBLALGF 06170 LD DE, (ATTPTR)
7266 TALDLGF 06180 LD A. (ROW)
7269 08 06190 ATROW EX AF, AF’
726A DS 067200 PUSH DE
726B ES 06210 PLUSH HL
7260 3AL16F 04220 LD A, (SKIP)
726F 4F 046230 LD C,A
7270 0600 04240 LD B.O
7272 09 06250 ADD HL, BC ;SKIP ATTRIBUTE FILE
7273 EB 06250 EX DE, HL
7274 Q9 06270 ADD HL, BC ;SKIP ATTRIBUTE DATABASE
7275 ER 06280 EX DE, HL
7276 IAL26F 06290 LD A, (FILL)Y
7279 A7 06Z00 AND A
7270 2BO7 06310 JR Z,SKIPAT :SKIP ATTRIBUTE
727C 47 06320 LD B,A sFILL ATTRIBUTES
727D 1A 06330 ATTR2 LD A, (DE)
72TE 77 06340 LD (HL) . A
727F 23 06350 INC HL
7280 13 06360 INC DE
7281 10FA O&8ZT0 DJINZ ATTR2
7283 Et 06380 SKIPAT POP HL
7284 D1 06390 FOP DE
7285 3ASF6F 046400 LD A. (COLUMN)
7288 A7 06410 AND A :CLEAR CARRY
7289 OE20 04420 LD C, 20H
728B EDA42 06430 SBC HL, BC :NEXT ATTRIBUTE LINE UP
728D 4F 06440 LD C,A
728E ER 06450 EX DE, HL
728F 09 06460 ADD HL , BC sUPDATE ATTRIBUTE DB
7290 ER 06470 EX DE, HL
7291 08 06480 EX AF, AF’
7292 3D 05490 DEC A
7293 20D4 06500 JR NZ, ATROW
7295 C9 06510 RET
06520 3
06530 ;
06540 ; XXXXAXXX RSHAPE XXKXKEXK
06550 3
04560 ; INPUT: HL=>POSITION
06570 3 =>REAL /ABSTRACT FLAG
06580 ; DE=3>SHAPE PTR
06590 3 COLUMN
06600 3
06610 3 OUTPUT: SKIP, FILL, ATTPOS
06620 3
7294 ES 06470 RSHAPE PLUSH HL

7297 08 06640 EX AF ,AF” s REAL SHAFE
7298 261F 06650 LD H, 1FH
729A4 7C 06660 LD A H
729B AS 06670 AND L : TRAP LOWER S BITS
729C &F 06680 LD L,A
729D 7C 06690 LD A.H
729E 95 06700 SURB L ; SUBTRACT FROM 1FH
729F 3C 06710 INC A
7200 A4 06720 AND H $ADJUST FOR ZERDO DIFF
72A1 &F 06730 LD L,A
72A2 08 06740 EX AF , AF*
7203 A7 06750 AND A ;0=>ABSTRACT. 1=>REAL
72A4 3ASF6F 04760 LD A, (COLUMN)
7287 2004 06770 JR NZ,REAL
72A%9 95 06780 SUB L
72AA 32626F 06790 LD (FILL) , A
72AD 7D 06800 LD a,L ;RELOAD ABS DIFF
72AE 32616F 06810 LD (SKIP),A
7281 1811 06820 JR CALATT
72B3 BD 06830 REAL CF L s TAKE MIN OF COL/FILL
72B4 3807 06840 JR C, TOOBIG {FILL MORE THAN COL
72B6 7D 06850 LD AL
72B7 A7 06860 AND A
7288 2003 06870 JR NZ, TOORIG
72BA 3ASF6F 06880 LD A, (COLUMN)
72BD 32626F 06890 TOOBIG LD (FILL),A
72C0 AF 06900 XOR A
72C1 3I2616F 04910 LD (SK1P),A
72C4 E1 06920 CALATT POP HL sCALCULATE ATT PTR
72CS ES 06930 PUSH HL
72Cb 7C 05940 LD A.H
72C7 E618 06950 AND 18H
72C9 CB2F 06960 SRA A
72CB CB2F 06970 SRA a
72CD CB2F 06980 SRA A
72CF C658 06990 ADD A.S8H
72D1 &7 07000 LD H.A
72D2 22634F 07010 LD (ATTPOS) . HL
72D5 Et 07020 FOP HL
72D& C9 07030 RET
07040 3
07050 3
72D7 210040 07060 CLRSCR LD HL . 4000H s HL=>START OF SCREEN
72DA 110140 07070 LD DE, 4001H
72DD O1FF17 07080 LD BC, 6143 ;S1ZE OF SCREEN 17FFH
72E0 AF 07090 XOR A s BLANK ACREEN
72E1 77 07100 LD (HL) , A
72E2 EDBO 07110 LDIR
72E4 210058 07120 LD HL . S800H $SET FIRST LINE FOR SCORE
72E7 110158 07130 LD DE, S801H :0F ATTRIBUTE FILE
72EA O11F00 07140 LD BC. 31
72ED 3407 07150 LD (HL) , 7 ; INK SEVEN
72EF EDBO 07160 LDIR
72F1 212058 Q7170 LD HL, S820H $SET ATTRIBUTE
72F4 112158 07180 LD DE.S821H ; START FROM SECOND LINE

72F7 Q1DFO2 Q7190 LD BC, 735

T2FA 77 07200 LD (HL) . A s (PAPER 0)%xB + (INK 0)
72FB EDBO 07210 LDIR

72FD 21A058 07220 LD HL , SBAOH :SET HIGHWAY
7300 116059 07230 LD DE, S5260H sHIGH, MIDDLE, BOTTOM
7303 012054 07240 LD BC, SA20H
7304 3IE3B 07250 LD A, 56 ;s (PAPER 7)%8 + (INK 0)
7zZ08 D9 07260 EXX
7309 0620 Q7270 LD B,32 sFILL ONE LINE
730B D9 07280 HWYATT EXX
730C 77 Q7290 LD (HL) ,A
730D 12 07300 Lp (DE),A
7I0E 02 07310 LD (BC),A
730F 23 07320 INC HL
7310 13 07330 INC DE
7311 O3 07340 INC BC
7312 D9 07350 EXX
7313 10F6 07360 DJINZ HWYATT
7315 D9 07370 EXX
7316 C9 07380 RET
07390 ;
07400 3
7317 ES 07410 SHAPE PUSH HL $SAVE HL PTR
7318 3A7B&E 07420 LD A. (FRGDIR)
731B 87 07420 aDpD a,.A
731C 21AF&9 07440 LD HL , FRGSHP
731F 1400 07450 LD D,0
7321 SF 07450 LD E,A
7322 19 07470 ADD HL, DE sPTR TO FOS OF SHAPE
7323 SE 07480 LD E, (HL) sDE RETURN SHAPE PTR
7324 23 07490 INC HL
7325 54 07500 LD D, (HL)
7326 E1 07510 POP HL
7327 C9 a7520 RET
07330 3
7540 3
07550 ;xaeyxsxx DISASC reeyes
Q7560 3
Q7570 ; display ASCII value from character set
07580 3 NB: ———— store DE, the message pointer
07990 3 HL stays the same after display
07600 3 used BC register as well
07610 3
074620 ;
7328 CS 07630 DISASC PLUSH BC
7329 DS 07640 FUSH DE
732A ES 07650 PLUSH HL
Z2B 1A Q76460 LD A, (DE) ;L0AD ASCIT CHAR
732C &F Q7&T0 LD L,A
732D 25600 07680 LD H, O
73I2F 29 Q7690 ADD HL . HL sMULTIPLE OF 8 BYTES
75350 29 07700 ADD HL . HL
7331 29 07710 apbD HL , HL
7332 EB Q7720 EX DE., HL
7333 21003C 07730 LD HL.CHRSET sSTART OF CHARACTER SET
73346 19 07740 ADD HL , DE

73327 ER 07750 EX DE, HL

7338
7339
733R
733C
733D
733E
733F
7340
7342
7343
7344
7345
7346
7347
7349

734A
7Z4B
734E
734F
7350
7351

7352
7354
7355
7358
735A
735C
735D
T3I5F
7362
7365
7368
736A
736C
736F
7372
7374
7375
7376
777
7378
7379
737A
737B
737C
737D
737E
7381

7382
7383
7384
7385
7386
7388

El
0608
ES
1A
77
13
24
10FA
El
D1
23
13
C1

ce

IEO1L
32726F"
21F56E
CDCC77
E&01
2803
21DD&E
010CO0
EDBO
D?

ES

D9

E1l

23

23

7E

47

23

23
226E6F
SE

23

56

iC

A7
2802
1D

Q7760
Q7770
07780
077290
a7800
07810
07820
07830
07840
07850
07860
07870
07880
07890
07900
07910
07920
07930
07240
07950
07940
07970
07980
07990
08000
08010
0BO20
08030
0BO40
08050
0BO&O
08070
08080
08090
08100
08110
08120
08130
08140
08150
08140
08170
08180
08190
0B200
08210
08220
08230
08240
08250
08260
08270
08280
08290
08300
08310

DRWCHR

CHARLF

POLICE

RHTPC

MOVPC

FPOF
LD
FUSH
LD
ED
INC
INC
DJINZ
POFP
POF
INC
INC
POP
DJINZ
RET

EXX
LD

FPUSH
EXX
AND
JR
PN
CALL
AND

HL
B.8

HL

A. (DE)
(HL), A
DE

H
CHARLF
HL

DE

HL

DE

BC
DISASC

HL,PCAREXT
A, (HL)
HL

A
NZ . MOVPC
DE

RANDNO
1FH

1FH

NZ

A, 1
(CHASE) , A
HL , RFCDE
RANDNDO

1

Z,RHTPC
HL.LFCDR
BC, 12

HL

HL
HL

HL

A, (HL)

B,A

HL

HL
(POSPTR) , HL
E, (HL)

HL

D, (HL)

+ PCMRHT

m~NDM

: DRAW CHARACTER

sFOS PTR
;s MESSAGE PTR

s TEST POLICE CAR EXIST

:MOVE POLICE CAR

iDBE EXT PTR

;MOVE WHEN MULTIPLE OF
531

;SET CHASE FLAG

sRIGHT PC

:EXISTENCE PTR
sDIRECTION
:STORE DIR

sPOSPTR

1 ASSUME MOVE RIGHT

sPOLICE CAR MOVE RIGHT

7389 1D Qaz20 DEC E

7584 EDSIELCEF OBEZ0 PCMRHT LD (NEWFOS) , DE
73IBE 3EQ2 08z40 LD Ay 2 1 TWO ROW
7290 I2604F 08350 LD (ROW) , A
7393 3EOS QREA0 LD A, 5
7IO5 Z25F&F 08Xz 70 LD (COLUMN) . A
7%98 CS 08380 PLUSH BC sDIRECTION
799 ZAT0&LE 08390 LD A, (PCARRAF) s REAL/ABS FLAG
739C EH 02400 EX DE,HL
739D CD9672 08410 CALL RSHAFE sRET SKIP/FILL,ATTR
7IA0 2A63&6F 08420 LD HL, (ATTPOS)
73A3 F1 0B430 FOF AF
73R4 A7 08440 AND A s IF 1,0K
ZAS 2004 08450 JR NZ,PCTAH :POLICE CAR TEST AHEAD
7IA7 010500 0B440 LD BC,S
73808 09 08470 ADD HL.BC
73AB 7E 08480 PCTAH LD A, (HL)
73IAC ELO7 03490 AND 7
73ZAE 012000 0B500 LD BC, 32
73R1 A7 08510 AND @
7ZB2 ED42 08520 SEC HL.RBC
73B4 FEC4 08530 CF &)
TIBA 2807 08540 JR Z,1SFRG2
73R8 TE 08550 LD A, (HL)
7IB9 ELQ7 0BS540 AND 7
7ZBB FEO4 08570 cP a
73ZEBD 2009 08580 JR NZ , NFROG2
73BF ZEO1 08590 ISFRG2 LD Al
73C1 327C6F a8600 LD (CRHFLG) , A sSET CRASH FLAG
73C4 3D 08610 DEC A s BLANK COLOUR
73C5 77 08L20 LD (HL) . A s BLANK. FRONT OF PC
73Ch& 09 DBLTO ADD HL, BC
73CT TT 08640 LD (HL) , A s¥%x SHOULD RLANK FRONTX
73CB CDDF73 084650 NFROGZ CALL STRFC :STORE NEW UNDERNEATH
7ICH 2ALE&LF 08660 LD HL. (POSPTR)
73ICE EDSB&CAF 0BL70 LD DE, (NEWFOS)
32 13 08480 LD (HL) ,E
73D3 23 08470 INC HL
73D4 72 OB700 LD (HL),D
7XDS CDAF71 08710 CALL MUCTRL
73D8 D9 QB720 EXX 3 IF NON-EXIST
7309 7E 08720 LD A, (HL)
73IDA 3I2726F 0B740 LD (CHASE) , A
730D D9 08750 EXX
73DE C9 08760 RET
08770
08780 =
08790 ;xxxftxxx STRPC XXXXXXXX
080D 3
08810 j STORE UNDERNEATH POLICE CAR
08820
73DF 2A6CAF 08830 STRPC LD HL ., (NEWFOS) sFOS PTR
73E2 11AD&D 0g840 LD DE,PCSTR i STORAGE LOC
7ZES EBR 08850 EX DE, HL
73E6 73 088460 LD (HLY ,E 1STORE POSITION

72E7 23 08870 INC HL

73EB 72 08880 LD (HL) ,D

73E9 23 08820 INC HL

73EA EB 08900 EX DE, HL

73EB 21606F 08910 LD HL . ROW ;LOAD S BYTES OF INFO
73EE 7E 08920 LD A, (HL)

73EF 010500 087230 LD BC,5

73F2 EDBO 08940 LDIR

73F4 08 08950 EX AF, AF”

7IFS 2ALCEF 0879460 LD HL, (NEWFOS)

73F8 ES 08970 SPCLFP1 FUSH HL

73IF? ZAL16F 08280 LD A, (SKIP)

73FC 4F 08990 LD C,A

73FD 0% 02000 ADD HL, BC

73FE CB44 09010 BIT O, H

7400 2804 09020 JR Z,NSSFS

7402 7C 02030 LD A,H

7403 CHOT7 09040 ADD A7

7405 &7 09050 LD H,A

7406 3AL26F 09060 NSSFPS LD A, (FILL)

7409 A7 02070 AND 2]

7404A 280F 09080 JR Z,NXTSPC

740C 4F 09090 LD C,A

740D ES 09100 SPCLP2 PUSH HL s RESTORE CHAR
740E 0608 09110 LD EB,B

7410 7E 09120 SPCLP3 LD A, (HL) 3 STORE SCREEN FIRST
7411 12 09130 LD (DE) ., A

7412 13 09140 INC DE

7413 24 09150 INC H

7414 10FA 092160 DJINZ SFCLP3

7416 E1 09170 FOP HL

7417 23 09180 INC HL sNEXT CHAR
7418 OD 0?2190 DEC C

7419 20F2 09200 JR NZ,SPCLP2

741B E1 09210 NXTSPC FOF HL

741C 08 09220 EX AF, AF° sUFPD ROW COUNT
741D 3D 09230 DEC A

741E 280F 09240 JR Z,SPCATR sRESTORE FOLICE ATTR
7420 08 09250 EX AF, AF”

7421 OQEZ20 09260 LD C,32

7423 ED42 09270 SBC HL.BC 1UP ONE LINE
7425 CB44 09280 BIT O.H sCROSS SCREEN SECTION?
7427 28BCF 09290 JR Z,5PCLF1

7429 7C 09Z00 LD A.H

742A D&OT 09310 SUB o

742C 67 09320 LD H.A

742D 18C9 09330 JR SPCLF1

T42F 20636F 09340 SPCATR LD HL, (ATTPOS) sATTRIBUTE START FOS
7432 3ALOLF Q9350 LD A, (ROW)

7435 OB 093460 EX AF, AF’

7436 ES 09370 SPCAT1 FPUSH HL

7437 3AbL16F 09380 LD A, (SKIP)

7430 4F 09390 LD C,A

743B 09 079400 ADD HL, BC

743C 3AL26F 09410 LD A, (FILL)

74ZF A7 02420 AND &

7440 280X 09430 JR Z,NXTSFA

7447
7843
7445
7444
7447
7448
7449
744A
744C
744F

7450
7453
7454
7455
7458
7458
745€
7460
7441
7464
74457
7448

74569

744C
746D
TA45E
7470
7472
7474
7475
7476
7479
7474
747C
747D
T747E
7480
7481
7482
7483
7484
7486
7487
7488
7489
748B
748C
748D
74BE
7490
7491
7492
7495
7497

4F
EDBO
E1
o8
=D
cs
08
0EZ0
ED4Z
18E6

09440
09450
09440
0470
09480
09490
09500
09510
09520
09530
09540
09550
09560
09570
09380
09590
Q9600
02610
094620
094630
09640
09650
09660
09670
094680
094690
09700
09710
09720
09730
09740
09750
09780
Q9770
089780
09790
09800
09810
09820
09830
09840
09850
09860
09870
09880
09890
09900
Q9210
093920
09930
09940
09950
09960
09970
09980
09990

NXTSFA

H
RESPC

RFCLF1

NSRPS

RPCLP2

RFPCLP3

NXTRPC

FUSH

LD

CsA

HL
AF, AF’
A

z

oF, AF’
C,32
HL, BC
SPCATI

A, (PCAREXT)

I
z

DE, ROW
HL,PCSTR+2
BC,S

DE, HL

HL. (PCSTR)
A, (ROW)
AF, AF?

HL

A, (SKIP)
C.A

HL , BC

~DIN

e =

RPCLP3
HL

HL

C
NZ,RPCLP2
HL

aF, AF?

A
Z,RPCATR
AF, AF’
32

HL, BC

O.H
Z.RPCLP1

sTEST PC EXIST

sRETRIEVE 5 INFO
:DE STORAGE PTR
sLOAD POS

1 SAVE POS

iRESTORE CHAR

:UPD ROW COUNT
sRETORE POLICE CAR

:MOVE UP ONE LINE

7499 7C 10000 LD AyH

7494 D&OT 10010 SUR 7 s CROSS BOUNDARY
749C &7 10020 LD H, A
749D 18C9 10030 JR RPCLF1
749F ZALILF 10040 RPCATR LD HL, (ATTPOS) ;ATTR START LOADING FOS
74A2 ZALO&F 10050 LD A, (ROW)
74A5 OB 10060 EX aF . AF”
74A56 ES 10070 RPCAT1 PUSH HL
74A7 ZAL1&F 10080 LD A, (SKIP)
74AA 4F 10090 LD C.hA
74AR 09 10100 ADD HL , BC
74AC 3IAL26F 10110 LD A, (FILL)
74AF A7 10120 AND A
74RO 2805 10130 JR I, NXTRPA
74EZ ER 10140 EX DE, HL
74BZ 4F 10150 LD C,A
74B4 EDBO 10160 LDIR
74B4& EB 10170 EX DE, HL
74B7 E1 10180 MNXTRFA FOP HL
7ap8 08 10190 EX AF , AF”
7489 3D 10200 DEC A
74BA CB 10210 RET L
74BE 08 10220 EX AF , AF*
74RC OE20 10230 LD C,32
74BE EDA4Z2 10240 SBC HL . BC
74C0O 18E4 10250 JR RPCAT1
102860 3
10270 3
74C2 IA7CEF 10280 FROG LD fiy (CRHFLG) s CRASH FLAG
74C5 a7 10290 AND -
74CE6 2017 10300 JR NZ,FRGCRH s FROG CRASH
74C8 3Z25E&F 10310 LD (LUPDWN) , A s SET NO SCORE
74CE CDEZ74 10320 CALL REGFRG ; REGENERATE FROG
74CE 217A&E 10330 LD HL ,FRGCYC ; TEST MOVE
74D1 35 10340 DEC (HL)
74DZ CO 10350 RET NZ
7402 2B 103860 DEC HL
74D4 TE 10370 LD A, (HL) sRESET CYCLE COUNT
74D5 23 10380 INC HL
74D& 77 103%0 LD (HL) , A
74D7 CD1075 10400 cCAaLL MOVFRG
74DA ZATCAHF 10410 LD A, (CRHFLG)
74DD A7 10420 AND A
74DE CB 10430 RET z
74DF CD?17& 10440 FRGCRH CALL CRASH
74E2 C% 10450 RET
10440 3
10470 :®¥EXXX¥XX REGFRG XXXXXXXX
10480 s
10490 3 Regenerate frog 1f any left
10500 ; Set GAMFLG to O if none left
10510 ;
74E3 FAT7T6E 10520 REGFRG LD A, (FRGEXT)
T4EL AT 10530 AND 3]
74E7 CO 10540 RET NZ sRETURN IF EXIST

74E8 218154E 10550 LD HL ,FRGDEB

74ER
74EE
74F 1
74F3
T4F &
74¥7
74F8
74F9
74FC
74FF
7502
7505
7508
7S0B
750D
7S0F

7510
Zali
7514
7515
7516
7518
751A
751C
751E
751F
7522
7524
7526
7528
752A
752C
752D
7530
7532
7534
7536
7538
753A
753B
753C
793D
753E
753F
7540
7543
7545
7547
7949
7548
754D

11796E
010800
EDEO
21846E
35

35

35
2A7C6E
22786F
227A&F
21896D
118A&D
012300
JH00
EDBO
[

aF
2120E0
aF

o8
ZEDF
DBFE
E&O1
2006
oc
11D769
0601
SEDF
DEFE
E604
2006
oD
11176A
0603
ZEFD
DBFE
E601
200B
79

as

aF

o8

3D

08
11F769
0602
3EF7
DEFE
E&01
200B
79

10560
10570
10580
10590
104600
104610
104620
106Z0
10640
104650
106560
10670
10680
10690
10700
10710
10720
10730
10740
10750
10760
10770
10780
10790
10800
10810
10820
10830
10840
10850
108460
10870
10880
10890
10900
10910
10920
10930
10940
10950
109460
10970
10980
10990
11000
11010
11020
11030
11040
11050
11060
11070
11080
11090
11100
11110

LD DE,FRGEXT
LD BC, 8
LDIR
LD HL.FRGSTN
DEC {HL)
DEC (HL)
DEC (HL)
LD HL. (FRGPOS)
LD (OLDFRG) , HL
LD {(NEWFRG) , HL
LD HL,FRGSTR
LD DE,FRGSTR+1
LD BC, 35
LD (HL), O
LDIR
RET
sEXXXXRRE MOVFRG RXXXRREE
]
H Move frog,.
MOVFRG XOR fa]
LD HL , OEO20H
LD C.hA
EX AF.AF*
LD A, ODFH
IN A, (OFEH)
AND i
JR NZ,LEFT
INC c
LD DE, FROGZ2
LD B.1
LEFT LD A, ODFH
IN A, (OFEH)
AND .
JR NZ . DOWN
DEC c
LD DE.FROG4
LD B, 3
DOWN LD A, OFDH
IN A, (OFEH)
AND 1
JR NZ, UP
LD A,C
AabD A,L
LD C.A
EX AF, AF’
DEC 4]
EX AF . aF°
LD DE, FROG3
LD B,2
ur LD A, OF7H
IN A, (OFEH)
AND 1
JR NZ,VALID

A,C

1 UFDATE FROG STATION
tMOVE 3 CHARACTER LEFT

1 INIT FRG STR FOR RES
: BLANK FROG STORE

store and restore

1H=-32, L=32
:C=>ABS MOVEMENT

s TEST RIGHT

sTEST LEFT

sTEST DOMWN

sADD 32

sDEC UP/DWN FLG

s TEST UP

754E
754F
7550
7551
ToOL
7953
7956
7558
73559
799C
7560
7961
7962
7563
75646
7548
7569
756B
754D
7S4E
7570
7571
s B

24

aF

og

3C

o8
11B749
0600
78
327D6F
EDSIROLF
arF

Be

ca
2A78AF
CR79
a7
1E07
2803
05
1EF9
09
CB44
280%F

7579 7C

7576
777
7578
757R

757C

7S7E
757F
7580
7582
7584
75846
7588
7580
758C
7S8F
7990
o092
7994
7597
7599
759B
7S59C
799E
759F
75A2
75A4
75686
79A7
7549
/SAAR
75AC
7SRO

=5
a7
227E6F

21BESO
a7

EDS2
z821
217ES0
EDS2
3011

7B

E&1F

&7
IABALE
FEAO
3806

3C

E&61F

o4

3009
EDS3I7ALF
08

11120
11130
11140
11150
11160
11170
11180
11190
11200
11210
11220
11230
11240
11250
112560
11270
11280
11290
11300
11310
11320
11330
11340
11350
11360
11370
11380
11390
11400
11410
11420
11430
11440
11450
114460
11470
11480
11490
11500
11510
11520
11530
11540
11550
11560
11570
11580
11590
114600
11610
11620
114630
114640
11650
116460
11670

vALID

NETDWN

VALID1

VALID2

YVALID

ADD

AH

c.a

AF , AF’

(2]

AF . AF”
DE,FROG1
B,O

AR
(TEMDIR) ., A
(TEMSHF) , DE
A

c

z

HL . (OLDFRG)
7,C

B.A

E,7

Z . NETDWN
B

E,—7
HL,BC

O,H
I.VALID1
AH

A.E

H. A
(TEMFOS) , HL
DE, HL

A, 40H

D

ALE

NZ . VALIDZ2
20H
C.NVALID
iFH

1FH
Z,NVALID
HL , SOBEH
I8

HL,DE
C.NVALID
HL . SO7EH
HL, DE
NC.YVALID
AE

1FH

H, A

A, (FRGSTN)
OAOH
C.YVALID
2]

1FH

H

NC . NVALID
(NEWFRG) , DE
AF . AF°

sADD -32

;STORE TEMP DIR

:STORE TEMFP SHAPE

:IF NO MOVE 60 BACK
s TEST —VE

s FOR BOUNDARY ADJ

sNET MOVE RHT, DWN

:NO CROSS BOUNDARY

:ADJ HOB

: TEST UPSCR

s TEST RIGHT BOUNDARY

s TEST BOT BOUNDARY

: TEST FROG STATION

s TEST WITHIN BOX

s TEST LAST FROG
:NO MORE FROG STATION
sWHEN NO FROG LEFT

;STORE NEW FOS

75B1 325E&F 11680 LD (UFDWN) . A

75B4 08 11690 EX AF, AF”’
7S5BS 2A784F 11700 NVALID LD HL, (OLDFRG) s TEST OLDFRG=NEWFRG
75B8 A7 11710 AND a
75B9 EDS2 11720 SBC HL, DE
7SBR 7D 11730 LD A, L
7SBC B4 11740 OR =]
7SBD C8B 11750 RET z sRETURN IF SAME
7SBE CDD&7S 11760 cALL RESFRG ;RESTORE FROG
7SC1 2A7A6F 11770 LD HL, (NEWFRG) ;UPDATE OLD FROG POS
75C4 2278B6F 11780 LD (OLDFRG) , HL
75C7 217D&F 11790 LD HL.TEMDIR
7SCA 117B&E 11800 LD DE,FRGDIR
75CD 010500 11810 LD BC.S
75D0 EDEO 11820 LDIR
75D2 CD2874& 11830 CALL STRFRG
75DS C9 11840 RET
11850 ;
11840 3
75Dé& 11896D 11870 RESFRG LD DE,.FRGSTR :STORAGE FTR
75D9 2A478B46F 11880 LD HL, (OLDFRG) sRESTORE FROM OLDPOS
75DC ES 11890 PUSH HL
75DD 3IEO02 11900 LD A, 2 :ROW COUNTER
7S5DF 08 11910 EX AF ., AF”
7SE0 ES 11920 RFRLP1 PUSH HL
7S5E1 OEO02 11930 LD c,2 sCOLUMN COUNTER
7SEX ES 11940 RFRLP2 PUSH HL
7SE4 0608 11950 LD B,8
7SE6 1A 11960 RFRLP3Z LD A, (DE) sRESTORE FROM DR
7SE7 77 11970 LD (HL) , A ;ONTO SCREEN
7SEB 13 11980 INC DE
7SE9 24 11990 INC H sNEXT CHAR BYTE
7S5EA 10FA 12000 DJINZ RFRLPZ
7SEC E1 12010 POP HL
7S5ED 23 12020 INC HL
7SEE OD 12030 DEC G ;COLUMN COUNT
75EF 20F2 12040 JR NZ,RFRLF2
75F1 Et 12050 POF HL
75F2 0B 12060 EX AF, AF”
79F3 3D 12070 DEC A :ROW COUNT
7S5F4 2810 12080 JR Z,RFRATR
7SF& 08 12090 EX AF , AF”
75F7 A7 12100 AND A
7SF8 OE20 12110 LD B, 22 sUP ONE LINE
75FA EDA4Z 12120 SBC HL . BC
75FC CB4aa 12130 BIT O.H
75FE 2BEQ 12140 JR Z.RFRLFP1
7600 7C 12150 LD AH
7501 D&KOT 12160 SuUR 7
7603 &7 12170 LD H,.A
74604 18DA 12180 JR RFRLF1
7606 EI 12190 RFRATR POF HL
7607 7C 12200 LD A, H
7608 E&18 12210 AND 18H
750/ CB2F 12220 SRA &

760C CB2F 12230 SRA i

760E
7610
7612
7613
7615
7616
7617
7618
761A
761C
761D
761E

761F

7620
75621
7622
7524
7626

7628
762R
7&62E
762F
7THI2
7633
7634
7636
76X7
7638
TH3A
743B
76ED
763E
763F
7640
7641
7642
76AZ
7644
7645
7646
7648
7649
764A
TH4B
764D
764E
7hLaF
=
7652
7653
7654
7656
7658
7554

og

OEZ20
EDA2
18EE

11894D
2A7ALF
D%
ZATESE
D9

ES
IEO2

10FS

23
oD
20ED
E1l
o8
XD
2810
08
a7
0E20
ED42
CB44
Z28DR

12240
12250
12260
12270
12280
12290
12300
12310
12320
12330
12340
12350
123460
12370
123280
12390
12400
12410
12420
124ZF0
1Z440
12450
124450
12470
12480
12490
12500
12510
12520
12530
12540
12550
12560
12570
12580
12590
12600
12610
12620
12630
12640
124650
12660
12670
12680
12690
12700
12710
12720
1273
12740
12750
2760
12770
12780
12790

RFRAT1

) e

TRFRG

SFRLFP1

SFRLP2Z

SFRLF3

AF, AF”
A

z
AF , AF?
Gy 32
HL, BC
RFRAT 1

DE, FRGSTR
HL, (NEWFRG)

HL , (FROGSH)

HL

a,2
AF ., AF”
HL
C,2

HL

B.S

A, (HL)
(DE),A

AL (HL)
HL

(HL) , A
DE

H

SFRLP3
HL

HL

c

NZ, SFRLP2
HL

AF . AF*

a
Z,SFRATR
AF . AF”

A

C,32

HL, BC
0,H

7, SFRLP1

:ROW COUNTER

s RESTORE ATTR

sUPDATE ROW COUNTER

s STORE BASE ON NEWFPOS

1 LOAD SHAPE AS WELL

sSTORE AND LOAD A CHAR

tNEXT CHAR

:NEXT ROW

765C 7C 12800 LD A.H

765D D&O7 12810 SUB 7
765F &7 12820 LD H, A
7660 18DS 12830 JR SFRLP1
7662 E1 12840 SFRATR FOFP HL
7663 7C 12850 LD A, H ;CALCULATE ATTR POS
7668 E618 12860 AND 18H
7666 CB2F 12870 SRA A
7668 CB2F 12880 SRA A
766A CB2F 12890 SRA A
766C C&SB 12900 ADD A,S8H
T766E &7 12910 LD H,A
766F 3EO2 12920 LD A, 2
7671 08 12930 EX AF, AF’
7672 0602 12940 SFRAT1 LD B,2
7674 ES 12950 PLSH HL
7675 7E 12960 SFRATLF LD A, (HL)
7676 12 12970 LD (DE) , A
7677 3b04 12980 LD (HL), 4 ;FILL FROG ATTR
7679 23 12990 INC HL
76748 13 13000 INC DE
767B E607 13010 AND 7 s TEST CRASH
767D 2805 13020 JR 7 .NFROG3
767F 3EO1 13030 LD A,
7681 3I27C6F 13040 LD (CRHFLG) , A
7684 10EF 13050 NFROG3 DJNZ SFRATLP
7686 E1 13060 POP HL
7687 08 13070 EX AF, AF’
7688 3D 13080 DEC a
7689 C8 13090 RET z
768A 08 13100 EX AF, AF”’
768B OE20 13110 LD C.32
768D ED42 13120 SBC ML , BC
768F 18E1 13130 JR SFRAT1
13140 ;
13150 3
7691 AF 13160 CRASH XOR a
7692 3I27C6F 13170 LD (CRHFLG) , A ;RESET CRASH FLAG
7695 32796E 13180 LD (FRBEXT) , A 1SET FROG NONEXIST
7698 CDA776 13190 CALL FRGDIE :FROG DYING ROUTINE
7698 CDD&675 13200 CALL RESFRG
769E 21826F 13210 LD HL . NUMFRG
76A1 35 13220 DEC (HL) 1 DECREASE FROG NUMBER
76A2 CO 13230 RET NZ
76A3 32776F 13240 LD (GAMFLG) , A : ZEROISE GAME FLAG
76A6 C9 13250 RET :WHEN NO FROG LEFT
13260 ;
13270 3
76A7 2A786F 13280 FRGDIE LD HL , (DOLDFRG) :0LD POS OF FRB
76AA 010240 13290 LD EC, 4002H :RED COLOUR
76AD D9 13300 EXX
76AE 21396F 13310 LD HL ,DIETON :SET DIE TONE
76B1 D9 13320 EXX
7682 7C 13330 LD A.H : TEST END OF JOURNEY
76BR3 BO 13340 cP F

76B4 2016 13350 JR NZ ,NOTEND

74B&
76BT
7688
76BA
76BD
76BE
76BF
76C2
76CS
76C7
76C8
76CB
76CC
76CD
76D0
76D=
76D7
76DA
76DD
76DE
76DF
76EZ2
76EZ
76ES
76EA
T6E7
746EB
T6E?
76EA
76ER
76ED
76EE
THEE
76F0O
T6F3
76F4
76F5
76F6
76F7
76F8
76F9
TEFA
7&6FC
7&FD
76FE
76FF
7700
7703
7704
7705
7707

7708
7709
770A

7D

B8
I012
114646F
ER

34
214746F
CD4B77
OEOQ&

79
I2656F
2A7BLF
EDSR7EAE
CD7A70
112000
19

08
IALSAF
o8

0605

o

ES

T
cDos77
El

ES

o8

77

23

77

a7
EDS2
Tr

2B

77

o8
cpog77
o

€1
10DE
ce

D9
ES
CDB377

13360
13370
13380
13320
13400
13410
13420
13430
13440
13450
134460
13470
13480
13490
13500
13510
13520
13530
13540
13550
135460
13570
13580
13590
12600
13610
134620
136320
134640
13650
134660
13670
134680
134690
13700
13710
13720
13730
13740
13750
137460
13770
13780
13790
13800
13810
13820
13830
13840
13850
13840
13870
13880
13890
13900
13910

NOTEND

FLASLF

FRETON

LD
CP
JR
LD
EX
INC
LD
caLL
LD
EXX

EXX
LD

LD
LD
CALL
LD
ADD
EX

EX
LD
PUSH
FUSH
XOR
LD
INC
LD
SBC

DEC
LD
CALL

PUSH
EX
LD
INC

AND
SEC

DEC
LD
EX
CALL
FOP
FPOP
DJINZ
RET

EXX
PLISH
CALL

A.L
E

NC , NOTEND
DE, SCORE+3
DE, HL

(HL)

HL, SCORE+4
DISSCR

C.&

HL , HOMTON

a.c
(ATTR) ,A
HL, (OLDFRG)
DE, (FROGSH)
DRWFRG
DE, 32
HL . DE
AF, AF*
a, (ATTRY
AF . AF*
B,S

BC

HL

a

(HL) , A
HL
(HL) . A
HL . DE
(HL) . A
HL

(HL) ,A
FRGTON
HL

HL

aF, AF?
(HL) . A
HL

(HL) , A

Iy

HL, DE
(HL) . A
HL

(HL) ,A
AF,AaF”
FRGTON
HL

EC
FLASLP

HL
TONE1

1100 PTS BONUS

s YELLOW

sLINE ADJUST

:ATTRIBUTE PTR
:BLACK INK BLACK PAPER

; GENERATE FROG TONE

:BLACK PAPER, RED OR
$YELLOW INK

770D
770E
7711
[B
7714
7716
7719
771A
771B
771C

771D
7720
FF21
¥ 7 e
7725
7726
7127
772A
772C
772E
772F
7731
7734
7736
7738
773B
773D
T73E
773F
7741
7743
7744
7747
7749
7744
774k
774D
774E
7750
7752
7754
7735
7756
7757
7759
775A
775R
775D
7760
7743
7766
7769
776B
7746E

El
010400
o8
FEOG6
2803
O1FCFF
o9

D

08

ce

3A794E
A7
c8
3ASESF
A7
ce
214746F
CBR7F
2003
24
1814
3IA796F
FE40
2009
3A786F
FECO
pa
34
180A
FESO
co
IAT7BLF
FE20
DO
34
0604
7E
FEZA
3807
D&OA
2R
34
23
18FS
77
2B
10FO
21446F
CD&F77
210640
11596F
0605
CD2873
c9

13920
13930
13940
13950
13940
13970
13980
13990
14000
14210
14020
14030
14040
14050
140460
14070
14080
14090
14100
14110
14120
124130
14140
14150
14160
14170
14180
14190
14200
14210
14220
14230
14240
14250
14260
14270
14280
14290
14300
14Z10
14320
14330
14=40
14350
143460
14770
14380
14390
14400
14410
14420
14430
14440
14450
14440
14470

HOME

CALSCR

DWNSCR

TLHWY

DISSCR
ADDLOF
CRYLOP

UPDDIG

HL
BC.4
AF, AF’

Z, HOME
BC,-4
HL , BC

AF, AF

A. (FRGEXT)
A

z

A, (LIPDWN)
a

z

HL , SCORE+4
7.8

NZ , DWNSCR
(HL)
DISSCR

A, (DLDFRG+1)

40H
NZ, TLHWY
A, (OLDFRG)
OCOH

e

(HL)
DISSCR
S0H

NZ

A, (OLDFRG)
20H

NC

(HL)

B, 4

A, (HL)

3AH
C.UPDDIG
10

HL

(HL)

HL

CRYLOP
(HL) . A

HL

ADDLOF

HL, SCORE+1
SCRIMG

HL, 4006H
DE, IMAGE
B,S
DISASC

s MOVE DOWN DATABASE

;s MOVE UP DATABRASE

s TEST EXISTENCE

;NO UPDATE OF SCORE
s TEST UP/DOWN MOVEMENT
; TEST ANY SCORE
;ADD 10 TO SCORE

s TEST MOVE DOWN

1 DOWN SCORE

3DIS SCORE

: TEST HOB

: TEST FIRST BLOCK
;TEST LOW HIGHWAY

sNOT EVEN STEP ON HWY

sTEST IN LOW HWY

:ND SCORE IF STEP HWY
tHL => TENTH’S POS

sCARRY LOOFP
;UPDATE DIGIT

;s CARRY

s SCORE IMAGE

776F
7772
7775
7777
777A
777D
777E
777F
7781
7783
7784
7784

7787
7789
778B
778D
778F
7792
7793
7795
7798
779B
779C
T779E
77A1
77A2
77A4
T7RA7
77A8
77AA
77AD
7780
77B2
7785
77B6
77B7
77B8
77B9
77BA
77BB
77BC
77BD
77BE
77C1
77C2
77C3
77Cé
77C7
77C8
77C9
77CRB

115946F
010500
EDBO
21596F
013004
79

BE
2005
F620
23
10F7
ce

3EBF
DBFE
E601
2009
IAT36F
3C
E601
I2736F
IATI6F
A7
2825
3A726F
A7
2B1F
IAT4EF
3C
E601
3I2746F
210D6F
2803
21116F
SE

23

56

23

14480
144390
14500
14510
14520
14530
14540
14550
145460
14570
14580
14590
14400
144610
14620
14430
144640
14650
1446460
14670
144680
14490
14700
14710
14720
14730
14740
14750
14760
14770
14780
14790
14800
14810
14820
14830
14840
14850
14860
14870
14880
14890
14900
14910
14920
14930
14940
14950
14960
14970
14980
14990
15000
15010
15020
15030

:

Ll

SCRIMG

PREZER

PREZEX

§
SIREN

NSOUND

TONE1

DELAY
WAIT

FPUSH

CALL

RET
LD
DEC
LD
OR
JR
RET

DE. IMAGE
BC,S

HL , TMAGE
BC, 0430H
a,C

(HL)
NZ,PREZEX
(HL) , 20H
HL
PREZER

A, OBFH
A, (OFEH)

1

NZ , NSOUND
A, (SOUNDF)
a

1
(SOUNDF) , A
A, (SOUNDF)
a

Z,DELAY

A, (CHASE)
a

Z.DELAY

A. (TONFLG)
a

1
(TONFLG) , A
HL. PCTON1
Z, TONE1
HL.PCTONZ
E, (HL)

HL

D, (HL}

HL

C. (HL)

HL

B, (HL)

BC

HL

0ZBSH

BC, 4144
BC

A, B

C
NZ.WALT

;s TEST 30OH

: SPACE FILL

sRESET SOUND CONDITION

s 1S POLICE CAR ON

;s DE=DURAT IONXFREGUENCY

tHL=437500/FREG-30. 125

s O3BSH ENABLE INTERRUPT

77CC
77CD
77CE
77D1
77D2
77D3
77DS
77D6
77D7
77D8
77DE
77DC
77DD

77DE
77E1
77E4
77E6
AT
77E8
77EA
77EB
77ED
77EE
77EF
77F1
TIF2
T77FS
77F8
77FR
77FD

77FE
7800
7803
7804
7809
780C
780E
7810
7813
7816
7819
7818
781D

L9782

ES

CS
2A7S6F
44

2%
JE3F
A4

67

78
22756F
(55 |

E1l

ce

214446F
11546F
0605
1A

BE
2803
DO
1805
1=

23
10FS
ce
214446F
11546F
010500
EDEBC
ce

JEZ8
32485C
210040
110140
OLFF17
F600
EDBO
210058
110158
O1FFO2
=638
EDRO
ce

15040
15050
15060
15070
15080
15090
15100
15110
15120
15130
15140
15150
15160
15170
15180
15190
15200
15210
15220
15230
15240
15250
15260
15270
15280
15290
15T00
15310
15320
15330
15340
15350
15360
15370
15380
15390
15400
15410
15420
15430
15440
15450
15460
15470
15480
15490
15500
15510
15520
15530
15540

Q0000 Total errors

i
RANDNO

H
OVER

SORTLF

SAMSCR

SCRGT

T] = e
g

ETRT

FUSH
PUSH
LD

LD

INC

DJINZ
RET
LD
LD
LD
LDIR
RET

END

HL
BC

HL, (RND)
B, (HL)
HL

A, 3FH

H

H, A

A, B
(RND) , HL
BC

HL

HL , SCORE+1
DE, HISCR
B,S

A, (DE)
(HL)

7, SAMSCR
NC

SCRGT

DE

HL
SORTLP

HL . SCORE+1
DE, HISCR
BC,S

a,56
(23628) ,A
HL , 4000H
DE, 4001H
BC, 6143
(HL),0

HL , SBOOH
DE, S801H
EC, 767

(HL) ,S6

START

s BOUND FOINTER WITHIN ROM

;HIGH SCORE MANAGE

s TEST 15T NE DIGIT

;UPDATE HIGH SCORE

;SET WHITE BORDER
sSTART OF SCREEN

sSIZE OF SCREEN

tSTART OF ATTRIBUTE FILE

sWHITE FAPER BLACK INK

Y3ty

sAem]e S1 931elS TJEWIOU! 39skaxfz Al
*19s ST A9} uayl ‘ox3z JI ‘Al
K33 3OVdS/Mvayg dexass T aNV
*£9) poa1sep 103 MO] 03 39S X(J 3IS@L °*T1T
(H340) ‘V NI
*H340 33od Indur woaj yo3ag 11
Moy wo3jjog ¢ HIL0 °‘V Q1
*mox Surpuodsaiiod 3yl 3o FNTVA INANI Y3IT#4 V¥ peoq 1
K93 B deil ol :gN
L z v 8 9l X
[, A ~ A »
EEXZE 1d1HS N H 4.0
Mv3ye WAS
H3LN3 1 r H 480
d 0 n H 400
0 6 L H 430
1 z v H 40
%) M 5 H 840
v S 3 H adp
13IHS Z o] H 340
dvd
0a 1a za £a va H 340 404
W Ul 8njBA
induj

378YL LNdNI A3X WNH1D3dS

¥ XIaON3ddV

227

44VvS 4408 (A 03Vvs 0308
4avs 40085 (44 00VvS 000§
48VS 1808 L ovvSs 0v0Ss
46VS 4608 0z 08vS 080S
4LVS 4,08 6l 09VvS 0905
45VS 45058 8l ovvs 0¥0S
dEVS 4€08 Ll 0Zvs 020s
41VvS 4108 9l 00vSs 000S
44685 448% Sl 036S 038y
4068 40a8v vl 0065 008v
4865 488p el 0v6S Ov8y
4665 468% zl 086S 088Y
4465 4L(8V Ll 0965 098v
4965 468v 0l ov6S ov8y
4€6S 4€8p 6 0265 0csy
41685 d18v 8 0065 0087y
4485 440% L 038S 030t
4085 4d0v 9 008§ 000V
4885 480v S 0v8s ovOov
16859 41601 14 0885 o8ov
4485 4.0% € 098S 090%
45689 450¢ 14 0¥8S orov
4€8S 4€0v l 028S ozor
4185 410t 1) 008S 000¥
X3H NI X3H NI X3H NI X3H NI
31N8IHLLY AHOW3IW p St 3i1Ngidllvy AHOW3IW

8 XION3ddVv

228

"Pasn 10N = NN 8N
379V.INIHd e 378V.LNIHd NON —]

® o = 0 é / NN NN LLLL E|
~ u J N ¢ : NN Jaquinu oLLL 3
§ w [W - = NN H3AN3 oLl a

! _ % L - y NN 313730 00L 1 @)
} A] P : + NN dn 40sind LL0l g
z [z r * NN UMOP 10$INd 0L0L v
A ! A _ 6 (NN 1611 Josind 100! 6
x Y X H 8) NN 143) 1084nd 0001 8
M 6 M) L ‘ 1410 8V 1 Lia3 LLLO L
A } A 4 9 B 1430 1V LINIHd 0LLO 9
n 3 N 3 S % 1132 43N0 NN LoLo g
! P 4 a v $ 1432 3SHIANI NN 0010 v
s 2 S <) € = 1432 LHOIHE NN L 100 €
J q H g [. 1432 HSV 14 NN 0L00 [
b e 0 v ! i 1432 43dvd NN 1000 /
d 3 d ®) 30VdS 1439 NI NN 0000 0
LLL 0l 10 00 LL0 0L0 100 000 S1ig 807
L 9 S v € z ! 0 80H X3H

379v.1 13S H31I0VHVHO WNH103dS
J XION3ddV

229

OvvL9 | OVBE | SSC€ ¢$SZ €SCZ TSC ISC 0OST 6¥C 8BWZ LvE 9VC SPT vvZ EVC THT LPZ OFC d
PPELS | PBSE | 6EC BEZ LECZ 9EC GEC wEZ EEZ ZEZ leC OEZ 6ZCZ 8ZZ LlZZ 9T stt viT 3
8PZES | BZEE | €ZZ 2ZZT |ZZ O0ZZ 6IZ BIZ LiZ 9lZ SIZ w1 €l ZIZ LIz oOlZ 602 802 a
ZSl6y | €L0E | LOZ ©90Z SO0 #OC €0OC 2oz LoZ o0O0Z 661 B6L L6L 961 S6L v6L E6L C6l o)
9s0sv | 9182 | L6l O6L 68l 88L (8L 98L S8L 8L EBL ¢Z8BL I8l 08L 6LL 8LL LLL 9Ll g
0960r | 09SZ | S£L wLL €LZ TLL LLL OLL 691 891 (91 991 S91 9L €91 €91 19L 09l v
¥989¢ | vOEZ | 651 8SL LSL 991 SSL ¥SL €SL ZSL L1SL 0SL 6kl 8vL LibL 9FL Skl PYL 6
89./Z€ | BYOZ | €PL Zp¢L LPL OPL 6EL BEL LEL 9€l SGEL PEL EEL ZEL LEL OElL 6ZI 8Zl 8
(98t | Z6LL | LZV 9CL SEL wZL €21 2ZL iLZL oZL 6LL BLL LLL 9LL SLL wLL ELL CLL L
9/5%¥Z | 9251 | LLL OLL 60L 8OL £LOL 90L SOL +OL €0OL 2ZOL LOL OOL 66 86 LB 96 9
0BrOZ | 0BZL | S6 6 £6 4] L6 06 68 88 LB 98 S8 v8 €8 Z8 I8 08 S
¥8E9L | ¥TOL | 6L 8L LL 9L SL vL £L cL L 0] 4 69 89 L9 99 S9 14°] 4
88ZC1 | 89L £9 Z9 19 09 6S 8s LS 95 99 vS €5 [A*] LS 0S 6y 8y €
618 (AR} Ly =14 Sy 144 £y (44 Ly ov 6€ 8€ LE 9g SE vE £E [4> [
960F 952 L€ o€ 62 8¢ Lz oz 14 124 £g (44 1z 0z 61 Bl Ll 9l L
0 0 Si vi £l cl L oL 6 8 L 9 S v € Z 3 0 0
00XX | XX00| 4 = a 0] a v 6 8 & 9 S v € 4 L 0 X3H

S378V.1 NOISHIANOD TVIWIDIAVX3IH TVWIO3A

a XIaN3ddv

230

Appendix D

We can demonstrate using this table by working through an example.

Let's find the Hexadecimal equivalent of the decimal number 6200.
We have to determine the 16-bit binary number;
ie bbbbbbbb bbbbbbbb
HOB LOB

i. From the leftmost column of the table under the heading xx00,
we find that 6200 is between 4096 and 8192. So we choose the lower
value 4096 and from the row value, we take the most significant
four bits of the HOB (High Order Byte) to be 1 ie Ol.
0001bbbb bbbbbbbb
HOB LOB
ii. The second step is to determine the less significant four bits
of the HOB. We find the difference of 6200 and 4096 to be 2104.
Since the difference is still greater than 255, we refer to the
second leftmost column of the table under the column heading OOxx
and find that 2104 is between 2048 .and 2304. Again we take the
lower value 2048 and arrive from the row value that the less
significant four bytes of HOB is 8 ie 1000.
00011000 bbbbbbbb
HOB LOB
iii.The third step is to determine the LOB (Low Order Byte) for the
number. We find the difference between 2104 and 2048 as 56. From
the large middle big sub-table we find that 56 is at the
intersection of row 3 and column 8. So we take the LOB as 38H.
00011000 00111000
HOB LOB

So the HEX-value of the number 6200 is 1838H.

231

A S et il A I) | BT 4] R B R - S 4
L — 8L — 6L— 02— - - ¢€&€—- vZ— 9 — 92— IlZ— BZ— 6Z— OE— 18— 2& - 3
EE— P — SE— 8 — ([E— BE— BE— Ob— b— ZH— Eh— Pb— GPb— Op— [p— 8b-— a
6r — 05— 19— %9 — €68 — ¢$a— 89— 99— (99— BI— 65— 09— 19— 29— £9— 49— 2
SAn=S08 =1 £0 = [8gi= B9 =T 0E =1 ([SRl = B B g gl ot i = gl g R g
18— 28— €8 — tB— S8— 98— [B— B8 — 68— 08— 16— ¥ — E£6— P68 — S5 — 06— v
6 — 86 — 66 — O00L— 10l— 2ZOL— €0L— +OL— SOL— 90L— (LOL— 80L— 60L— OLL— Lki— Zhi— 6
ekl wil— SLi— 8L~ €LH— 8Bll— BIl— 0OTi= |TI — tZi— &BZl— ¥Zl— QZI— OZl— {Z1— B8ZI- 8
4 = | a 2 g v 6 8 L 9 S 14 £ Z L 0 X3H

378VL NOISHIANOD TVIWIOIAVXIH TVYIWID3A LNIWITJWOD 5.2

3 XIaON3ddV

232

3l ai a1 gl vi 61 8l Ll 9l Sl 14} £l (4% Ll oL 4
at ol al vi 61 8l Ll 9l Sl ri €l Zl Ll ol o 3
a1 gl Yi 61 8l Ll 9l Sl 14 £l cl L ol 4 = a
gl vi 61 8l Ll 9l Sl il £l cl Ll ol 4 3 a 2
Yi 6l 8l Ll 91 Si vl €l cl 13 0ol d 3 a 2 g
6L 81 Ll 9l SL rl €l Zl L oL d = a 2 =] v
8l Ll 9l Si 14" £l Zl Ll ol | | a 2 =] v 6
Ll 9l =1 14" €l (4} L oL d 3 a 2 g v 6 8
91 Sl L €l Zl L oL d 3 a 2 g v 6 8 &
Si i £l Zl LL ol d = | a 9] g v 6 8 L 9
14 €l cl L oL E| 3 a J g v 6 8 L 9 S
£l Cl L ol 4 3 a J g v 6 8 & 8 S v
cl Ll oL ~ | 3 a 2 g v 6 8 L 9 S 14 €
Ll 0l 4 3 a J g v 6 8 L 9 S 14 £ [4
ol 4 3 a 2 g v 6 8 L 9 S 14 £ [4 L
E| 3 a o g v 6 8 L 8 S 14 £ [4 l 0
E| 3 a 2 8 i v 6 8 o 9 S 14 £ [L 0

378V1 NOILIaaY TVYINIDIAVX3IH

4 XIaON3ddV

N M T 0w © ~ o o < om0 0 w w

(= B

233

APPENDIX G

FLAG OPERATION SUMMARY TABLE

INSTRUCTION C| Z2{P/V| S| N| H|COMMENTS

ADC HL, SS #*| #| V.| # @ | X| 16-bit add with carry

ADX s; ADD s # | #| V| # @ | # |8-bit add or add with carry

ADD DD, SS #| - =] — @| X|16-bit add

AND s Q| # P | # @| 1| Logical operations

BITb,s —| #| X | X| @] 1|State of bit b of location s is
copied into the Z flag

CCF #| -] —| - @ | X|Complement carry

CPD; CPDR; CPI; CPIR — | # # | X 1 X | Block search instruction
Z=1if A=(HL), else Z=0
P/V=1 if BC#0, otherwise
P/V=0

CPs # | #| V| # 1 # | Compare accumulator

CPL - =1 =1 - 1 1 | Complement accumulator

DAA # | #| P # — | # | Decimal adjust accumulator

DECs —| #| V| # 1 # | 8-bit decrement

INr, (C) —| #| P | #| @ @] Input register indirect

INCs - | # A # Q # | 8-bit increment

IND; INI -l #] X| X 1 X | Block input 2=0 if B#Q'
else Z=1

INDR:INIR — 1 X X 1 X | Block input Z=0 if B#0
else Z=1

LD A, ;LDAR — | #| IFF| # | 0| @] Content of interrupt enable
Flip-Flop is copied into the
P/V flag

LDD; LDI —| X| #| X 1)} @ | Block transfer instructions

LDDR; LDIR — | X] 0| X| @] @]|P/V=1if BC#0, otherwise
P/V=0

NEG #| #| V| # 1 # | Negate accumulator

OR s 0| | P #| @ | O] Logical OR accumulator

OTDR; OTIR — 1 X | X 1 X | Block output; Z=0 if B#0Q
otherwise Z=1

QUTD; OUTI —| #]| X | X 1 X | Block output; Z=0 if B#0Q
otherwise Z=1

RLA; RLCA;RRA;RRCA| #| —| — | —| 0 @ | Rotate accumulator

RLD; RRD — | #| P | #]| 0 / | Rotate digit left and right

RLS: RLCs; RRs; RRCs | # #| P| #]| @ @ | Rotate and shift location s

SLAs; SRAs; SRLs

SBC HL, SS #| #)| V| # 1 X | 16-bit subtract with carry

SCF 1 —| = | =] @] @] Setcarry

SBCs; SUB s \ 1 8-bit subtract with carry

XO0R x Q P g @ | Exclusive OR accumulator

234

Appendix G

P/V

-3

< =0 |

v

SS

nn

OPERATION
Carry flag. C=1 if the operation produced a
carry from the most significant bit of the operand
or result.
Zero flag. Z=1 if the result of the operation is
zero.
Sign flag. S=1 if the most significant bit of the
result is one, ie a negative number.
Parity or overflow flag. Parity (P) and overflow
(0) share the same flag. Logical operations affect
this flag with the parity of the result while
arithmetic operations affect this flag with the
overflow of the result.
If P/V holds parity, P/V=1 if the result of the
operation is even, P/V=0 if result is odd.
I1f P/V holds overflow, P/V=1 if the result of the
operation produced an overflow.
Half-carry flag. H=1 if the add or subtract
operation produced a carry into or borrow from bit
4 of the accumulator.
Add/Subtract flag. N=1 if the previous operations
was a subtract.

H and N flags are used in conjunction with the
decimal adjust instruction (DAA) to properly
correct the result into packed BCD format following
addition or subtractionusing operands with packed
BCD format.

The flag is affected according to the result of the
operation.

The flag is unchanged by the operation.

The flag is reset (=0) by the operation.

The flag is set (=1) by the operation.

The flag result is unknown.

The P/V flag is affected according to the overflow
result of the operation.

P/V flag is affected according to the parity result
of the operation.

Any one of the CPU registers A,B,C,D,E,H,L.

Any 8-bit location for all the addressing modes
allowed for the particular instructions.

Any 16-bit location for all the addressing modes
allowed for that instruction.

Refresh register

8-bit value in range 0-255.

16-bit value in range 0-65535.

235

APPENDIX H
Z80—CPU INSTRUCTIONS SORTED BY OP-CODE

HEXADECIMAL MNEMONIC | HEXADECIMAL MNEMONIC | HEXADECIMAL MNEMONIC
00 NOP 49 LDC.C 92 SUB D

01 XXXX LD BC NN A LDC,D 93 SUB E

02 LD (BC),A 4B LDCE 94 SUB H

03 INC BC 4ac LDCH 95 SUB L

04 INCB 4D LDC.L 96 SUB (HL)
05 DECB 4E LD C,(HL) 97 SUB A
06X X LD B,N 4F LD C.A 98 SBC A B
07 RLCA 50 LD DB 99 SBCAC
08 EX AF, AF’ 51 LD D,C 9A SBC AD
09 ADD HL,BC 52 LDD,D 9B SBC AE
0A LD A, (BC) 53 LD DE acC SBC A .H
0B DEC BC 54 LDDMH 9D SBC AL
oC INCC 55 LD D,L 9E SBC A,(HL)
oD DECC 56 LD D.(HL) 9F SBC A A
0EXX LDC.N 57 LDD,A AOQ AND B
OF RRCA 58 LD E.B A1l ANDC
10X X DJNZ DIS 59 LDE.C A2 AND D
TIXXXX LD DE,NN 5A LDED A3 AND E

12 LD (DE)LA 5B LD E,E A4 AND H
13 INC DE 5C LDEH A5 AND L
14 INCD 5D LDE,L AB AND (HL)
15 DECD 5E LDE,(HL) A7 AND A
16XX LD D,N 5F LDEA A8 XOR B

17 RLA 60 LDH,B A9 XORC
18X X JR DIS 61 LDH,.C AA XORD

19 ADD HL,DE 62 LD H,D AB XORE

1A LD A,(DE) 63 LD H.E AC XORH

1B DEC DE 64 LDHH AD XORL

1C INC E 65 LDHL AE XOR (HL)
1D DECE 66 LD H,(HL) AF XOR A
1EXX LD EN 67 LDH,A BO OR B

1F RRA 68 LD LB B1 ORC
20XX JRNZDIS 69 LDLC 82 OR D
21XX XX LD HL,NN 6A LDLD B3 OR E
22XX XX LD (NN),HL | 6B LD L.E B4 ORH

23 INC HL 6C LD LH BS OR L

24 INC H 6D LD L.L B6 OR (HL)
25 DECH 6E LD L,(HL) B7 OR A

26X X LD H,N 6F LD LA B8 CPB

27 DAA 70 LD (HL).B B9 CPC

28X X JR Z2,DIS 73 LD (HL),C BA CPD

29 ADD HLHL | 72 LD (HL),D BB CPE

2AX XXX LD HL,(NN) 73 LD (HL)E BC CPH

2B DEC HL 74 LD (HL}H BD CPL

2C INC L 75 LD (HL),L BE CP (HL)
2D DEC L 76 HALT BF CP A
2EXX LD LN 77 LD (HL),A co RET NZ
2F CPL 78 LD A,B c1 POP BC
F0XX JRNC.DIS 79 LDAC C2XXXX JP NZ NN
31XXXX LD SP,NN 7A LD AD C3X XXX JP NN

32X X X X LD (NN),A 7B LD AE CAXXXX CALL NZ,NN
33 INC SP 7C LD AH C5 PUSH BC
34 INC (HL) 7D LD AL C6XX ADD AN
35 DEC (HL) 7€ LD A,(HL) C7 RSTO
36XX LD (HL),N 7F LD AA c8 RET 2

37 SCF 80 ADD AB c9 RET

38X X JR C,DIS 81 ADD AC CAXXXX JP Z.NN
39 ADD HL,SP 82 ADD A,D CCXXXX CALL Z,NN
ZAXXXX LD A,(NN) 83 ADD A.E CDXXXX CALL NN
3B DEC SP 84 ADD A.H CEXX ADC AN
3ic INC A 85 ADD A,L CF RST 8

3D DEC A 86 ADD A,(HL) DO RET NC
SEXX LD AN 87 ADD A,A D1 POP DE
3F CCF 88 ADC A.B D2X XXX JP NC,NN
40 LD B,B 89 ADC A,C D3XX OUT (N),A
41 LD B,C 8A ADC A,D D4XX XX CALL NC,NN
42 LD B,D 8B ADC A E D5 PUSH DE
43 LD B.E 8c ADC A,H DEX X SUB N

44 LD BH, 8D ADC A,L D7 RST 10H
45 LDB,L 8E ADC A,(HL) D8 RETC

46 LD B,(HL) 8F ADC A A D9 EXX

47 LDB.A 90 SuB B DAX XX X JP C,NN
48 LDCB 91 SUB C DBXX IN A,(N)

s

236

HEXADECIMAL MNEMONIC | HEXADECIMAL MNEMONIC | HEXADECIMAL MNEMONIC
DCXXXX CALL C,NN CcB28 SRA B CB79 BIT7,.C
DEXX SBC AN CB29 SRA C CB7A BIT 7.0
DF RST 18H CB2A SRA D CB7B BIT 7.E
EO RET PO CB2B SRA E CB7C BIT 7.H
E1 POP HL CB2C SRA H CB7D BIT 7L
E2XXXX JP PO,NN CB2D SRA L CB7E BIT 7,(HL)
E3 EX (SP),HL CB2E SRA (HL) CB7F BIT7.A
E4X XXX CALL PO,NN CB2F SRA A CBB0 RES0.,B
ES PUSH HL CB38 SRL B CB81 RESO,C
EBX X AND N CB39 SRL C CcB82 RES0,D
E7 RST 20 H CB3A SRL D CcB83 RESOQ.,E
E8 RET PE CB3B SRL E CB84 RES O.H
E9 JP (HL) CB3C SRL B CB85 RESO,L
EAXXXX JE PE NN oB3D SAL L CB86 RESO,(HL)
EB EX DE,HL CBIE SAL (HL) CB87 RES 0,A
ECXXXX CALLPENN | cg3F SRL A CB88 RES 1,8
EEXX XOR N CB40 BIT 0.B CB89 RES 1,C
EF RST 28H CBA1 BIT0.C CBBA RES 1.D
FO RET P CBA42 BIT 0D CB8B RES 1,E
F1 POP AF oo BIT O'E CB8C RES 1,H
F2XXXX JR P,NN Coda a0 CB8D RES 1.L
F3 . DI Chas BITOL CBSE RES 1,(HL)
FAXXXX CALLPNN | Cpas BITO(NL | CBSF RES 1.A
F5 PUSH AF e SITOA CB90 RES 2B
F620X X ORN oBes g CB91 RES2,C
F7 RST 30H b BIT 1.0 CB92 RES 2.D
F8 RET M CBAA BT D cB93 RES 2.E
F9 LD,SP,HL CB4B BIT 1E cB94 RES 2.H
FAXXXX JPMNN gl bl CB95 RES 2,L
FB El i Sir CB96 RES 2,(HL)
FCXXXX CALL M,NN e L3 1-:-H } CB97 RES 2,A
FE20XX CPN i =S L CB98 RES 3,8
FF RST 38H e Bﬁ ,3 CB99 RES 3,C
CBOO RLC B cps1 ST g’c CB9A RES 3.0
CBO1 RLCC i A CB9B RES 3,E
CBO02 RLC D s i CB9C RES e,H
CBO3 RLC E e L CBID RES 3,L
CBO4 RLC H coss 4B, CB9E RES 3,(HL)
SELS RLCL CB56 B2ty | &0 HER 28
CBO6 RLC (HL) cBS7 BIT2A CBAD RES 4B
CBO7 RLC A CBSS 8IT3B CBA1 RES4.C
CHAOS RRC B CB59 BIT3.C i RERSY
CBOA RRCD CB5B BIT 3'E CBA4 RESeH
CBOB RRC E CBSC BiIv 35 CBAS RES4,L
CBOC RRC H CB5D BIT 3L Spas RES 4,(HL)
CBOD RRC L CBSE BTG | SR HES 44
CBOE RRC (HL) CBSF BIT3 A CBA8 RES 5,8
CBOF RRC A CB60 BIT48 CBA9 RES5.C
CB10 RL B CB61 BIT4.C Eaea RES 5,0
CB11 RLC CB62 BIT 4,0 cBac HES BE
CB12 RL D CB63 BIT 4 E ERA i
CB13 RLE CB64 BIT4H CBAE RES 6L
815 RLL CB66 BIT4,(HL) | cggo i
CB16 RL (HL) CB67 BIT4,A CBB1 EES g'B
CB17 RL A CB68 BIT 5.8 CEBZ RELSE
CB18 RR B CB69 BIT 5.C P 4o
CcB19 RR C CB6A BITS5,D CBB4 RES E
CB1A RR D CB6B BIT 5. ot Ly
CB1B RR E CB6C BIT 5.H i HER S
CB1C RR H CB6D BITS5.L o RES 6,(HL)
CB1D RR L CB6E BIT 5,(HL) CBB8 RES 7B
CB1E RR (HL) CB6F BIT5 A o RES7.8
CBIF RR A CB70 BIT 6.8 CBBA Mok
CB20 SLA B CB71 BIT 6,C CBBB Sl
CB21 SLAC CB72 BIT 6D RES 7.
CB22 SLA D CB73 BIT 6.E CBBC RES 7.H
cB23 SLAE CB74 BIT 6 H C88D RES7.L
CB24 SLAH C875 BIT 6.L b b5
CB25 SLA L CB76 BIT6(HL) | Seco RES 7.A
CB26 SLA (HL) CB77 BIT 6,A gggﬁ' gg 08
cB27 SLA A ’ g

237

HEXADECIMAL MNEMONIC | HEXADECIMAL MNEMONIC | HEXADECIMAL MNEMONIC
CBC3 SETO.E DD4EX X LD C,(1X+d) EDS3XXXX LD{(NN),DE
CBC4 SETO,H DD56XX LD D,(1X+d) ED56 IN1
CBCS SETO,L DDSEXX LD E,(1X+d) ED57 LD A1
CBC6 SET 0,(HL) DD66X X LD H,(1X+d) EDS58 IN E,(C)
CBC7 SETO0,A DDBE XX LD L,(1X+d) EDS9 OuUT (C)LE
CBCS8 SET1,B DD70XX LD (1X+d),B ED5A ADC HL,DE
CBC9 SET1,C DD71XX LD (1X+d),C EDSBXXXX LD DE,(NN)
CBCA SET1,D DD72XX LD (IX+d),D EDSE M2
CBCB SET 1,E DD73XX LD (I1X+d),E ED5F LDAR
CBCC SET 1,H DD74XX LD (1X+d) H ED60 IN H,(C)
CBCD SET1,L DD75XX LD (I1X+d),L ED61 QuUTI(C),H
CBCE SET 1,(HL) DD77XX LD (1X+d),A EDB2 SBC HL.HL
CBCF SET 1.A DD7EXX LD A,{1X+d) EDB3XXXX LD (NN),HL
CBDO SET 2B DD86XX ADD A,(1X+d) | ED67 RRD
CBD1 SET 2.C DDB8EXX ADC A,(1X+d) | EDEB IN L,(C)
CBD2 SET2,D DD96X X SUB(IX +d) ED69 ouT(C),L
CBD3 SET 2.E DD9EXX SBC A,(IX+d) | ED6A ADC HL,HL
CBD4 SET 2.H DDABX X AND(IX+d) EDBBXXXX LDHL, (ADDR)
CBD5 SET 2.L DDAEXX XOR(I1X+d) ED6F RLD
CBD6 SET 2,(HL) DDBBX X OR(1X+d) ED72 SBC HL.SP
CBD7 SET 2,A DDBEXX CP(I1X+d) ED73XXXX LD(NN),SP
ceD8 SET 3.8 DDE1 POP 1X ED78 IN A,(C)
CBD9 SET 3,C DDE3 EX(SP),IX ED79 ouTI(C),A
CBDA SET 3.D DDE5S PUSH 1X ED7A ADC HL,SP
EEBB SET 3,E DDES JP(IX) ED7BX XXX LD SP,(NN)
c SET3,H DDF9 LD SP,IX EDAO LDI
CBDD SET3,L DDCBXX06 RLCI(1X+d) EDA1 CPI
ngE SET 3,(HL) DDCBX X0E RRC(I1X+d) EDA2 INI
CBDF SET 3,A DDCBXX16 RL(I1X+d) EDA3 OuTI
EEE? SET4,B DDCBXX1E RR(1X+d) EDAS LDD
CBE2 SET 4,C DDCBXX26 SLA({I1X+d) EDA9 CPD
SET 4D DDCBXX2E SRA(I1X+d) EDAA IND
CBE3 SET4,E DDCBXX3E SRL(IX+d) EDAB ouTD
CBE4 SET 4, H DDCBXX46 BIT O,(1X+d) EDBO LDIR
CBES SET4,L DDCBXX4E BIT 1,(1X+d) EDB1 CPIR
CBE6 SET 4,(HL) DDCBXX56 BIT 2,(1X+d) EDB2 INIR
CBE7 SET 4,A DDCBXXSE BIT 3,(1X+d) EDB3 OTIR
CBES8 SET5.,B DDCBX X66 BIT 4,(1X+d) ECBS8 LDDR
CBE9 SET5.C DDCBXX6E BIT 5,(1X+d) ECBY9 CPDR
CBEA SET5,D DDCBXX76 BIT 6,(1X+d) ECBA INDR
CBEB SETS5,E DDCBXX7E BIT 7,(1X+d) ECBB OTDR
CBEC SET5,H DDCBX X86 RESO,(IX+d) | EDO9 ADD I¥,BC
CBED SET5,L DDCBXX8E RES 1,(1X+d) | ED19 ADD IY,DE
SBEF SET 6.(HL) DDCBX X96 RES 2.(1X+d) | ED21XXXX LD I¥,NN
A gg g’; DDCBX X9E RES 3,(1X+d) | FD22XXXX LD(NN),IY
GBF1 SET6C DDCBX XA6 RES4,(1X+d} | FD23 INC 1Y
CBE2 S DDCBXXAE RES 5,(IX+d) | FD29 ADD IY,IY
CBE3 SETGE DDCBX XB6 RES 6,(1X+d) FD2AXXXX LD IY,(NN)
CBF4 SET 6.H DDCBXXBE RES 7,(IX+d) | FD2B DEC IY
ks SETEL DDCBXXC6 SET 0,(1X+d) FD34XX INC(1Y+d)
CHEE SV DDCBXXCE SET 1,(1X+d) FD35X X DEC(IY+d)
CBEY ST A DDCBXXD6 SET 2,(1X+d) FD36XX20 LD(IY+d),N
cars SET7B DDCBXXDE SET 3,(1X+d) FD39 ADD 1Y,SP
carn SET I DDCBXXE6 SET 4,(1X+d) FDA4BX X LD B,(1Y+d)
BEA ' DDCBXXEE SET 5,(1X+d) FD3EXX LD C,{1Y+d)
gBFB SET 7D DDCBXXF6 SET6,(1X+d} | FD5BXX LD D,(1Y+d)
SET 7.E DDCBXX FE SET 7,{1X+d) FDSEX X LD E (1Y +d)
CBFC SET7.H EDA40 IN B,(C) FDEBX X LD H,(1Y+d)
CBFD SET7.L ED41 OuUTIC),B FDBEXX LD L,(1Y+d)
CBFE SET 7.(HL) ED42 SBC HL,BC FD70X X LD (IY+d),B
CBFF SET7,A ED43X XXX LD(NN),BC FD71XX LD (1Y+d),C
DDo9 ADD 1X,BC EDA44 NEG FD72XX LD (1Y +d),D
DD19 ADD IX,DE ED45 RETN FD73XX LD (IY+d),E
DD21 XX XX LD I1X,NN ED46 IM 0 FD74XX LD (1Y+d).H
DD22X XXX LDINN),IX ED47 LD A FD75XX LD (1Y+d),L
DD23 INC IX ED48 IN C,(C) FD77XX LD (1Y+d),A
DD29 ADD 1X,1X ED49 ouT(C) ,C FD7EXX LD A,(IY+d)
DD2AXXXX LD IX,(NN) ED4A ADC HL,BC FD86X X ADD A,{1Y+d)
DD2B DEC IX ED4BX XXX LD BC,(NN) FDBEXX ADC A,{1Y+d)
DD34XX INC(I1X+d) ED4D RETI FD96X X SUB(IY+d)
DD35XX DEC(1X+d) ED4F LDR.A FDIEXX SBC A,(1Y+d
CA,l)
DD36XX20 LD(I1X+d),N EDS0 IN D,(C) FDABXX AND (1Y+d)
DD39 ADD IX,SP EDS1 ouTI(C),D FDAEXX XOR (IY+d)
DD4BXX LD B,(1X+d) ED52 SBC HL,DE FDBBX X OR (1Y+d)

238

HEXADECIMAL MNEMONIC | HEXADECIMAL MNEMONIC | HEXADECIMAL MNEMONIC
FDBEXX CP (I'Y+d)
FDE1 POP IY
FDE3 EX (SP), 1Y
FDES PUSH 1Y
FDE9 JP (1Y)

FDF9 LD SP,1Y
FDCBXX06 RLC(IY+d)
FDCBXXO0E RRCI{IY+d)
FDCBXX16 RL(IY+d)
FDCBXX1E RR{1Y+d)
FDCBXX26 SLA(IY+d)
FDCBXX2E SRA(IY+d)
FDCBXX3E SRL(1Y+d)
FDCBXX46 BIT 0.(IY+d)
FDCBXXA4E BIT 1,(1'Y+d)
FDCBXX56 BIT 2,(1'Y+d)
FDCBXX5E BIT 3,(1Y +d)
FDCBXX66 BIT 4,(1Y+d)
FDCBXX6E BIT 5,(IT+d)
FDCBXX76 BIT 6,(1'Y+d)
FODCBXXT7E BIT 7,(1'Y+d)
FDCBXX86+ RES0,(1Y+d)
FDCBXXBE RES 1,(1Y+d)
FDCBXX96 RES 2,(1Y+d)
FDCBXX9E RES 3,(1Y+d)
FDCBXXA6 RES 4,(1Y+d)
FDCBXXAE RES 5,(1Y+d)
FDCBXXB6 RES 6,(1Y+d)
FDCBXXBE RES 7,(1Y+d)
FDCBXXC6 SET 0,(1Y+d)
FDCBXXCE SET 1,(1Y +d)
FDCBXXD6 SET 2,(1Y+d)
FDCBXXDE SET 3,(1Y +d)
FDCBXXEG SET 4,(1Y+d)
FDCBXXEE SET 5,(1'Y+d)
FDCBXXF6 SET 6,(1Y+d)
FDCBXXFE SET 7.(1'Y+d)

239

APPENDIX |
Z80—-CPU INSTRUCTIONS SORTED BY MNEMONIC

MNEMONIC

HEXADECIMAL | MNEMONIC HEXADECIMAL | MNEMONIC HEXADECIMAL

ADC A, (HL) 8E BIT 2,8 CB 50 CPn FE XX
ADC A, (IX+dis) DD 8E XX BIT 2.C CB 51 CPE BB
ADC A,(IY+dis) FD 8E xx BIT 2,D CB 52 CPH BC
ADC A,A 8F BIT 2,E CB 53 cPL BD
ADC A,B 88 BIT 2,H CB 54 CPD ED A9
ADC A,C 89 BIT 2,L CB 55 CPDR ED B9
ADC A,D 8A BIT 3,(HL) CB5E CPI ED A1

| ADC An CE XX BIT 3,(IX+dis) DD CB XX 5E CPIR ED B1

| ADC A,E 8B BIT 3,(1Y+dis) FD CB XX 5E CPL 2F

| ADC AH 8C BIT 3,A CB5F DAA 27

| ADCA,L 8D BIT 3B CB 58 DEC (HL) 35

| ADC HL,BC ED4A BIT 3.C CB 59 DEC (1X+dis) DD 35 XX

| ADC HL,DE ED 5A BIT 3,0 CB5A DEC (1Y+dis) FD 35 XX

| ADC HL,HL ED BA BIT 3,E CB 5B DEC A 3D

| ADC HL,SP ED7A BIT 3,H CB5C DEC B 05

| ADD A, (HL) 86 BIT3,L CB 5D DEC BC 0B

[ADD A,(IX+dis) DD 86XX BIT 4,(HL) CB 66 DECC 0D

| ADD A,(IY+dis) FD 86XX BIT 4,(1X+dis) DDCB XX 66 | pecD 15

| ADD A.A 87 BIT 4,(1Y+dis) FDCB XX 66 | DEC DE 1B

| ADD A,B 80 BIT4.A CB 67 DECE 1D
ADD A,C 81 BIT4B CB 60 DEC H 25
ADD A,D 82 BIT4.C CB 61 DEC HL 2B
ADD An C6 XX BIT 4,0 CB 62 DEC IX DD 28
ADD A,E 83 BIT 4,E CB 63 DEC 1Y FD 2B
ADD A, H 84 BIT 4 H CB 64 DEC L 2D
ADD A,L 85 BIT4,L CB 65 DEC SP 3B
ADD HL,BC 09 BITS,(HL) CB 6E DI F3
ADD HL,DE 19 BIT 5,(1X+dis) DD CB XX BE | pynz dis 10 XX
ADD HL,HL 29 BIT 5,(1Y+dis) FD CB XX 6E El FB
ADD HL,SP 39 BIT5,A CB 6F EX (SP) ,HL E3
ADD IX,BC DD 09 BIT58B CB 68 EX (SP) ,IX DD E3
ADD 1X,DE DD 19 BITS5,C CB 69 EX (SP) 1Y FD E3
ADD IX,1X DD 29 BIT5,D CB 6A EX AF,AF’ 08
ADD IX,SP DD 39 BIT5,E CB 6B EX DE,HL EB
ADD IY,BC FD 09 BIT5,H CB6C EXX D9
ADD 1Y,DE FD 19 BIT5,L CB 6D HALT 76
ADD IY,lY FD 29 BIT6,(HL) CB 76 IM 0 ED 46
ADD IY,SP FD 39 BIT 6,(1X+dis) DDCBXX76 | IM1 ED 56
AND (HL) A6 BIT 6,(1Y+dis) FDCBXX76 | IM2 ED 5E
AND (1X+dis) DD A6 XX BIT 6.A CB 77 IN A, (C) ED 78
AND (1 Y+dis) FD AB XX BIT 6,8 CB 70 IN A,port DB XX
AND A A7 BIT6,C cB 71 IN B, (C) ED 40
AND B A0 BIT 6.D CB 72 IN C, (C) ED 48
AND C Al BIT 6,E CB 73 IN D, (C) ED 50
AND D A2 BIT 6,H CB 74 IN E, (C) ED 58
AND n E6 XX BIT 6,L CB 75 IN H, (C) ED 60
AND E A3 BIT 7,(HL) CB 7E INL, (C) ED 68
AND H A4 BIT 7,(1X+dis) DD CB XX 7E | INC (HL) 34
AND L AS BIT 7,(1Y+dis) FD CB XX 7E INC (I1X+dis) DD 34 XX
BIT O,(HL) CB 46 BIT 7,A CB 7F INC (1Y +dis) FD 34 XX
BIT 0,(1X+dis) DD CB XX 46 BIT7.B CB 78 INC A 3C
BIT 0,(1Y+dis) FDCBXX46 | BIT7.C CB 79 INC B 04
BIT0,A CB 47 BIT 7.D CB7A INC BC 03
BITo,B CB 40 BIT 7.E CB 7B INC C ocC
BITO,C CB 41 BIT7.H CB 7C INCD 14
BITO,D CB 42 BIT7.L CB 7D INC DE 13
BIT O,E CB 43 CALL ADDR €D XX XX INC E 1C
BIT OH CB 44 CALLC,ADDR DC XX XX INC H 24
BITO,L CB 45 CALLM,ADDR FC XX XX INC HL 23
BIT 1,(HL) CB 4E CALL NC,ADDR D4 XX XX INC IX DD 23
BIT 1,(1X+dis) DD CB XX 4E | CALL NZ.ADDR C4 XX XX INC 1Y FD 23
BIT 1.(1Y+dis) FDCB XX4E | CALLP,ADDR F4 XX XX INC L 2C
BIT 1,A CB 4F CALLPE,ADDR EC XX XX INC SP 33
BIT1,B CB 48 CALL PO,ADDR E4 XX XX IND ED AA
BIT1.C CB 49 CALLZADDR CC XX XX INDR ED BA
BIT1.D CB 4A CCF 3F INI ED A2
BIT 1,E CB 4B CP (HL) BE INIR ED B2
BIT 1.H CB 4C CP (1X+dis) DD BE XX JP (HL) E9
BIT1,L CB 4D CP (1Y +dis) FD BE XX P (IX) DD E9
BIT 2,(HL) CB 56 CP A BF JP (1Y) FD E9
BIT 2,(1X+dis) DDCBXX56 | cpB B8 4P ADDR €3 XX XX
BIT 2,(1Y+dis) FDCBXX56 | cpc B9 JP C,ADDR DA XX XX

240

MNEMONIC HEXADECIMAL | MNEMONIC HEXADECIMAL | MNEMONIC HEXADECIMAL

JP NC,ADDR D2 XX XX LD BC,nn 01 XX XX LDDR ED B8

JP NZ,ADDR €2 XX XX LD C, (HL} 4E LDI ED AD

JP P,ADDR F2 XX XX LD C, (IX+dis) DD 4E xx LDIR ED BO

JP PE,ADDR EA XX XX LD C, (1Y+dis) FD 4E XX NEG ED 44

JP PO,ADDR E2 XX XX LD C.A AF NOP 00

JP Z,ADDR CA XX XX LDC,B 48 OR (HL) B6

JR C dis 38 XX LDcC.C 49 OR (1X+dis) DD B6 XX

JR dis 18 XX LDC,D aA OR (1Y +dis) FD B6 xx

JR NC dis 30 XX LD Cn 0E XX OR A B7

JR NZ dis 20 XX LD C,E 4B ORB BO

JR Z dis 28 X X LD C.H 4c ORC B1

LD (ADDR) ,A 32 XX XX LDCL 4D ORD B2

LD(ADDR) ,BC ED43 XX XX | LD D, (HL) 56 ORn F6 XX

LD (ADDR) ,DE EDS53 XX XX | LD D, (IX+dis) DD 56 XX ORE B3

LDIADDR) HL EDB63 XX XX | LD D, (1Y+dis) FD 56 XX OR H B4

LD (ADDR) HL 22 XX XX LD D.A 57 OR L BS

LD (ADDR) ,IX DD22 XX XX | LDDB 50 OTDR ED BB

LD (ADDR), 1Y FD22XX XX | LDD.C 51 OTIR ED B3

LD (ADDR) ,SP ED73 XX XX | LDD,D 52 ouT (C) ,A ED 79

LD (BC) ,A 02 LD Dn 16 XX ouT (C) B ED 41

LD (DE) A 12 LD D,E 53 OouT (C) ,C ED4g

LD (HL),A 77 LD D.H 54 ouT (C) ,D ED 51

LD (HL) ,B 70 LD D,L 55 ouT (C) E ED 59

LD (HL), C 71 LD DE, (ADDR) EDG5B XX XX | ouT (c) H ED 61

LD (HL) D 72 LD DE,nn 11 XX XX ouT (C) L ED 69

LD (HL) ,n 36 XX LD E, (HL) 5E OUT part, A D3 port

LD (HL) E 73 LD E, (1X+dis) DD 5E XX ouTD ED AB

LD (HL) H 74 LD E, (1Y+dis) FDSE XX ouTI ED A3

LD (HL) L 75 LDE,A 5F POP AF F1

LD (1X+dis) ,A DD 77 XX LDEB 58 POP BC C1

LD (1X+dis) ,B DD 70 XX LDE,C 59 POP DE D1

LD (1X+dis) ,C DD 71 XX LD E,D 5A POP HL E1

LD (1X+dis) ,D DD 72 XX LD E,n 1E XX POP IX DD E1

LD (IX+dis) ,n DD 36 XX XX LD E.E 5B POP IY ED E1

LD (I1X+dis) ,E DD 73 XX LD EH 5C PUSH AF F5

LD (1X+dis) ,H DD 74 XX LDE,L 5D PUSH BC c5

LD (I1X+dis) ,L DD 75 XX LD H, (HL) 66 PUSH DE D5

LD (1Y+dis) ,A FD 77 XX LD H, (1X+dis) DD 66 XX PUSH HL ES5

LD (1Y+dis) ,B FD 70 XX LD H, (1Y+dis) FD 66 XX PUSH IX DD ES

LD (1Y+dis) ,C FD 71 XX LD H,A 67 PUSH IY FD ES

LD (1Y+dis) ,D FD 72 XX LDHB 60 RES 0, (HL) CB 86

LD (1Y+dis) ,n FD 36 XX XX | LDH.C 61 RES O, (IX+dis) DD CB XX 86

LD (1Y +dis) ,E FD 73 XX LD H,D 62 RESO, (IY+dis) FDCB XX 86

LD (1Y +dis) ,H FD 74 XX LD H,n 26 XX RES 0,A CB 87

LD (1Y+dis) L FD 75 XX LD H.E 63 RES0,B CB 80

LD A, (ADDR) 3A XX XX LD H.H 64 RES0,C CB 81

LD A, (BC) 0A LD H,L 65 RES0,D CB 82

LD A, (DE) 1A LD HL, (ADDR) ED6B XX XX | RESO,E CcB 83

LD A, (HL) 7E LD HL,(ADDR) 2A XX XX RESO.H CB 84

LD A, (1X+dis) DD 7E XX LD HL,nn 21 XX XX RES O,L CB 85

LD A, (1Y+dis) FD 7E XX LD I,A ED 47 RES 1, (HL) CB 8E

LD AA 7F LD I1X, (ADDR) DD 2A XX XX | RES 1, (IX+dis} = DD CB XX 8E

LD A,B 78 LD IX,nn DD 21 XX XX | RES 1, (IY+dis} = FDCB XX 8E

LDAC 79 LD 1Y (ADDR) FD2A XX XX | RES1,A CB 8F

LDAD 7A LD IY,nn FD21 XX XX | RES1,B CB 88

LD An 3E XX LD L,A 6F RES 1,C CB 89

LD AE 7B LDL,B 68 RES 1,D CB 8A

LD AH 7C LbLe 69 RES 1,E CB 8B

LD Al ED 57 LD L.D 6A RES 1,H CB 8C

LD AL 7D LD L,n 2E XX RES 1,L CB 8D

LD AR ED 5F LDL,E 6B RES 2, (HL) CB 96

LD B, (HL) 46 LD L, (HL) 6E RES 2, (IX+dis) DD CB XX 96

LD B, (IX+dis) DD 46 XX LD L,(1X+dis) DD 6E XX RES 2, (IY4dis)} FD CB XX 96

LD B, (1'Y+dis) FD 46 XX LD L, (1'Y+dis) FD 6E XX RES 2,A CB 97

LDBA 47 LDLH 6C RES 2,B CB 90

LD BB 40 LD L,L 6D RES 2,C CB 91

LDB,.C 41 LD R,A ED 4F RES 2,D CB 92

LD B,D 42 LD SP, (ADDR) ED 7B XX XX | RES2,E CB 93

LD B.n 06 XX LD SP,nn 31 XX XX RES 2,H CB 94

LDB,E 43 LD SP,HL F9 RES 2,L CB 95

LD B,H 44 LD SP,IX DD F9 RES 3, (HL) CB 9E

LD B,L 45 LD SP,IY FD F9 RES 3, (IX+dis) DD CB XX 9E

LD BC, (ADDR) ED4B XX XX | LDD ED A8 RES 3, (IY+dis) FD CB XX 9E
RES 3,A CB9F

241

MNEMONIC HEXADECIMAL | MNEMONIC HEXADECIMAL | MNEMONIC HEXADECIMAL
RES 3,B CB 98 RLCC CBO1 SET1,L CBCD

RES 3,C CB 99 RLC D CB 02 SET 2, (HL) CB D6

RES 3,D CB9A RLCE CB 03 SET 2, (IX+dis) DD CB XX D6
RES 3,E CB 9B RLC H CB 04 SET 2, (IY+dis) FDCB XX D6
RES 3,H CB9C RLC L CB 05 SET2,A CB D7

RES 3,L CB 9D RLCA 07 SET 2,B CB DO

RES 4, (HL) CB A6 RLD ED 6F SET 2C CB D1

RES 4, (IX+dis) DDCB XX A6 | RR (HL) CB1E SET 2.0 CB D2

RES 4, (IY+dis) FDCB XX A6 | RR (1X+dis) DDCB XX 1E | SET2E CB D3
RES4,A CB A7 RR (1Y +dis) FDCBXX1E | SeT2H CB D4

RES 4,B CB A0 RR A CB 1F SET2.L CB D5
RES4.,C CB A1 RR B CB 18 SET 3, (HL) CB DE

RES 4,D CB A2 RR C CB 19 SET 3, (IX+dis) DD CB XX DE
RES 4,E CB A3 RR D CB1A SET 3, (IY+dis) FD CB XX DE
RES 4,H CB A4 RR E CB 1B SET 3.A CB DF

RES 4,L CB A5 RR H CB1C SET 3,8 CB D8

RES 5 (HL) CB AE RR L CB1D SET3.C CB D9

RES 5, (IX+dis) DD CB XX AE | RRA 1F SET 3,D CB DA

RES S5, (IY+dis) FDCB XX AE | RRC (HL) CB OE SET 3.E CB DB
RES5,A CB AF RRC (1X+dis) DDCBXXO0E | SET3,H CBDC

RES 5,8 CB A8 RRC (1Y +dis) FD CB XX OE SET3,L CB DD
RES5,C CB A9 RRC A CBOF SET 4, (HL) CBE6

RES 5,D CB AA RRC B cB 08 SET 4, (IX+dis) DD CB XX E6
RES5,E CB AB RRC C CB 09 SET 4, (IY+dis) FD CB XX E6
RES5,H CB AC RRC D CBOA SET 4,A CBE7

RES 5,L CB AD RRC E CH 0B SET 4B CB EO

RES 6, (HL) CB B6 RRC H CBOC SET 4,C CB E1

RES 6, (IX+dis) DDCBXXB6 | RRCL CBOD SET4,D CB E2

RES 6, (IY+dis) FDCBXXB6 | RRCA OF SET 4,E CBE3

RES 6,A CB B7 RRD ED67 SET 4,H CB E4

RES 6,8 CB BO RST 00 c7 SET4,L CB E5

RES 6,C CB B1 RST 08 CF SETS, (HL) CB EE

RES 6,D CB B2 RST 10 D7 SET S5, (IX+dis) DD CB XX EE
RES 6,E CB B3 RST 18 DF SETS5, (IY+dis) FD CB XX EE
RES 6,H CB B4 RST 20 E7 SETS5,A CB EF

RES 6,L CB B5 RST 28 EF SET 5,8 CB E8

RES 7, (HL) CB BE RST 30 F7 SETS5,C CB E9

RES 7, (IX+dis) DD CB XX BE | RST 38 FF SET5,D CB EA

RES 7, (IY+dis) FDCB XX BE | SBC A, (HL) 9E SETS5,E CB EB

RES 7,A CB BF SBC A, {IX+dis) DD 9E XX SET 5,H CB EC

RES 7,8 CB B8 SBC A, (IY+dis) FD9E XX SETS5,L CBED

RES 7,C CB B9 SBC AA 9F SET 6, (HL) CB F6

RES 7.0 CB BA SBC A.B 98 SET 6, (IX+dis) DD CB XX F6
RES7.E Cs BB SBC AC 99 SET 6, (1Y+dis) FD CB XX F6
RES 7.H CB BC SBC A,D 9A SET 6,A CB F7
RES7.L CB BD SBC A,n DE XX SET6,B CB FO

RET c9 SBC A,E 9B SET6,C CB F1

RET C D8 SBC A H 9c SET 6,D CB F2

RETM F8 SBCA,L aD SET6,E CBF3

RET NC Do SBC HL,BC ED 42 SET 6,H CB F4

RET NZ co SBC HL,DE ED 52 SET6.L CB F5

RETP FO SBC HL,HL ED 62 SET 7, (HL) CB FE

RET PE E8 SBC HL,SP ED 72 SET 7, (IX+dis) DD CB XX FE
RET PO EO SCF 37 SET 7,(1Y+dis) FDCB XX FE
RET Z c8 SET 0, (HL) CB C6 SET 7,A CB FF

RETI ED 4D SET 0, (IX+dis) DD CB XX C6 SET 7.8 CB F8

RETN ED 45 SETO, (IY+dis) FDCB XX C6 SET7.C CB F9

RL (HL) CB 16 SETO0,A CB C?7 SET7,D CBFA

RL (IX+dis) DDCB XX 16 | SET0,B CB CO SET 7,E CB FB

RL (1Y+dis) FDCB XX 16 SETO,C CB C1 SET 7.H CB FC

RL A CB17 SET 0,D CB C2 SET 7,L CB FD

RLB CB 10 SETO,E CBC3 SLA (HL) CB 26

RLC CB 11 SETO,H CB C4 SLA (I1X+dis) DD CB XX 26
RLD CB 12 SETO,L CB C5 SLA (1Y +dis) FD CB XX 26
RLE CB 13 SET 1, (HL) CB CE SLA A CB 27

RL H CB 14 SET 1, (IX+dis) DDCBXXCE | SLAB CB 20

RL L CB 15 SET 1, (IY+dis) FDCB XX CE SLA C CB 21

RLA 17 SET 1,A CBCF SLAD CB 22

RLC (HL) CBO6 . SET1,B CB C8 SLAE cB 23

RLC (IX+dis) DDCB XX06 | SET1,C CBC9 SLA H CB 24

RLC (1Y+dis) FDCBXX06 | SET1,D CB CA SLA L CB 25

RLC A CB 07 SET1,E CB CB SRA (HL) CB 2E

RLCB CB 00 SET 1 ,H CB CC SRA (I1X+dis) DD CB XX 2E

242

MNEMONIC HEXADECIMAL | MNEMONIC HEXADECIMAL | MNEMONIC HEXADECIMAL

SRA (1Y +dis) FD CB XX 2E
SRA A CB 2F
SRA B CB 28
SRAC CB 29
SRAD CB 2A
SRAE CB 2B
SRA H CB 2C
SRA L CB 2D
SRL (HL) CB 3E
SRL (1X+dis) DD CB XX 3E
SRL (1Y +dis) FD CB XX 3E
SRL A CB 3F
SRL B CB 38
SRLC CB 39
SRLD CB 3A
SRLE CB 3B
SRLH CB 3C
SRL L CB 3D
SUB (HL) 96

SUB (IX+dis) DD 96 XX
SUB (1Y +dis) FD 96 XX
SUB A 97

SUB B 90

SUBC 91

SUB D 92

SUBE 93

SUB n D6 XX
SUB H 94

SUB L 95

XOR (HL) AE

XOR (1X+dis) DD AE XX
XOR (1Y +dis) FD AE XX
XOR A AF

XOR B A8

XOR C A9

XOR D AA

XOR n EE XX
XOR E AB

XSOR H AC

XOR L AD

243

ANNOUNCING
 The BEST Books

v
ot
g \
.

Dr. lan Logan is the acknowledged

leading authority on Sinclair computers B
In this book, he gives o complete Over the Spectrum is the book where you
overview of the way the Spectrum will find your dreams really do come
operates, both for BASIC and machine true. If you want to know how to use

languoge programming. A special the complete facility of the Spectrum

section on the ROM operating system as well as have the full listing for over This title speaks for itself, it's everything
will give you insight inte this computer 30 Spectrum programs, this is the book you need to understand about Spectrum
os well os provide you with information for you. Fantastic programs such as the Machine lLanguage when you're just

on how to use many of the routines incredible 3D-Mazeman, Alien Invaders starting off. A must for all new Spectrum
present in the ROM. This book is @ must just to mention two. Games, utilities, owners. Only £6 95

if you are serious about pragramming educational and business programs

the Spectrum Only £7.95 areall in Over the Spectrum. Only £6 95

After leading the way in Sinclair ZX81 software, we've E all
produced the highest quality, most exciting Spectrum Cassette of a
software available. From the three excellent books

rom
depicted above to fast-action games on cassette, programs fro .
we're providing the best choice in Sinclair Spectrum Sp ectrum Machine
software today.

Lanquage book
Whether it's for your new Spectrum or ZX81

Melbourne House has books and programs perfectly is available from

suited to your needs.
X Melbourne House.

Send for your Spectrum or ZXB1 catalogue today. T . ot L :

- { I . Vel | 1¢ I'N] .
—e. +Ka felbourne Houst Pul N 5) 1 i
I

MELBOURNE cicse Gortanc: ciche touse, Scation toia,

HOUSE e et
PUBLISHERS . oo

INDEX

A
Absoluteaddress -..coioiiis s 36, 47
ADSOILTE UMM .- . ooove dimmeienisore e s 101
ACCUMUIAIOr i S ey, et fans & 34,135
AOET N, S 68, 69
Addwithcary 96
AOdING s s e o e s 12, 15,31, 126
Addresses30,45-47, 54, 69, 83, 106, 135
AIPHAaNUMEeNE i daus o iian e siamiieae 24,28
Alternateregister 35, 36
ANDY 75,76, 78, 136
Arithmetic calculations 7,58
Arithmeticlogicunit ..-ocoooiainis g, 31
Arithmetic operations 62, 68, 95, 126
ATBY <7 sseain i sein i doin vsioia s s 106
o] e e e ..28
Assembly language 8,9, 60
Attribute file 57,65, 132, 142
B
BASIC iavsiieir 5-8, 10, 13, 23, 39, 130
2153 i, R S 144
BINAMY. oo s s oy i 18,24, 25
Binary codeddecimal 62, 63, 126
BUESEt oo s v ain i e e 117
BIS s icdini iy 19-21,23,24,32,34,75
Block Dot e ot 109, 123, 134
Booleanoperators 75,77
BOBER . cr s on e 124
BUSB@ sy s 124
BUE oiiiiviiiaiiang vanns 24,29, 34, 45,135
C
Calculations: .. s e sms smni 11, 14,15
[0 (111 T SRR L R 31
CALL o e e e 106
o Ty A S S 701119, 126
Gamyanthmetic = e
Carry flag .. 60,63, 70, 77, 96, 99, 105, 106
Cassetle .. .icivrie v in o e 122
hakactars: o e 24,28
Character posiion ... «oees s ieess s s 142
CHeCKSUM e e s 162-163
Diockspeed:. . e i 30
GOBOL o oeiis i e e s oime s i 6
GOdING . v et v s i s 131,132
Golours s s e e 57,124,144
GOMPAENG. g5 0 Fhetn: w50t oy s e s 72
Gonditional JUMP oo e ciae s 61
CORtrOl LI o s e e e e 31
G i o i s T e e 72
ol B s e 110
CPDRI co i et ot bt 110
o o B e e 109
el sl p A s e B B e e el 110
ool A W R) L s L 5,11-15,30
D
B e o 126
DRI = T e i S i wiste s e 7
DEG i e e e s 3 e orsa e kv
Decimal o= oo o 18-20, 22, 23,70 126
DOCTOASE. =i ol oontoomsoimsmmin o e 66, 67
Delay 0,1 ST et S e e e S 104
............................... 124,127
Dlsplacement 47,54
DIVABION o b oo s aaicais o 5at s, Sl v 121
PDUNZ it veth il sl 104
BTy)] el R e e e S 56

E
EBCDIC i 28
Electnicalsignals .- crca. e nicie s 56
.............................. 124 127

[N e e 115
Exchan?e FOGISIOT i vs b ma b s 36, 115
External addressing 52, 80, 81
EXQCUNON o vims s st s aimsie s nse e 6,10
F
FINOWERS s ot et vns sy il 10
Flags w.xoiethssvadess 32, 58, 66, 72, 96, 99
Elag omster o e e e v 34, 58
Froewayfrog ... c.eessosemsenvas 161-163
FrOQUeNY - o ai s sl ersseng 125, 144
H
Halfcarryflag 62, 63, 66, 77, 126
HALT i i v i s 10
Hardware ... oo fasii s sle s s 34
Hoxadecimal ... ciocui v 19-23, 70
HEXLOAD e e bl e 155-160
Highlevellanguage 130
High orderbyle o n o ihin ey e anes s 140
Highestbitcooominy avmmmeves 25,33
HEregister oo ionnon s s vamaii 34
|
Immediate addressing 44,79
Immediate extended

addressing i - conne e s 55, 79, 81
Immediate indexed addressing 55
|2 [T S O L e 8, 64
INCrEASE. iy svsn: s s e 64,67
Indexregisters 79,97
Indexed addressing 47
INAIGAIOr. s parin et = e s e 58
{5 M e e Sy et s Y
Inslruclaonregmter e e S e e g
Instruction set . T N I)
INSIICTIONS .o o e e sie we 10, 58
INT oo v ommis wammmmames mie v s sy 127
Integer . - oo i e e e 25,29
Interrupt S s ey 1 By b
Interruplvectorreglster e St SRR
J
AP R e N e o 61, 63,99
JUMPS o s vl s e e s s s 99, 102
K
Keyboard 5,122,135
L
T s e e e 131
B B S e e e 43,70,86, 111
Logicaloperators 75,117
Logicaloperations 62, 63
LOODS, « 5, visissiw i s 5 st s e 5w 99
L RIOSPBaREI ot s s 125, 144
LOWDYIE & ot s s e S 85, 89
Lowordar :.:. - veanen dioiisepinms 136, 140
M
NSNS oo o S s 135
Megahertz 5o s S e e 30
Memory 6,10,14,17,29, 86, 87, 144
MNBMONICS . «.vsion i viveicbnls e s 8,9,13 43

Y [a70 [- - S s R 55,79

N

NANOSOCOND. . i oo oo s e s i o e 52
Negativenumbers 25,29
IV e L Pl o St 127
NUMDBIS i ivinsivisies sinaasis i 8. 24
(0]

Operands st i e s S e e 71
Oﬂerating SYSIOM, s ot 5-7,39, 41,135
R e S, e o 75,76, 78
Overflow i s e G i, 96
P

PAPER e i s I e e e 57
Parity/overflow ... 62, 63,66, 77, 97, 105, 106
PEEWE W e i s 7
2 R e L 6, 30
BOIBE it sraa s S 46,47,79
POR coaaian 14,15,17,37,81,91,98
Port Soims idh g i s it e 135, 144
Processor N 30
Programcounter 31,100, 101,127
PUSH = St s e, 14, 15,17,37,81,91,98
R

BIregister ciatviivcaihn s s s = e i o 37
AN IR W 31
Random nUMDET oo vuais s samms aves 37
Registers 12,17, 32, 54, 69, 83
Register addressing 45, 48, 51, 80, 81
Register indirect addressing 46, 54, 80
Belative Jump ooy bon s v s esi s v 101
Relocatable: i v bvim Gavi s 47
REL . . s e e et i v 98, 106
B g o s o S 127
RLA vt ot v it n bt ing s 465 aess 119
RLGA s e S i st e e 120
BREM e 7,10, 31,39, 124, 128, 135
ROIAIE: o sote S s s o o s vaba e o 119
R et b e M S S i 128
S

BB e e 77
o L ot s et g e B L P S 119
Signflag 59, 63, 66, 77,97, 105, 106
Signedinteger 25,29
SIFCONCNID: i e = st s i dim eiesiss oo 30
ey el e e T iy b 124,125, 144
B 71
SUBG e s e i R s e 71
Subroutines .l b v 106, 131
Subtracting 12, 15,31, 126
Subtraction flag (negate) 62, 63, 66,77
e e b R e 121
SHEcK e 14,15,17, 91,127
Staclc pointeriss v cos iy tans 36, 92, 96, 97
STKEND s e i e e maisia s 97
SYMaX b e A e e 130
1

MEs eils o g RO e S e L R 130
TEARSIAHON . s s s s s s 79
Two'scomplement 27,29
U

A e e P e e i s 124,144
Userregister 31,32,38
USH e o s 39, 41,56, 88, 93, 98
Vv

Narabla - Thw Do el miie e 8,13, 14,55

VIGO0 SCIEBI o lae s vmiis e o et s 138

W
AT e N P e s e 124
X
N OB e S e e 75,76,78
Z
Zeroflag . .58, 59,63, 66,77,97,99, 105, 106
ZOTOPAGE v ni oo o srrsms sownn e s 127
ZB0A ZB0 . v e s weininn s 5, 6,30

SPECTRUM
MACHINE LANGUAGE FOR THE
ABSOLUTE BEGINNER

Please fill out this page and return it promptly in order
that we may keep you informed of new software and special
offers that arise. Simply cut along the dotted line and
return it to the correct address selected from those
overleaf.

Where did you learn of this product?

[:] Magazine. If so, which one?........ 0000t nnnnnns
[:] Through a friend

[:] Saw it in a Retail Store

[:] Other. Please specify........ccvecuees & el SRl b e R Mialiee

Which Magazines do you purchase?

What Age are you?

[1 10-15 [J16-19 [_]20-24 [_] over 25

We arc continually writing new material and would appreciate
receiving your comments on our product.

How would you rate this book?

[] Excellent [] Value for money
[] Good [] Priced right
[] Poor E] Overpriced

Please tell us what software you would like to see produccd
for your computer.

NamC e ceososivsessnsssssnssnssacssstsssssassasasannnnssneseses
Addl’ess...........................-.-.--.-................--

e i e e s Ve LR T e e GOOe T s e s e e

'GOZE ‘BUOJDIA ‘BUINOQIB YINOS
‘lu89saI) uojSIawW(ed G2 ‘v aNnsg “pi ‘Ald (Bllesisny) asnoH auinog|ap
:0} abed uinjal puejeaz MaN % eljeJisny uj

NS £2dH ‘@ayspiopusy ‘Buniy
‘PIBA Y2inyD ‘@snoH auinogieyy “'piT (si8ysiignd) 8sSnoH auinogiew
:0) abed uinjas wopbury pajiun ayj uj

'L12LE NL 3llAuseN

‘aALUQ POOMPaaY /e 'OU| BIBMYOS BSNOH BuINOqIBW
:0} abed uJnjaJ eolaWY JO S3JBIS PAYIUN Y} U|
‘OLAN3S ANV 3dOT3AN3 A3dANVLS YV NISIHL 1Nnd

‘Your best course is to work through a book such as William Tang's
Spectrum Machine Language For The Absolute Beginner.

‘This book is one of the best | have seen on the subject — for once
the title is right on the nose! | can recommend this to anyone just
getting interested.’ — Popular Computing Weekly.

If you are are frustrated by the limitations of BASIC and want to
write faster, more powerful, space-saving programs or
subroutines, then Spectrum Machine Language

For The Absolute Beginner is the book for you.

Even with no previous experience of computer languages, you will
be able to discover the ease and power of the Spectrum’s own
language. Each chapter includes specific examples of machine
language applications which can be demonstrated and used on
your Spectrum, as well as a self-test questionnaire.

At the end of the book, all this is brought together into an entire
machine language program — from design right through to the
complete listing of an exciting, original arcade game.

ISBN 0-8k1EL-110-1

780861611102

urne
House
Publishers 9

