AN EXPERT
GUIDETO THE

SPECTRUM

/an Expert Guide to the Spectrum

An Expert Guide
to the Spectrum

Vike James

fRANADA

.ondon Torante Sydney New York

Oranada Technical Books
(iranada Publishing Ltd
3 Grafton Street, London WIX 31LA

irst published in Great Britain by
(rranada Publishing

“opyright € M. James 1984

sritish Librarv Catafoguing in Publivation Daia
‘ames, M.

wn expert guide to the Spectrum.

. Sinclair ZX Spectrum (Computer)

. Title

J01.64'04 QATE

SBN 0 246 12278 |

ypeset by V & M Graphics Lud, Aylesbury, Bucks
’rinted and bound in Great Britain by
Wackays of Chatham, Kent

All rights reserved. No part of this publication may

e reproduced. stored in a retrieval system or
iransmitted. in anv form, or by any means, electronic,
mechanical. photocopying, recording or otherwise,
vithout the prior permission of the publishers.

Lontents

reface

Becoming an Expert
“he parts of a computer
iddresses, data and bit patterns
jit patterns in hardware — the bus

[nsidc the Spectrum
The CPU
'he Memory
JASIC access to memory PEEK and POKE
"he video display
“he video output circuit
3ASICI/O-INand OUT
“he Spectrum’s built-in 1/ O devices
"he ULA as an output device
“he ULLA as an input device
"he expansion connector
The svstem diagram

Inside ZX BASIC
“he memory map
ystem variables
Ising the RAM boundary vanables
I he keyboard state varables
"he system state variables
Che shifting memory
Conclusion

i The Structure of ZX BASIC

The format of variables — a variable dump program

ix

[I

o0 oo O

12
15
17
I8
19
20
23
26

vi Contents

"he numeric data formats
“he dvnamic management of variables
low ZX BASIC 1s stored
4 kevword finder
\ line renumber program
OTO
JOSUB and the stack
I'he FOR loop
‘onclusion
1/0O - Channels and Streams
streams - INPUT# and PRINT#
‘hannels - OPEN and CLOSE
he use of streams device independence
“he default streams
Jther stream commands
“hannels and streams - memory formats
‘reating your own channels
‘onclusion
v T'he Video Display
Jlack and white to colour
“he video memory
“he display file map
"he attribute file map

*EEKing the display file - POINT and SCREEN$

wttribute codes and ATTR
'he video driver
I'he character tables
"'he video system vaniables
‘reative video
Video Applications
‘unctional characters
Changing the character set
Internal animation
‘ree characters

44
45
46
48
49
50
52
54
56
S8
58
60
62
63
63
64
67
73
74

706
76
79
80
gl
82
85

-

/

88
89
89
90
91
92

Tontents wil

/ariable size characters 94
smooth screen scrolling 95
Conclusion 97
s Tape, Sound and the Printer 08
"he tape system 98
Tape hardware 99
“ape format 100
The SAVE and LOAD routines 103
sound 105
"he ZX Printer 108
' Interface | and the Microdrives [11
"X Microdrive BASIC - [ile specifiers 112
“he extensions to the tape commands 113
“he new Microdrive commands 114
“he channel and stream commands 114
Leading and writing a file - buffering 115
Using PRINT#, INPUT# and INKEY$# 117
vdvanced CAT 120
wdvanced MOVEing - renaming and appending 120
CLEAR# and CLSH 121
he end-of-file problem 122
1 nrompting ERASE program 123
Jate file handling - an example 124
*utting the Microdrives to work 126
0 Principles of Interface 1 and the Microdrives 127
he ROM paging 127
he Microdrive data format 28
I'he sector format 129
Viicrodrive maps 131
“he Microdrive channel 132
summary 134
1 record/ sector hister 134
l.ooking at the map 136

vd hoc channels and non-PRINT files 136

vili Contents

The new system variables
Ising assembly language
A rewind command
Random access files
The continuing saga of Interface |
'1 Interface I and Communication
RS5232 - almost a standard
he Spectrum’s RS8232 interface
landshaking and no handshaking
15232 data format
he BASIC RS8232 commands
setting the baud rate
Jsing bothtand b
‘rinciples of RS232 operation
wssembler and the RS232 interface
A Spectrum VDU
“he Sinclair Network
he BASIC net commands
station 0 and broadcasting
Principles of operation
“he network channel descriptor
“he net [rom assembler
.ervice Spectrums
2 Advanced Programming Applications
Bvte arrays

‘assing parameters to USR functions
Ait manipulation - AND, OR and NOT
Jser-defined channels and Interface |

Adding commands to ZX BASIC
\ stats program
[Ising Interface 2
‘onclusion
tppendix: Further Reading

ndex

137
138
140
141
142
143
143
144
145
146
147
149
150
150
152
153
155
155
157
157
159
160
160
162
162
163
166
170
173
177
185
186
187
189

*reface

“he Sinclair Spectrum 1s a phenomenally successful micro-
‘omputer, and deservedly so. It is always surprising to discover how
nuch it ¢can achieve with so little programming effort. It can be
-onsidered a revolutionary machine because it introduces new ways
T doing things. For example, ZX BASIC is a new and excellent
fialect of BASIC, and its video display uses paralle] attributes for
:01our control. The advent of Interface 1 and the Microdrives has
‘esuited in even greater versatility and power.
ots. of microcomputer users must have been wondering what
cxactlv makes the Spectrum such a success, and this book sets out to
cxplore a variety of reasons and enable Spectrum users to put all its
-emarkable features to good use. The book is therefore about both
he Spectrum’s hardware and 1ts software, and the vital interaction
yetween them.
vfter an introductory chapter which discusses general aspects of
-omputer technology, the next three chapters examine the standard
6K or 48K Spectrum, exploring it both in terms of the chips that
nake it up and ZX BASIC. Chapter 5 describes the sophisticated
'O system hidden within the standard Spectrum, a system based on
ireams and channels. The video display is obviously an important
art of any application, and two chapters are devoted to describing
10w it works. and giving examples of how this knowledge can be put
o good use. The Spectrum’s standard peripherals - the tape system,
‘he sound generator and the ZX printer — form the subject matter of
‘hapter 8 while Chapters 9 and 10 are devoted to Interface 1 and the
vicrodrives. Chapter 11 introduces the R58232 interface and the
sinclair Network. showing the Spectrum’s communication poten-
1al. The final chapter is a collection of applications examples to
inaicate the sort of advanced nrojects vou can tackle for yourself.
'his book assumes a working knowledge of BASIC at an
niroductory level, and builds on this foundation. Although it is

x Freface

outside the scope of the book to teach assembly language, it
nciudes many examples of applications where assemblyv language 1s
a great advantage, and 1n these cases appropriate machine code
-ouunes are presented and incorporated into BASIC programs. 1f
rou’'ve learnt assembly language programming and are wondering
vhat to do with it, these examples will give you plenty of ideas. If, on
‘he other hand, vou've not vet picked up this knowledge, you can use
he routines in anv case - though they may well persuade you of the
idvantages assembler can offer, and provide a stimulating
ntroduction.

“ou’ll find that this book contains a lot of material - probably
more than can be absorbed in one go. Don't worry if there are parts
of 1t you don’t understand first time round. Like lots of technical
subiects, compuling cannol be grasped simply by reading about it.

“ou have to experiment and try things out for yourself before vou
eallv come to terms with it. Don’t be frightened to explore ideas of
rour own — this book aims to give you some leads and pointers, but
hey can only be the tip of the iceberg.

-ots of the ideas in the book are interdependent - you will find
hat as vou are introduced to new ideas in later chapters, you will
rain a deeper understanding of material presented earlier. Because
»f this, vou can’t expect to start reading this book at page one and
:arry on reaaing through to the end of the final chapter, having
issimilated every word. Instead, I hope you will find yourself
urning back to re-read sections as they begin to make more sense in
he light of new information. Equally, I hope you find that this is a
»ook that will last, in the sense that it contains enough interesting
naterial to keeo you busy in lots of areas foralongtime. Aboveall, I
10ope | manage to indicate why the Spectrum is such an exciting
micro, and how to go about making the most of its enormous
sotential.

My grateful thanks are due to Richard Miles and Sue Moore of
iranada Publishing for all their hard work and help in the
sreparation of this book.

Mike James

Chapter One
%ecoming an Expert

"o be an expert on any computer it is necessary to know something
inout its software and something about its hardware. In fact the
1ivision between software and hardware 1s not clear cut. Y ou cannot
:peciaiise in one without the other getting in the way! When using
sersonal computers like the Spectrum most of the really exciting
hings happen when soltware takes advantage of the hardware in
1ew wavs, Fortunately this doesn’'t mean that every programmer has
0 become a hardware engineer! Electronics can be a difficult and
ime-consuming subject; but in computer programming what really
natters 1s an understanding ¢l how the hardware atfects what can be
ichieved through software. Much of this book 15 concerned with
'xplaining the Spectrum’s hardware {rom the point of view of a
reative programmer. This chapter presents an overview of
:omputer hardware in general. Chapter 2 describes how thisapplies
o the Spectrum in particular. Much of the material in these first two
-napters is used and developed lurther in the later chapters dealing
vith more specific topics.

{ all this talk of hardware 1s making you alraid that the software
nae of things 1s going to be neglected, then Chapters 3. 4 and 3,
wnich look at the inner workings of ZX BASIC, will reassure you
hat software really is as important as hardware. Later chapters
iescribe the workings of some of the standard Sinclair peripherals
or the Spectrum - the cassette system, the ZX Printer, Interfaces |
ind 2 and the Microdrive - and explain their use in such applications
1s program storage and networking.

w1l vou need to understand the material in this book is a
(nowledge of ZX BASIC. If you are a BASIC beginner then 1
ecommenda vou look first at an indroductory book on the subject
ucn as The Spectrum Programmer by S. M. Gee, published by
sranada. Although BASIC will normally be used to illustrate the
deas described. it 1s not always possible to achieve the speed needed

~

2 An Expert Guide to the Spectrum

1sing nothing but BASTC. When this is the case there is really no
cnoice but to use Z80 assembler. While this book doesn’t deal in any
iepth with Z80 assembler, avoiding its use altogether would
nrohibit too many interesting subjects. The solution adopted s,
vnere necessary, to give Z8(assembly language programs that can
be used within BASIC programs as USR functions. What such USR
unctions do. and the general way that they do it, will be described,
but the actual detailed code will not, If vou understand Z80
issembly language then the program listings, complete with their
:omments, wiil be enough for you to know how the programs work.
If vou do not understand it then you will have only a general
appreciation of what the programs are doing, but you will still be
ible to use them from BASIC. In other words, while you will be able
to tollow the algorithms involved, vou won't necessarily understand
he details of the code.

t is helpful to realise that although many computer books do
-ontain a logical progression of ideas from Chapter I to the end. this
1oesn't mean that vou have to read and fully understand each
:napter before moving on to the next. There is an old saying that the
yest way to read a computer manual is to read it once forwards, then
ynce packwards, and then make vour first attempt to understand it!
I'here 1s more than a little wisdom in this suggestion, and the
»ackwards and forwards approach often pavs dividends: infor-
nation given later will improve your understanding of what has
iiready been described. It 1s worth keeping this idea in mind while
'ou read this book. If you find that you arc not sure that you
inaerstand something, resist the temptation to backtrack. Read on
0 the end of the section. It is surprising how often small details fit
nio place when vou have managed to get an overview of the
atuation. Don't expect to understand all of An Expert Guide to the
:pectrum at first reading. Some of the material will only be uscful to
rou when vou actually put it into practice, and only then will it really
make sense to vou. In this respect the Expert Guide 1s also a
eference book for the future.

The parts of a computer

rll computers have certain features in common. In particular they
ill have a CPU (Central Processing Unit) that 15 responsible for
-arrving out the instructions within your program. They all have
:ome kind of memory to hold your program and data, and they all

Becoming an Expert 3

nave some kind of input/output {1/0) device to allow you to
communicate with vour program {see Fig. 1.1). This simple picture
is compiicated by the fact that there are a numberof different types of
:omputer memory and a very wide range of possible I/ 0 devices.

CPU
nput/
Memory Cutput
devices
T T ——————

fg. 1.1. The parts of a computer.

viemorv can be divided into two types, primary and secondary or
racking store. Primary memory is used to store programs that the
'PU is carrying out and data that it 1s actually processing.
secondary memory, such as tape storage, 1s used to store the
nachine's ‘librarv’ of programs and data. Primary memory is
urther sub-divided into Random Access Memory {RAM)and Read
Iniv Memory {ROM). The difference between RAM and ROM is
hat the information stored in RAM can be changed, but the
-ontents of ROM are fixed at the time of manufacture. RAM is
vadly named: ‘Random Access Memory’ conveys little of the
ssenual difference between RAM and ROM. As RAM can be both
‘ead and written to. it might be better to call it ‘Read And Write
viemory’ in contrast to ‘Read Only Memory’,
vny computer will contain a certain amount of RAM, used to
store user programs, and a certain amount of ROM, containing any
ixed information that the machine needs to run vour programs. In
he case of the Spectrum, and most other microcomputers, the
R0OM is5 used to hold the rules for the BASIC language - in other
vords the BASIC interpreter. Before going on to examine the
spectrum’s hardware it is worth looking briefly at the way
nformation is stored in memory.

Addresses, data and bit patterns

‘rom the point of view of the CPU, memory looks like a collection

4 Apn Expert Guide to the Specirum

I numbered locations, each one capable of holding some data. The
iumbper that identifies each memoryv location is called its address
(see Fig. 1.2). The data that can be stored in a memory location takes
the form of a bit pattern. As a bit 1s either a one or a zero, a bit

Address

W

4| Data

3 | Data

-
2| Data >

Data infout

1| Data

-2 D | Data

Address Memory
selects a memory locations
iocation

ig. 1.2 Use of an address to find data in a memory location,

nattern 1s exactly what its name suggests — a pattern of ones and
cros. rFor example, 01010 is a bit pattern. Most micros, the
:pectrum included, have memories that can store a pattern
composed of eight bits in each memory location. This size of bit
oattern 1s so common that it is given a special (and well-known)
iame — a bvte. A bit pattern can be used to represent the more
amiliar [orms of data that are encountered in BASIC, but it 15
'mnortant to realise that a bit pattern is all that a memory location
‘an store.

Bingrv numbers are the best-known use of bit patterns to
epresent data, so it is useful to go over the details of this
representation. 1The eight bits stored 1n a memory location are
isuaily labelled b0 (bit zero) to b7 (bit seven) as shown below;

27 bt b5 b4 b3 b2 bl b0

ach bit in the bit pattern that represents a binary number is
issoclated with a value:

h7 b6 b5 b4 b3 b2 bl bl
128 64 32 16 8 4 2 1

f vou look at these values carefully you will see that starting from
he | associated with b0 each value increases by a factor of two {or
-ach position that you move to the left. Another way of looking at
his is that each value is equal to 2tn where ! means ‘raise to the

fecoming an Expert 5

power and n is the bit number. To convert a binary number to the
nore tamiliar decimal notation all vou have to do is add up the
values associated with each 1 in the bit pattern. For example:

*7 b6 b5 b4 b3 b2 bl bl
SR R Al W T

s 32+8+2 or 42 in decimal.
f vou want to convert a binary number to decimal the easiest way
s 1o use the Spectrum’'s BIN function. Type:

PRINT BIN x

vhere X 15 the binary number for which you want to know the
iecimal equivalent. The Spectrum will obligingly convert and print
t for vou. Remember vou can always use the computer to avoid the
ifficult arithmetic that so often puts people off simple subjects such
is pinarv numbers! It is more important that you understand the
dea of using a bit pattern to represent a number rather than be able
to pertorm miracles of mental arithmetic in converting from binary
o decimal! Unfortunately. the Spectrum doesn’t have a function
that will convert a number in decimal form into binary, but such a
-onversion isn't often needed. For the few occasions when it 1s, the
ollowing subroutine will accept a decimal number in D and return
he bit pattern that represents it as a binary number in the string BS.

009 LET BE$=""

LB10 LET B=D-INTID/2)x2

1020 IF B=0 THEM LET B$="0"+E$
1030 IF BE=1 THEN LET B$="1"+E$
LO40 LET D=XINT(D/2)

1050 IF D=0 THEM RETURM

L1060 COTO 1030

iigh level languages such as BASIC go to a lot of trouble to hide
he tact that memory can only store bit patterns from the user.
fowever. the data types vou find in BASIC - numbers. strings and
irrays — arc created out of this more fundamental data type. Once
vou know something about bit patterns and binary numbers it
recomes much easier to understand how and why computers work.
‘or example, each memory location can only hold eight bits. This
neans the smallest binary number that can be stored 15 00000000, or
ero, ana the largest is 11111111 or, if vou convert this to decimal,
P
vs already mentioned, the memory location when data is stored

6 An Expert Guide to the Spectrum

or retrieved is specified by a number called an address. This, too, has
3 close connection with bit patterns and binary numbers. From the
point of view of computer hardware, the most important feature of a
yt pattern is that each bit needs only two states to represent it.
Normally these two states are written as zero and one, but there is
n10thing to stop us from renaming them ‘off’ and ‘on” without
itering anything that matters. Computer hardware uses two voltage
tates, low and high, to represent the bits that make up a bit pattern.
‘or example, the eight bits in a single memory location are stored as
i pattern of low and high voltage states. In the same way, the
number that is used to select a single memory location - i.e. the
1ddress — can also be represented by a bit pattern of low and high
‘oltage states. Most micros, including the Spectrum, use 16 bits to
:pecify the address of the memory location in use. The lowest 16-bit
sinary number is 0 and the largest 1s 65535, This determines the
maximum amount of memory that can be handled. which doubles
-ach time a bit is added to the address:

bit address can handle 2 memory locations
7 bit address can handle 4 memory locations
* bit address can handle 8 memory locations

ina so on. It is therefore easier to measure memory sizes in a way
hat takes this into account. Instead ofusing 1000 memory locations as
the basic unit of memary size, it i1s more convenient to use 1024 or
Kbyvte. Using a 10-bit address you can handle a maximum of
exactlv 1024 memory locations or 1K of memory. Thus usingan | 1-
71t address vou can handle a maximum of 2K of memory, usinga 12-
it address vou can handle a maximum of 4K, and soonuptoa 16-
sit address which will handle 64K of memory. If the basic unit of
nemory was 1000 memory locations then the numbers associated
vith each address size would be verv messy,

Bit patterns in hardware - the bus

It patterns and binary numbers are verv much part of the software
ade of a machine. However. they do correspond to something that is
;ery much part ot a machine’s hardware - the bus. Inthe last section
ve saw now a bit 1s represented 1in hardware by two different voltage
tates - low and high. Clearly a group of bits - a bit pattern will
need a pattern of voltages to represent it in hardware. A busis justa
rroup ol wires used to convey a bit pattern, in the form of voltage

lecoming an Expert 7

evels. from one part of the computer to another. Each wire in the
sus carries the state of one bit. For example, the CPU generates
:adresses which are conveved to the memory by the address bus. If
he CPU uses 16-bit addresses then the address bus is composed of
O wires. each carrving the state of one bit in the address. In a real
‘omputer system the address bus leaves the CPU and is connected to
i1l ol the parts, memory and 1/ O devices, that need to be informed of
he current address that the CPU is using,

n the same wav, data is passed around the computer by way of a
1ata hus that connects all data-recetving and data-transmitting parts
of the computer. If the CPU and the memory work with eight-bit
1ata. then the data bus will consist of eight wires. Notice that the
1ata bus s different from the address bus in that it can carry bit
satterns to and from the CPU. The address bus and the data bus
:onnect up all the parts of a computer to make it a single machine.

1s well as these two fundamental hardware buses there 1s usually
: small group of wires that connect the CPU to the rest of the
nachine - the control bus. The control bus carries a bit pattern that
wvnenronises the workings of the whole machine and passes
nformation about what different parts of the machine are doing.
‘or example, the control bus wsually includes @ wire that signals
vnether or not the CPU is reading data in. From the software point
T view, very few of the signals carried by the control bus are likely to
e of any use.

wfter this discussion of computers in general it is time to turn our
wtention to the Sinclair Spectrum, and to discover what makes it
special.

Chapter Two

inside the Spectrum

he Spectrum is a very special computer. Most of its hardware 1s
ncorporated in a single purpose-buiit chip called a ULA, standing
or Uncommitied Logic Array. This single fact 1s responsible for the
ipectrum’s high performance and low price. However, the way that
the ULA is designed makes it difficult to alter the way that the
machine works. and in this sense the Spectrum is a ‘single-mode’
nacnine. For this reason there is little point in examining the
‘pectrum’s hardware 1n detail, for instance with a complete circuit
diagram. A circuit diagram isn't even very useful if vou are tryingto
‘epalr a Spectrum, because the number of components 1s very low,
and one of the largest the ULA - is available only from Sinclair!
towever. it is worth gaining a general idea of the overall functioning
of the Spectrum, and a detailed knowledge of one or two important
:xternal’ connections such as the loudspeaker and tape circuits.
sfter all. detailed hardware knowledge 1s only of use if it helps you
0 alter the wav that software behaves, orif it can be used to change
ir add to the workings of the Spectrum.

The CPU

he CPU used by the Spectrum s the very popular ZEOA
microprocessor. i he only difference between the standard Z80 chip
ind the Z80A 1s that the Z8OA can work twice as fast as the Z80. The
vorking speed of a microprocessor is governed by the maximum
‘1ock freauencey it can accept. The clock 1s simply a regular pulsc that
he microprocessor uses to synchronise all the different operations
1ecessary 1o obey an instruction. The number of clock pulses needed
o carry out each instruction depends on the complexity of the
nstruction. In theory. the ZBOA can work withaclockupto4MHz,
iving a singie clock pulse time of Yy of a millionth of a second! In

'nside the Spectrum 9

practice the Spectrum uses a clock of 3.5M Hz which is not quite as
ast as 1t could be.

The Z80 is a fairly ordinary microprocessor. As it processes data
1ght bits at a time it is called aneighs-bit processor. It has 16 address
ines which give it a maximum addressing range of 64K, all of which
s used in the case of the Spectrum. One important feature of the Z&()
s that 11 has an additional 64K of address space that is dedicated to
/() devices. This is achieved by adding what amounts to an extra
iadress bit called [ORQ (Input Output ReQuest) which will select
setween 64K of memory and 64K of 1/ O devices. This sounds like a
sowertul [acility, and indeed it is, but there is a limitation. All the
nstructions that the Z80 can obey will work on any memory
ocation. but the 64K of I/ O devices have their ownspecial and very
estricted set of instructions. These essentiallv amount to reading
rata in and writing data out to whatever [/ Odevicesare present. (Sece
N and OUT later in this chapter.)

“ou may find it puzzling to talk of I/ O devices in the same way as
memory locations, but this is exactly what 1; 0O devices look like as
ar as the computer is concerned. An /O device sends data to and
-cceives data from the computer in exactly the same way as a
nemory location. The main difference is that any given 1/ 0O device
might correspond to a number of 1/O locations or *ports’. For
xample, the ZX printer is an 1/ 0 device, It uses a single port at
iadress 251 to receive the data that determines what it prints, and to
send data back to the Spectrum to indicate what ‘state’ it is in. The
viicrodrives and Interface | use three I/ O ports at 254, 247 and 239
o communicate with the Spectrum. The use of 1/ O ports and [/ O
nstructions will be discussed in more detail. with practical
:xamples, 1n later chapters.

“he most important feature of the Z80 as far as the programmer is
‘oncerned 1s that it determines the machine code and assembly
anguage that the Spectrum uses. It is not the purpose of this book to
each Z&) machine code but, as already mentioned, it will be used
vhere there is no other wayv to achieve the processing speed
iecessary, for a demonstration. If vou would like to learn ZR0
machine code or assembly language then there are suggestions for
further reading at the end of this book.

The memory

"he Spectrum’s memory addressing space is divided up into two

10 An Expert Guide to the Spectrum

yarts, as can be seen in Fig. 2.1. The 16K ROM is used to hold all the
nachine code necessary to implement the rules of ZX BASIC, and
:ubroutines te handle the Spectrum’s standard hardware. For
nstance. there is a subroutine that will read the kevboard, and

65535
r
32K RAM
Expansion
ABK
HAM j
————— —~ 32768
ixed 16K
_ HAM
r 16384
16K 4 16K
1OM BASIC ROM
00

ig. 2. 1. The structure of the Spectrum’s memory addressing space.

inother that will make a sound using the loudspeaker. This ROM is
mpiemented as a single 16Kbyte chip. If you are feeling
idventurous, and have the necessary programming hardware, you
can replace this ROM with a 2718 EPROM containing your own
nachine code program. EPROM stands for Erasable Program-
nable Read Only Memory. and is simply a type of ROM in which it
s possible to store a program using fairly cheap equipment. An
‘PROM can be wiped clean by exposing it (for some minutes) to
iitraviolet hight, and 1s therefore reusable. However, you would
1ave to copy many of the subroutines to handle the hardware - such
1 the keyboard and the video display - into your new EPROM; and
yvriting 16K of machine code 1s not something to be tackled lightly.
"he Spectrum’s RAM 15 split into two sections. The first 16K 1s
iiways present, and 1s used Lo store the information that generates
he video disnlay as well as a lot of system information and user
yrograms. | he final 32K is optional, and is added to the basic [6K
:pectrum to bring it up to the maximum 48K of RAM. Both
:ections are implemented using dynamic RAM chips. The 16K
.ection uses elght standard 4116 16K bit chips and the 32K section
1ses e1ght 4532 32K bit chips. The 45325 are rather special. Thev are
niy available from Texas instruments, and are “failed’ 64K chips. It
s difficult to make memory chips that can store as much as 64K bits,
ind to save throwing away large quantities of chips with only a few

nside the Spectrum 11

aults Texas Instruments designed their 64K bit chip to work as
:eparate 32K halves. If the faults all lie in one half of the chip then it
:ertainly cannot be used as a 64K bit chip, but there is no reason why
t cannot be used as a 32K bit chip - and this 1s whata4532 is. If vou
iave a 16K Spectrum and want to upgrade it to 48K then my advice
s 1o buv a complete upgrade kit from one of the many suppliers: the
T'exas chips are fairly difficult to get hold of. Early Spectrums (Issue
1 cannot be upgraded simply by adding missing chips, because an
:xtra printed circuit board has to be used. You can tell an Issue |
spectrum by removing the bottom of the case and looking at the
srinted circuit board to the right of the two jack sockets (EAR and
AIC). There you will see the words ‘ISSUE ONE’. An Issue 2 board
s marked ‘ISSUE TWO’ on the front edge of the printed circuit
board, just right of centre. (Later issue numbers will also be shown
‘ust right of the centre of the circuit board.) Upgrading an Issue 2
spectrum is just a matter of soldering in twelve chips the right way
ounda and making one wire link.

You mav be wondering what the word ‘dynamic’ means when
ippiied to RAMs. The answer is that there are two different ways of
'mplementing RAM - static and dynamic. Static RAM will hold the
jata that is stored in it until it 18 changed or until the power is
:witched off. In this sense it is simple to use, reliable, and easy to test.
“he trouble is that manufacturers haven't been able to make static
LAM chips with very large capacitiecs. Dynamic RAM, on the other
nhand, is available in sizes up to 64K bits per chip, for very reasonable
srices. its disadvantage is that information stored in it fades away
mniess it 1s read and rewritten every now and again. This reading and
e-wniting of information 1s known as ‘refreshing’ dynamic RAM,
ind in practice special circuitry is supplied to carry it out in a way
hat the user will not notice. In the Spectrum’s case, refreshing 1s
-arried out bv the Z8(} and the UL A working together, and the whole
i the 48K is refreshed without loss of performance or any trouble
m the user’s part.

BASIC access to memory - PEEK and POKE

‘X BASIC provides two direct wavs of examining and altering
nemory locations. The command

PEEK (address)

v1il return the contents of the memory located at ‘address’. As

12 An Expert Guide to the Spectrum

address’ must be a 16-bit hinary number (see Chapter 1) it must lie
in the range 0 to 65535. Similarly, as the data stored in the memory is
i bit pattern consisting of eight bits, the value returned (as a binary
aumoery by PEEK has to lie in the range 0 to 255. The command

POKE address, data

viil store the bit pattern corresponding to the binary representation
)i ‘data’ in the memory located at ‘address’. Once again, ‘address’
:nould be in the range 0 to 65535, and ‘data’ should bein the range 0
to 253.

votice that although both PEEK and POKE work in terms of
jecimal numbers it 1s very often the underlying bit pattern that is of
‘nterest. For example. when defining new characters (see Chapter 6)
:acn pixel is represented by a single bit which is 1 for anink pixel and
) for a paper pixel. To POKE a bit pattern representing ink/ paper
nxeis it would be necessary to treat the bit pattern as a binary
iumoer. then convert this binary number to decimal. Fortunately,
ZX BASIC includes the BIN command which makes the conversion
to decimal unnecessary. If vou want to POKE a bit pattern into a
memory location then you can use:

*OKE address. BIN x

vhere x 1s the bit pattern. However, this method fails if x is a
anable (BIN will not work with variables) and PEEK always
eturns a decimal value. For this reason, later chapters will
ntroduce methods of using BASIC to manipulate decimal values as
i they were bit patterns,

The video display

"he Spectrum’s video display uses a very ingenious system of
»arailel attributes to obtain an eight-colour display (with some
restrictions) in not much more memory than would be used for a
slack and white display. Nearly all the work involved in generating
the display is the responsibility of the ULA chip. Itissomething of a
lisappointment that the UL A chip is not programmable to produce
jifferent display modes. From the moment that the Spectrum is
switched on. the UL A displays the information stored in a fixed area
i memoryv the video RAM to produce a fixed format (256 dots
wy 192 dots) colour display. This single display mode of operation

nside the Spectrum 13

sfers little scope for experiment. However, 256 by 200 dots in
colour is a more than adeguate display resolution.

“he onlv really useful aspect of the video display’s hardware is the
vav that the video RAM determines what is displayed on the screen:
his is the subiect of Chapter 6. However, it helps to have a complete

picture of the way things work, so the general principles behind the
reneration of the video display will be explained here.

“he video RAM is always the first 6912 bytes in the lower 16K of
RAM. While a TV picture is being displayed this area of RAM is
iccessea by the ULA, and the information it contains is used to
ietermine the colour of each dot or pixel (picture element) on the
wereen. A TV picture (inthe UK at least) scomposed of 625scanlines
tisplayed every fiftieth of a second. To produce a stable picture, the
JLLA must not only generate the synchronising signals that mark the
seginning of every line and every frame, it must also retrieve data
rom the video RAM fast enough to determine the colour of each
pixel in the scan. It must also retrieve each item of data just before
he pixels that are controlled by it are displayed in the scan, 1n other
voras, to produce a stable picture the ULA must be able to access
he video RAM at any time that it needs to. The only major difficulty
vith this is that the CPU also has to have access to the video RAM
yecasionaily. Otherwise how would the data that controls the
iisplay ever be changed? This means that the video R AM’s data and
wadress bus have to be shared by the ULA, which generates the
1solay, and the CPU, which manipulates it (see Fig. 2.2), Of course,
miv one of the two can actually be using the video memory at any
wne moment. If both want to use the memory then some sart of
priority has to be established to decide which one has to wait. Asthe
JLA is generating the video display, making it wait for the CPU to
1s¢ the video RAM would result in gaps (white speckles) in the
tisplay. (This is what happens in some other machines.) It is better
o make the CPU wait until the ULA 1s finished with the video
AAM. and this is what the Spectrum does. However, there is a
iidden problem with this scheme. The ULA and the CPU have to
:nare the data and address buses to access the video RAM. If the
‘PU 1s not allowed to use the video RAM while the ULA is using it,
t 15 equally not allowed to use any other RAM or ROM in the
sviem, because the address and data buses are also in use by the
JLLA. [f this limitation was accepted, the resulting machine would run
rerv siowly indeed. Every memory access made by the CPU would have
o wait until the UL A wasn’t using the memory. The solution adopted
or the Spectrum 1s to provide separate CPU and ULA data and

4 An Expert Guide to the Spectrum

Address bus

z80
cPU A

Video
RAM

LY —

| |

fideo out
ULA \
Jata bus
bames— =
ULA

ig. 2.2. Shared connections between the video RAM, the ULA and the CPU.

iddress buses. This means the ULA can use the 16K of RAM that
-ontains the video RAM while the CPU can simultaneously use any
sther memory apart from this 16K. This can be seen in Fig. 2.3,
vhere the ULA can be seen to have a direct connection to the 16K of
RAM that contains the video RAM, while the CPU has a direct
onnection to the rest of the memory. If the CPU wants to use the
TLA’s 16K thisisdetected by the UL A, which stops the CPU’s clock
inuii it 1s ready to allow the CPU access to its address and data bus.
"his causes a slight delay in the CPU’s opcration when using the
ower 16K of memory. It is not usually noticeable when you are
unning a siow language like BASIC, but it can cause machine code
srograms stored in the lower 16K to run at different rates. This is
iy a real problem if timing is critical, or if uming loops are
nciuded in the program.
vthough 1t is of little practical use, it is interesting to notice that
he Spectrum does not use expensive multiplexing chips to control
access to the video RAM’s bus. Instead it uses the simplest of all
electronic components - the resistor. When the CPU is not trying to
15¢ the low 16K of RAM, the two buses work independently, with
he signals on one bus appearing at a much reduced level on the
siher because of the voltage ‘dropping’ action of the resistors. The
roitage reduction is such that on each bus the signals of the other
ippear as ‘noise’ and do not influence what happens. However,

nside the Spectrum 15
\ 16K
ROM
Nata *>
&
80 N
CPU Wi
el
32K
Address 1]. R‘P‘M
Py {opticnal)
clock Q N F
bV
[}
.mpedance barrier
Jata 2
BT LS 18K
‘rideo out o :
Video
ULA . Address 2 nAM
> o
~ P

tg. 2.3. Connections between the main memory aregas, the CPLU, and the
ILA, showing how access to the video RAM is shared.

vnen the ULA allows the CPU to access 1ts part of the address and
jata buses it stops ‘driving’ the buses. The voltage reduction
asrodauced by the resistors 1s now much less, so the CPU’s signals gain
'ontrol. This is a remarkablv clever, simple and cheap solution to a
ery common problem in hardware design, and is typical of
sinclair’s ingenious engineering.

" he video output circuit

he UL A is responsible for taking the data from the video RAM and
1s1ng 1t to construct the colour information as three video signals.
iowever, the task of taking these three colour signals and producing
i stngie PAL (UK standard) colour video signal 1s the responsibility

“6 An Expert Guide to the Spectrum

T an LMI889ON PAL encoder chip. The three signals produced by
he ULA are:

L ¥4

= luminance and synchronisation signals
') = blue-green signal
V = red vellow signal

"his use of colour difference signals is a problem to anyone wanting
0 use a video monitor that has only an RGB {Red, Green, Blue)
nout, but it docs simplify the Spectrum’s video circuits. The PAL
-ncoger takes the U and V signals and generates a colour orchroma
1gnai that is mixed with the Y signal by a two-transistor mixer 1o
sroguce the final PAL video signal, which is fed to the UHFE
moaulator.

‘ou can adiust the colour and quality of the display using the
rariable capacitor and resistors positioned in a linc on the left-hand
ade of the printed circuit board {see Fig. 2.4). Adjusting TCI

UHF socket
1

IHF
Modulator

(%) TC1 (video clock)
(%) TC2(CPU clock)
O VR1 (colour balance 1)

(D VR2 (colour balance 2)

fg. 2.4 Video output adjustments.

-areiullv might improve the sharpness of the image by removingany
nterference patterns. VRI1 and VR2 adjust the relative colour
halance of the disnlay. VR alters the red-vellow balance and VR2
iters the blue-vellow balance. In practice it is better to adjust the
‘oiour balance of the TV set that the Spectrum is driving, ratherthan
‘iddling’ with VR 1| and VR2. TC2 adjusts the frequency of the
‘lock pulses to the CPU and should not be altered. The U, V, Y and
he composite colour video signals are all available at the rear edge
-onnector which is described later. With a little effort these signals
-an pe used to drive a standard RGB colour monitor, ora black and

nside the Spectrum 17

vnite or colour monitor that acceots a composite video signal. This
s discussed further after the section on the signals available at the
cdge connector.

BASIC1/0-IN and OUT

“he ZB80 provides an additional 64K of address space tor [;0O
devices. However. both data and 1/ O addresses are carried by the
tandard data and address buses that connect the CPU to the rest of
he computer. As already described, memory and I/ QO addresses are
iistinguished by the state of a line in the control bus called IORQ
[; O ReQuest). ZX BASIC provides two additonal commands to
wccess 170 devices, tn the same way that it provides PEEK and
’OKE to allow direct access to memory. The command

N address

‘eturns a data value trom the device located at 1/ *address’. The
:ommand

YUT address. data

v1ll send the value ‘data’ to the device located at 1,0 *address’. The
nain difference between PEEK/POKE and IN/OUT is that all
nemory locations behave in roughly the same wayv, but the device
ocated at ‘address’ can behave in a wide varietv of ways depending
m 118 type. Notice also that no storage of data is implied by an QUT
-ommand. For example, if a special printer interface was
-onstructed to connect a non-standard printer to the Spectrum, then
t might be configured to accept data from, say, 1/ O address 56. To
10 this it would have to monitor the address lines and I1ORQ for the
ecurrence of the bit pattern corresponding to [/Q address 56.
‘When this was detected. it would read in the data currently on the
1ata bus and pass this on to the printer to interpret as a character
0oae. S0 in this case QOUT 56, CODE (*A™) would send the ASCII
0ae for A to the pninter, but IN 56 would be totally ignored by the
wrmter interface and so wouldn’t return any useful data. Some I; O
iddresses correspond to 1/0O ports that only accept data such as
sninter interfaces, In this case it only makessensetouse OUT. Some
/O addresses correspond to 1/ O ports that willonly supply data, and
n this case it only makes sense to use IN. However, some [/ O
iddresses correspond to 170 ports that can both accept and supply
1ata. A cassette interface. for example, can both read and write data.

18 An Expert Guide to the Spectrum

In short. to use IN and OUT properly you have to know not onlyv the
aadress that a device occupies but quite a lot about how it functions.

The Spectrum’s built-in 1/0 devices

“he Spectrum’s built-in I/ devices are the loudspeaker, the
-assette interface and the kevboard. All of these are controlled by
‘he ULA. Indeed, the loudspeaker and cassette interface are both
aandled by a single ULA connection, and in this sense they are a
angie 1/0 device!

\s alreadv mentioned the Z80 has a separate 64K of addresses
that can be used to select I/ O devices. However, instead of assigning
:ach 1/0 device its own address (or group of addresses) the
spectrum assi'gns each device to a particular bit in the address. For
:xampie, the first bit, b0, selects the internal I/ O devices connected
o the ULA. The action of this bit is such that when it is zero the
JLA is selected. Thus anv [/ O address that has b0 set to zero will
elect the ULLA. In the same wav b2 selects the ZX printer when it 1s
-ero. if you carry on assigning address bits to devices you should be
iple to sce that the maximum number of devices that can be handled
s 16. In fact the Spectrum only uses b0 to b4 of the address to select
me of six devices according to the following table.

b ULA kevyboard/loudspeaker/cassette interface
11 not used

12 ZX Printer

n3 Microdrives and Interface |

h4 Microdrives and Interface 1

However. this only leaves b3, b6 and b7 for special uses: bits b8 to
715 are used to select which column of the kevs that make up the
cevboard is being read (see later). It is clear that things would be
sery contused 1f more than one I/ O device were selected at a time, so
ralld 1/0O addresses can only have one of b0 to b7 set to zero.

\s the ULA is sclected by a single bit in the address it might seem
'mpossible for it to handle so many different 1; O devices, In fact the
ILA behaves differently depending on whether it is being read
using IN) or written (using OUT).

nside the Spectrum 19

“he ULA as an output device

Vhen the ULA 1s sent data as an output device it controls the
oudspeaker and the cassette output connection, MIC. Although it
sn't strictly anything to do with I/ O, the colour of the TV display’s
rorder is also contrelled by the ULA. acting as an output
fevice.Each of these internal output devices is controlled by the bit
rattern of the data sent to the ULA according tothe following plan:

b7 b6 b5 b4 b3 b2 bl kO
* 0¥]85 MIC [Ceplonsy

wnere™ means that the bit isn’t used. Sotheloudspeakeriscontrolled
v b4, the MIC by b3, and the colour of the border by the binary
wmbper represented by the three bits b2 to b0, To be able to use this
niormation, all we have to know 1s the /O address to use for
ending data to the ULA. Asthe ULAsselected when b0 is zero and
1 to b7 are one. we only have to determine the values ol b8 to bl5.
1s noted carlier. address lines b8 to bl5 are used to scan the
(evboard: so for output they might as well be set to zero. This gives
ne tollowing bit pattern for the ULA’s output address:

515 bl4 bl3 bl2 bll bl0 b2 b8 b7 b6 b5 b4 b3 b2 bl b0
JEE 1R | RE R R IR ¢ TR VR (S L RN (R S ¢

ir 254 in decimal.
u$ an example of using the ULA as an output device, try the
ollowing program:

0 INFUT E
0 QUT 254,08
10 GOTO 10
{ vou type in numbers in the range 0 to 7, vou will see the colour of
he border change. Although vou can affect the loudspeakerand the

MIC output using the same technique, BASIC is so slow that the
sest vou can achieve is a low-pitched buzz. For example:

18 OUT 254,16
20 OUT 254,10
19 GOYO 10

Ane 10 sends the bit pattern 00010000 to the ULA and linc 20 sends
J0000000. You should be able to see that as this program 1s in the
orm ol & loop, the result is that b4, which controls the loudspeaker,
s continuaily changing between 0 and L. This produces a low-

20 An Expert Guide to the Spectrurm

ntched buzz from the loudspeaker. The use of 1/0O port 254 to
-ontrol the loudspeaker is described in more detail in Chapter 8. As
he loudspeaker and the tape recorder MIC socket are both driven
v the same pin on the ULA, the signal to the loudspeaker 1s also
sresent on the MIC socket. This means that if vou record while the
-ather quiet loudspeaker is making sounds vou can replay the tape
ater and reproduce the sounds at a rather louder volume. Similarly,
i vou connect an amplifier with a speaker to the M1C socket you can
boost the Spectrum's sound to any level that you require, In other
vords, MIC is not only a ‘tape out’ connection; it is a ‘sound out’
onnection as well.

The ULA as an input device

¥hen the ULA is used as an input device it sends data to the CPU
-oncerning the state of the EAR input and the kevboard. The
sevboard is the most complicated mput device, so it will be
1escribed first.

‘igure 2.5 is a schematic diagram of the Spectrum’s keyboard.
“ou can see 1t takes the form of a rectangular matrix of connections.
‘ach key on the keyboard is arranged so that pressing it connects
e ol the horizontal wires to one of the vertical wires. Obviously, to
dentify which key, if any, has been pressed you have to find out
ynich horizontal and vertical wires have been connected. The cight
1orizontal wires are connected to b8 to bi5 of the address bus, so
hev can be set to different voltage levels according to the bit pattern
f the address in use. The five vertical wires are connected to five
nput pins on the ULA, and when the ULA 1s used as an input device
11s their state that is sent to the CPU as b0 to b4 of the data. In other
voras, IN 254 ‘reads the state’ of the five vertical keyboard lines, and
¢lurns the decimal equivalent of b0 to b4. Asthe vertical input lines
ire connected to +5 volts (high) they return a value of | when no key
s pressed. At the instant when the input lines are read by IN 254 the
iddress on the address busii.e, 254} i1s such thatall of b8 to bl5 are 0,
2. low voltage. If a single key i1s pressed then the vertical line that it

connects to the address line will be connected to alow voltage and so
wiil return a 0 in the bit pattern. That is, IN 254 will return a bit
rattern that has a zero corresponding to any vertical line that 1s
-onnected to an address line. This works well for detecting whether
r not a key is pressed, but how can you tell which of the eight keys
-onnected to the vertical line 1t 1s? The answer is that if all of the

/nside the Spectrum 21

Data

1110 bi b2 b3 b4
':LSpacefl g::nni M 1 N ! B

b15—»— 4 - s =
Enter| L K J H

—— : - : -
R O | U ¥

b13 — S : s J >
% 9 8 7 6

@ p12 - . e > P]
£ 1 32l 0e =g 5

 pf—e—08 P D b L
Q w E R T

510 & \ \ . . \
A S D F G

G b - ; > S
] T G

s 13 - !

ig. 2.5. Schematic diagram of the Spectrum keyboard

iddress lines b8 to bl5 are low, vou cannot, The solution is to make
miv one of the address lines low at a time; then only one row of keys
-an connect the input lines to low voltage. Thus instead of using the
/0 address 254 to read the keyboard, you have to set all but one of
w8 to bl5to 1. Forexample, to read the row of keys connected to the
iadress line bl3 vou would have to use the following bit pattern for
he 1/ O address:

315 bl4 bl3 bl2 bll bI} b9 b8 b7 b6 b5 bd b3 b2 bl b
T R, N S CY b ik clisnLi b befilidndivn Tigh O

vhich 18 32766 in decimal. That is, IN 32766 will return a value that.
when expressed 1n binary, has b0 to b4 set according to the state of
the first row of keys caps shift to v - with 0 representing a
lepressed key.

‘arrying on In this way gives the following decimal values for the
/O addresses to read each row of the keyboard matrix:

22 An Expert Guide to the Spectrum

iddress /0 address keys

‘ine set
to zero
115 32766 Space to B
bl4 49150 Enter to H
213 57324 PtoY
h12 61438 0too
3 63486 103
110 64510 QtoT
n9 65022 Ato O
18 65278 Caps shift to V

Ising this infermation it 1s possible to write programs that will
ietect when a number of kevs are pressed simultancously. For
xamnie, the following program will read in the two groups of five
<evs that make up the top line of the keyboard, and display the
esuiting bit pattern:

10 LET D=IN 463486

20 GOSUlE 1004

30 FRINT AT 5,103

0 FOR I=8 710 4 STEF -1
50 FRINT B${(I)3

60 NEXT I

70 LET D=IN 61438

40 LOSUE 1000

70 PRINT B${(4 TD 8)

00 BOTO 10

votice that subroutine 1000, given in Chapter 1, which converts
decimal to binary, has to be included to make this program work. As
he top row of keys includes the four arrow kevs this could obviously
ve used in games and other programs that neced movement control.
Jdowever, notice that the two half rows of kevs “interact’, so that
nressing more than one key in each half at the same time can give
‘alse readings.

Now that the kevboard hardware and the principles behind its
weration have been explained, you should be able to see that all the
:ophisticated keyboard features are produced by the Spectrum’s
;oftware. Machine code routines in the BASIC ROM read the state
f the kevboard. Taking into account any shift keys that have heen
yressed, they convert knowledge about which key 1s pressed into the

nside the Spectrum 23

:ode that represents one of the five possible legends on oraround the
cev. ['he software is also responsible for producing the auto-repeat
acility and checking (once every fiftieth of a second) for the
IREAK key,

¥henitisused asan input device the UL A also returns the state of
he EAR cassette socket as b6 of the bit pattern. If the input from the
-assette recorder is a high voltage state then b6 is a 1. Otherwise it is
ero. lhe ULA will return the statc of the EAR socket as b6, no
natter what b8 to b15 are set to. So if vou want to read the kevboard
ina the EAR socket then use one of the addresses given above. If
‘o want to read the EAR socket independently of the keyboard
hen all the bits b8 to bl5 should be set to 1. so the I/ O port address
that should be used is 65534. In normal use the state of b6 is used to
iccode the audio tones from the cassette recorder. However, it is
rossible to use it for other simple inputl tasks. For example, the
ollowing program will detect the start of a recording on the tape:

L0 PRINT "FLAY TaAPE"

20 IF IN 65534=255% THEN FRINT AT 2,03
Hilence!{GAOTO 20

30 PRINT "Sownd staried"”

f vou plav a tape then this program will print ‘Silence’ until the first
1015e on the tape is detected. Notice. however, that as the EAR input
s connected to the ULA via a low value capacitor, it cannot be used
o monitor slowly changing voltages.

" he expansion connector

viost of the signals used within the Spectrum are available from the
:0ge connector at the back. This is usually used to connect the ZX
srinter, Microdrives, and Interfaces | and 2. However, it can be used
o connect home-built peripherals, and the video signals can be used
o drive a monitor. As the Spectrum manual gives very little
niormation on the nature of the signalsitis worth giving a listalong
vith brief comments. A-side connections are on the component side
iI the board and B-side connections are on its reverse side.
he video signals available from 15B, 16B, 17B and 18B can be
1sea to drive a monitor, and so improve the quality of the display
‘hat the Spectrum produces. | he composite video signal on 15Bisa
lirect connection to the output of the two transistors (emilter
ollower) that drive the UHF modulator, so this has enough power

24 An Expert Guide to the Spectrum

B 5 2 2 D e

o ¥,

‘A

A
2A
I3A

4A

5A

6A
TA
BA
'9A
20A
1A

b15 of address bus
b13 of address bus
b7 of data bus
not connected

SLOT

b0 of data bus
bl of data bus
b2 of data bus
b6 of data bus
b3 of data bus
b3 of data bus
b4 of data bus

INT

NMI

HALT

MREQ
IORQ
RD
WR
—5V
WAIT

+12V
+12V
MI
RFSH

Z80 interrupt line; connecting this to +5 will stop
the interrupts generated by the ULA

Z80 non-maskable interrupt line; this interrupt

isn't used by the Spectrum. A low pulse will cause
3ASIC to do a reset

Z80 halt line which signals that a machine code
halt instruction has been executed

standard Z80 control bus line

standard Z80 control bus line

standard Z80 control bus line

standard Z80 control bus line

low current —5V supply

ZB80 wait line which when held low will tempo-

rariiv halt the Z80. A wait must not last for longer
han about 1ms otherwise the dvnamic memory
will forget!

smoothed 12V supply

unsmoothed 12V supply

standard Z80 control bus line

Z80 memory refresh signal

b8 of address bus
b10 of address bus
not connected

bl4 of the address bus
b12 of the address bus

5V sunply
9V supply
SLOT

‘4B
5B
‘6B
7B
g&B
9B
‘0B

1B
2B
3B
4B
5B

6B
7B
‘8B

nside the Spectrum 25

0 volts

0 volts

CK Z80 system clock 3.5MHz

b0 of the address bus

bl of the address bus

b2 of the address bus

b3 of the address bus

[OROGE holding this line high (1.e. +3V) will stopthe UL A
esponding to I/ 0 requests. With suitable circuitry
1 could be used to expand the number of 1/ 0O
1evices that the Spectrum can select

OV video ground

composite colour video signal

video Y signal

video V signal

video U signal

BUSRQ standard Z80 control bus hine

RESET momentarily connecting this line to 0V will reset
the machine 1ust as if the power had been switched
1f and on

b7 of address bus

b6 of address bus

b5 ol address bus

b4 of address bus

ROMCS connecting this to +3V will remove the BASIC
RA0OM from the Spectrum’s memory map.

BUSACK standard Z80 control bus line

h9 of address bus

bl1 of address bus

Vviore information on the connections described as *standard ZR0O
:ontrol bus line' can be found 1n any Z80 manual.

o drive a monitor directlv. The only problem is this video output is
10t the standard 75 chm impedance, and most monitors will not
vork very well with it, The three coloursignals on 16B, 17Band 8B
ire all unbuffered outputs from the ULA, and do not have enough
rower 1o drive a monitor directly. This makes a bufter amplifier
'ssential. and to derive a standard RGB signal needs quitc a
-omplicated subtractor circuit, Allin all the composite video signal
i 13B 1s much easier Lo use! On manv Spectrums some of these

26 An Expert Guide to the Spectrum

ndeo signals are not connected, and this simple fact explains why
many attempts at driving monitors have failed! The solution is
ampie inside the Spectrum. near the video circuits to the far left of
he printed circuit beard, are four links marked U, V. Y and VID. I
he ‘pads’ are connected by a wire link, then the video signals will
ippear at the edge connector. However, if the pads are connected by
1othing but a white line you will have to solder a wire link to make
he signals appear.

The system diagram

Now that each section of the spectrum has been described it is time
to give a compiete block diagram of the system. Y ou should be able

16K .Jp%oKnal
I0M EAM
Jata I | 1771
cPU dE R |
280
Sddress
Cleck impedance
barrier
v :Adﬂrass
| i Data blts
L M1 889 ULA I Video
Y 1AM
wddress
L Com
?:.’ideg 5 Data bits ¥
I reyboard
—— MWW—|—a MIC
= UHF
v MOD 600 L

e _ !
—
Speaker

fig. 2.6 Bleck diagram of the Spectrum.

nside the Spectrum 27

o see all of the details that have been discussed in the previous
ections in Fig. 2.6. Although the principles that lie behind the
ipectrum’s operation are interesting, the most important hardware
catures from the programmer’s point of view are the I/ O devices.
“he information on how the kevboard, loudspeaker and tape
nterface work will be used in later chapters to increase the range of
things you c¢an do with an unmodified Spectrum.

Chapter Three

‘nside ZX BASIC

“he subject of this chapter and the next two is the internal workings
T ZX BASIC, There was little point in explaining the detailed
vorkings of the Spectrum’s hardware; similarly, there is little point
n giving a compiete listing of the Spectrum’s BASIC ROM. Such a
1sting does indeed contain all the information you could ever want
o know about ZX BASIC. but much of it will be irrelevant. If vou
ire writing machine code then it is helpful to know something about
he subroutines that are present in the BASIC ROM so you can
nake use of them: but if vou are writing BASIC then 1t is more
‘mportant to know how BASIC organises the memory that it uses.
inowledge of BASIC's general methods of obeying your commands
‘an also suggest ways of using BASIC more economically and
rreatively.

“he first part of this chapter describes the way that ZX BASIC
vides the RAM into different areas. each used for a particular
urpose. 1t gives an overview of the various sections, most of which
ire sunsequently dealt with in greater detail. Then the many uses of
he system variables area of memory are described. Chapter 4
-onsiders how BASIC organises program lines and variables within
nemory, and Chapter 5 the method that ZX BASIC uses to extend
he PRINT and INPUT commands to I/ 0O devices other than the
:creen and the keyboard.

The memorvy map

¥hen the Spectrum is first switched on, 1t goes through an
mualisation sequence that determines the amount of memory
ivallable (normally 16K or 48K) and divides it up into a number of
ircas. L hese can be seen in the ‘memory map’ given in Fig. 3.1,
Notice that some of the boundaries between areas ol memory are

nside ZX BASIC 29

rddress ar system End of area
variable marker

4 HAMTT User-defined Graphics

IDG+
Space for machine
code etc.
AN TOP 455508 stack he
'dF;:;‘hi:; Machine stack
z1ack pointer
' free RAM
iTKEND % Calc:ulatjr stack
4‘;';?2;_; Input data buffer o
F LINE Command/Edit buffer i e
JARS 4 Variables
PROG 4 BASIC prog e
ZHANS-@— Channel info
. | Microdrive maps
__:3?34 | System variables
‘.,‘3552 Printer butfer
2:2: ! Attributes
16384 Display file

fg. 3. 1. Memory map faor the ZX Spectrum,

ixed and others are variable, For example, the display file always
tarts at 16384 and ends at 22528, but where a BASIC program 1s
tored in memory depends on how much space the Microdrive maps
ina the channel information have taken. Equally, the place where
he area used to store variables starts depends on the size of the
srogram area. i he addresses where these movable areas of memory
tart {and occasionally where they stop) are stored in the system
rariables arca of memory along with other data about the current
tate ol the Spectrum. The idea of storing an address in memory is
10t ditficult once vou get used 1o it. For example, CHANS is a
.ystem variable that holds the address of the start of the channel
nformation area. The CHANS system variable consists of two
memory locations {remember a single memory location can only
101d eight bits, and an address is 16 bits long) and their locations arc
*3631 and 23632. So il you want to know the start address of the
:hannel information area vou have to look at (PEEK) the contents

30 An Expert Guide to the Spectrum

of memory locations 23631 and 23632, It is important torealise that
ZX BASIC doesn’t recognise names such as CHANS etc. If you
want to gain access to the information stored in CHANS you have to
use 1ts address. The system variables area is such an interesting part
f the Spectrum’s RAM that it is given a section all to itself. The
other areas are briefly described below.

Display File (16384 to 22527)

Used to store pixel data(i.e. ink or paper) for the entire 24-line by 32-
‘haracter screen. The format used for its data storage 1s discussed
nore fullv in Chapter 6.

Attributes (22528 to 23295}

Jsed to store the attributes of each character location in the entire
'4-line bv 32-character screen, This topic is also discussed more fully
in Chapter 6.

Printer Buffer (23296 to 23557)

Jsed to hold a single line of 32 characters to be sent to the ZX
rinter. Notice that the characters are stored as 8 by 8 dot patterns
-ather than as ASCII codes. Hence printing the contents of this
buifer 1s simply a matter of transferring each complete row of dots to
the orinter. If the ZX Printer isn’t in use, then this area of memory
can pe used to hold machine code USR functions. Refer to Chapter
7 for more details,

Svstem Variables (23552 to 23733}

Jsed to hold a wide range of different values that reflect the current
state of the Snectrum. This area is discussed at length later in this
‘hapter.

Vicrodrive Maps (23734 to CHANS)

"he Microdrive maps are used to store information concerning
which sectors are free and which are used on the current tape
artndge. Of course, if the Microdrives are not in use this area
10esn’t exist. and CHANS 1s set to 23734,

“hannel information (CHANS to PROG—2)
"his area is used to store data concerning which stream 1s associated

vith which channel. Streams and channels are discussed in Chapter
g

L

Inside ZX BASIC 31

3ASIC Program (PROG to VARS—1)

Used to store the lines of text that make up a BASIC program. The
rogram 18 not stored in the same form that it appears on the screen.
.ome parts of it are coded to save either memory space or time when
‘un. information on the storage of program lines is given in Chapter

4.

/ariables (VARS to E LINE- 2]

‘Ised to store the variables created while a program is running,
Notice that the variables area is only cleared just after the RUN
:ommand is given, so any variables created by a program exist until
1 or another program is run, or until the NEW or CLEAR
-ommands are given. This is also dealt with more fully in Chapter 4.

dit Buffer (E LINE to WORKSP—1)
Jsed to store a command or program line while it is being edited.

INPUT Data Buffer (WORKSFP to STKBOT—1)
Ised to store data tvped in response to INPUT commands and for
ither muscellaneous data storage applications.

Calculator Stack (STKBOT to STKEND 1)
Jsed during the calculation of any string or arithmetic expression to
.:tore intermediate results. The workings of a stack are explained in
he next chapter.

Viachine Stack (stack pointer to ERR SP)

"he machine stack is used by the Z80 to store temporary data etc. It
s not possible to find the lowest address used by the machine stack
rom BASIC. The reason for this is that the end-of-stack address is
ermanently stored in a Z80 register called the stack pointer,

1OSUB Stack (ERR SP+1 to RAMTOP)

This 15 used to store the line numbers used by RETURN
nstructions. The operation of this stack is mixed up with the
wperation of the machine stack, so it is not easy to alter return
iadresses bv POKEs. The detailed workings of this stack are
‘xplained in Chapter 4.

'Iser Defined Graphics (UDG to P RAMT)
This area 1s used to store the dot patterns assoclated with the user-
1efined characters. We return to this topic in Chapter 6.

32 An Expert Guide to the Spectrum

Notice that the Spectrum uses memory ‘from both ends’. The
srogram and variable storage both start from the low address end of
the RAM. and expand upwards as the need occurs. The machine
stack and GOSUB stack both start at the high address end of the
RAM and work their way down. This means that the current free
RAM isto be found between STKENI) and the address in the Z80's
nternal stack pointer.

System variables

The use of the system variables to hold the addresses of the
soundaries between the different areas of memory has already been
‘ntroduced. In fact the system variables area of memory 15 used to
0ld many different pieces of information that can be very useful to
the BASIC programmer. A full list of system variables in order of
aadress can be found in Chapter 25 of the Spectrum Manual.
However, they are better classified according to what they do rather
han bv their location in memory. There are five groups of system
rariaoles:

1) the RAM boundary variables
2) the kevboard state variables
3) the system state variables

4) other 1/ O variables

5} the video display variables

I'o avoid repetition, the other [/ O variables are described in Chapter
4 and the video display variables in Chapter 5. The use of the other
hree groups 1s described below.

tefore moving on to the uses of these system variables we must
irst look at a problem common to all the groups: how a 16-bit
iddress is stored in a pair ol ¢ight-bit memory locations. At one
evel. the answer is obvious. If vou list the bits of the 16-bit number
is 00 to bl35 then the storage problem can be solved by using one
memory 1ocation to hold b0 to b7, and the other to hold b8 to bl 5.
'he memory location that holds b0 to b7 i1s called the ‘least
agmiicant’ byte and the memory location that holds b8 to bl5 is
-alled the “most significant byte’. In the Spectrum, with one or two
xceptions, the least significant byte i1s stored in the memory
ocation with the lower address. So if memory location N holds bits
) to b7 of the memory location, N+1 holds b8 to blS. To
reconstruct’ the decimal equivalent of a 16-bit number from its two

nside ZX BASIC 33

1ght-bit halves is quite easy. If you PEEK the least significant byte,
he decimal value returned 1s correct. but PEEKing the most
ngnificant byte returns a value that is too small by a factor of 256.
"he reason lor this 1s not difficult to see if vou consider the weights
riven 1o each bit in the binary-to-decimal conversion carried out by
'EEK. For the least significant byte the weights used are 128, 64,
2.16,8, 4,2 1 and these are correct for b7 to (0 of a 16-bit binary
wmber as well as an eight-bit number. However, the same weights
arc used for the most significant byte, i.e. bits bl5 to b8. These
should in fact be 32768, 16384, 8192, 4096, 2048, 1024, 512, 256; and
‘hese are bigger than the first set by a factor of 256. Thus if a 16-bit
number s stored in the two memory locations N and N+1 the
ollowing user-defined function will return its decimal equivalent:

YEF END (N)=PEEK(N)}+256* PEEK (N+1)

similarly, if vou want to POKE the 16-bit number Lhat corresponds
o the decimal number V into the two memory locations N and N+ 1
then use:

'OKE N. V-256*INT(V/256)
'OKE N+ 1.INT(V/256)

The expressions V—256*INT(V/256) and INT(V/256) occur so
witen in this tvpe of application that it is worth defining two user-
defined functions for them. The expression V-256*¥ INT(V/256) finds
the remainder after dividing V by 256, and INT(V/256) 1s simply the
vnole number of times that 256 will divide V. The function

JEF FNH(V)=INT(V/256)

viil return the decimal equivalent of the most significant byte of V
ind

JEF FNLIV)=V-INT(V/256)*256

viil return the decimal equivalent of the least significant byte of V.

Jsing the RAM boundary variables

All of the RAM boundary variables have been described in
-onnection with the memory map given earlier, In this section some
1 their possible uses to the ZX BASIC programmer are described.

“he most obvious use for the RAM boundary variable is to find
yut how much memory is being used and for what. For example, the

34 An Expert Guide to the Spectrum

difference between the address stored in PROG and the address
itored in VARS will tell vou how much memory is being used by a
BASIC program. The following subroutine will PRINT the amount
I memory allocated to the program and variables, and the amount
i1 free memory:

000 DEF FHp(N)=PEEH(M)+Z5axPFEK(N+1)

7010 FRINT "Froaram: "jFNp(23627)-FNp(23635)
7020 FRINT "Variablesd "I1FNp(Z73441)--FNp (23427
030 FRINT "Freei "tFNp(23613)-FNp(23653)
040 RETURN

“he system variables used in the subroutine are:

3627 VARS
23635 PROG
3641 E LINE
3613 ERR 5P
3653 STKEND

I'he estimate of the amount of free memory produced by this
yrogram does not include the memory used by the machine stack, so
tistoo large by around 10 memory locations. The Spectrum’s ROM
"ontains a machine code routine that will return the exact amount of
ree space available, bul there 1s no guarantee that its location will
emain fixed in future issues of the ROM. However. vou might like
o trv replacing line %030 with:

O30 PRINT "Freel "385536-USEK 7967
This should return a very similar result.
wnother use of the boundary vanables 1s to find the start of the

srogram or vanables area so that they can beexamined. Anexample
of this is given in the next chapter.

The keyboard state variables

“he kevboard state variables can be used to control the way that the
cevboard behaves. This can be very usetful in applications programs
hat need to tailor the kevboard’s response for user data entry. The
.ystem varilables concerned are:

{STATE - 8 memory focations from 23552 to 235589
I'his 1s used to record which kevs have been pressed for the purpose

nside ZX BASIC 38

o1 controlling the auto-repeat facility, and is not really of any use to
the BASIC programmer.

LAST K - 1 memory location at 23560

“his memory location holds the code of the last key to be pressed. It

's undated every 1/50th of a second unless the Spectrum is loading
W saving to tape, or making a sound. The value in LAST K is used
v the INPUT routine to make sure that no key-presses are lost. In
his sense it acts as a single character type-ahead buffer! To see
AST K working try

10 PRINT CHR$(PEEK(23%&40))
Z0 GOTO 10
vhich prints the character corresponding to the code stored in

AST K. Notice that INKEY$ reads the kevboard directly and so
wpasses LAST K.

REPDEL - ' memorylocation at 23561 and REPPER -1 memeory
location at 23562
"nese two kevboard variables need to be considered together
hecause they both control aspects of the auto-repeat. REPDEL sets
he time that a key has to be held down before it starts to repeat, and
LEPPER 1s the rate at which the kev auto-repeats. You can POKE
-alues 1nto these variables to alter the wav the keyboard behaves.
‘or example, to produce a keyboard with an almost instantaneous
epeat rate use:

?0OKE 23561,1:POKE 23562,1

High repeat rates are useful when keyboard mput is used to control
he movement of screen graphics during games etc. Very low repeat
rates produced by POKEing both variables wath zero are useful for
10Vice computer users.

RASP - 1 memoryv location at 23608 and PIP - 1 memory
location at 23609

“hese two memory locations contrel the length of characteristic
.ounds associated with the keyboard. The value in RASP alters the
iuration of the warning tone that accompanies errors, such as
vping in lines that are too long. The value in PIP alters the duration
i the kevpress tone. Normally this 1s so short that the tone is
educed to a click. Bv experimenting with PIP vou can achieve a
ariety of sounds.

36 An Expert Guide to the Spectrum

The system state variables

"he system state vanables are used by ZX BASIC 1o keep track of
‘he current state of the machine. Most of these variables are of little
15¢ to the BASIC programmer and cannot be altered. Included in
his group, however, is the familiar three-location timer starting al
'3672. It counts the number of TV frames that have been displaved
ance the Spectrum was switched on. The function

JEF FNL O =(PEEK (23672 +PHARPEFEK (23467 3) +
SADIEXKFEERC(234674)) /50

eturns the time in seconds since the Spectrum was switched on. To
ero the timer use

*OKE 23674,0:POKE 23675,0:POKE 23676,0

here arc two other variables included in this group which may be
H use to Z80 assemblv language programmers.

LRR NR - 1 memory location at 2361710

Holds one less than the error report code. Thiscould be used as part
»t an implementation of an ON ERROR GOTO type of statement
o extend ZX BASIC, but this is not an easy project.

L RR SP - 2 memory locations at 23613

I'his contains the address of a pair of memory locations on the
nachine stack. These locations contain the address of the machine
-oge routine within the ZX BASIC ROM that is iumped to whenan
:rror occurs. 1f vou decrease the contents of this pair of locations by
wo vou will find that the BREAK key is disabled, but any
:ubsequent errors that occur will cause the machine to crash. It is
rossible for the Z80 assembly language programmer to alter the
‘rror return address to replace the standard error handling by a new
:rror routine, However, this is not as easy as 1t first seems, since the
:pectrum changes the error return address as it runs to allow for
different types of error handling. For example, during an INPUT
:ommand a data entrv error doesn’t crash the machine, 1t simply
-auses the input editor to ask for the input over again. This is a
aifficult, challenging but possible project!

nside ZX BASIC 37
Ihe shifting memory

s already described, many of the areas of memory change their size
is a program 1s entered or run. For example, each time a line of
3JASIC is entered the program area increases in size. What is less
pvious 18 that cach time a memory area changes its size all the
nemory areas apove it have to be moved, and all the system
artables that mark the boundaries have to be changed. For
:xampie, if space is made within the input data area then the
-alculator stack has to be moved up. All this shuffling of memory 15
aken care of automatically by ZX BASIC, but it is worth knowinga
ittle of how it is done.

Nhenever space of X bytes is to be made withina memoryarea, allthe
nemorv apove the area and below STKEND is moved up. Then the
ifteen svstem variables starting at VARS (23627) and ending at
TKEND (23653} are examined one by one. If the system variable
-ontains 4n address that is above the area of memory that is
eing extended, then the address 15 increased by x. The opposite
rocess 15 carried out when an area of memory 1s being reduced by x
wies. In other words, all the memory above the area is moved down
w x bytes, and the fifteen system variables that contain addresses
apove the area ure reduced by x.

“his shifting and adjustment of system variables has to be taken
nto account by any Z80 assembly language programs that alter the
aandard position of any memory area, or the value ol any svstem
artable. For example, in Chapter § the shitting of memory causes
rouble if the area of memory ‘pointed at’ by CURCHL 1s positioned
ipove the input editing arca and above STKEND. Although the
;rea ol memory isn't moved, because it 15 above STKEND. its
'vstem variable contains an address that 1s above the input editing
irea. so 11 1s adjusted as if the area fiad been moved. The result is an
rrecoverable svstem crash! Another consequence of the memory
nifting is that you cannot be sure that anything stored above 23734
viil stay at a lixed location in memory. Maybe you knew where it
vas ai Lhe start of the program, but that doesn’t mean it will stay
here for the entire course of the program. The moralis to find every
item. variable, program line ete. each time you need 1t, unless you
<now it couldn’t possibly huve moved. Some examples of {inding
iects In memory are given n the next chapter.

38 An Expert Guide to the Spectrum
Conclusion

This chapter has described the overall layout of the Spectrum’s
nemorv 1n some detail. However, discussion of and examples
nnvolving many of the items introduced have been postponed to later
chapters, where their relation to other topics can be explored. If, in
ater chapters, you lose a sense of where everything 1s, then use the
nemory map 1n this chapter as a guide.

Chapter Four

The Structure of
ZX BASIC

"X BASIC is a completely new implementation of BASIC, and it
nas many new features. In particular its string handling 1s a complete
break from the methods used by the older and clumsier Microsoft
tandard. The topic considered in this chapter 1s not the outer
ippearance o1 ZX BASIC, but how it orgarises and uses memory to
mpiement some of the more important facilities 1t provides. The
nost complete statement of the way ZX BASIC works s, of course,
-ontained in a listing of the ZX BASIC ROM. However, to a great
*xtent this 1s overprovision. Most of the ROM is concerned with the
ietailed implementation of anthmetic, functions etc. These sections
nignt be of interest, but are generally of little practical use.

“he best wav to understand the workings of 7ZX BASIC is to study
he way that it organises and uses memory, and the principles that lie
sehind its implementations of GOTOs, GOSUBs, FOR loops etc.
“his knowledge makes it easier to understand the overall layout of a
10M listing; in most cases it is also sufficient to make consulting 4
I0M listing unnecessarv. lTo demonstrate this, a number of
sracucal examples of manipulating the program and variables area,
ind altering the way that ZX BASIC works, are given. These
:xampies are all written in ZX BASIC to make them asaccessible as
possible; but if you already know or are learning Z80 assembler,
then they would all benefit from the extra speed that would result
rom being rewntten in Z80 assembler.

The format of variables - a variable dump program
‘hapter 24 of the Spectrum Manual gives a great deal of

nformation about the format of the different tvpes of variable
-reated by ZX BASIC in the variables area of memeory. This said, it

40 An Expert Guide to the Spectrum

s still worth summarising the information presented to show the
.vstem that lies behind all the formats.

The six different tvpes of variable in ZX BASIC are all stored in
the variables area of memoryv, starting with a single byte which
;erves both to identifv the type of variable and to store the first (and
yossiply only) character of its name. The way these two pieces of
nformation are packed into a single byte is not difficult to
understand. ZX BASIC regards upper and lower case characters as
dentical when naming variables, so the first letter of a variable name
can always be stored as a lower case character. Using the full ASCII
code for the 26 lower case letters is perfectly possible, butitusesupa
vhole memory location (8 bits) when only 5 bits are necessary. It 1s
much more efficient to store a number in the range 0 to 25 to indicate
which of the 26 letters a variable name starts with. It also frees three
f the bits in @ memory location to store a variable type code. Thus
the first bvte of each variable has the following format:

37 b6 bS b4 b3 b2 bl b0

type code letter code
|

"he tvpe codes used are:

string variable
numeric variable with a single letter name
1 numeric drray
numeric variable with a multiple letter name
1 character array (1.¢. a dimensioned string)
index vanable (1.e. a variable used in a FOR loop)

Yolice that the type codes are converted to a three bit binary
number, and the resulting bit pattern is used to set b7 to b3
respecuively. For example, if the type code is 5, the three-bit binary
cquivaient is 101, and thus b7=1, b6=0 and b3=1. The ASCII code
if the first letter of the variable name can be constructed from the
value of b4 to b0 by simplv adding 96. Thus if A holds the address of
he first memoryv location used to store a variable, the following
‘unction

YEF FNt{A)=INT(PEEK(A),32)

v11l return the value of the variable tvpe code as given in the above
able and

‘he Structure of ZX BASIC 41

JEF FNc$(A)=CHRS$(PEEK(A)FNt(A)*32+95)

will return the first letter of the variable name. (Both functions make
1se of techniques of BASIC bit manipulation described in the last
:hapter.)

What follows the first byvte of each variable depends on what iype
f variable it is. These data formats are given in detail in Chapter 25
I the Spectrum Manual, and are reproduced with additional
omments in Fig, 4.1, Although a knowledge of these formats is

i 4 = 8
| | e ayles
E
alind Expananl l Mantlzsa
> —
Rma aala
wpe 3 - Mumeric variabde wilh
- dingle l&1er name
1 1 1 il 4 =M+5
= .\'p-e + T 7 E = T & S ylas
& an e Grd lerier ; Hin lenzr | Exponent Martissa
51 latter
> '
5
—_— — — | L -
1L Lostlalter has bY set Gala
wp 5 — Mumeric variabilé wilh
+ Ietlmr nate [N > 1}
2 1 1 1 = N+1
e+ | N=tengh | 121 | and Nih 7y
chier of siring | Char | Char Char
" i
—_—— -
Hame Data Data
nio
ypee 2 - Siring vanabde ength = N
- 2 1 F K =H+3
Trpa + M = tatal M =No. ol 1= ‘"L‘ Last Elmments ez
lellar J lengin Dimensions Fimenslon 3 Dikrraermico 5 byles sach
prmt \ - - v r
Hamu antarrnalon on dala Data
wpe & — Amay of numbers
7 1] 2 =M+3
—_— M =lota M = Mo, ol i Last Elemants bytas
atiar larugth Dimensions L Dirnension 1 byta mach
] - v — -
dpme Inlormaticn an data Data
ype 6 — Ay ot characiers
1 5 5 2 1 = 13 byles
— ' -
T ; |
Type + il Lima Statement
o lemer | Valus Limst Hlep] Pt | “numbar
4 4
e R T . e e —
Jarne Data FOR [oep infermation

vpd T — e vanabie

tg. 4.1. Data formats for variables in ZX BASIC.

imporiant to the assembly language programmer, the ZX BASIC
srogrammer can use the standard functions VAL and VALS to find
out what the contents of a variable are. For example, if NS contains
i1 non-array variable's name, then

*RINT VAL(NS)

42 An Expert Guide to the Spectrum

¥1il print its contents if it i a2 numeric variable, and
PRINT VALS(NS)

viil print its contents if it is a string variable. Similar expressions can
»e used to print any ¢lement of an array variable. Forexample, if N§
:ontains the name of a single dimensioned numeric variable then

PRINT VAL (NS+*("+STRE(I)+)")

viil print the contents of element I. The idea behind printing
:lements of arrays i1s to construct the full name of the element as a
anng and then use VAL or VALS to evaluate 1t.

sing this method of discovering the contents of a variable, the
wo functions given earlier, and information about how many
nemory locations each type of variable occupies, itis possible to list
i1l the variables used by a program. Such a variable dump program
s glven pelow.

7100 DEF FHL(AY=INT{PEER{(A}/32)
110 DEF FHe$d(ad)=CHR$(FEERK(A)~FNL{A)X3Z+¥H)
120 DEF FNw()=PEEH (23627 +206%xPEERK(Z34678)

7130 LEY VO=FNv()}
7140 FRINT "Varisble"ITAB(IS) I Type" s TABC(ZS) (" Value"
150 DIM N$(13)50IM T4(10)

7200 IF FEEK(V0!=128 THEMN STOF

P210 LET I0=1iLET Ne=""I{LET Téd="Numneric"{LET HN$=""
220 LET M$C(I0)=FNcd (VD2

P230 IF FNLdVOr=3 THEN GOTO 9280

7240 IF FNLVO)«<:-5 THEM GOTO 9300

PESO LEY Vi=Va+1iiLET I0=10+1

2260 LET H$(T0)=CHR$(FEEEKIVI)-TNT(FEERKIVO)/128)x128)
P270 IF INT(PEER(VO)/128)x178=0 THEN GOTO 2200
280 LET V0=V0+6

2290 FRINT N$jTAEC1S)3THiTAR(ZE) VAL (NS)

295 GOT0 72010

2300 TF FNLVOY<H7 THEN GOTD 9250
2310 LET Té="Tndew"

320 LET V0=V0+19

1330 GOTO 9290

P350 IF FNLVO»<xZ2 THEN GOTO 2400

#3450 LET Té4="String"ILET NE{(2)="4%"

2370 LET VO0=VI+FEERK(VI+1) +254%XPEERK(V0O+2)+3
P340 FRINT N$ITABCIBISTHRITARCZD) SVRLECNE)
2390 LOTOQ ?Z00

7400 IF FNL(NOY=46 THEMN LET N$S(Z)="$"

he Structure of ZX BASIC 43

410 LET T%="Array"

Q420 LET IG=0

7430 PRINT NE&;TABCIS) ITH3TARC2S)3"'DINMC

440 PRINT PEEK(VO+4+T0R2I+25468PEER{(VO+S+TOX? Y S
7450 LET I0=10+1

7460 IF TO<AFEERVO+3) THEN PRINT ","$:360T0 9440
7470 FRINT M

7480 LET VO=V0+3+FEEK(VI+1)+ 286%FFFE(NO+Z)

2470 GOTO 22060

“he first part of the program defines three useful functions. FNt and
‘Nc$ have already been described and FNv returns the current start
wadress of the variables area of memory. Lines 9130 to 9150 print a
1cading, initialise the variable VO which is used to mark the current
sosition in memory, and dimension two arrays used in the program.
N$ is used to build up the name of each variable and T#$ is used to
10ld a description of its type. The rest of the program s 1n the form
[a large loop starting at line 9200. Line 9200 tests for a value of 128,
vnich is used to mark the end of the variables arca. Lines 9210 to
9295 build up the name of a numeric variablein N$ and then print its
ralue at line 9290. If the variable is type 3 then the single letter
ilready in N$ is the variable’s name, and line 9230 passes control to
ine 9290 which prints the variable’s details. If the type 1s 5 then the
irst character 1s followed bv a sequence of letters making up the
;ariable’s full name (see Fig. 4.1}. Lines 9250 to 9270 extract each
‘naracter in turn, stoning it in N§. The end of the variable’s name 1s
narked by the value of b7, which is 0 for all the characters but the
ast. Line 9280 adds 6 to V{} to make it point at the start of the next
‘ariable.

f the variable tvpe is 7 then control passes through line 9300.
viterwards, line 2320 adjusts V0 to point to the next variable. The
ietails of the index variable are printed by line 9290.

f the variable tvpe is 2 then control passes through line 9350. Line
1370 sets VO to point at the start of the next variable by adding the
ength of the string to it (see Fig. 4.1). Line 9380 prints the current
iata stored in the string using the VALS function as described earlier.

Finally, i the variable type 1s 4 or 6 then the variable isanarray. In
his case the program doesn’t attempt to print the data in the array
secause this might be rather a lot! Instead the dimensions of the
irray are printed. Line 9400 adds a *$” to the name of the array if it is
i character array. Apart from this, both types of array can be treated
n the same way, because their dimension information is stored in
he same way. lhe number of dimensions is contained in the fourth
ocation of the array and this is PEEKed in line 9460 to see if the

‘4 An Expert Guide to the Spectrum

alues ot all of the dimensions have been printed. Line 9440 will
orint the value of a single dimension, and 10 is used to count the
wmoer of valucs printed so far. Finally, linc 9480 uses the total
ength of the array to update V0 so that it points to the start of the
1EXT variable.

t vou add this program to the end of one of vour own, then
1OTO 9100 will print a list of all the variables that your program is
1sing pius 10, VO, N§ and T$ which are used by the variable dump
srogram 1self. The arrays NS and T$ are used in preference to
arings because the variables area changes as the number of
:naracters in astringis increased or decreased. If a string changed its
1ze while the memory dump program was running then the location
i all the variables above it would be changed, and V0 would no
onger necessarily point to the start of a variable. However, a
-naracter arrav 1s fixed in size, and using it doesn’t cause the
ariables area to be rearranged. You can add other facilitics to this
-ariable dump program, such as printing the amount of memory
hat each takes, but beware of using any strings within the dump
Jrogram liself, or things will go wrong!

+he numeric data formats

"he wav that numbers are stored within a computer 1s a4 very
echmical subject but there are two basic methods - inreger siorage
ind floating point storage. Integer storage gives a limited range of
wumbers but is [ast and easv when used in arithmetic. It is essentially
he simple binary representation of numbers that we have been using
ance Chapter |, extended to include both positive and negative
wmbers. Floating point storage can be used to represent a very wide
range of numbers, but floating point arithmetic 1s quite slow
-omparea to integer arithmetic. Floating point storage is based ona
sinary equivalent of the decimal exponential notation used on many
-ajculators.

vany versions of BASIC provide two different tvpes of numeric
arigble integer for whole numbers, and real for numbers with a
ractional part. When to use each type of variable is left to the
yrgrammer s discretion. ZX BASIC also provides both types of
tarage, but within the one type of numeric variable. W hich form of
torage 1s used is decided by ZX BASIC. It a number willfitinto the
-ange ol the integer storage provided, then it is stored as an integer.
Yherwise it1s stored as a floating point number. By this mechanism

he Structure of ZX BASIC 45

he nrogrammer gets the best of both types of storage, but need
1ever worry about how values should be stored. The details of both
vpes of storage are well described in Chapter 24 of the Spectrum
vianual.

+he dvnamic management of variables

'he previous sections describe the format used to store variables.
JTowever, there is another aspect to variable storage that concerns
1s. As new vanables are created and strings altered, the vanables
irea 15 rearranged. How this rearrangement is achieved can affect
he etficiency of programs, so the details of the dynamic
nanagement of the variables area are important.

"he variables area is emptied by a RUN or CLEAR command,
ina vaniables are created as and when they are encountered. 1o
wvoid moving things around too much, new variables are added to
-xtend the variables area upward. Thus, initially at least, variables
ire stored 1n the varniables area in the order that they are created.
‘magine the difficulty of adding one character to the end of an
:xisting string variable. If the string variable was created early in the
yrogram, then cach time a single character was added all the other
ariables stored above it would have to be moved up by one memory
ocation. This suggests that a program like

L0 LET. At

0 DIM MO1000)

30 LET Af=ps+vx"

14 GOTO 2390
vould run faster if the arrav was dimensioned, i.e. created, before
he string variable AS {by swapping the order of the first two lines of
he program). In the listed program, approximately 5000 memory
ocations have to be moved each timean*X" 1s added to the string. If
he arrav were defined first, then no variables would have to be
noved (o add a single character to A$. This sort of problem causes
nany versions oI BASIC to slow down when handling large arrays
ina strings — but not ZX BASIC! So, both versions of the above
srogram run at roughly the same speed on the Spectrum!

“he reason for this is that ZX BASIC uses an interesting method

1 managing the variables area. Each time a string variable occurs on
he lett hand side of a LET statement its old value is destroved by
noving the variables area down to “close up’ the memory space that

a6 An Expert Guide to the Spectrum

t occupied. Then it is re-created at the top of the variables area just
i 11 it were a completely new variable! In short, a string variable is
e-created each time it occurs on the left hand side of a LET
tatement. This re-creation has two effects. Firstly. unlike other
.vstems, there are no old versions of strings hanging around in the
-ariables area: hence there is no need to stop calculating and
rertorm ‘garbage collection” now and again. Secondly, the most
ecently used string variable is always at the top of the variables area,
ind the most frequently used string variables tend to be close to the
op of the variables arca. This minimises the number of moves made
ina the number of locations affected by each move due to string
handling. You should now be able to see that the program given
ipove, which adds a single letter to the variable AS, will only result
n the arrav being moved once to bring the string to the top of the
‘arlables area.

" he same svstem of management 1s used when an array is defined.

When an array is dimensioned. an existing version of the array is
‘emoved by moving the variables above it down to close up the space
hat 1t occupied. Then a new array is created at the top of the
rariables area. This means that it is possible to dimension arrays
more than once in ZX BASIC, whereas other versions of BASIC
(reat arrays as tixed-size variables.

How ZX BASIC is stored

-ach line of ZX BASIC 1s stored using the format shownin Fig. 4.2.
he first two bytes of each line contain the line number, stored in the

- 2 1
Length

Line
of text Text ENTER
number |, "ENTER

ig. 4.2 Format of a BASIC line.

everse order to most other numbers. 1.e. with the most significant
syte first. The line number is used to determine where GOTOs and
3OS UBs transfer control to, and to determine where new lines are
nseried in the program. Lines are stored in order of ascending line
wmpber. 1he second two bvtes are the length of the text, including
he enter character that marks the end of each line. These two bytes

he Structure of ZX BASIC 47

ire stored in the usual order, and are used to find the location in
nemory of the start of the next line.

'f A is the address of the start of a BASIC line then the function
JEF FNL(A)=256* PEEK(A)Y+PEEK(A+ 1)
eturns 1ts line number. The function
)EF FNn(A)=PEEK(A+2)+256* PEEK(A+3)+A

wviil return the start address of the next line number. You can detect
he end of a program when FNn(A) is equal to the contents of the
wystem vanable VARS. As well as examining line numbers, you can
11s0 change them by POKEing values. Although ZX BASIC will
ynly accept line numbers in the range 1 to 9999, it will work with
wmbers in the range 0 to 61439, It will work in the sense that
7OTOs and GOSUBs will correctly transfer control to line numbers
n the larger range, but the editor will only allow vou to edit line
wumpers in the smaller range. This anomaly can be turned to
iavantage by changing the first line number of a program to 0, thus
making the line un-deletable. There are more sophisticated methods
;I using these semi-legal line numbers to add protection to programs
sut once vou know about them they are very easy to defeat.

[he text portion of a program line is stored exactly as it was typed
rom the keyboard, with a few exceptions. Firstly, any keywords within
i line are stored as single bytes corresponding to their character codes, as
nven in Appendix A of the Spectrum manual. Thus GOTO s notstored
is the four separate letters ‘G’, *O’, “T" and *O’ bul as the single-byte
-ade 236. Secondly, all numeric constants are stored within the line
n two different forms: as the string of digits tvped in from the
cevboard, and as a five-bvte number in the format used for a
wmeric variable. The string form of the number is used when
isting, and the five-byte internal form is used by ZX BASIC when
he program is running, to save time converting constants to the
nternal format that all ZX calculations use. Character code 14 is
1sea to indicate that a five-byte floating point number follows, and
nis is used by the LIST routine in the ZX BASIC ROM toskip over
niernal formatted numbers in listings. Five-byte floating point
wmbers can occur in other places, as well as following a numeric
:onstant. 5o always look for code 14 when you scan a BASIC line.

A8 An Expert Guide to the Spectrum

A keyword finder

vs an example of using information about the internal format of ZX
BASIC. the following program searches the program area and
prints out the number of any line that contains the keyword in CS.

L0 INFUT C$
4 GOsue 2500
310 STOF

2300 DEF FNp()=FEEK 23635+2506%PEEFK 23636
7910 DEF FHv(O)=FEEK Z3827+206%PEFK 23628
*S520 DEF FNL(AY=Z256XFEEK A+FPEEK(A+1)
7530 FRINT C$3'" AT "

2340 LET S=FNp()

2590 LET F=FNv()

9560 LET L=FNL(S)

7570 LET S=S5+4

25380 IF Sk=F THEM RETURN

7285 LET C=FEEK S
2590 IF C=13 THEM LET
600 IF C=14 THEN LET
7610 IF C<>CODECCS$(1)
7620 FRINT "line "L
2630 LET S=5+1

2440 GOTO 2580

G=6+1360TO 9560
S=G+53C0T0 9580

“he subroutine starting at 9300 does all the work of looking for the
ceywords in C3. Lines 9500 to 9520 define three useful functions.
‘No returns the start address of the program area, FNv returns the
start address of the variables arca and FNL returns the line number
o1 the line starting at address A, Lines 9580 to 9640 form aloop that
.cans the program area line by line and character by character
ooking for character codes that match CODE(C${1)). Line 9590
1ietects ENTER characters that mark the end of each program line,
ind line 9600 detects code 14, which indicates that the next five bytes
ire the internal form of a numeric constant. and should be skipped.
“his simple program is of great practical use in checking that all
rOSUBs and GOTOs are correct. (Note that to enter a keyword
:uch as LET, first enter THEN to get the cursor into K mode, then
‘nter the kevword, then delete the THEN.) You can even search for
il the lines that use variables starting with a particular letter, by
ntering a single letterinstead of a keyword. However, if you want to
earcn for a vanable with more than one letter in its name. the
program wiil have to be extended to match each letter against the
:ontents of memory.

Y THEN LET S=8+13:607T0 9S80

he Structure of ZX BASIC 49

vs another example of how the keyword search subroutinecan be
1sea to extend the Spectrum’s facilities, consider the following
impie changes
rS2lPOKE 2828 L ~ENTOL ,f”“ HIXZHEH
7630 FOKE 234626, INT(LAZE
7&40 STOF

R

“hese new lines POKE the system variable E PPC with the line
yumber of the first line to contain the keyword stored in C$. As E
PPC is used to store the position of the editing cursor, this routine
viil move the editing cursor to the first occurrence of the keyword in
’$. By adding a*search from last position” option, this routine could
-astiv be extended so that the editing cursor could be quickly
positioned anywhere in a program.

A line renumber program

Aenumberinga ZX BASIC program locks easy at first sight. All vou
1ave to do 1s scan through the program area, altering the two bytes
it the start of each line that hoids its number. The trouble is that this
gnores the changes that must be made to line numbers quoted as
art of GOTOsand GOSUBs. [tis not difficult to think up a number
)1 possible algorithms that would adjust the GOTO and GOSUB
ine numbers, but all of them involve scanming through the entire
program and searching forevery occurrence of the keywords GOTO
ind GOSUB. Such an algorithm in a ZX BASIC program would
nake it very slow to use.

s &4 compromise, the following subroutine renumbers all the
ines of a program, 1gnoring the GOTO/GOSUB problem, but
yrints a list showing the correspondence between the new and the
id line numbers so they can be corrected by hand.

700 LET F=FNp()

710 INFUT "Start number "iS50
@720 INFUT "Step size "3T0

730 PRINT "OLDY3TABCLIOY 2VNEW"
740 LET L=FNL(F)

750 IF L»2000 THEN STOF

760 FRINT LITAB(I0) S8R0

2770 FOKE F,INT(S0/254)

780 FOKE F+1,80~INT(S0/258)%254
790 LET S0=850+10

2E00 LET F=P+4+PFEEE(P+Z2)+ 25 4%PEFHF+3)
2810 COTO 2740

20 An Expert Guide to the Spectrum

ine 9700 sets P to the start of the program area using the function
‘Np defined in the last section. Lines 9710 and 9720 get the line
wmoer that the renumbered program should start with, and the
:tep from one line number to the next. Line 9740 gets the old line
wmoer into L using the function FNL defined in the last section.
"he new line number is POKEd into the correct place in the line by
ines 9770 and 9780. Line 9790 increases the new line number by the
:tep s1ze, and line 9800 adjusts P to point to the start of the next line,
by adding the contents of the two locations that hold the length of
the text part of the linc. The renumber stops when the old line
wumber reaches 9000 to avold renumbering the renumber program
wr anv of the other programs given in this and earlier chapters.

GOTO

The ZX BASIC GOTO statement works in much the wav you would
:Xpect, but there are a few special features that are worth taking into
iccount. When a GOTO 1s encountered, the program area is
:earched for the first line number that is equal to or greater than the
ine number used in the GOTO. If one is found, then control is
yassed to that line, If such a hine 1sn’t found then the program ends
with a normal report code. This means that unlike other versions of
3ASIC, it 1s impossible to cause an error with a GOTO statement in
"X BASIC, In some ways this form of GOTO 1s an advantage, in
ythers it can be a serious problem. For example, suppose the line
(OTO 4000 occurs in a program without a line 4000, and the first
ine larger than 4000 is 5000, In this case the GOTO 4000 transfers
control to line 5000, and the program may work as the programmer
ntended. Now suppose that at a later date the programmer
nnocently adds a new section starting at line 4500. The result 1s that
the GOTO now transfers control to 4500, and the program may not
vork. The task of finding what has gone wrong is very difficult,
wcause the cause of the trouble - the incorrect GOTO - is part of the
yrogram that hasn’t beenchanged! The moral is always to make sure
hat GOTOs {and GOSURBs) transfer control to line numbers that
X151, A second unusual feature ot ZX BASIC is the way that the line
aumber quoted in a GOTO (or a GOSUB) can be a numeric
:xpresston. For example, in ZX BASIC

1010 200+10*4

1as the same effect as GOTO 240. This can be used toadvantageina

"he Structure of ZX BASIC 51

wmber of wavs, For example. one of 1 number of routines can be
elected according to the value stored in a variable using

JOTO L(l)

vnere L is an array containing the line numbers of the start of each
-outine. and the value of I governs which one control 1s passed to.
That is. if | contains | the routine starting at L{1) will be jumped to,
and likewise for other values of I. (This will, of course, also work
vith GOSUB.) In other versions of BASIC this facility is called a
romputed GOTQO" and 1s usually written

INLGOTO L1 L2150

vnere L1, [.2 etc are the line numbers thatare jumped to when [1s 1,
T ... respectively.

\nother use for expressions as part of GOTOs(or GOSUBs}is to
nake programs slightly more readable. If part of your program,
tarting at 3123 for instance, reads in data for further processing,
hen an instruction like

60 GOTO 3123

aoes the job of getting data but conveys nothing about what 1s going

m o someone recading the program. However, if vou define a
rartable with an appropriate name to hold the line number of the
qart of the routine. then GOTOs (and GOSUBs) become much
nore readable. For example

10 LET READDATA=3123
) 4 *
& L] 4
50 GOTO READDATA
"X BASIC has the abilitv to handle more than one statement per
ine. using the colon as a separator. This is a very useful facility, but
10TOs can only transfer control to the start of multi-statement
ines bv way of line numbers. In fact ZX BASIC works with a line
wumpoper. and a statement number within the line. that can be used to
Jnpoint any statement in a program, even if it is part of a multi-
statement Line. For example

1203 PRINT "1"3PRINT “Z2":PRINT "3vu
s a multi-statement line. The PRINT *1” command is line 1203

tatement 1, PRINT “2% is line 1203 statement 2, and so on.
uthough there i1s no *GOTO line number, statement number’

52 An Expert Guide to the Spectrum

‘ommand that will transfer control into a multi-statement line, it is
101 difficult to produce one. The pair of system variables NEWPCC
ind NSPCC are used to hold the line number and statement number
within the line that control is to be passed to. You can force a jump
bv POKEing NEWPCC with the desired line number and then
'OKEing NSPCC with the statement number within the line. For
:Xxample, try:

NT 2

PRI SFRINT 33
LET =2

GOTO 2800

ey e

800 POKE 23418,L-INT(L/258)82054
7810 FORE 23619,INT(L/256)
820 FOKE 23620,5

f vou run this program, you will see 123 printed followed by 23
-epeating over and over again until you press BREAK. Routine
800 will transfer control to line L and statement number S, so line
20 1s equivalent to GOTO line 10, statement 2. Notice that routine
800 should not be jumped to by a GOSUB because the transfer of
-ontrol it creates would stop a RETURN from ever being obeyed!

GOSUB and the stack

Ihe ZX BASIC GOSUB command works 1n exactly the same way
is the GOTO command, but stores information on the GOSUB
ack. This 1s used by the RETURN command to transfer control
sack to the statement following the GOSUB. To understand the
yOSUB and RETURN command it is necessary to know a little
ioout the way a sfack works.

1 stack, or to give it its proper name a “Last In First Out (LIFO)
stack’. is a collection of storage locations plus a poinzer used to mark
he first free location. For example, asimplearray canbe used as astack
[it is associated with a variable. or stack poeinter, that holds the
ndex of the first free element. Data is entered to a LIFO stack by a
wsa operation, This stores the data in the free location indicated by
he stack pointer, and automatically moves the pointer on to the
iext free location. Similarly, data is retrieved from a LLIFO stack by
: pull operation. This moves the stack pointer back to the first
ocation used and then returns the data stored in it. If the array S 1s
eing used as a stack, with P as its stack pointer set to point initially
it the first element of 8, then a push operation would be

he Structure ot ZX BASIC 53

LET S(P=D:LET 5=5+1
ina a pull operation would be
ET $=8-1:LET D=5§(P)

viere the variable D is used tohold the datain both cases. Notice that
1either routine checks to make sure that the bounds of the array are
10t exceeded. A stack can etther grow upwards, as inthe example, or
iownwards, as is the case with most Z80 stacks. using high memory
ocations for data storage first.

“he important feature of a LIFO stack is indicated by its name.
“he last data item pushed onto the stack is the first item to be pulled
rom it. For example, if the items A, B and C are pushed onto a
:tack. then the first pull will return C, the second B and the third A.
“his is exactly the behaviour needed to implement the storage of
eturn line numbers following a GOSUB. Each GOSUB effectively
susnes a return line number onto the GOSUB stack and each
RETURN pulls a return line number from the GOSUB stack. Thus
T vou execute GOSUB A, GOSUB B and GOSUB C in that order
hen the first RETURN will transfer controlto the line following the
JOSUB C, the second RETURN will transfer control to the line
ollowing the GOSUB B and the third RETURN will transfer
:ontrol 10 the line following the GOSUB A. In this way a stack
:erves poth to remember the return addresses and to supply them in
he correct order as they are needed.

The GOSUB stack used in the Spectrum is a little odd; 1t 1s mixed
1p with another stack used by the Z80 to store the return address for
he machine code equivalent of a GOSUB. To be more precise, the
JOSUB stack is part of the Z8) machine stack. However, it turns
sut that most of the time the system variable ERR SP contains the
iadress of the first item on the machine stack proper, and the
.ontents ol ERR SP plus two are therefore the address of the first
item on the GOSUB stack.

t is interesting to note that both the line number and the
tatement number within the line are stored on the GOSUB stack.
“his means that a GOSUB within a multi-statement line will
LETURN to any statement following in the same hine. For example,

L8 GOSUE 18003PRINT "line 10 statement 2"
0 FPRINT Y"line 20 statement 132

w11l cause both PRINT statements to be executed as subroutine 1000
eLurns control to line number 10, statement 2. The exact data stored

54 An Expert Guide to the Spectrum

m the GOSUB stack are first a two-bvte number representing the
current statement number plus one, followed by a two-byte number
representing the current line number.

"his information can be used to write a program that will cause a
RETURN to transfer control to any line and statement number.
This sort of disorderly jumping around a program is not to be
-ncouraged, but it 15 sometimes useful for implementing special
:rror RETURNs from subroutines.

10 GOSUE 200

20 FRINT "line 20v
30 PRINT "line 30"
40 sTOE

100 LET CG=2+FEEK 23613+2546XFPEEK 23614
110 FPOKE G,L-INT(L/2546)%X256

120 POKE G+1,INTC(L/Z2S6)

130 FOKE G+2,8

140 RETURN

200 PRINT "line 200"

210 LET L=30SLET 8=1

220 GOTO 100
subroutine 100 first PEEKs ERR SP to find the location of the first
item on the GOSUB stack. Then lines 110 and 120 POKE a new
ratue for the line number, and line 130 POKEs a new value for the
tatement number. In this way LET L=x:LET S=y:GOTO 100 will
esuit in the next RETURN transferring control to line x statement
.. You should be able to see this in action: the subroutine 200 given
spove RETURNSs control to line 30 statement 1 rather than line 20
tatement |.

The FOR loop

"X BASIC’s implementation of the FOR loop 1s very clever and
rersatile. but different from that used by most versions of BASIC,
"o allow FOR loops to be nested one within the other the usual
method is to use a stack. a FOR stack, to store the line numbers to
vhich NEXT commands will transfer control (the so called *looping
incs™). The reason for using a stack to store the looping lines is
;imiiar to the reason for using a GOSUB stack to hold RETURN
ine numbers. Each FOR loop pushes the line number of its looping

he Structure of ZX BASIC 5Bb

in¢ onto the FOR stack, and this means that a NEXT statement will
iiways transler control to the looping line of the last or innermost
‘OR loop. However, ZX BASIC does not use a FOR loop stack,
ind this makes it behave in a different way to most other versions of
IASIC.

‘ach ime that a FOR statement is encountered, the variables area
s searched lor any variables with the same name as the index
-anaple used. It one is found, then it is removed. Then a new
rariable with the same nameis created as an index ortype 7 variable.
“he lormat of an index variable was given earlier in the chapter, but
1 is repeated in Fig. 4.3. Notice that as well as the usual five-byte

|
! Tﬁft?e: Value Limit Step Line No. Siat:?ent
i il Ay v e - Yoy ; -
dame Data FOR loop data Looping
line data

/g. 4.3 Data format for an index variable in ZX BASIC.

;e associated with every numeric variable, it contains all the
niormation needed to implement the FOR loop. The ‘limit’ and
step” are the final value and step size of the FOR loop respectively.
"he looping line 1s stored as a two-byte line number and a one-byte
tatement number, and this delines the statement to whicha NEXT
-ommana guoting the index variable will transfer control.

“he only real effect that a FOR statement has is to create a new
ndex variable. All of the real work in a FOR loop is carried out by
he NEXT statement. When a NEXT statement 1s encountered the
sten” is added to the ‘value’ and the result 18 compared with the
timit’. Il the result exceeds the ‘limit" then the loop ends, Otherwise
he control is passed to the looping line. Apart from its use by a
NEX | statement, the index variable can be manipulated and used

“ust like any other numeric variable. Thus to bring a FOR loop to a
sremature end you can simply set the index variable to be bigger
han the limit.

“here are two 1important conseguences of ZX BASIC not using a
‘OR stack. Firstly, unlike most versions of BASIC, you can jump
wt of a FOR loop before it is completed without any worries. H vou
10 1his in a BASIC that uses a FOR stack the entry on the stack
never gets removed (pulled), so the stack slowly fills up, finally
nwving an error message. i he only penalty in ZX BASIC is that an

56 An Expert Guide to the Spectrum

ndex variable is left hanging around, but this can be used as an
rainary variable, and a new FOR loop on the same index will also
-euse 1t. Even though jumping out of FOR loops does no harm in ZX
JIASIC 1t is not a good habit to acquire. If you do, then your
srograms wiil be more difficult to transfer to other versions of
BASIC.

"'he second effect of not using a FOR stack 1s remarkable to
vatch! A spinoff of using a FOR stack is that improper nestings of
‘OR loops are automatically detected, and anerror message issued.
n ZX BASIC, however, almost any nesting of FOR loops will work.
‘or example, try

{0 FOR I=1 TO 10
0 FOR J=1 TO 10
30 PRINT J,I

40 NEXT I

50 NEXT J

viost versions of BASIC. and most programmers familiar with
ither versions of BASIC, would reject the above program as being
incorrect {lines 40 and 50 should be swapped to produce the correct
1esting of two FOR loops). If you run the above program in ZX
3ASIC vou will find it not only works but might even be useful!
“rving to understand such an odd nesting of FOR loops should
-onvince vou to avoid them! The nesting works because each of the
NEXT statements at lines 40 and 50 is obeyed without reference to
‘he rest of the program. So line 40 transfers control to line 20 ten
ames for values of | from | to 10, Each time through the loop line 20
reates the index variable J and sets its value to |. After this control
»asses to line 30 which causes the FOR loop on J (1.e. lines 20 to 50)
o be carried out ten times, Each time through this loop the NEXT I
it line 40 doesn’t repeat the FOR loop on | because the *value’ stored
n i is alreadv bigger than the ‘limit’. It does. however, increase the
value' stored in the index variable bv adding the ‘step’. Y ou should
10w be able to understand the sequence of numbers that this pair of
oops prints on the screen!

Conclusion
The information presented in this chapter should help vou to

anderstand the inner workings of ZX BASIC. Many of the program
exampies given not only illustrate the ideas involved but also form

he Structure of ZX BASIC 57

the basis of a useful collection of programming utihties. If you
vould like to test vour understanding of ZX BASIC then thereis no
etter way than by working on some of the many projccts that spring
rom these examples. Much of the work can be done in ZX BASIC,
ut 1if vou are learning Z8) assembler then you will find many
rewarding problems that are not too difficult to solve.

Chapter Five

1/0 - Channels and
“treams

“he Spectrum has a very sophisticated and general method of
iealing with different 1/() devices, based on streams and channels.
“he standard Spectrum has a very limited range of |/ O devices, and
his means it is possible to use special commands for each device.
‘or cxample, to send data to the screen you use the PRINT
:tatement, but to send data to the ZX Printer vou use the LPRINT
-ommand. Once the Microdrives are added to the svstem. inventing
:neciai commands guickly becomes inadequate. Even without the
Vlicrodrives there are advantages to using the Spectrum’s general
nethod of defining the device to be used in an 1/0 operation.
surprisingly, the Spectrum manual completely fails to mention or
ven nint at the method of handling 1,0 via streams and channels.

;treams - INPUT # and PRINT #

v good way of thinking about 1/ O is to separate it into two parts,
me corresponaing to the software that receives or generates the
1ata. and the other corresponding to the hardware that receives or
enerates the data, In ZX BASIC the software component of 10 is
‘ererred to as a ‘stream’ and the hardware component asa ‘channel’,
he key difference s that a stream is a featurcless flow of data into or
wt ¢f a program, but a channel corresponds to a particular [/O
ievice such as the ZX Printer. Think of a stream as a collection of
1ata items on their wav to or from some piece of hardware. Streams
ire 10entified by a number in the range {0 to 15, and their basic
yerations are reading and writing data. The instruction

NPUT #s:'input list’

vill read data from stream °s’ into the variables in the “input list’. For
xample

SO - Channels and Streams b9

NPUT #0;A:B;AS%

viil read data from stream { and store it in the variables A, Band A§.
In the same way the command

'RINT #s.'print list’

viil send data to the stream ‘s’ from the variables in the “print list’.
‘o1 example

RINT #O.TOTAL;AS

viil send data to stream 0 from the variables TOTAL and AS.

Votice that both the INPUT # and PRINT # can be used in
:xactly the same wav as the ordinary INPUT and PRINT
tatements. Any item that you can use as part of a normal “input list’
r ‘print list' can be included as part of the stream 170 statements,
“or example,

'RINT #2:“HI THERE™; TAB{10);“FOI.KS"”
ind
NPUT #0:*What is your name™;N$

ite poth valid. The PRINT statement sends the literal string “HI
THERE". then a TAB code, followed by the literal string
‘FOLKS” to stream 2. Notice that the data that s sent to the stream
s ¢xactly the same as the data that would be sent to the screen. The
'NPUT statement is a hittle more complicated in that it not only
‘equests data from stream (), but also sends data in the form of the
iteral string “What is vour namc”. Each stream number is in fact
issociated with two streams of data - aninputstream and an output
stream. Data written to the stream by either PRINT or INPUT is
;ent to the output part of the stream, and any data read from the
:aream 18 obtained from the input part of the strcam.

‘n nractice it 1s possible to use a PRINT or INPUT statement that
-eters to more than one stream. For example

PRINT #5:“Hi there™:#6:"folks”

viil send the literal string *“*Hi there” to stream 5 and “folks™ to
aream o, In other words a ‘stream specifier’ #s can be included in a
orint or mput [ist wherever 1t is necessary to change streams.
vlthough switching streams in mid-statement is possible, it is best
ivoided unless there are special reasons for doing it. Programs that
1s¢ a number of streams in each I/O statement are very difficult to
maerstand. debug and alter.

60 An Expert Guide to the Spectrum
Channels - OPEN and CLOSE

I'he idea of a stream of data is casv cnough to understand, but you
might be wondering how the stream numbers are associated with
hardware [/O devices? The answer is that before any data is sent or
-ecerved over a stream it has to be OPENed. OPENing a stream
ierves two purposes. 1t associates a stream number with a particular
O device, and signals the 1/0 device that it 1s going to be used.
Mten as well as just signalling that a device 1s about to be used,
JPENIing a stream involves initialising the device to get it into a
;tate where it can be used. However. such initialisation depends very
much on the device itself. 1o OPEN a stream, ZX BASIC provides
he command

JPEN 4s,c

vnere ‘s’ 15 the stream number being opened, and °c’ is a string
:peciiying the channel it is being associated with. Following this
:ommand. the destination of any data sent to the stream ‘s’ will be
he channel ‘c’. which will also be the source of any data read from
he stream. Before a practical cxample of using the OPEN command
an pe given we need to know what channels the Spectrum has.

“he unexpanded Spectrum (i.e. without Microdrives) recognises
nty three different channels:

% — the keyboard channel

> - the screen channel and

* — the printer channel
I'hus,

JPEN #5,“K”

YPENSs stream 5 and associates it with the kevboard. Following this
‘ommand

NPUT #5:A;B

will get data from the keybeoard in the same way that a normal
NPUT command would. However, the command

*RINT #5;“HI THERE”

10w sends data to the output side of stream 5, which is associated
with the kevboard's display area at the bottom of the screen. Thus
he literal string “HI THERE” is printed in the lower part of the
:creen normaily reserved for INPUT messages. If you try this you

A0 - Channels and Streams 61

ire unlikely to be able to see the string, as the lower area of the screen
s cleared when a program halts or when an INPUT statement is
:ncountered. If vou would like to see the effect of sending datatothe
‘nput area’ of the screen try:

L0 DFEN #5,"K"
20 PRINT #53RND
10 GOTD 20

“ou should see random numbers nrinted on the screen starting from
he bottom and scrolling up. The program will end withan OUT OF
;CREEN error message, as the input area of the screen will not
:croll in the same way as the normal print area.

wlthough in principle each stream has both an inpul and an
wurput side, in practice the only channel that can accept both input
ind output 1s the keyboard channel. The other two - screen and
yrinter — are output only channels, and any attempt to read data
‘rom them produces an error report J. Notice that this restriction is
:nurely a feature of the hardware that the stream is attached to.

You can associate more than one stream with anv given channel,
out if vou want to change the channel that a stream is associated with
hen its current association must be removed by CLOSEingit. The
"X BASIC command

"LOSE #s

viil remove anv existing association between the stream ‘s’ and a
:nannel. In this sense CLOSEing is the reverse of OPENing a
:nannel, CLOSEing a stream can also be used to inform the
1ardware component of a channel that it is no longer required by the
aream. and any ‘cleaning up’ operation that it needs should be
arried out ready for another channel to use it.

t is important to notice that while a channel can be used by a
wmboer of streams, a stream can only be associated with a single
cnannel, For examnle, the ZX Printer might be associated with
-nannels 4 and 6, so

'RINT #4:;'print list’
ind
'RINT #6: print list’

¥ould both send data to the printer, but it is impossible to associate,
.ay, stream / with both the printer and the screen.

52 An Expert Guide to the Spectrum

The use of streams - device independence

0 far the only advantage to be gained from using streams s the
ibility to send data to the lower half of the screen, For the ZX
3JASIC programmer using an unexpanded Spectrum there is in fact
wniv one other reason for using streams, but this is an important
eason. tevice independence 1s an idea that 1s usually reserved for
iavanced computer science courses, but it is a simple and very useful
dea. Device independence is just the ability to write a program
vithout having to worry about where the data that it needs 1s coming
Tom or where the data it generates is going to. For example, you
nmight write a program that produces listings of financial data
yithout worrying about whether the output was going to a screen or
o a printer. The device that the output was actually going to would
be selected at a later data by the user of the program. If you use
PRINT and LPRINT to send data to the screen and the printer
-especuively then it is not easy to write device independent programs,
yut using streams and channels it is!

(Consider the problem of writing a program to print a list of
-andom numbers either on the screen or on the printer, depending
n which the user wanted. Using PRINT and LPRINT the program
vouid be something like:

10 INFUT "Printer or Screen "jA%
20 IF A$C1)="P" THEN LFRINT RND
20 IF A${Ly="S" THEN FRINT RMND
490 GOTO 20

Using streams and channels the program would lock something like:

10 INFUT "Frinter or Screen "jA%

20 OFEM $9,A%(13

20 FRINT #33RND

40 GOTO 30
jecause the channel specifier can be a string variable, stream 3 is
issociated with either the printer or the screen. Another way of
ichieving the same result would have been to OPEN two different
treams. one to the printer and one to the screen. You could then use
he fact that the stream specifier can be an arithmetic expression to
elect which one was to be used. as in the {ollowing program:

L0 INFUT "Frinter or Screen "}A4
20 OFEN #5,"p"
30 OFEN #6,"8"

S0 - Channels and Streams B3

40 IF A$C1)="F" THEN G=5
50 IF A${1)="8" THEN 8=6

)
)
H0 FRINT #53RND
70 GOTO &0
vIthough this example is too small to be really convincing in itself,
rou should be able to seethat ina large program it is an advantage to
1se streams to group together all similar PRINT or INPUT
statements. 1t this is done, changing where they send their output is
amply a matter of changing the appropriate OPEN command, or
he stream number that they use. When you add the Microdrives to
he svstem, streams are unavoildable, so it makes sense to get the
maximum benefit from them even at this carlv stage.

The default streams
“he four streams 0 to 3 arc automatically OPENed by the Spectrum

s part of its set-up procedure. Initially the stream-to-channel
issignments are as follows:

dream channel

TR A

2o even without an OPEN command
*RINT #2:“HI THERE"

v1il print onto the screen. These streams are used by the Spectrum to
irect program data to the correct device. Forexample, an LPRINT
.enas data to stream 3. These assignments of streams to channels can
e changed using OPEN commands but the streams themselves
-annot be CLOSEd. An attempt to CLOSE one of the default
‘treams resuits in it being re-OPENed to its initial channel, as given
n the table above.

Other stream commands

'he only other two stream 1/ O commands that can be used with the

64 An Expert Guide to the Spectrum

inexpanded Spectrum are LIST and INKEYS$. The full form of the
ist command is

IST #s,n

vnere ‘s’ 1s the stream number that the program is to be listed to, and
1" 1s the line number that the histing will start from. For example

AST #1

v1il list a program on the bottom part of the screen normally
eserved for input, but

IST #3

s the same as LLIST.

'he other stream-oriented command. INKEYS$, can be used to
eturn a single character (byte) from any stream that is associated
vith a device that supports input. The function

NKEY?S #s

viil return a single character {rom the stream ‘s’. 1f no character 1s
waillable from the input device, then the null string is returned. The
mly problem with this extended form of INKEYS is that the
mexpanded Spectrum has only one input channel the keyboard.
fowever. once the Microdrives are addcd the number of input
cnannels increases, and so does the number of useful stream-
oriented commands.

Channels and streams - memory formats

vlthough the ZX BASIC programmer need not worry about how
‘nannels and streams are implemented to make use of them, there
ire wavs in wnich the machine code programmer can make use of
wuch knowledge. In particular, the channel 15 the ideal way of
:xtending the range of 170 devices that the Spectrum can handle
vithout having to write code for special 1/ 0 commands.

"he information that defines each channel is stored in the channel
niormation area starting at CHANS and ending at PROG—2
where CHANS and PROG are both system variables). Each
hannel has a separate ‘channel record” which has the following
‘ormat

S0 - Channels and Streams 65

iddress size
i 2 bvtes address of output routine
2 2 bvtes address of input routine
14 1 byte channe! code letter

wnere the input and output routines are machine code subroutines.
“he output routine must accept Spectrumcharacter codes passedtoit
n the A register. I'he input routine must return data in the form of
spectrum character codes, and signal that data is available by setting
he carrv flag. If no data is currently available then this issignalled by
esetting both the carry and the zero tlag. If the channel cannot
upport mput, or cannot support output, then the address for the
‘outine that performs the illegal operation should be set to an error
1andling routine. The standard way of handling errors in ZX BASIC
s via a Restart call to address 8. [n Z8(0 assembly language this
imounts te

:RROR RST 0008
JEFB errocode

vnere ‘errocode’ is the numeric code of the report to be given to the
1SET.

'he channelrecords forthethreestandard Spectrum channels, and
:n aaditional channel that has not yet been described, are as follows:

iadress Keyboard channel record

"HANS address of lower screen printout routine
2 address of keyboard input routine
4 K channel K identifier

:creen channel record

5 address of screen printout routine
7 address of error routine
9 S channel S identifier

-aiting bufter channel record

10 address of buffer input routine
12 address of error routine
14 R channel R identifier

66 An Expert Guide to the Spectrum

"X Printer channel record

15 address of ZX Printer routine
17 address of error routine
19 P channel P identifier

Yotice that each channel record is 1n the standard format, as
iescribed, and that the only channel that can support both input and
wtput 1s the K channel. The new R channel is used internally by the
spectrumtosend datatotheediting buffer. The OPEN command will
ot allow the userto associateastream with the R channel. soits useis
imited.

mporiant Note - the format of a channel record isdifferent whenthe
Aicredrives and interface 1 arein use. If vouare going to make sense of
his information to create vour own channel records and want your
srogram to work with both theunexpanded and expanded Spectrum
:ee Chapter 10.

Nata about the association of streams withchannelsis stored in the
-vstem variables arca of memory, in the 38-byte arca starting at
JTRMS (address 23568). The stream table, and each pair of bytes in
this table, holds a number ‘x’ that representstheaddress of the start of
i1 cnannel record. Rather than simply storing the address of the
:nannel record, ‘X’ is the ‘distance’ that the channel record is away
rom the start of the channel information area:

wddress of start = address of channel + x — |
»f channel record area

So each entry in the stream table is one more than the number of
nemory locations that the channel record is offset from the start of
(he channelinformation area. As there area maximum of 16 streams
vou would think that a maximum of 32 bytes(i.e. onechanneladdress
ser stream) would be sufficient to store all of the channel and stream
issociations. In fact the extra six bytes are used to store channel
niormation for three internal streams corresponding to stream
numbers 255, 254 and 253. These three internal strecams are
iutomaticaily associated with channels R, S and K respectively, and
4s stream numbers are restricted to the range 0 to 15 they are
naccessible from ZX BASIC. However, the presence of these three
niernal streams does have to be taken into account when tryving to
ind the address of the channel record corresponding to any of the
areams 0 to |5, The first three entries in the stream table are for the

A - Channels and Streams 867

nternai streams 253 to 255; the fourth entry gives the address of the
‘nannel record to be used with stream (), and so on. This means that
he start of the stream table. as far as external streams are concerned.
s

~TRMS+6 or 23574

ind the address of the start of the channel record associated with
ream s (s 1n the range 0 to 15) is stored in the two memory locations
sarting at:

23574+5*%2

Vhen a stream is OPENcd to a particular channel, the OPEN
-ommanaslores the difference betweenthe start of the channel record
ina the channel area itself, plus one, in the correct position in the
aream table. When an INPUT or PRINT command sends datatoa
sarucular stream, the stream table 1s examined to hind the address ol
he channel record. When a stream 1s CLLOSEd the number stored in
ts cntry in the stecam table is set to zero. Thus a zero entry in the
aream table is used to detect an attempt to usc a stream that hasn’t
yeen opened yel. Sevenstreams are automatically OPENed, thethree
nternal streams and streams 0 to 3 as already described.

This system of channel records and the streamtableisextended for
1se oy the Microdrives, but its essential features remain the same,
‘ach channel is described by a channel record, and streams are
wssociated with channel records by use of the stream table.

lefore we consider using the stream and channel 170, it is worth
nentiening the only other system variable that 1s connected with
-nannel 17O CURCHL. Each time a stream-oriented /O
commana is used, the stream number is used tolook up the address of
he channel record in the stream table. This address, once found, s
_hen stored in the svstem variable CURCHIL. to direct all of the data
sroduced bythel/ Ocommand tothe correctchannel. Thus following
scommandsuchas PRINT #s, CURCHL containsthe address of the
:tart of the channel record associated with stream °s’.

Creating your own channels

f vou have special 1; O device connected to your Spectrum, orif you
ire planning to build a new device, then the problem of how to send
lata to 1t or receive data from it willhave occurred to vou. Indeed. it1s
isually thought easier to construct a hardware interface to the

58 An Expert Guide to the Spectrum

spectrum than a ‘soltware interface’ with ZX BASIC. Using the
nformation about stream-oriented [/ O in the last section it is
comparatively easv to interface special 1/0 devicestoZX BASICina
vay that allows them to be treated on a par with Sinclair's own
hardwarc.

The usual wav of providing software to handle special I/ O devices
s to write BASIC subroutines using IN and OUT. These send and
-eceive data directly to and fromthe I/ O portsallocated tothedevice.
For example, if a sound generator was allocated port 31 for its
(requency control register then

DUT 31,1

vould send the data (intherange0to 255)to the sound generator, and
;0 set its frequency. For simple devices, and devices controlled by
ndividual bits in the data, IN and OUT are very suitable. However, if
the device is ‘character-oriented’ — if it receives and sends data inthe
orm of characters - thenINand OUT areinadeauate. Forexample, a
yarallel printer and a modem are both character-oriented devices,
ind the best wavtodeal withthemisviatheusual PRINTand INPUT
tatements. Even if suitable subroutines could be written using QOUT
ind IN to send and receive numericand string data, itis difficult tosee
now they could be used to LIST programs to the newdevices. Clearly
‘he way Lo go about providing a software interface to new character-
wriented devices is via streams and channels.

vdding a character-oriented device to ZX BASIC’s system of
treams and channels can be done in one of two ways; either by
changing the addresses stored in an existing channel record, or by
reating a completely new channel record.

“he first method involves POKEing new addresses into anexisting
channel record that point to your own machine code routines,
sositioned somewhere in memory. Forexample, suppose you want to

nterface a full-sized printer in place of the ZX Printer. Changing the
wddress stored 1n the first two locations of the ZX Printer’s channel
ecord (to point to your own printer driver output routine) will make
he commands LPRINT and LLIST, as well as anv1/0 commands
referring to streams OPENed to channel P, send their datatothenew
yrinter. Writing the new printer driver iseasy inprinciple. Allit hasto
do is accept ASCII character codes in the A register, and use thesc to
rint the correct ASCII characters on the printer. However, the
:pectrum’s character set includes many characters that the standard
\SCII character set lacks, and these would have to be detected and
:orrectly interpreted by the driver. For example, all of the position

A0 — Channels and Streams 69

ind attribute control items within a PRINT statement will be sent to
the printer driver as control codes, as listed in Appendix A of the
;pectrum manual. For instance, LPRINT TAB(10}; sends ASCII
-oaes 23. 10 and 0 to the printer driver. The 23 1s the Spectrum’s
-ontrol codc {for TAB, and the following two codes are the least and
most significant byte of the parameter of the TAB function. (The
-odes that are sent to the Spectrum’s output drivers are discussed
nore fuily in the next chapter.) [tisimportant to realise thatall of the
spectrum’s output is converted to a stream of ASCII characters and
:0aes before it is printed on the screen. This makes it possible for a
srinter driver to respond to or ignore all of the Spectrum’s position
ind attribute control items as desired. Forexample, if the new printer
vas a colour printer then it could change the printing colour in
‘gsponse to

PRINT INK 3;“Hi there”

vnich sends the ASCI1 codes 16 (for INK) followed by 03 (tor colour
13) 1o the printer driver.

s an example of this method of interfacing a new 1/0 device, the
ollowing program changes the output addressstored inthe P channel
o reler to a machine code routine stored in the printer buffer area of
nemory. (Notice that this only works because the ZX Printeris notin
1se!) The new machine code output routine doesn'tdoanything really
1serul with the data it receives: it just sends it to [/ O port 254, which
-ontrols the speaker and border colour. At least this ensures that its
:1fects can be seen and heard! The Z80 assemblv language for this
impie driver is

address assembler code comment

*3296 outdrv LI BC.254 01.254.00 load BC reg with 254
3299 OUT(CY) A 237,121 send A registerto port 254
13301 RET 201 return to ZX interpreter

This is used in the following ZX BASIC program:

10 DATA C1.254,00,237 121,711
0 FOR A=Z32%6 T0O 23301

20 RE&D D

40 FOKE &,D

0 MEXT A

70 An Expert Guide to the Spectrum

100 GOSUE 1000
110 FOR I=0 TO 7
120 LFRINT I3
130 MEXT I

140 GOTD 110

L0008 LET C=FEERK 23431 + Z54XFFEFE 234232
L0100 LET

LOZ0 FOKE C,23296-INT(232946/256)%254
1030 FOKE C+1,INT(23294/254)
1040 F

"he machine code output routine 1s stored inthe DAT A statement in
inc 10. and loaded into memory by lines 20 to 50 (23296 1s the start of
‘he ZX Printer buffer). Subroutine 1000 changes the address in the
channel record for channel P, Line 1000 gets theaddress of the start of
the channel area into c and thenline 010 finds the start of thechannel
ecora for channel P. Lines 1020 and 1030 POKE the address of the
1ew output routine into the first pair of locations in the channel
ecord. If vou enter and run this program you will see the border flash
ind change in a very wild manuner. If you break intothe program, you
vlil obtain further proofthatthe new outputroutineissendingdatato
he border control port by LLISTing the program to it. (Note:
iisconnect the ZX orinter before running this program.}
‘hangingthe addressesstored inexisting channel recordsisaneasy
nethod of adding new devices, but 1t does have the disadvantage of
-emoving onc of the Spectrum’s existing [/ O devices. In practice it is
mpossiple to modify channel K (the keyboard’s channel record)
hecause 1ts I/ (O addresses arerestoredeachtimeanINPUT statement
s executed. This leavesthechannelrecords forchannel S and channel
' as the only candidates for modification, and as channcl S 1s far too
1setul the only real candidate is P. This is fine as long as you don’t
yani to use more than oneextral/ Qdevice, and voudon’t want to use
he ZX Printer at the same time.

i'0o add any number of extra I/ O devices 1t 1s necessary to add new
channel records. If you want to do this in a completely general way,
'hen vou must take into account how the Microdrive modifies the
aream/ channel svstem ol operation. This is dealt within Chapter 2.
1dding a new channel record sounds very easy, but there are a few
minor details to consider. Firstly, it is possible to create a channel
-ecord anvwhere inmemory, not justinthe channelinformation area,
sut if the channel record 1s stored above the INPUT workspace area
starting at WORKSP) the CURCHL (current channel) system

A0 - Channels and Streams 71

‘aniable will be altered as memory 1s added to the workspace area
turing an INPUT command. This, of course, will mean that the
-urrent location of the channel record will be lost. and the Spectrum
viil crash. However, if the channel record is stored below the INPUT
workspace area everything works correctly. In the demonstration
nven below, the ZX printer buffer is used to store both the new
-nannel record and the new 1/0 routines. In a real application the
‘nannel record would be added to the channel information area, and
ietails of how to do this are also given in Chapter 12. A second
tifficulty is that the OPEN and CLOSE commands will only work
vith the standard channel recerds for K.,S and P. This means that as
vell as providing new channel record and 1/ O routines, you also have
10 provide a subroutine 10 open the channel to any stream, and if
1ecessary a subroutine to close it. Putting all this together gives the
ollowing Z&80) assembiler for the channel record and I/ O routines:

iadress assembler code comment

73296 chanrec DEFBO 0 l.5.b, of output address
13297 DEFFB91 91 m.s.b. of output address
23298 DEFB 11 11 Ls.b.of input address
13299 DEEBSI 9l m.s.b of output address
3300 DEFB“E” &9 channel identifier

3301 outdrv LD BC.254 ©1.254.00 load BC reg with 254
'3304 OUT(CLA 237,121 send contents of A to 254
3306 RET 201 return to ROM code
23307 indrv RST § 207 grror restart

*3308 DEFB 18 invahid device error code

The Ilirst [ive bytes form the new channel record. The routine
tartng at 23301 is the output routine and this simply sends the code
n the A resister to output port 254, which is the speaker and border
:olour port. The routine starting at 23307 1s the input routine and
his simply reports an error to indicate that input is not allowed with
his channel. Obviously in a real application either routine could be
rery mucn more complicated. The following BASIC program uses
his machine code:

L0 PATA 0,91,11,91,6%,),254,0,237,
121,201,207,18
20 FOR &=23296 TO 22304

/2 An Expert Guide to the Spectrum

BEAD D
FOKE ~,D
NEXT A

(N & 2
— i~

100 LET &=531CG0OSUER 1008
L10 FRINT #353RMNDS
120 GOTO 1190

1000 LET A=Z23%974+2x8

1010 LET C=PFEEK Z234631+256%PEFY 23637
1020 LET R=23296-C+1

1030 FOKE A,R-INT(R/ZG46)X2T6

1040 FOKE A+1,INTC(R/Z256)

10%0 RETURN

anes 10 to 50 load the new channel record and I/ O routines into the
"X printer bulfer. Subroutine 1000 will open stream s to the new
‘hannel. In other words it is the equivalent of OPEN #s.“E”, Line
000 works out the correct address for stream s in the stream table.
ines 1010 and 1020 work out new channel records offset from the
:tart of the channel information area (plus one), and hines 1030 and
(40 store 1t in the stream table, Line 100 uses subroutine 1000 to
open stream 5 to device E. and lines 110 to 120 provide a
demonstration by sending the codes corresponding to random
wumbers to the sound and border control port. A further
iemonstration can be gained by stopping the program and typing
"IST #S5. This produces a flash of colour and sound indicating that
he program has been listed to port 234! [f you change line 110 to
ead

10 INPUT #5;1

hen vou will get the correct error message, indicating that this
‘nannel cannot be used for input.

wpart from having to write more comprehensive and specialised
/O drivers, there 1s nothing difficult about adding new channel
ecords to ZX BASIC. Notice, however, that theabove program will
10t work if the Microdrives are connected - but the modification
1ccessary to make it work are trivial (and described in chapter 10).

“he problems of writing an output driver have already been
wescribed, but before bringing this chapter to a close it is worth
nenuoning the extra requirements for an input driver. If an input
channel is going to supply a single character code, as an eight-bit A
.0 D convertor might, then the best BASIC command to use 1s

A0 - Channels and Streams 13

NKEYS #. which will return a single character, However, if you arc
rlanning to use INPUT# to read ina collection of charactercodes then
ou nave to he aware of two things. Firstly, INPUT statements also
perrorm output by printing prompts ete. It is not enough to make the
yurput routine an error return: you have to handle any data that the
NPUT statement sends. even if vou simply ignore 1t! Secondly, an
NPUT # statement accepts data as if it was being typed at the
kevboard. This means that if you use INPUT #s;1 to read in a
wwmper to the variable 1, then the device driver has to send a
-ollection of ASCII codes corresponding to digits and ending with
in ENTER code, just as anumber would beentered from the kevboard.
Finallv, notice that even when reading data from a special piece of
wardware, the INPUT command will interpret editing codes, delete
‘1¢. correctly! The best way to think about 1t is that INPUT always
vorks as 1if it were receiving a stream of character codes
orresponding to keys that are being pressed on the keyboard.

Conclusion

"he Spectrum'’s system ol streams and channels is something of a
wurprise ponus to the ZX BASIC programmer. Used within
yrograms 1t provides the advantage of device independence, and an
ywerail increase in flexibility, with no disadvantages. To the Z80
issemply language programmer, streams and channels are the ideal
vav 01 providing software interfaces with any new equipment.

Chapter Six

“ he Video Display

The hardware that generates the Spectrum's video display has
ireadv been described in Chapter 2, but there the emphasis was on
reneral principles and how the video hardware co-operated with the
est of the machine. In this chapter the methods that the Spectrum
1ses 1o generate a video display are discussed in detail, with the
‘mphasis on the way that the software and harware interact.

“he Spectrum’s video display deserves close inspection because it
:ompines a number of interesting features in a way that produces a
lexible svstem with reasonable memory requirements. Its flexibility
-omes Irom its use of a single high-resolution mode to display both
ext and graphics. This, in theory at least, permits the free mixing of
ext and graphics anywhere on the screen, but in practice the
;pectrum’s software restricts the positioning of characters to a
wmocr of predetermined character locations. Thesaving in memory
s acimeved by the use of ‘parallel attributes’ to control colour. This
10es indeed save a great deal of memory while still allowing the use of
1ent colours. The price to be paid for this economy is the restriction
mn the number of colours that can be used in each character location,
surprisingly, parallel attributes work very well and fit naturally into
he wav that many graphics programs organise colour.

slthough the Spectrum’s display is praiseworthy there is still
-oom Tor improvement. Fortunately, most of the shortcomings are
o be found in the software. and this 1s something that can be
‘xtended to provide whatever facilities are required. However, to
nake this possible it 1s important to have a good understanding of
iow things work.

Mlack and white to colour

The easiest sort of display to work with is a black and white or two-

The Video Display 75

:olour display. The reason for this is that a single binary bit (i.e. Oor
) can indicate which one of two states something is in. The simplest
rraphics scheme associates one colour with each state, for example
vlack with 0 and white with 1. In this way a bit pattern can be used to
-epresent the colours of a collection of dots on the screen. Notice
hat each bit in the bit pattern controls the colour of exactly one dot
yn the screen. This correspondence between bits and screen dots
nives this method of generating graphics its usual name, bir-maped
sraphics.

“he Spectrum uses a bit-mapped graphics method, so each of the
10ts that make up the 192 by 256 screen is controlled by a single bit
:tored somewhere in memory. Notice that as each memory location
1olds eight bits it ¢can control the colour of cight dots on the screen.
“he exact correspondence between memory locations and groups of
1ght screen dols 1s described in the next section.

“his method using a single bit to control the colour (black or
vnite) of a single dot on the screen, must be modified to include the
1se of more than just two colours. This 1s more difficult than you
night think. The most obvious method for associating more than
yne oit with each screen dot soon uses up a great deal of memory.
‘or example, to provide a choice of four colours for a dottakes two
sits. doubling the amount of memory required. A choice of eight
-olours reqguires three bits, sixteen colours requires four bits, and so
m. To produce the Spectrum’s eight-colour display in this way
vould take 18K of memory, which would make a 16K colour
‘pectrum an impossibility. Besides using a large amount of
nemory, this extended bit-mapped technique creates other
sroblems, It is very difficult to retrieve data from memory fast
:nougn 1o supply three bits per screen dot.

"he solution adopted by the Spectrum is based on the observation
hat most colour displays use only two colours in any given region of
.he screen. For example, a blue sky with white clouds and a yellow
:un uses three colours, but near the cloud we have only blue/white
ind ncar the sun only blue/vellow, In the Spectrum the screen dots
ire grouped in eight by eight squares corresponding to the familiar
~4 lines of 32 character locations. Within each of the character
ocations each dot can only be one of two possible colours - in the

"X BASIC jargon the ‘ink’and ‘paper’ colours. As in the simple two-
-oiour example, the choice of ink or paper colour for a dot is
-ontrolled by a single bit in a memory location. The extra flexibility
T this new arrangement comes from the fact that the ink and paper
oiours within each character location are controlled by a single

76 An Expert Guide to the Spectrum

memory location, an aftribute byte. The Spectrum’s colour display
s a nalfway house between a simple two-colour display and a true
nulti-colour disonlay. Each dot on the screen corresponds Lo a single
ot in memoryv that determines whether it 18 an ink or a paper dot.

he actual colour assigned to ink and paper dots within any given
‘haracter location 1s determined by the values stored in the
orresponding attribute byte. The advantages of this parallel
ittribute method of producing a colour display are easy to
appreciate. A great deal of memory is saved by using a single
ittribute byvte to control the ink and paper colours for the 64 dots in
i cnaracter location. However, the limitation of the scheme is
-aualily obvious - only two colours can be present in each character
iocation.

The video memory

There are two arcas of RAM involved in the production of the
;pectrum’s video display - the display file, between 16384 and
72527, and the atrribute file, between 22528 and 23295, As you might
xpect, the display file is the region of memory used to hold the bits
hat determine whether each dot on the screenis an ink or paper dot.
;imilarly, the attribute file is the area of memory where the attribute
wies are stored. Knowing this is a step in the right direction, but to
:ontrol the screen directly you need to know exactly how to find the
it that controls a particular dot, or the byte that controls a
varticular character location. What is required is an equation that
viil convert screen co-ordinates into the address of the memory
ocation concerned. Obviously there are going to be two types of
:quation, one for the display file and one for the attribute file.

“he display file map

"he most obvious arrangement for the display file is to use the first
nemory location (i.e. 16384) to store the first eight dots in the top
row. the second memory location to store the next eight dots in the
‘ow ana so on, Thisisindeed the case, and in generaleach row of 256
1ots 1s stored 1n 32 consecutive memory locations, However, there
ire complications. The rows are not stored in the obvious order i.e.
irst row first, second row second and so on to the bottom row,
nstead they are stored in an order that reflects the 24 lines of

he Video Display 77

:naracter locations. After the top row of dots comes the top row of
the second line of character locations. then the top row of the third
ine of character locations. and so on to the top row of the eighth line
T character locations. In other words. the top rows of each of the
irst eight lines of character locations are stored first. After this the
.econa row of dots of each of the eight lines of character locations
ire stored. then the third row, and so on. This pattern of storage is
hen repeated with the next eight lines of character locations, and
iinally with the last eight lines of character locations. Notice that this
-tfectively divides the screen up into three portions of eight lines
:acn. Each portion is then stored in the order that the rows of dots
nake up the lines of character locations, i.¢. all the [irst rows, then
ill the second rows and so on (see Fig. 6.1).

-5 1 dot row

= 256 dots
Top V: Stored in
: 32 memo
& lines of characier locations) Iocationsw

Middie '/

Botiom 14
nciuding input area

ig. B.7. How the video display is divided up tor storage in memory.,
I'his storage scheme 15 easy to understand once the basic sequence
1as been grasped. Perhaps the easiest way to do this 1s to watch the
ollowing program in action:
10 FOR I=14384 TO 22527
20 PORE X,285
30 NERT I

“his program stores 255 in each of the memory locations in the
aisplay file in turn. As 255 is LILIL111 this causes the eight dots
:ontrolled bv the memory location to be displayed as ink dots, In
his wav the position of the dots corresponding to ¢ach memory
‘ocation can be seen in sequence, and the order that the dots are
hanged (o 1nk 15 as described above.

¥e now know the correspondence between memory locations

78 An Expert Guide to the Spectrum

ind dots, but to be of any use this information has to be presented as
an equanon that will convert screen co-ordinates into the address of
he controlling memory location. There are two ways of specifying
he location of a dot on the screen: by character location and by
staphics co-ordinates. For example, you might want to [ind the
iadress of the memory location that controls a particular row of
s1ght dots in a particular character location. If the character location
s in iine [. and column C, then the memory location that controls
ow R 1s given by:

6384+2048*INT(L, 8)+32*(L—-8*INT(L/8)y+256*R+C
"o prove the accuracy of this formula, try the following program:

10 DEF FNm(L,CoR)=14384+Z048KINT (L /8
F32KCL-BRTNT(L/8)) ¢ 25 4XR+C

20 CLS

J0 FOR M=0 TO 7

40 FOR I=0 TO 31

50 FOR J=0 T0O 23

50 FOKE FNm(J.I,N),Z25%

70 NEXT J

80 MEXT I

20 NEXT M

This fills the screen from top to bottom and left to right.

he alternative wav of specifying a single dot uses the familiar x
ana v co-ordinates., This results in an even more complicated
‘quation giving the address of the memory location that controls it:

6384+32%(INT((175-Y)/8)-INT((175-Y)/ 64)*8
8*(175—Y—INT((175-Y)/ By*8)+ 64*INT((175—Y) 64))
LINT(X/8)

The bit in the memory location is given by:
i—X+INT(X/8)*8

"his equation may seem remarkably cumbersome, and indeed it is
vhen written in BASIC. However. operations that involve dividing
by and multiplying by powers of two are easy to implement in Z80
wssembler. It is easier to understand the eauation if it is written using
he standard operations

x DIV v meaning INT(x/y)
and

he Video Displfay 79

: MOD v meaning the remainder after dividing x by y
£ X-INT XYY

Ising these operations and Z=175-Y the equation becomes:

6384+ 32*%((Z DIV 8) MOD B+8*¥Z MOD 8+64*Z DIV 64)
X DIV &

‘ven after all this work it has to be admzitted that, apart from their
1se 1n Z80 assembler, such equations have very little value simply
necausc they are so complex. However, knowledge of the overall
structure of the video storage can be very useful indeed. as will be
iilustrated by the programs in the next chapter.

The attribute file map

he equation giving the location of the attribute byte that controls
iy given character location is very simple; a reliel after the
-omplexity of the display file map. Starting at 2252¥ the attribute
wies are stored in the natural ‘printing’ order of the character
ocations that they control. In other words the first attribute byte
-ontrols the character location in the tap left hand corner, the next
‘ontrols the next location to the right on the same line, and so onto
he end of the line. This pattern then repeats for each line to the end
T the screen. To see the form of this storage scheme try the
ollowing

10 FOR X=228527 TO 23295
20 POKE 1,0
30 NEXT I

vnich stores the attribute code for black paperin each attribute byte
n sequence. You should be able to see that unlike the previous
arograms, wnich manipulated the display file, each memory
ocation POKEd alters a whole character location. The cquation for
he address of the attribute byte that controls the character location
at line L column C is:

22528+32*L+C

“his is a much more useful equation than either of the two given for
he display file. In particular it can be used to change the attributes
ontrolling a character location without changing the pattern of ink
ina paper dots on the screen. Iy, for example,

20 An E£xpert Guide to the Spectrum

L0 DEF FMNa(C,L)=Z2528+32x].+C

20 FRINT AT 10,58"thie 18 a mMessage"
30 LEY L=10

40 LET [L:"*INT{RMEWBEB

S0 LET A=INT(RNDX254)

40 FUHi“ FNa(C,L), A

70 GOTO 40

his program first prints a message on the screen, then uses the
unction FNa to POKE (line 60) random attribute codes into the
itribute bvtes that control the line the message is printed on,

PEEKing the display file - POINT and SCREENS

<ither of the two eauations given earlier could be used to examine
he current state of a bit in the display file by PEEKing the correct
nemory location. However, the address calculation involved is so
:ompiicated it’s always faster to use the ZX BASIC function POINT.
Toimplement POINT (x,y), ZX BASIC calculates the address of the
memorv location that controls the dot at x,v, then returns the value
»f the bit within it that controls the dot, So POINT(x,y) returns 0 af
‘he dot 1s paper, and 1 if the dot is ink. It 1s unusual for the behaviour
T a program to depend on the state of a single dot on the screen, and
his limits the usefulness of the POINT function. If you need to test
‘he state of 4 number of dots then the multiple use of the POINT
unction tends to slow things down rather a lot.
t is usuallv more important to discover what characteris stored at
anv given iocation, Fortunately ZX BASIC has a function which
;oives just this problem. The function SCREENS(line,column)
-eturns the character displayed at the screen location line,column.
"his is achieved by examining each of the 64 dots that make up the
‘haracter location in question and comparing them to the shape
iefinitions stored in the Spectrum’s character table. The character
able is described in a later section, but essentially it 1s an area within
the ZX BASIC ROM that contains the pattern of ink and paper dots
that forms the shape of each character. The SCREENS function is
‘asy 1o use, but it is important to be aware of one or two
peculiarities. For example, as it works by comparing dot patterns
vithin a character location with character definitions. it is only
-oncerned with the shape that the dots form, not how the shape was
sroduced. So, for example, if the shape of a letter A is produced by
siotting individual dots using the PLOT command, or by PRINT

The Video Display 81

*A” the SCREENS function will still return “A”. Another feature of
SCREENS 15 that it checks for a character and its inverse. This
means that the letter “A” will be returned if the shape is made by ink
iots or by paper dots. Thus a solid block of ink dots will cause
SCREENS to return a space character! Finally SCREENS will not
ecogmse user-defined characters that are present on the screen.

Attribute codes and ATTR

n a previous section the attribute codes were POKEd to the
ittribute file, but unless you know exactly how the value stored in
he attribute byte effects the character location it refers to, this is of
-ery little practical use. The eight bits that make up an attribute code
ir¢ used in the following way

»7 b6 bS b4 b3 b2 bl b0
' [b [paper | ink |

vnere t stands for flash. b for bright and ‘paper’ and "ink’ are the
1sual colour codes in the range 0 to 7, For example, if f 1sset to onc,
‘hen the character location that the attribute code controls will flash.
Jsing this information, and the weights associated witheachbitina
sinary number (see Chapter 1), gives

28*f+64*b+E*paper+ink

or the value of the attribute code that produces the desired ink and
saper colours and a flashing or bright character. So if vou want a
steady (f=0), bright (b=1), black ink (ink=0) and a white paper
paper=7) character you would POKE 64+7*¥ into the attribute
syte that controls the character location.

Just as the attribute file can be POKEd to change an attribute
code, it can also be PEEKed to discover the current attribute code.
'n fact. it is unnecessary to calculate the address in the attribute file;
he ZX BASIC function ATTR({line, column) returns the value
;tored in the memory location that controls the character location at
ine, column. Separating out the different parts of the attribute code
to discover, for example, what paper colour is in effect 1s not
difficuit. To make it even easier the following user-defined functions
-an be used

JEF FNf(L.C)=INT(ATTR(L,C)/128)
YEF FNb(L,C)=INT(ATTR(L,C)-INT(ENf(L.C)*128); 64)

82 An Expvert Guide to the Spectrum

JEF FNo(L.C=INT((ATTR(L,C)~INT(ATTR(L,C)/ 64)*64)/8)
JEF FNi(L,C)=ATTR(L.C-INT(ATTR(L,C)/8)*%

where FN{ returns the value of f. FNb returns the value of b, FNp
returns the paper colour code and FNi returns the ink colour code.

The video driver

The previous sections have explained how the Spectrum’s video
1isnlay works in terms of the use and organisation of the display and
attribute files, ZX BASIC insulates the user from considerations
;uch as these by providing the PRINT statement. Within the ZX
3ASIC ROM there are machine code routines that examine the data
tems in a PRINT statement and store patterns of bits in the video
RAM to produce the characters that represent the data. For
:xampie, PRINT “A” causes the machine code routines Lo store the
iot pattern for the letter A in the character location where the
printing cursor is currentiy positioned. For a numeric variable, the
yrocess oOf representing its value on screen 1s a little more
ompiicated. For example, PRINT A causes the machine code
routines to convert the number stored in A to a sequence of decimal
iigits, which are then displayed on the screen. Remember that the
qumbper stored in A. or any other numeric variable, is stored in
binary form, and has to be converted to a string of decimal digits
hefore it can be printed. In this sense PRINT A produces the same
et of actions as PRINT STRS(A) (the function STRS converts a
numeric vaiue to a string of digits).

'he most obvious way to implement the machine code routines
hat execute the PRINT statement would simply be to write
vhatever was necessary to display each type of data on screen.
Fortunately the authors of the ZX BASIC ROM thought before
hev started to program! As a result the software that implements
he PRINT statement is split into two parts, the PRINT routines
ind the video driver.

‘he PRINT routines are responsible for converting eachdata item
in a PRINT statement into a sequence of ASCII character codes.
The video driver accepts these ASCII codes and is responsible for
yroducing the pattern of dots on screen that represents each of the
yrintable characters (see Fig. 6.2.) 1t is this separation into two parts
that makes the Spectrum’s 1/0 system so flexible. By the use of
treams and channels {see Chapter 5) it is possible to associate a
iifferent device driver with the print routines and know that all it has

"he Video Display 83

' ASCll codes
Jideo SRR PRINT
ariver rouiine
Screen PRINT ‘'print list’
Inemory

ig. 6.2 Two separate software routines — the PRINT routine and the video
ariver - transfer data from RAM to the screen memory.

o handle 1s a sequence of ASCII codes. In the same way it is possible
o send streams of ASCII codes to the video driver from another
source. Without this separation it would be extremely difficult to
edirect 1/ 0.

)n another level the use of ASCII codes as a means of
:ommunication between the PRINT routine and the video driver
ypens up a number of programming techniques. Printable
‘haracters. such as letters and digits, are not the only sort of item
hat occurs in a PRINT statement: there are also the control items,
ucn as TAB. AT, INK and PAPER. Even these non-printable items
are converted to ASCII codes by the PRINT routine before being
sassed on to the video driver. The ASCII codes corresponding to
hese non-printable items are referred to as conftrol codes, because
uthough they don’t produce anything on the screen, they do control
v arfect the display. Following a control code, the next one or two
1\SCIl codes mav be interpreted as ‘parameters’ that govern the
>xact result produced. For example, the non-printable item INK 7 is
:onverted bv the PRINT routine to the control code 16 (standing for
NK) and then the ASCII code 07 to represent the colour code.
votice that the colour code is sent to the video driver as ASCII code
}7. not the digit 7, i.c. as CHR$(07) rather than CHR$(55). A table
i1 control codes and thelr parameters can be seen below.

Von-printable item code parameters
ind action

.move to next

OTINT ZONE) 6 None
ursor left 8 None
ursor right 9 None
“NTER 13 None
NK ¢ 16 C

84 An Expert Guide to the Spectrum

?APER ¢ 17 c
‘LASH f 18 f
JRIGHT b 19 b
NVERSE i 20 1
JVER o 21 0
1T v,x 22 y X
TAB x 23 x 0

votice that both AT and TAB are followed by two parameters, even
hough TAB onlv makes use of the first. There are control codes
sther than the ones listed in the table, but these extra codes are used
by the program editor.

As the video driver receives nothing but a sequence of ASCII
codes from the PRINT routine, it doesn’t matter how they are
penerated. For example

'RINT INK 6
and
'‘RINT CHRS$(16);CHR$(6);

both produce the same sequence of ASCII codes, so they have the
ame effect! By including control code sequences in strings it is
possible to make messages that are self-positioning, or automati-
cally set their own colours etc. For example in the following
program

10 LET Mé=CHR$(Z22)+CHRI (10X +CHR$(5)+"This
Messzge alwads prints in the same place"

20 PRINT M¢

36 GOTO 20
he string M§ includes the control codes for AT 10,5, so it is always
printed at the same place no matter where you try to print it!

The video driver can be used directly by the Z80 assembly

anguage programmer to perform all the display operations for
which the ZX BASIC programmer uses PRINT. To access the video
ariver. all that 1s needed 1s a RST 16 command after loading the A
register with the ASCII code of the character that you want printed
(or of the operation that you want performed). For example, to print
he letter A you could use

DA 865
8T 16

he Video Display BB

which first loads the A register with the ASCII code for A, and then
10es a restart (RST) to the video driver. (Note the machine code for
AST 16 15 215 decimal.)

‘inallv, before moving on to consider other features of the
spectrum’s video display, it is worth pointing out that the video
driver not onlv changes the display file when a character is printed
sut also stores the current attribute code in the associated attribute
syte. Commands such as INK and PAPER that occur outside a
*RINT statement use the video driver. The only display commands
hat do not use the video driver are the CLS command and the high
esolution graphics commands PLOT, DRAW and CIRCLE.

The character tables

\n important part of the Spectrum’s text-generating software is
ormed by the two character tables. These are used to hold the dot
natterns of the various printable characters. Most of the Spectrum’s
character definitions are held in the main character table in ROM,
1s the table 1s in ROM it is not possible to change any of the
definitions. However, as the address of the start of this table is held
n the system variable CHARS 1t 1s possible to move the entire table
0 RAM and so give the Spectrum a completely user-definable
-naracter set! {see Chapter 7). The second character table is used to
10ld the definitions of the user-defined characters, and as vou might
:xpeet, this is normally stored in RAM. However, the start address
i1 this table is also held in asystem variable UDG, and it, too, can be
noved to start at any desired address.

"he format of the data used to define the shapes of all the
;pectrum’s characters 1s identical to that used for the user-defined
-haracters. That s, the 64 dots that make up a character are stored in
-ight memory locations. Each memory location holds eight bits that
epresent the state of the eight dots that make up a single row of the
‘haracter. With this in mind, 1t is not difficult to see that if the start
»i the main character table 1s START. the eight memory locations
hat contain the definition of CHR¥(I) are given by:

STARTH8*(1-32)

The first printable character is CHR$(32}.) This equation can be
1sea to print out the dot pattern of any letter:

86 An Expert Guide to the Spectrum

10 DEF FNt()=2S56+FEEK(23606)+256XFEEK
(23607)
20 INFUT C$
30 LET I=CODE(C$(1))
40 LET A=FNL{)+BX(T-32)
50 FOR H=A TO A+7
50 LET D=FEEK(K)
70 COSUE 1000
40 IF LEN(E$)<8 THEN LET B$="0"+EB$:
50T0 80
90 FRINT E$
100 NEXT K
110 GOTO 20
1000 LET B$=""
1010 LET E=D-INT(D/Z2)X2
1020 IF E=0 THEN LET B$="0"+E4
1030 IF B=1 THEN LET Bs$="1"+B$
1040 LET D=INT(D/2)
1050 IF D=0 THEM RETURN
1060 GOTO 1010

ine i0 gives a function FNt() which returns the start address of the
main character table. (The address stored in the system variable
("HARS 15 in fact 256 less than the address of the start of the table.)
“he rest of the program simply PEEKSs the eight memory locations
.hat store the dot pattern for the character in C$(1), and print the
sartern in binary.
“he same program can be used to discover the shape of any of the
aser-aefined characters by changing line 10 to:

10 DEF FNLOI=PEEK{(23675)+2856XPEEK(23676)
“his returns the start of the user-defined graphics table by PEEKing
he svstem variable UDG. Line 40 also has to be changed to:

50 LET

I'here are many direct uses for the character definition tables, and
;ome of these will be explored in the next chapter. The key facts to
‘emember are that the start address of both tables can be altered,
ind 1f the tables are stored in RAM the character delimitions can be
-nanged using POKE.

"he Video Display 87
The video system variables

“he video system variables are involved in a wide range of tasks
assoclated with the Spectrum’s video display. The variables
"HARS (23606) and UDG (23675) have already been described in
he last section as holding the start of the main character table and
he user-defined character table respectively. Other variables of
nterest include:

C0 ORDS (23677 and 23678)

his system variable gives the x co-ordinate (in 23677) and the y co-
yrainate {in 23678) of the last point plotted by a high resolution
:ommana. By PEEKing these two locations the current position of
he graphics cursor can be found. Forexample, if you want to draw a
ine from the current position of the graphics cursor to the absolute
wocation X,Y then use:

JRAW X—PEEK(23677),Y-PEEK(23678)

“his works bv PEEKing the current location of the graphics cursor
ina working out the difference between it and the desired position.

POSN (23688 and 23685)
“hese two locations are used to hold the current location of the text
ursor. 1o be precise, the current position of the text cursor is:

column number = 33— PEEK(23688)
ine number = 24—PEEK(23689)

JF CC (23684 and 23685)

YF CC holds the same information as 5 POSN - the current
position of the text cursor - but instead of its line and column
wmper. DF CC holds the corresponding address within the
usolay file.

SCR CT (23692)

"his system variable holds a ‘countdown’ to the next occurrence of
he guestion “scroll 7. Tts valuc 1s always one more than the number
i scrolls that will be performed before the next “scroll 7 message
ippears. Repeatedly POK Eing this system variable with 255 whilea
yrogram runs wiil ensure that the message never appears.

BB An Expert Guide to the Spectrum

ATTR P and ATTR T (23693 and 23695/

"hese two variables hold the current value of the permanent and
emporary attribute codes respectively. In other words, 1f there are
10 attribute commands within a PRINT statement then the value
stored in ATTR P is used to set the attribute bvtes corresponding to
‘ach of the character locations used. However. if there are any
ittribute commands within a print statement, then the value n
\TTR T 1s set accordingly, and used in place of ATTR P for the
iuration of the PRINT statement,

MASK P and MASK T (23694 and 23695}

“hese two system variables hold the permanent and temporary
ransparent attributes. Normally whenever a character is printed
-ither the attribute code in ATTR P or ATTR T is stored in the
‘orresponding attribute byte. However, if attribute 8 15 used in any
o the attribute commands (for example INK 8) then that part of the
ittribute byte is left unchanged. MASK P and MASK T areused to
ecord which attributes are either permanently or temporarily set to
ransparcnce. [he coding is such that any bit that 1s a one in MASK
? or MASK T indicates that the corresponding bit will be taken
rom the existing attribute code rather than ATTR P or ATTR T.

FORDCR (23624

“his system vanable holds the attribute ¢code used in the lower half
ot the screen. The ink part of the attribute code 15 also used to set the
yorder colour.

Creative video

vthough much has been cxplained in this chapter about the
vorkings of the video display, a great many of its features have not
been explicitly discussed. Most of these are obvious once you have
inderstood the overall workings of the display, and the next chapter
yresents a number of examples that use knowledge of how the video
nsplay works., Much the best way of coming to terms with the
spectrum’s video display 15 to go ahcad and use it creatively.

Chapter Seven

’ideo Applications

“his chapter presents a number of examples of the less than obvious
1ses of the Spectrum’s video display. A number of the examples
-ould form the basis of routines suitable for use in applications
yrograms. However, their main value 1s to suggest the range of
hings that can be achieved with the Spectrum’s display without
‘nanging a single chip!

Functional characters

vthough it is obvious that the user-defined character table is
nothing more than a sequence of memory locations like any other,
here 15 a tendency to think about altering 1t using only the standard
zratement:

POKE USR “char’+n.BIN bit pattern

his is such a familiar statement that it is worth examining its
-ompnonents more carefully. The parameter of the USR function is
wormally the address ot a machine code program (to which USR
ransters control}. However, when the parameter of USR is a string
cxpression, such as USR “char”, it works out the address of the first
nemory location in the user-defined character table for *char’. You
-nould be able to see that this means USR “char”+n evaluates to the
wadress of the memoryv location that holds the bit pattern of row n of
he user-defined character ‘char’. For example, if you try

PRINT USR “A”

he Spectrum will print the address of the first memory location in
he user-defined character tahle. The rest of the statement used to
iefine the dot pattern should now be obvious. The result of the
*OKE is to store the bit pattern that 1s the parameter of the BIN in

90 An Expert Guide to the Spectrum

the memory location that defines row n of the user-defined character
~har’.

) course. once you have the start address of the eight memory
ocations that control the dot pattern of a user~defined character you
‘an change them in any way you like. For example, try

L0 LET A=USK "hb"

>0 FOR I=0 TQ 7

10 FORE A+L, INTI(RNDXZEHE)

40 NEXT I

30 FRINT AT 10,103CHRS 1453

40 GOTO 2
vnich produces a moving explosion character. Line 10 finds the
.1art address of the definition of user-defined character “b”, or
"HRS 145. Lines 20 to 40 POKE random values as the definition of
-ach row of the character, and line 50 repeatedly PRINTs the new
random’ shape. (CHRS 145 is used to avoid any ambiguities in the
arogram.)

I his functional definition of a random explosion character can be

:xtended to include new characters that are simple functions of
:x1stung characters. For example, try

L0 LET A=USK "a"

20 LET BE=USR "“bh"

30 FOR I=0 TO 7

40 LET D=FPEEK(A+I)

ol POKE B+7-1,0D

60 NEXT I

70 FRINT CHR$% 144,CHR% 145

vhich will define CHRS 145 as an upside-down version of CHRS
44! The key to this program is to be found in lines 40 and 50. Line 40
*EEKs the definition of row 1 of CHR$ 144 and then line 50 POKEs
tinto row 7-1 of CHRS$ 145. Similar methods can be used to define
characters that are reflections and rotations of other characters.

Changing the character set

\s the system variable CHARS holds the address of the start of the
standard character table (less 256) it is quite easy to move the entire
cnaracter table to RAM and then change any or all of the
1efinitions. For example

Jideo Applications 91

L0 CLEAR 32768-1024

20 LET A=2564FEEK 23606+206XPEEK 23607
30 LET B=327468-1024+1

40 FOR I=0 TO 95

50 FOR J=0 TO 7

0 LET D=FEEK(A+T%8+.0)

70 POKE B+I%8+7-d,D
10 HEXT J
P00 MEXT T
100 FOKE 23407 ,INT{(E-206)/E58)
110 FOKE 234806, (B-2546)-TNT((RB-256) /2046)XK206

viil transter the entire standard character table 10 RAM while
-nanging the order of each row of dots toinvert each character. You
:nould be able to recognise the components of this program. Line 10
escrves 1K of memory which is more than enough for the character
. Il vou have a 48K Spectrum then vou can change 32768 to
*32768. Line 20 finds the location of the character table in ROM,
inda line 30 stores its new position in B. Lines 40 to 90 do the actual
job of moving the character table, and you should recognise lines 60
ind 70 as being very similar to the inversion of the user-defined
‘naracters in the last section. Finally, lines 100 and 110 POKE the
1ew value for the start address of the character table.

t is a good idea to SAVE this program before running it: 1t is
nore than a little difficult to make anv changes to it with the entire
-naracter set inverted. Running the program a second time will not
estore the character set to its original form; instead it mixes it up
;uil further!

Internal animation

vlthough each of the character tables is organised into groups of
1git memory locations that correspond to the shape of a single
-naracter, there are times when it is worth thinking about the table
s a wnole. For example, if the user-defined character table is set up
.0 that each character 1s a letter in a message, then the message can
e printed using & smooth scrolling motion by repeatedly printing
he first user-defined character and moving the start address of the
able uself. For example, if the system variable UDG contains the
isual address of the first memory location of the user-defined
-naracter table, then PRINT CHRS$ 144 will display the first user-
iefined character. However, if the value in UDG is increased by one,

92 An Expert Guide to the Spectrum

PRINT CHRS 144 will display the last seven rows of the first user-
iefined character and the first row of the second. By continually
ncrementing the value in UDG, the eight memory locations that
iefine the shape of the first user-defined character can be made to
move through the original table rather like a viewing window:

19 GOSUE 1004

o0 FOR I=0 TO Z0xB

30 FPRINT AT 10,105CHR$ 1443

40 FOKE UDG,D+I-INT((D+I)/254)K256
50 FOKE UDG+1,INTC((D+Y>/256)

60 NEXT I

70 GAOTO 20

L0000 LET UDE=Z3475
1010 LET D=FEEK UDG+2S6XPEEK(UDG+])
1020 RETURN

This program will produce a smoothly scrolling message consisting
T the default user-defined characters, 1.e. A to U. Subroutine 1000
‘tores the start of the user-defined character table in D. The FOR
oop at 20 to 60 PRINTS the tirst user-defined character and then
moves the start of the table up by one memory location,

I'his technique of moving the start ot a character table can be used
o produce remarkably smooth internal animation using nothing
hut ZX BASIC. For a practical example of this see the ‘Fruit
Viachine' game in The Spectrum Book of Games by Mike James, S.
vI. Gee and Kay Ewbank. published by Granada.

Free characters

“he ‘free’ in this headline refers to the positioning of the characters
-ather than the discovery of any extra ones! You now know how the
nsplay file controls the dot pattern on the screen. se you should be
able to see that the restriction of characters to character locations is
more a convenience than a necessity. In fact, the only real reason for
10t allowing characters to be placed at any point specified by high
-esolution c¢o-ordinates 1s that the attribute bytes control whole
character locations. If vou are not worried about a mismatch
yetween the area a character occupies and the area an attribute byte
:ontrols. then it is easy to produce characters anywhere on the

Video Applications 93

.creen. For example, the following program prints an “X™ in the
usual wayv and then ‘plets’ the number “2” as a superscript, so
roducing the familiar notatien for x squared.

10 PRINT AT 10,10} "X"
20 LET X=935

30 LET Y=99

R0 LET CH=""24

G0 608Ul S00¢

0 STOF

5000 LET fA=Z35+FEEK Z3&06+254XPEEK 234607

010 LET a=a+8%{CODE C+-232)

2020 FOR XI=0 TO 7

2030 LET D=PFEEK(A+ID)

5040 FOR J=0 70 7

2050 LET BE=D-INT(D/2)x2

S060 LET D=INT(D/2)

2070 IF B=1 THEN FLOT X,Y

G080 LET X=X-1

G090 NEXT J

5100 LET Ye=Y-1

G110 LET X=X+8

9120 NEXT I

53130 RETURM
“he actual work is carried out by subroutine 5000, which will plot
he character stored in C$ at the position in X and Y. (X and Y are
he co-ordinates of the top right hand corner of the 8 by 8 square of
iots that constitutes the character). The principle invelved is simple.
“he bytes that detine each row of the character in question are
-cirieved one after the other. Each byte 15 broken down into its
rattern of zeros and ones by the inner FOR loop 5040 to 5090, and
in 1nk dot is PLOTted if the bit stored in B is 1. The rest of the
uproutine is concerned with moving the value stored in X and Y on
o form the 8 by 8 square of dots.

‘or another example of the use of this subroutine change the main

program o]

LET A%="A MESSAGE"
LET X=16
LET Y=170

FOR K=1 TO LEM(A$)
LET Cé=44 (K}
GOSUE S000

O U0 2 P
=Tl T — I =

24 An Expert Guide to the Spectrum

70 LET X=X+4

80 MEXT K

?0 STOP
his uses subroutine 5000 to print the message stored in AS
aiagonally down the screen. The only extra information you need to
anderstand how this program works is that after subroutine 5000
1as finished, the variables X and Y contain the co-ordinates of the
»ottom right-hand corner of the character just plotted.

Variable size characters

v verv small change to the method used to produce characters at any
ocation will allow for characters of any size at any location! The
yasic principle 1s to PLOT more than one point for each bit in the
‘haracter definition, If vou make the following changes to the last
yrogram you wiil see a range of character sizes:

L0 LET At="ARCDE"

20 LET X=30

39 LET SX=8I1LET S5Y=5
50 LET X=INT(X+5X/2Z)
bé LET SX=8X-1

67 LET SY=8Y-1

5070 IF B=1 THEN GOSUER A0QD
G080 LET X=X-8X

5100 LET Y=Y-§Y

2110 LET X=X+5X28

5000 FOR M=1 T0O &Y

4010 FOR N=1 TO &X

GO0Z0 FLOT X+N,Y+M

G030 NEXT N

H040 NEXT M

H050 RETUPRM

Subroutine 6000 plots a square ora rectangle of dots SX wide by SY
nigh, and thus SX and SY are the X and Y scale factors respectively.
“he modifications to the main program call subroutine 5000 with a
iecreasing pair of scale factors to plot a diagonal line of characters,
‘ach onc smaller than the last.

Jideo Applications 95
Smooth screen scrolling

One of the tasks carried out by the Spectrum’s video software is the
ertical scrolling of the screen. This apparently simple operation is
n fact much more involved than vou might imagine. In principle, all
he software has to do 1s move each group of eight dot rows that
onstitute a line of characters to the position in memory formerly
ecupled by the dots that formed the line of characters immediately
inove. In addition to moving the dots in the display file, the scroll
:o1tware must also shift the attribute bytes up by the equivalent of
ne text line in the attribute file. If vou recall the odd layout of the
nsplay file, you will start to appreciate the difficulties in moving the
tala to perform a scroll. As the display file is stored in three sections,

cach consisting of eight character lines, the real difficulty comes
rom having to move the top line of each section to the bottom line of
he next storage section. (See Chapter 6 if you have forgotten the
ietails of the display file’s layout.) All in all, a vertical scroll is
ifficult enough to leave to the Spectrum’s built-in software.
Towever, a horizontal scroll 15 much easier.

“here are many applications programs, especially games, that
invoive moving graphics or text smoothly to the left orthe right. For
xample, a typical games program might produce the effect of an
sttack ship flying over a landscape by holding the position of the
.hip fixed and ‘scrolling’ the landscape horizontally. A horizontal
seroll bv one dot (moving the display. or an area of the display, to the
eft or right by one dot) is not difficult, but it does need some 280
1issembply language.

‘o scroll the screen right by one dot all you have to do isto start at
he left-hand side of each row of dots and move them all along by
e dot. The dot that ‘falls off the end’ of the row is lost, and a paper
10t is shifted into the first position of the row. As long as you start

irom the beginning, the display file is organised so that each group of
'2 bvtes holds the dot pattern for a complete row, This means that
:nifting a row ¢an be achieved by shifting the contents of the 32 bytes
upn’ by one bit, That is, the contents of the first memory location in
.he display file are shifted one bit to the right so that bl becomes b0,
b2 becomes bl and so on. A zero has to be supplied as the new value
T b7, and the value of b0 has to be saved so that 1t can be shifted into
17 of the next memory location. The same operation is repeated on
he second memory location, and so on to the last memory location
nvoived in storing the row of dots. Each time, all bits in
the memory location are moved one place to the right and b0

96 An Expert Guide to the Spectrum

rom the previous memory location is moved into b7. This opcra-
non on a single memory location is called a ‘rotate right’ in Z80
issembly language, so shifting the screen one bit to the left is a
mnatter of repeatedly applying a rotate right operation to each of the
12 memory locations that store the pattern of a row of dots.

An assembly language routine to shift the top third of the screen
text lines 0 to 7) one dot to the right is given below.

iadress assembler code comment

13296 LD HL.16384 33.0.64 load the HL register
3299 LDA 63 62,63 load A with 63
73301 LOOPI LDB 32 6,32 load B with 32
"3303 ANDA 167 clear the C flag
3304 LOOP2 RR (HL) 203,30 rotate A right 1 bit

73306 INC HL 35 add one to HL
23307 DINZ LOOP2 16,251 B=B—1 and loop if

3< >0

73309 DECA 61 A=A~-1

3310 JR NZ. LOOP1 32, 245 lecop if A<>0
23312 RET 201 return to BASIC

This routine can be loaded into the printer buffer and called using
JSR 23296 cach time the screen 1s to be scrolled by one bit. In the
:econd line, LDA 63 sets the number of dot rows that are shifted - in
his case 63 plus one, i.e. 64. Although the routine has been hand-
issembled as if it was going to be run starting at 23296, it is in fact
position independent and can be loaded anywhere in memory. The
ollowing BASIC program demonstrates the routine:

10 DATA 33,0,0%,062,63,6,32,:,167,203,30,3%5,
16,291,61,32,245,201

20 FOR XY=23296 TO 23312

30 READ D

40 FOKE I,D

G0 NEXT L

al FRINT AT 7,03"ABCDE"
S0 FRINT AT 8,03"ABCDE"
80 LET A=USR 23296

70 GOTO 80

/ideo Applications 97

Lines 10 to 50 load the machine code into the printer buffer. Lines 60
0 90 PRINT something on the screen and then use the routine to
:nift the message at line 7 off the screen.

yvs an example of how this horizontal scroll routine could be used
na game try substituting

60 LET Y=12320

70 LET S=1

80 IF RND<.2 THEN LET H=-1x&
70 IF Y=115% THEN LET 8=1
100 IF Y=174 THEN LET 8=
110 LET Y=Y+8
120 FLOT 0,Y
L30 PRINT AT 2,103"x"3
140 LET A=USK 23294

L50 GOTO 80

4

G-

n the previous program. This draws an asterisk 1n a fixed position
ind a ‘landscape’ which 1s shifted across the screen. This creates the
mpression of an asterisk ‘flying’ through the landscape in a way that
vould be impossible to achieve using ZX BASIC alone.

Conclusion

I'he examples in this chapter have all been short enough to make
hem casy to Lry out. However, they are also long enough to
‘ilustrate the ideas involved and to make them worth building into
rour own programs. ror example, the horizontal scroll program
could easilv be turned into a good-quality action game, with no
‘eason 10 use any more assembly language than the USR routine
.uppried. On the other hand if your interest doesn’t lie in games the
.ame routine can be used to plot moving graphs that imitate the
lisplay on an oscilloscope.

o matter what you mught have been told, computing is an
sxpernimental subject, and experiments lose much of their value if
‘ou only read about what 1s supposed to happen! So it 1s important
o ncorporate these examples into your own programs and
:xperiment with them.

Chapter Eight
Tape, Sound and the

rinter

he Spectrum’s cassette interface and its limited sound generator
15e the same hardware within the ULA. However, the key factor
hat links together all threc of this chapter’s subjects - the cassette
nterface, the sound generator and the ZX printer 1sthe presence of
tandard software within the ZX BASIC ROM to control them.
_oosely speaking, all three come under the heading of ‘standard’
/0O devices. Apart from these tenuous connections there 1s not
nucn carry-over from one device to the next, and as a result this
cnapter 1s in three main parts corresponding to the tape system, the
ound system and the ZX printer.

The tape system

One of the best features of the Spectrum is its remarkably reliable
ape system. It is not complex, either; it seems to be attention to
ietail that produces the reliability. There 1s not very much that can
s¢ done to change the way the tape system works, or to add extra
acilities, without becoming involved in excessively large Z&0
issembly language programs. This s not to say that things cannot be
‘hanged or improved; it is just that there 1s nothing worth tinkering
vith. If vou are planning to do anything with the tape system, then
vynat vou need to know depends very much on what vou have in
nind. For example, if vou are interested in writing new tape
.ottware for the Spectrum, or il you want to read tapes produced by
yther machines, then you will need to know about the way that the
iardware is orgamised. 1f vou are going to try to read Spectrum tapes
15ing other machines, then the format used to write the data is
mportant, On the other hand if you dre producing Z80 assembly
anguage applications programs, then knowledge of the machine
;ode routines that perform the reading and writing of tape files is

Tape, Sound and the Printer 99

igain crucial, To cover this range the description of thetape systemis
iivided into three parts: hardware, tape format and software details.

Tape hardware

“he main features of the tape hardware have already been described
n Chapter 2, but without any attempt to explain how they are used
o produce tape storage of data. Both the line that sends data to the
-assette (MIC), and the line that receives data from the cassette
EAR), are connected to the same pin (28) of the UL A, This pin of
‘he ULA responds to 1,0 port address 254 as already described in
“hapter 2.

Vriting to [/ O port 254 sets the cassette line MIC depending on
he state of bit 3. If bit 3 1s 0 then the output voltage 1s 0.75 volts. 1f
hit 3 is [then the output voltage is 1.3 volts. By alternately writing a
yand a | to b3 of port 254 a square wave can be sent to the cassette
see Fig. 8.1). This square wave 15 recorded as an audio tone with a

] - —1.3volts

L___ 75volls

ig. 8.1 The square wave sent to cassette line MIC from 17O port 254 by
;erting b3 alternately to O and1.

ixed volume and a freauency that depends on the time that bit 3
‘emains constant. The longer the time interval between *flips’ of bit
". the lower the pitch of the tone. Forexample, the BASIC program,

L) OUT 254,00
20 OUT 254,8
0 GOTO 19

:nanges bit 3 of port 254 from 0 to |, and the resulting square wave
an pe recorded by pressing play and record in the usual manner.
votice also that while this program is running the border colour
:nanges to black. This is because b0, bl and b2 of output port 254
-ontrol the border colour, and both OUT instructions set these bits
o 0. The frequency of this tone is very low, because ZX BASIC
:annot be used to change the state of the bit often enough to produce
i nigh frequency. However, using Z8(} assembler there is no problem
n changing the state of bit 3 fast enough to produce tones that are
ibove the range ol normal hearing! The lowest level tape software

100 An Exnert Guide to the Spectrum

1ses this simple method to produce a number of tones that code the
data onto the cassette recorder.

f a tape with audio tones recorded on it is played back while
connected to the Spectrum, the level of the mput determines the
tate of b6 of input port 254. In fact the input level determines b6 of
inv Input port corresponding to an address with b0 set to 0 (see

‘hapter 2). If the voltage on the input hne(EAR) tothe Spectrum is
ow, then b6 is 0; if the voltage is high, then the bit is |. (In practice
he Snectrum sets the output line controlled by b3 high before
reading the input line, and so the tape recorder signal pulls the
iormaily high input low.) To see the way that the signal from the
ape recorder affects b6 of the input port try:

L0 OUT 254,8

20 FRINT IN 254

30 FORE 23692,249%5

40 GOTO Z90

.ine 10 sets the output to MIC high before line 20 reads and
’RINTSs the state of port 254. Line 30 simply stops the *Scroll?”
nessage trom periodically halting the program. If vou play a
ecorded tape while running this program you will see the numbers
'35, corresponding to b6 high, and 191, corresponding to b6 low,
rinted on the screen. Notice that pressing keys on the keyboard also
iiters the value returned by [N 254,

he signal that results from playing back a recording of a square
vave 15 often far from being a good approximation to the original
«auare wave (see Fig. 8.2). However, the time between high-to-low

R A

ig. 8 2 Typical signal from a cassette recorder playing back the square wave
snown in Fig. 8.1,

ind low-to-high changes is likely to be fairly close to the original. In
sther words. the pitch of the square wave 1s likely to be the same
iniess the speed of the tape recorder has changed (because, for
:Xampie, its batteries have run down). Thus it is the time between the
-hanges in signal level that the Spectrum uses to retrieve the data
recorded on tape.

Tape format

A1l spectrum tape files are recorded as two blocks of information,

ape, Sound and the Printer 101

he header and the data block. The header i1s a short burst of audio
(one that is used to store information concerning the data stored in
ne data block that [ollows. For example, the header is used to store
‘he file name and the number of bytes in the data block. The exact
ormat of the data stored in the header hlock will be described later.

‘ach tvpe of block begins with a burst of leader tone: roughly 5
:cconds of lcader for a header block, and around 2 seconds for a data
block. Leader tone is a square wave with 619.4uS (1pS=one
nicrosecond or one millionth of a second) between cach change of
;tate (see Fig. 8.3). This corresponds to a frequency of around

1
H9.4us | 2Mus | 488.6us

|
I
, 244 3.5
168T | F35T WIOT 55T
- -t . -
- = = g e
188T | ag7T i 10T | 855T
19,405 1490 f.8 i 48BEus 1244.3us
i |
aader tone I Syng I one pulse L zero pulse
pulse I i
———————————dala lones ——»

3. 8.3. The signais used for tape storage by the Spectrum, showing timings
n microseconds and the number of ZBO T states per pulse.

307Hz. The end of the leader tone 1s marked by the occurrence of a
suise of very much shorter duration the svne pudse. The sync pulse
s iow for 190.6uS and high for 210uS. Following the syne pulse, and
vithout any break, comes the first data pulse. The length of a data
puise depends on whetheritrepresentsaGoral. it represents a0 it
s iow for 244.3 uS and high for the same amount of time. If 1t
-epresents a | the pulse lasts for exactly twice as long. All of this
iming information can be seen in Fig, 8.3 (along with the number of
80 T states for which each pulse lasts).

Ising this information it should be possible to write an assembly
anguage program on almost any machine to enable Spectrum tapes
0 be read or written. The process of reading the data back in1s made
rery reliable on the Spectrum by the use of a range of times that are
icceptable for each type of pulse. The data pulses that tollow the
.ync pulise form groups of eight bits that correspond to the bytes that
ire being saved or loaded. In other words, the first eight pulses that
ollow the sync pulse form the first byte of data, the next eight the
.econd byte, and so on to the end of the block. The only other
nformation necessary 1s the format of the bytes that form the
neader, and how these relate to the data block.

102 An Expert Guide to the Spectrum

s header is composed of 19 bytes of data, but only 17 of these are
:upplied by the user. The first byte of the header or of the data block
sa i L.AG byre, generated by the SAVE routine to mark the difference
»etween a header and a data block. The FLAG byte 1s 0 if the
ollowing block is a header, and 255 if the block contains data. The

'inal bvte of the header or of a data block isa parity byie whichis used to
ietect any loading errors that might have occurred. These two bytes,
'he flag byte at the start of the block and the parity byte at theend of the
slock, are added by the SAVE softwareto bothheaderand data blocks,
nus making them two bytes longer than you might expect. The use of
‘he 17 bvtes that form the header proper can beseenin Fig. 8.4 The first

10 2 2 2

] START e
TYPE. FILE NAME LENGTH LINE No i

i OR ADDRESS

rg. 8.4 Format of a header block.

byte is used to record the type of data block, as follows:

I'YPE tvpe of data block

) BASIC program

l Numeric array

String array

Machine code or screen dump

“he next 10 bvtes hold the file name. Following the file name come
he two bvtes that record the length of the data block that follows.
“he use of the remaining four bytes depends on the type of data
slock that the header describes. If TYPE is 0 then bytes 14 and 15
hold the line number for an auto start BASIC program, and bytes 16
ind |7 hold the number of bytes in the program part of the file.
Remember that SAVEing a BASIC program saves both the
srogram arca and the data area.) If TYPE is | or 2 then byte 15 1s the
iy one used, and this holds the name of the array. If TYPE 15 3
hen only bytes 14 and 15 are used, and these hold the address from
vnich the data bytes should be loaded.

‘ollowing the header comes the data block that 1t describes. As
iiready mentioned, this contains two more bytes than recorded in
he length information in the header, the leading rvpe Ayvre and the
ralling parity byre. Following the type byte, each byte in the data
hlock can be regarded as an ‘image’ of the portion of memory that
vas saved.

Tape, Sound and the Printer 103

“he onlv detail left to describe is the exact way that the parity byte
s used to detect any loading errors. When either a header or a data
ylock is saved. each byte that is written out is exclusive ORed with
he parity byvte. The parity byte’s initial value is given by the flag
wie. If on reading the data back a panty byte is built up in the same
vay, that is by forming the exclusive OR of the current parity byte
vith each byte read in, then in the absence of read errors the final
atue of the parity byte will be 0. Notice that this assumes that the
nitial value of the running parity byte was 0, and that all of the bytes
hat are read in, including the flag byte and the {inal trailing parity
wie, are exclusive ORed with it.

he SAVE and LOAD routines

Chere are two lundamental machine code routines within the £X
JASIC ROM that can be used to SAVE and LOAD an area of
nemory. As with any ZX BASIC ROM routines there is always the
jossibility that their position might move, but for two such
mportant routines this seems unlikely.

“he save routine starts at address 1218 for 04C2 hex). What it
ictuallv does depends on a number of parameters passed using the
egisters:

Register action

JE number of data bvtes to be saved
X address of first data byte
\ 0 tor header

735 for data block

't 1s worth noting that this 1s a low level routine that will save a
nemory area without any fnlls or alterations, apart from the
iadition of the leading type byte and the trailing parity byte. In
rarucular, this routine doest’t 1ssue any messages about pressing
ynay and record. and it doesn’t automatically form a header block if
;oU are using it to write a data block. In fact if vou want to write out
i neader block vou must create a |7-byte area of memory that
-ontains the 17 bvtes of correctly initialised header data, e.g. the file
name. length ete, Unless you have some very special application in
nind, the save routine 1s gencrally used twice, once to save the
wader and once to save the data block that the header describes.

04 An Exvert Guide to the Spectrumn

I'he load routine starts at 1366 (or 0556 in hex) Once again its
iction depends on a number of parameters:

egister action

JE number of data bytes to be loaded

X address that first byte should be stored in
b 0 means load header

'55 means load data block

f the carry flag is reset the data will not be loaded into memory;
nstead it will be compared to what already exists, 1.e. a verify
neration will be performed. Thus the carry flag has to be set to
sctually load data. If the wrong type of [ile 1s found, then the routine
-erurns with both the carrv flag and the zero flag reset. If a loading
‘rror 1s detected then both the zero flag and the carry flag are set.
votice that to use the load routine you have to know how many
wtes you are trying to load. If vou are trying to load a header block
then this is easy, as all headers are 17 bytes long. [f you are loading a
data block then the only way vou can know how many bytes to load
s bv reading the header that preceded it.

Jsing the save and load routines it is possible to write and read
1on-standard tape files. For example, you can write a file composed
i a number of data blocks of fixed size that could be read in as and
when thev were required. However, the main problem with using the
ipectrum’s tape system in any way that is non-standard is the lack of
-assette motor control. If a file was written as a collection of blocks,
he user would have to start and stop the tape as requested by the
spectrum!

18 an example of using the tape load and save routines, the
ollowing program will print out a list of file types and names. In this
cense 1L forms a limited catalogue command. The first part of the
program takes the form of an assembly language subroutine that
-eads headers from the tane and stores them in the printer buffer.

assembly language code comment
'3296 LOOP LD DE. |17 17.17,0 length of headerin DE
13299 XOR A 175 clear A

23300 SCF 55 set carry flag

lape, Sound and the Printer

105

3301 LDIX.23311 221.33.15,91 startofdataareainlX
23305 CALL 1366 205.86.5 CALL load routine
3308 JR NC.LOOP 48,242 jump back if not header
3310 RET 201 return to BASIC

The code of this routine is loaded into the printer buffer. It also
tores the header bytes in the printer buffer starting at 23311. The
ollowing BASIC program uses the routine to read in headers and
srint their type and filename:

10 DATA 17,17,0,175,55,221,33,15,91,
205,86,5,48,242,201

20 FOR A=Z3296 TO 23310
30 KEAD D
10 FOKE #&,D
30 MNEXT #
0 LET A=USR 23296
70 "PRINT “TYPE="IPEEK Z23311;
30 FRINT " MAME=';
70 FOR I=1 TO 10
L00 FRINT CHR3(FPEEK(23311+1));
110 NEXT I
20 FPRINT
L3230 GOTO &0

ines 10 to 50 load the machine code into the printer buffer. Line 60
1ses the routine to load the header bytes and lines 70 to 120 print the
vpe and name. [t would be guite easy te extend the last part of the
srogram to PEEK more of the header data and provide information
-uch as length of file and load point.

Sound

The Spectrum’s sound generator 1s closely connected to the tape
.vstem. 1he small loudspeaker that produces the sound is connected
o the same output pin of the ULA as EAR and MIC. The only
iifference is that the output is controlled by b4 of 1/ O port 254. If b4
s 0 then the output voltage 1s .75 volis, and if b4 is | then the output
roitage 1s 3.3 volts. Notice that the voltage range obtained by
-nanging b4 is greater than that used with the tape system. The lower
voltage used by the tape system is insufficient to drive the

106 An Expert Guide to the Spectrum

ioudspeaker, and so the tape signals cannot be heard, but the higher
‘oitage used to drive the speaker does appear at both EAR and
AIC.

“he basic method of making a sound is identical to the method
usea to generate tones for the tape system. A square wave can be
produced by changing bd repeatedly from0to | and back to 0 again.
'he pitch of the sound that the square wave produces is related to
how fast the wave form repeatedly changes from high to low. Apart
rom the pitch of the note, there is nothing else that can be changed.
“he volume is fixed by the range of voltages corresponding to the
wo states of the square wave, and the overall sound quality is set by
he shape of the wave form. As an example of controlling the
ipeaker directly try:

10 OUT 254,16
20 QUT 2%54,0
30 GOUTO 10
“his program simply changes b4 from 1 to 0 each time through the
oon. The sound that results is very rough and low pitched due to
3IASIC’s lack of sneed. Also notice that the border colour changes to
slack because b(to b2 of port 254 control the border colour.
“he Spectrum’s sound command, BELEP, does a remarkably good
0o of producing an accurate musical scale. This is yet another
Xample of how the Spectrum’s excellent software makes the most
1 a limited hardware feature, 1 you would like to know more about
he creative use of the Spectrum's BEEP command then see The
spectrum Programmer by 5. M. Gee, published by Granada.
mproving the Spectrum’s sound is very difficult without the use
1 extra hardware. However, the lollowing assembly language
outine will drive the I/ O port directly using a table of values as the
jata.

iadress assembler code comment

13296 LD B.count 06.0 number of bytesintable
3298 [.LD Hl..(table) 237,107,23,91 start of table

23302 LOOPLD A{HL) 126 load data to A

13303 OR 8 246.8 set MIC bit

73305 OUT (254),A 211,254 send data to port
13307 LD Couime 14,0 load delay time
23309 DEL DEC C 13 delay loop

3310 JP NZ.DEL 194,139] jump back if C<>>0

ape, Sound and the Printer 107

23313 INC HL 35 next data byte

3314 DEC B 5 end of table?

‘3315 JP NZ.LOOP 194,691 jump back for rest of
able

3318 RET 201 return to BASIC

13319 DEEFW table address of table

“he best way to explain the use of this routine is by way of a BASIC
xampie. White noise is the sort of *sshhing’ noise you can hearona
aaio that is tuned between stations. It is in fact a roughly equal
mxture of a very wide range of frequencies. The Spectrum can be
nade to produce an approximation to white noise by changing the
ratue of b4 of output port 254 at random. The only problem is where
o get a lable of random bits from. Surprisingly, the easiest source of
verv neariy random bits i1s the ZX BASIC ROM 1itself. The following
JASIC program uses the routine given above to send 256 bytes of
he BASIC ROM 1o the ocutput port.

0 DATA &,0,237,197,22,91,.1746,246,8,
211,254,14,0,13,1949,13,93,30,
Se194,6,91,201

20 FOR A=Z3296 TO 23318
30 READ D

40 FOKEE A.D

S0 NEXT &

60 FOKE 23319,0

70 POKE 23320,20
B0 FOKE 23297,235
206 PORE 23308,128
100 LET fA=USRKR 23296
110 GOTO 100

“he tirst part of the program loads the machine code into the printer
suffer. Lines 60 to 90 set up the parameters used to control the
outine. Before using the routine, memory locations 23319 and
"332(should be set to hold the address of the start of the data table.
viemory location 23297 should be set to the number of data bytes in
he table. and memory location 23308 should be set to produce the
iesired overall pitch. Lines 100 and 110 repeatedly call the user
outine and the result should be a hissing, crackling sound. Asthere
s no attempt to restrict the data sent to the 1/0 port to b4, the
sorder colour also changes randomly.

i08 An Expert Guide to the Spectrum

Ising this routine with data tables set up in regular patterns it 1s
»0ssible to make a limited range of sound effects. For example,
nake the following changes to line 60 onwards in the last program:

G0 GOsSUE 18000
70 FOKE 23319.,25
80 FOKE 23320,91
70 FOKE 23307,N
100 FORE 223308,25¢0
110 LET A=USRE 23296
120 FAUSE 1
130 GOTO 1490

1900
10140
1020
1030
10410
10%0

LET
LET
LET
LET C=
FOR Ts=0
IF I=S

—
W

QoW
P
=

—_ o e N

TO N-1

THEN GOSUE 2000

L0&0
1070
1080
1990

2000
20140
20240
2030
2040

FRINT D
FOKE I+23321,D%16
NEXT T
RETURN

LET S=INT(S+()
LET C=C+.25

IF D=0 THEN LET
LET D=0

RETURMN

D=1 RKRETURN

jubroutines 1000 and 2000 set up a table of values in the printer
suffer such that the frequency of the waveform decreases with time.
"he resulting noise is a sort of*zap® sound. You can experiment with
changing the pattern of 0s and 1s produced by subroutine 1000 to
sreate vour own sound effects,

The ZX Printer

“he ZX printer 1s a remarkably cheap way of obtaining hard copy
astings and graphics. Perhaps its only shortcomings are the
naccuracy of its dot positioning and the quality of the aluminium
-oated paper that it uses. (It is worth pointing out, however, that the
iluminium paper doe¢s photocopy particularly well!)

The ZX printer works by evaporating the aluminium coating

ape, Sound and the Printer 109

rom a roll of black paper. Where the aluminium is removed, the
slack shows through, and 1t 1s this rather than any sort of ink that
nakes the printing stand out. The ZX printer uses a spark produced
w two travelling metal points or sfvli to evaporate the aluminium,
ind if vou operate the printer in the dark. the blue electrical flashes
-an clearly be seen just below the tear bar. The styli are mounted on
yoposite sides of a moving band, so that at any time one of them is
rositioned over the paper. As the paper is scanned by the styli it is
noved up by an electric motor, so that each scan can be used to print
i new row ol dots on the paper,

“he software that drives the ZX printer is fairly complete, and
here 1s very little that can be done to improve it. However, the way
hat the ZX printer i1s controlled 1s interesting initself as an example
»f the way computers can be used to control external cquipment.
ind knowing the way that the printer works may suggest novel
ibpiications.

I he printer i1s connected to 1;0 port 251. Reading the port
yrovides information concerning the current status of the printer. If
i printer isn't connected, then b6 will be 1 (and conversely b6 will be
) if a printer is connected). The statc of b7 reflects the position of the
vl If either of them are positioned on the paper, b7 is 0. Thus b7
an ne monitored to discover when a stylus first comes over the
paper reaay to print a line of dots. The speed that the styli scan the
saper varles depending on the loading on the motor. To overcome
his difficulty, an encoder disc 1s attached to the motor. This causes
0 Lo pulse around 256 times as a stylus scans a line. Thus if the
aroauction of dots 1s tied to the pulsing of b0 the dots will be evenly
:paced no matter how fast or slow the motor is running.

)n output to port 251, bits bl and b2 control the motor. If h2is0
hen the printer’'s motor starts, [f bl 1s 0 then the motor runs fast,
ytherwise 1t runs at a slower speed. This slower speed 15 used to print
he last two scan lines so that the stvli can be stopped oll the paper,
‘eadv to print the first line the next time the printer is used. Finally
b7 controls the voltage on the styll. 11 b7 is [, then the styli are at high
roitage and the resulting spark will burn a black mark on the paper.

wart from the way that the bits signal the state of the printer and
-ontrol its operation, there are one or two details of operation that
ire imporiant. Firstly, the stylus vollage must be off to detect when
hev reach the edge of the paper. The reason for this is that the
sresence of the stylus voltage automatically sets b7 of the input high.
secondly b0 and b7 are both latched until some data is written to the
{0 port. (‘Latched’ 1s electronic jargon for ‘held steady until

10 An Expert Guide to the Spectrum

stherwise instructed’!) So even if you want fresh information from
nits b0 and b7 vou have to write something to the port first.

vs all of the printer operations happen very quickly there is no
nope of controlling then from ZX BASIC. The following routine,
vritten in a cross between assembly language and English, gives the
undamental method of writing a single row of 256 dots:

[.DA D

JUT 251,A
yaper IN A 251

AL A

P M.noprint

‘P NC.paper
‘ncode IN A,251

IR A

.P NC,encode

‘hen either:

DA 0§
JUT 251,A

T

DA 128
OUT 251,A

start motor at full speed
get the printer status
rotate one bit left to
test for printer

test for stylus on paper
now read encoder bit

and wait for it to be |

to print a paper dot

to print an ink dot

"his process is then repeated by jumping back to ‘encoder’ to print
he 256 dots in a line. The only other point to note is that the motor
must be slowed for the last two lines that vou intend printing,

vs already mentioned, the description given above is of little
oractuical use to the Spectrum programmer, as the built-in software
srovides all the facilities required for using the ZX printer. One
rroject that does spring to mind is the use of the ZX printer with

yther computers
sarticular book!

but that is obviously outside the scope of this

Chapter Nine

‘nterfacel and the
Microdrives

I he addition of an Interface 1 and a number of Microdrives turns
the Spectrum into a very powerful and versatile computer system.
nterface | on its own adds the hardwarc and the software necessary
or a standard RS8232 serial interface and a local arca network.
I'hese two features make the Interface | important in its own right,
:nd the local area network 1s sufficiently interesting to merit a book
Lo 1tself!

I'he Microdrives add a new capacity for handling data to the
spectrum. Based on a continuous loop of tape, the Microdrives are
101 as fast as tloppy discs nor are they (currently) capable of storing
;s much data. For simple applications - for example, saving and
oading programs the Microdrives are best thought of as a faster
ape system. [his speed difference is not in itself sufficient reason
or prefernng Microdrives: their response is far from instant, and
~ou sull have 1o wait a few seconds while a program loads. The main
gason Tor using Microdrives is that they open up a range of
spplications that were difficult, if not impossible, for the Spectrum
o tackle. For example, 1t 1s very diuficult to see how even small
juantities of data stored on tape can be processed if the results also
neea to be stored on tape. The unexpanded Spectrum 15 mainly
imited to processing amounts of data that are small enough to be
ield in RAM. With even one Microdrive it is possible to read from
ne aata file while writing to another. Also the software extension to
"X BASIC 1n Interface 1 allows the creation of ‘real’ data files. not
‘ust the saving of arrays. In other words, the Microdrive may not be
15 1ast as a floppy disc but it does open up roughly the same range of
ipplications. At a much simpler level, the ability to store a number
)1 programs on a single cartridge 1s a convenience that justifies the
:xpansion of any Spectrum.

“his chapter looks at the extensions to ZX BASIC that
wcompany interface 1. The'final part of the chapter gives some

112 An Expert Guide to the Spectrum

short examples of how the new features can be used to create and
rocess data files. The next chapter examines some of the internal
vorkings of Interface 1 and the Microdrives. This is such a large
suniect that there is only space to give the general principles and
‘mportant details. However, by this stage vou should be able to use
the information to good effect to create your own programs.

ZX Microdrive BASIC - file specifiers

nterface | contains an additional 8K of ROM that supplements the
6K 7ZX BASIC ROM found in the standard Spectrum. The way
his addition is accomplished 1s described later. What is of interest at
this point is the form and use of these additions.

he additional commands of the extended BASIC, which [shall
eter to as *ZX Microdrive BASIC', or ZXM BASIC, fall into four
‘ategories:

1y extended tape commands such as LOAD*, SAVE* etc
) new Microdrive-only commands such as CAT ete

) extended channel commands

1) ad hoc commands CLEAR # and CL.S #

“he form of these commands 15 much easier to understand and
cmempber once you know that data 1s stored on a Microdrive in the
orm of a named *file’. in much the same way that it is on tape. The
nain difference is that to identify a file on tape all you haveto giveis
ts “filename” for a Microdrive vou have to give a complete ‘file
:pecifier’. The format of a file specifier is:

ievice:device number:filename

vnere ‘device’ is a string that identifies the type of device that the file
s stored on. ‘device number’ is a number that identifies exactly
vnich device. and finally ‘tilename’ 1s a string that gives the name of
the file. The filename follows the usual rule of having up to 10 letters,
ina anv of the parameters can be replaced by variables of the correct
ype. For example, Microdrives are specified by a device code “M”
v “m™ and so

‘m™:2;"mytile”

:peciiies a file called *myfile’ stored on the second Microdrive in the
ystem. Although file specifiers that use constants are by far the
nost common, 1t 18 worth remembering that

nterface 1 and the Microdrives 113

1)$;D;F$

s a pertectly valid file specifier as long as D$ contains a device type,
Y a device number and F$ a file name with a maximum of 10 letters.
‘or the moment the only device type that will be used 1s “m™ for the
vicrodrives, but other device codes, used to refer to the other
ievices controlled by Interface 1. will be introduced 1n Chapter | 1.

The extensions to the tape commands

Jnce vou know the format of a file specifier the new BASIC
‘ommanas are verv casy to remember. The extensions to the
:ommands that formerly handled only the tape system are

LOAD* file specifier
VMERGE* file specifier
SAVE® file specifier
TERTEY*{ile specitier

These commands carry out the actions that arc {familiar from tape
neration, but using one of the devices controlled by Interface |. For
xample

CAVE* *m”: 1;*myprog”

wv1il save the current program on Microdrive 1 using the filename
myprog’ and

OAD* “m™:. 1;"myprog”

vill restore it. Both VERIFY* and MERGE* work with the
vlicrodrive in the same way as for the tape system, You canalso use
he other forms of SAVE with SAVE*. The following commands
ire a1l valid with the Microdrives and identical in operation to the
:guivaient tape commands:

CAVE® tile specifier LINE number

CAVE® file specifier DATA array name ()
(AVE* file specifier CODE start,length
SAVE* file specifier SCREENS

OAD* lile specifier DATA array name ()
OAD* file snecifier CODE start, length
OAD* file specifier SCREENS

114 An Expert Guide to the Spectrum

The new Microdrive commands
There are four completely new Microdrive commands:

CAT drive number

“his command will produce a list of existing {iles on the Microdrive

‘ndicated by ‘drive number’, where drive number can be a variable.
or example, CAT 1 gives a catalogue of Microdrive 1, and CAT d
viil give a catalogue of the drive indicated by the value stored in d.

“RASE file specifier

“his command will remove, that is erase, the file indicated by *file
specifier’. The storage space that the file occupied on the Microdrive
s then reusable. Forexample, ERASE “m™; [;"myprog” will rcmove
he file ‘myprog’ {rom the cartridge in Microdrive [.

FORMAT file specifier

his command erases all of the files on cartridge and prepares it for
urther use. A brand new cartridge has to be formatted before it can
»¢ used. The ‘file specifier’ used with this command selects the device
hat will be formatted and the ‘*file name’ within the file specifier 1s
he name given to the whole cartridge. For example, FORMAT
"n”:1;*data’ will format the cartridge in Microdrive | and give the
vhole cartridge the name ‘data’.

MOVE file specifier 1 TO file specifier 2

“his command will copy the file indicated by ‘file specifier !’ to the
ievice and with the file name indicated by ‘file specifier 2°. For
xampie, MOVE “m”; |;"mydata” TO*m";2;"mydata2” will create a
ony of the file ‘mydata’ on Microdrive 2 and call it *‘mydata2’. The
VIOVE command can be used to make two copies of the same file
(using different names) on the same drive or two copies of the same
1le (perhaps even using the same file name) on different drives. It is
mportant to note that MOVE only works with data files, that 1s,
vith files that have not been created using SAVE. To copy program
iles all vou have to do is use LOAD* and SAVE*. There are other,
nore sophisticated ways of using MOVE but these are better
Xplained later.

The channel and stream commands

nterface T and the Microdrives 115

1ifficult to understand or remember: they fit into the overall channel
ingd stream philosophy deseribed in Chapter 5. Indeed, 1115 only with
‘nterface | connected that the channel and stream system of |0
yccomes really useful.

"he OPEN # command is still used to associale channels with
areams. but now the range of channel specifiers is increased to
nciude file specihiers. That is

YPEN # s.file speaifier

issoclates stream ‘s’ with the channel given by “file specifier’. For
xample

JPEN # 5. "m™; | :*mvdata”

pens stream S to the channel formed by the file *mydata’ on
vicrodrive |. Notice that this description ¢xtends the idea of a
‘nannel as an 1/0 device to include any separate and identifiable
:.ource or sink ol data. Inthis sense. although a Microdrive isa single
ynysical 170 device, the fact that it can hold a number of separate
wamed files. cach ol which can be a source or sink of data, makes it
setter to think of it as & number of channels. Once a stream 1s
JPLCNed to a file the usual INPUT # INKLYS # and PRINT #
ommanas can be used Lo read and write data, and the command
"LOSE # can be used to break the association. You can even use
AST # to send the hsting of a program to a Microdrive file,

wn important point about the way any channel works 1s that the
PRINT command sends the same stream of ASCII codes to a
‘nannel no matter what it 1s. and the INPUT statement interprets
the ASCII codes that it receives in the same wav, no matier what the
‘hannel is. This principle 1s obvious when the channel devices are the
amiliar kevboard, screen and printer, but not quite so clear when
he channel is a file on a Microdrive. For example, if A=1234 then
'RINT #5.A will send five ASCII codes (49, 50. 51, 52 and 13,
porresponding to the digits 1,2,3,4 and ENTER) to whatever device
s associated with stream 5. Even though the sequence of codes sent
o the Microdrives i1s the same as that sent to any other device, there
wre some ways 1 which a file channel behaves differently. The best
vav to 1llustrate these differences 1s by an example.

“eading and writing a file — buffering

“onsider the problem of writing 20 random numbers out to a filc

116 An Expert Guide to the Spectrum

ina then reading them back in. One of the many possible solutions

0 OFEN #5,"m";
20 FOR I=i TO 2
30 LET X=RMND
40 FRINT X

0 FRINT #5:3X

1 "mydata"
0

0 MNEXT I
70 CLOSE #5
80 OFEN #3,"m" 13" muydata"
70 FOR TI=1 TO 20

100 INFUT $#5IKR

110 FRINT R

120 NEXT I

130 CLOSE #5
f vou run this program and watch or listen to the Microdrive you
viil discover that it runs its tape for a while belore the random
wmoers are printed by line 40. Then, after all 20 numbers are
printed on the screen, the motor starts up, the border colours flash,
anda after a wait the numbers are again printed on the screen. The
-eason 1or this sequence of operations lies in the fact that data to and
rom the Microdrives 1s buffered. Instead of each character being
ent to the Microdrive as it is PRINTed, it is collected in an area of
nemory Kknown as a ‘huffer” until there are enough to make it worth
tarting the Microdrive. T his means that data 1s only written out to
the Microdrive when a full buffer of data has been coliected. As the
suffer holds 512 characters, the program given above finishes
’RINTing data without filling a buffer. In this case the CLOSE
qatement at line 70 now has an additional job. It signals to the
spectrum not only that the association hetween stream and channel
‘hould be broken, but alse that a partly filled buffer should be sent
o the Microdrives. Without this CLOSE statement the data would
:tay 1n the buffer and never be written out. The Microdrive is
witched on for the first time because the OPEN command is
earching for the existence or otherwise of the file called ‘mydata’.
NVhen it has scanned the whole tape without success the Microdrive
s switched off. and the FOR loop PRINTSs the data on the screen,
ina also sends it to channel 5 where it is collected in a buffer. The
vicrodrive is switched on again by the CLOSE statement, and the
contents of the partially filled buffer are written out. The next
OPEN statement again causes the tape to be searched for the file
-alled ‘mvdata’, only this time the search is successful, and a buffer-

nterface 1 and the Microdrives 117

oad of data 1s read from it. When the second FOR loop starts to

NPUT data the Microdrive is switched off because the data is
:omung irom the buffer. If more than 512 characters of data are read
rom the file, then the Microdrive starts up again as another buffer
o1 data 1s read in. To summarise:

) The OPEN command searches the tape for the file specified.
'f it is found then a buffer of data is read in ready for the first
NPUT command on that stream.

) Data produced by a PRINT command to the file is collected
n a 312-character buffer betore being written out

) The INPUT statement takes data from the buffer unless it is
‘moty, when another bulfer of data 15 read infrom the drive

1) The CLLOSE command will automatically send the data in
inv parually filled buffer to the Microdrive.

“here 18 no real need to understand the exact operation of the
wifering system that the Spectrum uses, but it does help to explain
vhv the Microdrive switches on at times when you might otherwise
10T expect it to.

Using PRINT #, INPUT # and INKEY$#

“here are one or two other special features of streams associated
vith file channels. Firstly, you can only send data to a file that did
10t exist before the OPEN statement, and more obviously vou can
miy read data [rom a lile that exists before the OPEN. A file can
mniv be OPEN for reading or writing, and not for both at the same
ime. If you want to make sure that a file doesn’t exist before you
ittempt to write to it, then yvou can attempt to ERASE it first. For
:xample, add

S ERASE "m"iliVnydata"
o the program in the last section.

viaking sure that you don’t write to a file being read 15 a little more
ifficult than vou might imagine. An INPUT statement such as

NPUT #5,A

viil send the control code for *'move to the next print zone' to stream
., because of the comma before the A. To aveid sending data toread

118 An Expert Guide to the Spectrum

iles. INPUT statements should use only semi-colons as separators.
similarlv, the only separator that should be used in a PRINT
tatement sending data to a file is the apostrophe. The reason for this
s that, as alreadv explained, the sequence of characters sent to a
vrite file by a PRINT statement is exactly the same as that sent to
he video driver (see Chapter 6). However, on reading the file back,
he INPUT statement accepts characters trom the file and treats
hem as if they had been typed on the keyboard. As you can verify
‘erv quickly, the only valid way of ending the keyboard entry of a
1ata item to an INPUT statement is to press ENTER. Forexample,
‘he onlv correct way to enter data in response to

L0 INFUT ASEICHS

s 10 tvpe a valid number, then ENTER, another valid number and
"NTER. and finallyv a valid string of characters followed by
‘NTER. This rule of ending each data item with ENTER also
wpplies for INPU'T from Microdrive files, but using PRINT it 15
1uite possible to create tiles that contain sequences of characters
hat cannot be read back! For example. try

10 OFEM #£5H."m"i13"noread"
20 LET A=RNDILET B=RND

10 PRINT ALE

40 FRINT 53,8

ol CLOSE %5

A0 OFEN $£#5,"m"il1i'"'noread"
70 IMNFUT #5,A3E

30 FPRINT &,FB

“he result will be a crash at line 70! The reason is that line 40 writes
he two numbers separated by the control code for*. that1s ASCIT 6.
There 1s no way that this sequence of characters can be read back by
in INPUT statement using numeric variables. However, 1t can be
cad back using a string variable

20 IMFUT £5:a¢

90 FRINT fat
vhich reads back the exact sequence of ASCIIcodesthatweresentto
‘he file by the PRINT command, and store them in the string AS$.

‘ou can also read the file back character bv character using
NKEYS:

0 LET A$=INKEYS$ #5
90 FRINT A
90 COTO 70

nterface 1 and the Microdrives 119

in general INKEY$ # will return the next character in the file no
natter what it 1s - printable character or control code.

N¥hat this means is that if you want to write a data item to a file
ina read 1t back as a separate item it has to be followed by an
‘NTER code. This ENTER code can be generated automatically at
he end of the PRINT # statement. or by including apostrophes
yetween data items. For example

'RINT #s;A

?RINT #s.B
ind

'RINT #s5:A’B

»oth write two separate numeric items to the file associated with
itream s,

s a final and rather surprising example of how INPUT from a
1le 1s treated exactly like INPUT from the keyboard try:

10 OFEN #5,"m"313"questions"
20 PRINT #53"2x2"

30 CLOSE #5

40 OFPEN #5,"m"}1 " questiona”
50 INFUT #5314

30 FRINT &

70 CLOSE #5

“ou might think that as line 20 writes a non-numeric string (2*2} to
he file the INPU'T statement at line 50 would fail. What actually
happens is that the expression is evaluated and the answer 4 is stored
n A. This is a reflection of the fact that any numeric expression
vped in response to an INPUT will be evaluated and treated as if
'ou had typed the result instead!

The rules to remember are:

) Each data item that vou write to a file and want to read back
i$ a separate 1item should be followed by an ENTER code

'} A numeric item should be a valid arithmetic expression

'} A string item can include any tvpe of character and itsend 1s
narked by an ENTER code

120 An Expert Guide to the Spectrum
Advanced CAT

“he full form of the CAT command 15s:
"AT #s, drive number
"his will send the catalogue outpul to stream s, 50

AT #3,1

v1il catalogue drive | to the printer, the default channel OPENed to
tream 3. One of the main uses of this form of the CAT command is
o set up a file on Microdrive that contains all of the information
ipout the files on a cartridge. For example

10 ERASE "m"$13"pcat"
20 OPEN #4,"m"313"ccat"
i0 CAT #4,1

40 CLOSE #1

viil create a data file containing the current catalogue of drive 1.
"his file can then be read back later in the program to discover if a
ile alreadv existed, or simply to discover the amount of space left on
the cartridge.

Advanced MOVEing - renaming and appending

"he MOVE command has an extended form in which either of the
ile specifiers can be replaced by stream numbers. For example, the
:ommand

MOVE “m™; | ;“ccat” TO #2

v1il MOVE the data in the file *ccat’ to the screen. the default
cnannel OPENed to stream 2. In this way MOVE can be used to list
1ata files to the screen or the printer, It is possible to MOVE data
rom the kevboard to a data file, but stopping the data transferis very
messy, and it is better not to use MOVE to ‘connect’ streams
ogether in unorthodox ways. For example

VIOVE #]1 TO #3

v1il move data from the kevboard to the ZX printer, but the only
vay 10 break this connection is to switch the machine off!
I'here is no command that will explicitly allow vou to rename an

nterface 1 and the Microdrives 121

:x1sting file, but the MOVE command can he used to the same
‘ifect. The command

Vove filespecl TO filespec2: ERASE filespec 1

wiil first make a copy of “filespecl” under the new name ‘filespec2’
:nd then ERASE the old copy, thus effectively renaming the [ile.

{ MOVE is used with tile specifiers then it closes the file at the end
T the operation, but if stream numbers are used then the stream 1s
eft OPEN until it is explicitly CLOSEd. This gives us a way of using
he MOVE command to append onc data file to another, For
xample

0 OFEN #4,"m"$1:"laong"

20 MOVE "m"3ii"fiprst” TO #4
30 MOVE "m"t1d3Vsecond” TO 4
40 CLOSE %4

v1il append the file ‘second’ to the file *first’, the result being stored in
i ile called ‘long’. As the MOVE command doesn’L close a stream at
he end of its operation it can transfer the whole of a [ile to any

position within another, You could add data toa file by MOVEing it
o a new Tile, PRINTing the new data, and then using MOVE and
-RASE to give the new file the name of the original {ile.

CLEAR #and CLS #

"he two commands CLLEAR # and CLS # seem to have been added
0 ZX BASIC to improve it rather than because they were necessary.,
"LEAR # will reset the streams and channels to their imitial state
ollowing switch-on. In effect this CLOSEs all the streams and resets
1reams U to 3 to their default channels. However, it is important to
calise that CLEAR # 18 not a substitute for CLOSEing any files that
might be open. The difference is that following CLEAR # any data
‘hat 15 stored in partially hlled buffers is discarded without being
vritten out to a Microdrive! (Remember that a CLOSE will wnite
inv parually filled buffers to the appropriate file before breaking the
stiream; channel association.)
“he command CLS # not only clears the screen in the same way as
‘LS, it also resets all of the screen attributes to their initial values at
witch-on. i.e INK to black, PAPER to white and so on. Itisa good
dea to start all programs that are intended for use with Interface 1
mniy with

122 An Expert Guide to the Spectrumm

10 CLS #iCLEAR #

his will ensure that all attributes are reset and all streams, apart
rom the default ones 0 to 3, are CLOSEQ.

The end-of-file problem

romething that has been ignored so far is the problem of knowing
vhen a program has reached the last item while reading afile. This is
important because the Spectrum will give you an error message and
rash if it tries to read an item after the end of the file has been
reacned. Unlike other versions of BASIC, there i1s no built-in
unction to detect the end of a file in ZX BASIC, so we must either
1se a speciaily-written machine code routine or place a special
narker at the end of a file. Using a special marker 1s quite easy
n ZX BASIC, as there are a number of character codes that
aever occur 1n normal use. For example, CHRS$(0) to CHRS$(5)
ire assigned no meaning by ZX BASIC, so they can be used to mark
any special points in a file. This use of markers or flags is easy
'-nough if the data is stored on the file in the form of strings, butitis
ybviously not possible to include such odd characters with numeric
1ata.
he solution to this problem 1s always to read numeric data into a
;tring, and then test this string for the end-of-file flag. If the string
sn't the end-of-file flag then presumably it is a valid numeric data
tem. and can be converted to numeric form by using VAL. For
xample, if CHR$(0) is being used as the end-of-file marker, the
ollowing program will write a file with a random number of data
tems and then read it back without causing an end-of-file crror:

L0 OFEN #4,"m" i1 "randos”
20 LET L=INT{(RNDXS0)+100
3¢ FOR I=1 TO L
40 FRINT #43RND
G50 NEXT I
50 FRINT #4iCHR$(D)
70 CLOSE +4
30 OFEN #4,"m"j1li"random"
70 INFUT 44324
L00 IF AE=CHRE%(0) THEMN CLOSE $4:18708
110 LET A=VAL A%
120 FRINT A
130 GOTO 20

Intertace 1 and the Microdrives 123
A prompting ERASE program

)ne of the most tedious occupations imaginable is tryingto ERASE
11l the redundant files on a cartridge. To avoid repeatedly typing in
:RASE etc. the tollowing program will read the catalogue and then
a8k the user whether or not each file 1s to be ERASEd. In other
vords. 1t provides a prompting delete facility.

10 CLEAR #:iCLS 4
20 INFUT "Hhich drive 2D
30 FPRINT AT 10,83 "Flease wait"
40 ERASE '"m"ji;Dj3"ccat”
=0 OFEN #4,"m"3;D"ccecat"
af CAT 24,D
/70 CLOSE #4
80 OFEN #4,"&"3D:"ccat"
70 CLS
100 INFUT $43C%
110 PRINT AT 0,103C%"
120 INFUT £4:F%
130 INFUT #43F4%
140 IF LEN F4$=0 THEN GOTO 220
150 FRINT "Delete "3F4%:;" w/n 2"}
160 INFUT A%
170 IF AS(12<:"N" AND A$(1X<x"Y" THEN
GOTO 150
180 FRINT at%
170 IF A$(1)="N" THEN GOTQO 3130
700 ERASE "m"iDIF$
210 GOTO 130
220 PRINT "MNo more files!

I'he first part ol the program (lines 10 to 80) sets up a file*ccat’ on the
irive specified. which contains the catalogue of the same drive,
Notice the way that d is used to specify the drive number. The second
yart of the program (lines 90 to 200) then reads the file in to obtain
‘he name of each file in turn, and asks if each should be removed or
not. The double INPUT at lines 120 and 130 is not a mistake! The
irst entry in the [ile ‘ccat’ 1s the cartridge name: this is read by line
00. Then there 1s a null string, read by line 120, and only then comes
‘he first proper file name read by 130. After this, each read of the file
eturns either a file name or a null string which marks the end of the
1st of files. The null string 15 detected by line 140 and used to end the
WOETAT.

124 An Expert Guide to the Spectrum
Jata file handling - an example

"he previous example illustrated one way in which the standard
"XM BASIC commands can be used to construct useful Microdrive
werauons. Handling data files appears to be such a simple
ipplication of the BASIC commands provided that examples mayv
:€EM unnecessary, 1n practice, however, the business of handhng
iata files often proves to be full of subtle traps. The following short
:xample involves the creation and maintenance of the simplest type
I data file a secauential file, The actual application is a
ersonatised telephone directory, but in many ways this is irrelevant
o0 the example. Any sort of data that needed to be stored, added to
ind then examined would present the same set of programming
proolems. _

"he example consists of two small programs, The first is used to
iad entries to the directory:

L9 CLEAR #:CLE 4
0 GOSUE 1090

18 L8
40 FRINT "Enter new nzmes ansd numbers'
S0 FRINT "type # whern 2l1] entries added"
S0 INFUT "surneme "iS4
79 IF S4%="4" THEN GOTD 180
30 INPUT "indtisls”314
A0 INFUT "telephone rumber “3TS
LB FRINT 6T S.031"New Erhey-"
110 PRINT AT 10,031%3:' “15%;
120 FRINT " Tel “‘T$
30 INFUT “"Ie this correct (4/nl"iAs
140 IF A1)y AND A% (1)<>"n" THEN
SOTO 130
150 IF asdi="m" THEN GOTO 30
140 FRINT 44164 T4°74¢
i70 GCOTO 30

80 FRINT #43CHR$ 0/CHR% 0°CHR$ 0
120 CLOSE #4
200 ERASE "m")
210 MOVE "m"31
c20 ERASE "m"$
"30 STOF

1i'"telnun
P Ceompsddt TO "m"iliVtelnun"
1" tempdbs”

nterface 1 and the Microdrives 125

L0900 OFENM #5,"m"313"telnun”

1010 OFEN #4,"m"31i"tenpdts"’

1020 INPUT $G35%°X67°T%

1030 IF S¢=CHR$ 0 THEN RETURM

1040 FRINT #4389 1I%°7¢

100 GOTO 10Z0
.ines [0 and 20 get things going. Line 20 calls subroutine 1000 which
eads the existing file of telephone numbers, ‘telnum’, and creatcs a
1ew rile called *temp8°. The telephone number file 1s organised into
stoups of three string data items. The first records the surname, the
.econa the initials and the third the telephone number. The end of
he file is marked by a group of three items each equal to CHRS 0.
subroutine 1000 copics the file ‘telnum’ to ‘temp$3%% so the new
tems can be added at the end. You might think that the easiest and
1uickest way to do this is to use MOVE as explained earlier.
1owever. MOVE would copv the entire ‘telnum’ file, including the
hree CHR$# 0 items that mark the end of the file! Obviouslyifthefile
s going 1o be extended the CHR$ 0 items have to be left out of the
:opy, and th's is exactly what linc 1030 ensures.

ynce the‘temp$$$” file is set up. the main partof the programl|(lines
‘0 to 170) allows new names and telephone numbers to be entered to
he three string variables S$ (surname), 13§ (initials) and T3
telephone number). It the new entry 1s correct it is written out to the
ile by line 160. When all the entries have been written out, line 180
iads the three CHRS 0 characters to mark the new end of the file.
“hen lines 200 10 230 rename ‘temp$$$” as ‘telnum’, so restoring the
-artridge to its original state.
The first time vou run this program to set up 4 telephone directory

t will crash because it tries to read the non-existent file ‘telnum’. The
;olution to this problem is to create a short file directly using

IFEN #4, "M 313 telnun"}
"RINT $#43CHR$0CHR$0 CHR$0SCLOSE#Y

thus preparing the cartridge for the program.
"he second program reads the file of names and telephone
aumpers and searchers for any given surname:

L0 DOFEN #4,"m"il13"Lelnum®

S0 INFUT "surnzame” (NG

30 INFUT $45iG6:T%27T%

10 LF S%=CHRE$ 0 THEN CLOSE ¥4:00T0 10
S0 IF Se-0xN$ THEM GOTO 30

al PRINT I$3" “i84:" Tal]l “tT1%

70 GOTO 30

126 An Expert Guide to the Spectrum

This program 1s surprisingly simple. Line [0 OPENs the file and
ines 30 to 70 read i1t through, searching for the surname in N$. Line
40 detects the end of the file. You might be puzzle by the CLOSE in
'ine 40 being followed so closely by an OPEN in line 10. The reason
or this is that each time a name is searched for, the file has to be read
‘rom the beginning again, and the OPEN command ensures that this
is the case.
here is nothing else to add to the description of this example
apart from pointing out that the time it takes to retrieve the
elephone number doesn’t depend very much on the size of the file.
"he reason for this is that each time a name is searched for. not only
the entire file but the entire tape is read! The OPEN command
that is essential to the re-reading of the file scans through the
-emainder of the tape to get us back to the beginning of the file. The
-onsequences oI this method of re-reading a file are discussed
further in the next chapter.

Putting the Microdrives to work

"his chapter has described the sort of operations that Microdrives
ire capable of. They open up a whole new world of Spectrum
programming, and it 18 important not to ignore the challenge of
oroaucing good and usable applications that take advantage of their
acilities. The Microdrive cannot be treated as a traditional data
sorage device, beause it is really nothing more than a fast tape drive
vith a well-developed set of extensions to ZX BASIC. With such a
ievice. achieving reasonable response time and user-friendly
yperation 1s decidedly possible, although it does require a great deal
f understanding of both the working of the Microdrive and the
application in hand.

Chapter Ten

“rinciples of Interfacel
=nd the Microdrives

“here are twoe main arcas of interest concerning the way that
nterface | and the Microdrives work. Firstly, there is the interesting
auestion of how Interface 1 can provide 8K of ROM routines to add
he new ZX BASIC commands (and extend some of the old ones)
vnen a 48K Spectrum has no spare address space! Secondly, there is
ne wav that the system of channels and streams are extended to
iccommodaate the Microdrives. Both these topics are dealt with in
his chapter, and some of the very many applications that they open
Ip are explored.

The ROM paging

t is difficult to extend the machine code routines contained in the
6K ZX BASIC ROM because all the Spectrum’s available 64K’
vorth of addresses are already allocated either to RAM or ROM,
“hortage of addresses 1s becoming a fairly common problem as
nicrocomoputers become increasingly sophisticated. The standard
olution 1s 1o use paging. Paging is a technigue whereby a block of
wadresses can be shared by a number of blocks of memory. Of
ourse. at any one ume oniv one of the memory blocks can be
wadressed, and this implies that to make use of the other blocks there
1as to be a wav of switching one block of memory out and another
n. This switching out and in of a memory block 1s usually referred to
is paging’. For example, the BBC Micro uses paging to select one of
: numbper of 16K ROMs, each of which might contain a different
ipplication or language. Paging 1s also used by the Spectrum to add
nterface I's extra 8K of ROM. At any one time either the usual 16K
"X BASIC ROM 1s present, or the new 8K ROM is switched in. The
ictual electronics of paging is not elaborate because the Spectrum
vas gesigned with a ROM disable line that is brought out to the

128 An Expert Guide to the Spectrum

:xpansion connector (see Chapter 2). Holding this line at +35 volts
viil stoo the 16K ROM responding to any address, and thus allow
inother ROM to take its place.

“his all sounds very simple, but the Spectrum’s use of ROM
aaging is very different from most in that it extends the existing ZX
BASIC commands using the machine code routines in the paged 8K
ROM. This implies that the paged ROM has to he switched in and
yut automatically as a program 1s running. The question 1s, how?

‘onsider for a moment what happens when the Spectrum comes
iCT0ss a statement that isn't in its normal repertoire. It immediately
i1gnais an error by doing a RST 8 to call the error handler routine in
he ZX BASIC ROM. If this iump to memory location & i1s detected,
and used to page in the new ROM, then the routines that it contains
-an check the form of the command and see if it corresponds to
:omething that it can handle. This is in fact what happens. Interface

continuously monitors the Spectrum's address bus for the
yecurrence of address 8, which it immediately takes as its cue to page

n the new 8K ROM, Thus the command

CAT I

vill cause an unexpanded Spectrum to give an error message by
10ing a RST 8, butin a Spectrum connected to Interface 1 the RST8
vages m the new 8K ROM, which carries out the catalogue
wperation and then returns to ZX BASIC after clearing the error
lags. Of course, if the command line is not recognised by the new
ROM it passes the error back to the ZX BASIC ROM, which then
yoduces an €rror message.
nterface | will also page in the new ROM if address 5896 is used.
The reason for this 15 that 5896 is within the ZX BASIC ROM’s
'LLOSE routine, and this has to be intercepted hefore it even
itempts to CLOSE a Microdrive channel. The 16K ROM 15 paged
hack in by the new BK ROM usingaddress 1792, Methods of paging
he ROMs and using the facilities in the new 8K ROM will be
aiscussed later in this chapter.

“he Microdrive data format

I'he Microdrive is essentially a fast tape drive with the tape formed
nto a continuous loop, so that any part of it can be written or read
vithout rewinding. Data is written and read on two tracks to achieve
1 reasonaple level of data storage. Details of the exact physical

“rinciples of Interface 1 and the Microdrives 129

ormat that is used to store are unlikelv to be of use, because the
vlicrodrive is a device uniaue to the Sinclair range of computers,
Iowever. the organisation of data on the tape is of interest. Unlike
he standard tape cassetie system, data is stored on the Microdrive in
slocks of fixed size known as sectors. Simply calling a ‘sector’ a
block of data’ is understating the case a little. A sector is better
hought of as an area of tape where data can be stored. When a
artridge 1s FORMATted, as many sectors as can be accommodated
ire written to the tape, At (irst all these sectors are *marked’ as being
ree for use; when vou write data to the drive, sectors are used and
narked as used. If it helps you to visualise what is going on, vou can
hink of a free sector as containing arbitrary data that 15 of no
nterest. and a used sector as containing data that yvou value. In
sictual fact the FORMAT command marks some of the sectors that
L creates as used, because they lie ona part of the tape thatis [aulty
hrough being near the splice that joins up the loop, or through
1aving a damaged surface for some other reason.

s the sector 1s the fundamental unit of data storage on the
vlicrodrive. it 1s obviously worth examining it in more detail.

| he sector format

‘ach sector on the tape is made up of two parts a header block and a
iata block. The purpose of the header is 1o identify the particular
:ector that is currentlv passing under the read head. The format ofa
1eader block is;

2 bvtes of lead-in signal
bvte flag
bvte secter number

. bytes unused

() bvtes cartridge namc
bvte check sum

1 1s important to realise that the sole purpose of the header is to
mnark the current position on the tape. and n this sensc its most
mportant component is the I-byte sector number. When the
‘ORMA command creates the seclors. it assigns each one a
migue sector number between (0 and 255. However, not all these
.€CLOT numMbers exist on any given cartridge, as the tape is simply not

130 An Expert Guide to the Spectrum

ong enough, Header blocks are read by both read and write
yperations, but the only operation that writes them is a FORMAT.
“he header blocks form unchanging ‘signposts’ to the data blocks
that follow them.

I'he format of a data block 1s best thought of in two parts: a record
iescriptor that stores information about the data that follows and,
at long last, a record which stores useful data. The detailed format of
a gata block is:

‘ecord descriptor

2 bvtes of lead-in signal
byte flag
byte record number

* bvtes record length

0 bytes file name
bytc check sum

‘ecord

112 bytes of data
byte check sum

‘otice that the record descriptor part of the data block has the same

‘ormat as a header block. and so can beread by the same software, It
:ontains a number of pieces of information that are essential to the
rganisation of sectors into named files.

1 named file is a collection of sectors. The file name is stored in
‘ach sector in the ten bytes set aside for it in the record descriptor.
“he order in which the sectors should be taken to make up the file 1s
niven by the [-bvte record number. Forexample, a file might consist
i Tive sectors: the [irst would be record 0, thenrecord | and so onto
ecora 4. Notice that the record number has nothing to do with the
ector number that the data happens to be stored in. For example,
ecord 0 might be stored in sector 57, record 1 in sector 66 and so on.
“he complication in this simple picture 1s the possibility that a
ector’s data area mav not be completely used. As a file is created, a
1ew sector 1s written only when a buffer is full, so the only time a
paruaily-filled buffer can be written out is at the end of a file. The
wo record-length bytes are used to hold the number of bytes of the
1ata area that actually hold data. For all but the last record in a file,
he record-length number will be 512 bytes.

rinciples of Interface 1 and the Microdrives 131
Microdrive maps

" here s a fundamental problem with the sector format used with the
vicrodrives. It 1s not evident until vou try to work out how sectors
ire written during file ereation, The problem 15, how do vou know
wnether or not the sector that is just about to pass under the
ead/ write head is free or used? The header block is never re-written,
.0 1T cannot be used to hold the change in status of a data block that
14s just been made part of a file, or freed by an ERASE operation.
“ou might think that the obvious place to store the information
sbout whether or not a data block was free was in the data block
tseif. This is indeed the only place where such varying information
-an pe stored. but using it brings another problem. Due (o timing
aroblems, the Microdrive can only rewrite an entire data block.
suppose there is a full buffer ready to be written out to a free sector.
“he built-in software reads the record descriptors as they pass under
he read head to discover if the data block that followsis free. When
i Iree block has been found, 1t is too late to begin writing the data
yut: the first part of the block (the record descriptor) has passed the
‘eading head, and there is no way you can write a fragment of a data
slock. One solution would be to wait until the header of the free
slock that had been identified came round again! This, of course,
vouid mean that cach write operation would involve at least one
:ompiete scan through the tape, and overall operation would be very
1ow. The solution adopted by the Spectrum is to construct a
Aicrodrive map that shows which sectors on a cartridge are free and
vhich are used. A Microdrive map consists of a block of 32 bytes,
ina cach of the theoretically possible 256 sectors is represented by a
angie bit. If the bit that represents a sector is set to 1, this means
‘1ther that the sector is used or that it doesn’t exist onthis particular
ape. Un the other hand, if the bit that represents a sector is set to ()
‘hen the sector is free and can be used to construct a file. Youshould
e able to see that. siven a correct Microdrive map, the Spectrum
-an tell if a sector is [ree for use simply by reading the sector number
n the header. and be ready to rewrite the entire data block 1f it 1s.
“he Microdrive manp is a very clever way around the problem of
(nowing when asectoris free. A new map hasto be constructed fora
irive everv time that a file is OPENed, because there is always the
yossibility that the cartridge has been changed since the last time the
nap was proauced. During file operations the map can be keptup to
1ate by setting the bits that represent any sectors used. Thus the only
'0sts encountered in the use of Microdrive maps are the time needed

32 An Expert Guide to the Spectrum

or a complete read of the tape with each OPEN command, and the
2 byvtcs of memory required to hold the map uself,

The Microdrive channel

he final component you need to understand is the Microdrive
:hannel. If vou refer back to the description of the standard channels
ind streams in Chapter 5, you will see that all that is necessary to
'xtend the systemtoincludefiles held ona Microdrive istheintroduc-
ion of a new type of channel record or descriptor. In fact it is also
necessary to extend the soltware that handles streams and channels,

yut the new 8K ROM takes care of this.
A Microdrive file channel descrintor has the following format:

byte name use
) 0008 error routines address
) 0008 error routines address
4 ‘M’ channel identifier
- address of output routine
= address of input routine
) - 595 length of channel descriptor
1 CHBYTE next byte in record
3 CHREC current record number
4 CHNAME 10 byte file name
24 CHFLAG flag bO=0 open for read
5 CHDRIV drive number
6 CHMAP address of microdrive map
¥ £ |2 bvtes of lead-in signal
0 HDFLAG header flag b0 set to |
41 HDNUM sector number
§2 - not used
i4 HDNAME cartridge name
4 HDCHK header check sum
55 12 bytes of lead-in signal
67 RECFLG record flag b0 set to 0
o8 RECNUM record number
69 RECLEN number of bytes in record
1 RECNAM 10 byte file name
3 DESCHK record descriptor check sum

Principles of Interface 1 and the Microdrives 133

2 CHDATA 512 byte data buffer
94 DCHK data checksum

“here arc many interesting [eatures in this channel descriptor. In
werall structure 1t falls into three parts. Bytes 0 to 27 form a
-otlection of general channel information, bytes 28 to 54 form a
:ector header, and bytes 55 to 594 form a data block. Thefact thata
nannel descriptor contains data formulated as a sector headerand a
1ata block is. of course, no accident. When a sector 1s being written
or reaa. the header 1s stored 1n bytes 28 to 54 and the data block in
wtes 55 to 594. In this sense the last part of the channel description is
i MEMOry 1mage or copy oi the sector on tape.

"he first part of the channel descriptor has roughly the same
ormat as the channel descriptors introduced in Chapter 5. In fact
he channel and stream software still treats the first four memory
ocations as the addresses of the output and input routinesto be used
vith the channel. As these locations now hold address 8, the error
-outing. any attempt to use the channel's output or input routine
-auses the new K ROM to be paged in. When this happens, the
-outines in the shadow ROM then use the four locations following
he channel identifier (byte 4} as the address of the output and input
‘outines within the new 8K ROM. (Notice that the first [our memory
ocations can still be used to hold the addresses of output and input
outines 1n the main 16 K ROM or anywhere in RAM. This idea 1s
xplored in the final chapter.)

ivte 9 holds the length of the entire channel descriptor. This is
iecessary necause the software might have to search though the
-hannel’s area of memory, and in the extended system, channel
1escriptors can have different lengths.

"he location of the bulfer described in the last chapter can now be
.cen at the end of the channel descriptor for the file concerned. Thas
wutfer is filled or emptied as data is sent or retrieved from the file.
jvtes 11 and 12. CHBYTE, are used as a pointer (o the next byte to
se added or removed. When an attempt is made to add the 513th,
svie, the entire data block 1s written out. [f a 513th bvte 1s requested,
then the next record in the file will be read into the channel
iescriptor.

"he only other byte worth describing 1s byte 67, RECFLG. This
ecords the fact that the block passing under the head is a data block
b0=0); it also holds one or two other pieces of information. {f bl is
et 1o | then the record that has just been read 1n1s the last record in

134 An Expert Guide to the Spectrum

the file: in other words bl is an end of file flag. Bit 2is set to 1 if the
ile being read 1s not a PRINT file 1.e. if 1t has been created by a
JAVE* command.

Summary

1l the important features of Microdrive operation have now been
iescribed. but it may be helpful to give a summary of operations.

(i} Data is stored on the tape in the form of fixed-size blocks called
:eCLOTS.

2) Fach sector is composed of two main parts: the header, which
ontains the sector number and is not changed during normal
wperation, and the data block, which contains the filename,
-ecord number and the actual 512 bytes of data that each sector
an store.

3} A Microdrive map is used to discover if a sector is used or free.

he manp is built up each time a file is OPENed by scanming the
‘ntire tape, and then kept up to date as sectors are used.

4y The Microdrive file channel descriptor contains the same data
ormat as a sector. plus a number of extra pieces of information
:oncerning the construction of the file.

he best wav to make sure that this method ol operation is
indgerstood is via the examples in the (ollowing sections,

A record/sector lister

t 1s auite easy to find out which sectors have been used to store the
-ecoras of a file. All vou have to do 1s read through the file and
PEEK the sector number stored in the file channel descriptor each
ime a new record is read.

here are two guestions that have to be answered before this is
possible:

1) Where is the file channel descriptor stored?
"} How can the reading of a new record be forced?

I'he solution to the first problem can be found in Chapter 5. The
iadress of anv channel descriptor can be found by examining the
correct entry in the stream table. If the channel descriptor has been

Principles of Interface 1 and the Microdrives 135

ypened to channel 8, the start address of the descriptor can be found
1sing the following subroutine:

1000 LET A=Z3874+Z2X8
1010 LET C=PEEK A +256XFEEK(A+])

1020 LET D=PEEK 234631+2546XxPEEK 23627
1030 LET C=C+D-1

1048 RETURNM

L.inc 1000 finds the address of the entry in the stream table; this holds
the offset. from the start of the channel's area of memory, of the
cnannel associated with stream S. Line 1010 stores this offset in C,
ne 1020 stores the address of the start of the channel’s area in D,
and line 1030 finally uses all this information to calculate the address
of the first byte of the channel descriptor in C.

"he second problem 1s easily solved. An INPUT # on the stream
v1il cause a new record to be read into the buffer if all the data in the
butfer has been processed. Bytes |1 and 12 in the buffer, CHBYTE,
1¢t as a pointer to the next byte that will be brought from the butfer
o sausiy an INPUT #. If this POKEd with a large value (>>512) the
:o1tware will be tricked into thinking that all the data in the buffer
14s been used, and a new record will be read. Thus:

*OKE C+12,5
NPUT #5:A%

vill always cause a new record to be read in (assuming that C
-ontains the address of the first byte of the channel descriptor.)

Now that these two problems have been solved, the program is
“asy:

10 OFEN #4,"m"313"big"

20 LET 8=41G0SUE 1000

30 FRINT “record "“;PEERK{C+éB),
40 FRINT "sector "“jPEEK(C+41)
Al POKE C#12,5

50 INFUT #4:a4%

70 GOTO 30

Line 20 uses subroutine 1000 to store, in C, the address of the
-nannel descriptor that is associated with stream 4. Lines 30 and 40
hen PRINT the record and sector number by PEEKing the
ippropriate bytes in the channel descriptor, and finally line 50 and
0 force a new record to be read n.

[vou use this program on a tape that contains only one file you

136 An Expert Guide to the Spectrum

viil discover that the records are not stored on sequential sectors.
‘or example, record 0 might be stored on sector 20, record | on
ector 22, record 2 on sector 24, and so on. The reason for this is that
he sectors pass under the Microdrive head faster than data can be
wuilt up in the buffer ready to be written out; the *‘missing’ sectors are
nissed opportunities!

Looking at the map

“"he Microdrive maps are stored within the region of memory
iarting at 23792 (see the next section). The exact address that any
nap 1s stored at can be found from an examination of byvtes 26 and
"7 (CHMARP) of the channel descriptor. Using this information it is
*asy to print out the bit pattern so that the positions of free and used
.cctors can be seen. Try the following program:

10 OFEN #4,"m"$1:'"bp"
20 LET S=41608UB 1000
30 LET M=FEERC(C+Z26)+Z256XPEERK(C+27)
40 FOR I=0 TO 31
30 LET B=FEEK(M+I)
60 FOR J=1 TO 8
0OPFRINT B=2xXINT(E/Z)}
80 LET B=INT(EB/2)
70 MNEXT J
100 NEXT X
110 STOF
Ane 30 stores the address of the Microdrive map in M. Lines 40 to
') then print the 32 bytes as a continuous stream of bits so that you
'‘an see which sectors are in use.

f vou run this program and file'b’ already exists you will discover
hat something odd happens to the map. The reason for this is that
ithough every OPEN command constructs a Microdrive map, it is
yniy kept if the file is discovered to be a write file at the end of the
scan through the 1ape.

Ad hoc channels and non-PRINT files

viost ZXM BASIC commands such as MOVE, SAVE etc. need to
1s¢ a cnanncl descriptor in the course of their operation. Such
1escriptors are created by the commands and then destroved at the

Principles of Interface T and the Microdrives 137

end of the operation, and are called ad hoc channels. The only
iifference between a normal channel descrintor, as created by an
JPEN command, and an ad hoc channel is that the M channel
dentifier (at byte 4} is replaced by CHRS$(205), i.e. CHR$(CODE
*M™)+128).

wnother [eature of Microdrive files is their segregation into
RINT and non-PRINT files. PRINT files are created by the
'ommands OPEN. PRINT and CLOSE; non-PRINT Tiles are
rreated by SAVE. The only real difference between PRINT and
10n-PRINT files 1s that the non-PRINT files store certain items of
niormation about their nature in record 0 of the file. To be precise;

ecord 0 of file

wie | flag byte & 0= BASIC
/2= array data
= code
wtes 2 and 3 number of data bytes in file
wvtes 4 and 5 start address
wvtes 6 and 7 length ol program area
wtes 8 and 9 auto start line number

“ou should be able to see the similarity between this data and the
ormat of the tape header described in Chapter 8. Even taking this
ifference into account. there is no reason why a non-PRINT file
:ouldn’t be read. using INKEYS, asa sequence of ASCII characters.
lut the Spectrum’s software makes a clear distinction between
RINT and non-PRINT files, and will not allow vou to QPEN a
100-PRINT file. This is a pity, because it would add yet another
nmension to Microdrive data handling if 1t were possible to read

ind write program files. It /s possible to fool the system into writing
: non-PRINT file using PRINT statements by POKEing byte 67
(RECFLG) in the channel descriptor with 4 immediately after
YPENing the [ile. The value of RECFLG is the only way the system
1as to recognise a non-PRINT file. If you do this, yvou must be sure
o write the information described above into the first record before
rving to write the program or other data.

he new system variables

Vhen the new 8K ROM is naged in for the first time it creates 58

138 An Expert Guide to the Spectrum

:Xira system variables that are necessary to its operation. These are
idded to the end of the usual svstem variables area, and take up part
I the memory area set aside for Microdrive maps in the
mexpanded Spectrum. Rather than give a complete list of all the
1ew variables (one can be found in Appendix 2 of the Interface | and
viicrodrive manual) it makes more sense to describe the few that are
1setul, Some of the system variables are concerned with the other
features provided by Interface 1, and these will be treated in the
ollowing chapters. Some are used as temporary work areas for the
cxtended commands and the machine code routines in the new §K
ROM. These are described as required in the section on using
machine code. After taking all these out of consideration there are
niy two interesting new system variables that have anything to do
vith the Microdrives!

'OBORD (23750)

"his simply sets the border colour that the screen flashes during any
nterface [controlled 1/0. You can POKE any colour code that you
iike into this variable to change and even remove the border
lashing.

COPIES (23791)

“he value stored in this system variable sets the number of copies of
1 file that are generated by the SAVE* command. If you make more
han one copy of the file it will take more space, but it can increase
he speed of loading. Each copy that is made has to be ERASEd
:eparately, i.e. three copies of a program will take three ERASE
‘ommands before the program is lost forever!

Jsing assembly language

Ising the routines in the new 8K ROM from Z80 assembly language
:ould be verv awkward if it were not for the provision of a special
-ailing mechanism. The 8K ROM is paged in by the ZX BASIC
1OM when the error handler is called by a RST § instruction. The
crror code is stored in the memorv location following the RST 8
nstruction and this 1s examined by the 8K ROM to find out the type
i1 error that has caused 1t to be paged in. However, the error codes
iy use a limited range; and this fact has been used to allow
issembly language programs to call Microdrive routines that are
:tored in the new 8K ROM.

rinciples of Interface 1 and the Microdrives 138

Re program
RST B
JEFB code

vill call a particular Microdrive routine in the new 8K ROM
iepending on the value of ‘code’ as given in the following list:

ode action
Switch a Microdrive motor on(The A register contains
che drive number; if the A register contains zero than all
notors are switched off)
OPEN an ad hoc channel
CLOSE a file
ERASE a file
Read next record of a PRINT file
Write next record of a PRINT file
Read a given record of a PRINT file
I'he record s specified in the channe! descriptor)
1) Read a PRINT file sector
The sector specified in CHREC is read)
i Read next sector on tape
v I'he next sector that passes under the read head is loaded
nto the channel descriptor)
12 Write a sector
i The sector number 15 stored in CHREC 1n the channel
Jdescriptor)

[,

el R T S Y

I'he routines corresnonding to codes 34 and 36 OPENand ERASE

ase the new svstem variables D_STRI (23766) and N_S'1R1 to
10ld the drive number and the file name respectively. The first two
ocations of N_STR1(23770) hold thc length of the file name, and
he last two (23772) hold the address of the first letter of the file
name. Un exit from the OPEN operation, the address of the channel
aescriptor is in the IX register and its displacement {as stored in the
tream table) in the DE register. The rest of the routines all expect
he address of the channel descriptor to be held in the IX register.

¥hen using any ol these routines, it 1s worth being aware that
1wne o1 the registers 15 saved, and that the state of the maskable
nterrupt is, in general, not predictable. Before using any of the
ounnes. it 1s good practice to save the HL register pair and disable
he interrunts. On return, restore both the HL register pair and
:nanle the interrupts.

140 An Expert Guide to the Spectrum
A rewind command

vs an example of using the new 8K ROM routines, consider the
yroblem of producing a ‘rewind’ operation. In this context,
ewinding a file refers to making the current record into record 0.
Jsing the read record operation {(code 39) it is possible to read any
ecord of a file into the channel descrintar’s buffer. The following
issemply language routine makes this operation available asa USR
‘unction:

wadress assembly code comment
‘anguage

3296 PUSH HL 229 save HL

°3297 I.D IX.chan 221.33,0,0 load IX with channel address

3301 DI 243 disable interrupt

"3302 RST 8§ 207 read record

23303 39 39 code

23304 FOR A 175 clear A

23305 RST 8 207 motor off

3306 33 33 code

23307 FEl 251 enable interrupts

3308 POP HL 225 restore HL

3309 RET 201 return to BASIC

‘0 use this routine, the address ot the channel descriptor has to be
*OK Ed into 23299 and 23300. The onlv other point of interest is the
15e of code 33 to stop the motor after the read.

“his routine to read anv record can be used to advantage in the
elephone number program given at the end of the previous chapter.
I'he method used there to re-read the file was to CLOSE the stream
ina re-OPEN the channel. Of course OPENing the channel means
hat all the sectors on the tape have to be read to build up a
JAicrodrive map. Time can be saved by avoiding this OPEN
‘ommana using the ‘read any record’ routine to read record 0, 1.e.
-ewind the file. Using this idea gives the following modifications to
he program

5o LOSUE 10040

0 LF S$=CHR 0 THEN GOSUE Z000icOTO 20

Principles of interface 1 and the Microdrives 141

1000 D{:\Tﬁ 229,221,33,0,0,243,207,39
tl;;.ﬂr ¥ o 3,151,25[}{’%‘1

1018 FDi«. A=23296 TO 23309
1020 READ D

1030 FOKE A,D

1040 MEXT &

1050 RETURN

2000 LET S=4
2010 LET ﬁ-‘==2353"}”{+-2x8
2020 LET C=FEEK COOXRFEEK(A+])
2030 LET D=FEEK ’3-@ 31+206%PEFK 23637
2040 LET C=C+D-1
2050 PFOKE 23300, INTC/256)
2060 FOKE 23299,C-INT(C/2546) X256
2070 FORE (C+13>,10
20806 LET A=USR 23294
20970 FOKE (C+11)>,0
2100 RETURN
subroutine 1000 1s the familiar machine code loader used in other
'xamples. Subroutine 2000 performs the rewind operation. Lines
000 to 2040 get the address of the channel descriptor in C using
nethods already described. Lines 2050 and 2060 POKE this address
nio the ‘read any record’ routine. Line 2070 sets the record number
o zero so that line 2080 will load this sector into the record
iescriptor. Line 2090 resets CHBYTE so that the first byte in the
suffer is returned in response to the next INPUT command.
‘ou should find an improvement in the runming time of the
yrogram because there is no longer the need to read the entire tape
‘ust to build up a map.

Random access files

“he ‘read anv record’ routine could be used to read the record of a
le in any order. This is all vou need to implement random access
1les. However, as already mentioned, the Microdrive is essentially a
.eriai device. If vou rcad record 3 and then want to read record 2 the
ape wiil not *back space’. Instead the entire tape will run past the
-ead head until record 2 comes round again. The worst possible case
s Tound when reading a file backwards, when each record requires
the entire tape to be read before 1t 15 found! Because the time to read
he entire tape is reasonably low (one or two seconds) there is less

142 An Expert Guide to the Spectrum

reason to consider random access techniques with the Microdrives.
“he best processing times are achieved by reading records in their
1ormal sequence and processing as hittle data as possible. For
'Xample, one possible organisation for a telephone number
airectory is random access. with say, one record of a file assigned to
cach letter of the alphabet. Using this organisation a telephone
wmber would be found by reading the record that held the entries
or all names that began with the same first letter, On average, half
he tape would have to be read to find the required record using the
read any record’ routine. I the file were read sequentially, record
hv record, to get to the desired position then the average amount of
ape read is roughly the same. However, if every item of data ineach
:ector was processed in some way, then the time needed to read the
ile sequentially would be very much greater. Using a sequential read
oupnied with a forced skip of any irrelevant sectors (see the
.ector/ record list example earlier in this chapter) is likely to be as
tast as any random access method.

The continuing saga of Interface 1

he nrinciples of the paged ROM and the Microdrive have been
1escribed 1n this chapter, but this is not the end of the Interface |
sory. There are still two extra types of channel, more 8K ROM
outines and a way of customising ZX BASIC to be discussed in the
wo (inal chapters.

~hapter Eleven
‘nterfacel and
communication

I'his chapter looks at the two other features introduced by Interface

— the RS232 port and the network. Both these facilities are in fact
iifferent forms of serial communication. The RS8232 port can be
1sed to connect a standard printer to the Spectrum, or for
-ommunication with other computers. The network is mainly
niended as a wav of establishing communications between a
wumopcer of Spectrums, but it is possible to write software to extend
he network to include other computers, The first part of the chapter
1eals with the RS8232 port, and some ol the pitfalls of using it, and
he second part describes the Spectrum Network. Much of the
iiscussion of how things work builds on the ideas introduced in the
ast chapter.

KS232 - almost a standard

“here are a number of accepted ways of passing data between
:omputers, Some of them even have specified standards, but very
ew of them are standard in practice. It 1s rare to be able to connect
w0 computers, or a computer and a peripheral such as a printer,
ogether in such a way that the connection will work immediately.
Normally it takes only a few minutes to work out the trouble and put
hings right. Sometimes it can take alot longer; you may even need a
:oidering iron. In the worst cases it can prove impossible to make the
-onnection. but this 18 very rare.

3S§232 is a standard for serial interfaces that specifies a great
nanv things in great detail. The main reason {or the incompatibilities
etween different R8232 interfaces is the choice of the parts of the
mandard that have been implemented. For example, the simplest
15232 interface consists of three wires — onc {or a signal from the
:omputer, one lor a signal to the computer and one for an earth

144 An Expert Guide to the Spectrum

:onnection. The Spectrum uses two more wires than this, one to
signal that it is ready to receive data, and one to carry a signal that
he device 1t 1s connected to is ready to receive data. These two
-onnecuions are often included in an R5232 interface and are called
1andshake lines. However, other connections are often included to
agnal, for instance, that the device at the other end of the cable is
'witched on or off, In the same way. many RS232 interfaces will
provide only one of the two handshake lines that the Spectrum uses.
vl this variation can cause a great deal of difficulty in knowing what
10 connect to what.

M course, the trouble with offering advice about how to connect
:omething to the Spectrum is that any problems that might arise
depend as much on the ‘something’ as on the Spectrum. This means
‘hat the onlv real way to tackle the problems that occur in using the
RS$232 15 to understand what is essential to make it work.

The Spectrum’s RS232 interface

The pin connections to the 9-way socket that carries the R5232
1gnais at the rear of Interface | are:

Yinno. use

not connected

I'X - input data to Spectrum

RX -~ output data from Spectrum
DTR - ‘readv’ signal to Spectrum
CTS - ‘ready’ signal from Spectrum

4

) not connected

7 ground

3 not connected
+9 Volts

f vou examine this list you will see that ['X (the input data line) pairs
vith CTS (the ‘ready’ output line), and RX (the output data line)
pairs with DTR (the ‘ready’ input line to the Spectrum). When the
Spectrum is receiving data, the CTS line 15 used to indicate that
1 1s ready to receive data. The device the Spectrum is connected to
must net send data to the Spectrum while CTS is low (i.e. at 0 Volts).
fdataissent while CTS 1slow. it will be ignored or read incorrectly. In

nterface 1 and Communication 1456

he same way the Spectrum will not transmit data when DTR is held
ow by the device that i1s receiving the data.
"0 summarise;

1) The Spectrum will only receive data correctly when CTS (pin5) is
s high and this signal should be used to enable the device
ransmitting data.

2} The Spectrum will only transmit data when DTR (pin 4) is high
ina this signal should be used by the receiving device to indicate
that it is ready for data.

“andshaking and no handshaking

'he conditions for transmitting and receiving data given in the last
‘ccnion are easy enough to understand, but there 1s one complication
hat arises even when vou try to connect two identical machines
‘ogether. This can best be described by saying that one machine’s
yutput 1s another’s input. For example, if you want to connect two
Spectrums together you have to connect pin 3 on the first to pin2 on
he second. That is, the output data signal has to go to the input data
pin on the other Spectrum. This seems clear cnough in the case of the
data lines - 1.¢. pin 2 connects to pin 3 and pin3connectstopin2 - but
his ‘crossover’ also applies to the handshaking lines. In other words,
he DTR and CTS lines on the first Spectrum should be connected
o the CTS and DTR lines on the second Spectrum.
“his crossing over of connections is the exception rather than the
uie. Most peripherals, printers, VDUs etc. are already wired up to
ake the crossover into account. On a orinter vou might find that pin
“is still called "R X data’, but now it is a data input to the printer. In
his case it is clear that the Spectrum’s pin 3 should be connected to
he printer’s pin 3. If vou buy the RS232 connection cable from
Jinclair you will tind that the scheme used is:

spectrum other equipment
"X data pin 2 (1'X data)
RX data pin 3 (RX data)}
TS pin 5
9V pin 6 {DSR})
sround pin 7 ground

DTR pin 20 DTR

146 An Expert Guide to the Spectrum

which will work with most printers and VDUs,
in general, it you are making up a cable Lo allow the Spectrum to
vork with another mece of equipment, you need to have details of
1ow the other’'s RS232 interface is arranged. Assuming it uses a 25-
nin D plug or socket, [irst discover whether pin 2 or pin 3 on the
ievice is its output (TX) pin, and connect this to pin 2 on the
:pectrum. The other pin should be connected to the Spectrum’s pin
'. The next problem is to decide where the handshake lines have to
0. vormally DTR from the Spectrum should be connected to either
JDTR (pin 20}, DSR (pin 6) or RTS (pin 4). The Spectrum’s CTS
1gnai should be connected to CTS (pin 5} on the other equipment.
Jn some eguipment there are no handshake lines at all. As
iireadv mentioned, the simplest RS§232 interface uses only the RX,
"X and ground connections. In this case the Spectrum’s CTS {pin 5)
ine can be left unconnected. and DTR (pin 4) should be connected
0 T9V {pin 9). Not using CTS will mean that the device that the
.pectrum is connected to will transmit data whenever it likes, even if
he Spectrum 1s not ready to receive. [he reason for connecting
JTR (pin4) te—=9V (pin9) isto allow the Spectrum to transmit data
vhenever it wants to. Of course. for this to work the receiving device
nust be capable of receiving data at any time! In practice,
intermediate situations are often encountered, with RS232 interfaces
1aving only, say, a CTS line. In this case you can only connect up
;uch handshaking lines as there are, and connect the remaining
nput lines either to ground or +9V depending on whether they have

o be held low or high to enable data transmission or reception.

“ou willappreciate from the above discussion that many different
ypes of problem can be encountered with RS8232 connections. In
sractlee, things are not quite as bad as you might expect, and as long
15 vou identify the purpose of each connection on the other device
'ou snould have no trouble. It is sometimes useful to connect only
he RX, I'X and ground lines between the Spectrum and the other
ievice. and connect the handshake line inputs to either ground or
-9V to get the interface working without handshake lines. You can
hen refine the intertace connecting the handshake lines one by one.

RS232 data format

I'he R5232 interface 1s a serial connection. F'hat i1s, when data 1s
rassed from a computer to another device it is transmitted bit by bit.
vlthough transmission is one bit at a time, 1t 1s standard to send a

nterface 1 and Communication 147

TOUpP 0T bits In sequence to represent a character. There are a
iumober of choices that can be made about the way the bits are
ransmitted. You can select one of a number of transmitting speeds
it bawd rares. i.e. the number of bits vou transmit per second. You
:an also select how many bits you are going to send to represent a
angie character, how many bits to signal the end of transmission of a
-naracter. and whether or not you are going to send a parity bit to
‘neck tor transmission errors. In the case of the Spectrum the
ransmission lormat used 1s

3 data bits
10 parny check bit
" stop bits

ind the baud rate can be set by the user. Thus as well as making the
-orrect electrical connection between the Spectrum and the other
icvice. 1t 18 also important that it 15 set to receive data in the
spectrum’s lormat, En most cases this only involves making sure that
»oth the Spectrum and the other device are using the same baud
ate.

Ihe BASIC RS§232 commands

"X BASIC treats the RS232 interface as just another type of
:hannel or. to be more precise, as two new types of channel. The
:nannel identifiers that are used are:

» or B for binary RS8232 channe! and
or I for text R8232 channel

‘ither channel can be OPENed to a stream in the usual way. For
:xample,

JPEN #4, “b”
vill OPEN siream 4 to the binary RS232 channel and
YPEN #5, %1

viil OPEN stream 5 to the text RS232 channel. Once a stream
15 been associated with a channel the usual stream 1,0
-ommanas - PRINT & INPUT #and INKEY$ # can be used to send
ina receive dala.

3oth the b and t channels behave in the same way when the data
hat is being transmitted or received 1s composed of nothing but

148 An Exvert Guide to the Spectrum

orintable characters. The difference comes from the way they treat
he Spectrum’s control codes, and other non-standard assignments
f character codes. The b channel will transmit the full &-bit
‘naracter code of anvthing that 1s PRINTed to it, but the t channel
v1il onlv send the code if it is a printable character, or it can convert
he item into a seauence ol printable characters. That s,

’RINT #4; THEN

vhere THEN 15 entered as a single kevstroke, sends CODE{THEN)
r 203 over the b channel. However, if stream 4 was OPEN to the t
:hannel the ASCII codes for the letters T, H. E. N would be sent
nstead.

I'he exact rules are:
“or transmitting:

T'he b channel transmits the 8 bit character code of everything it
s asked to PRINT

I he t channel will not send control codes 0 to 31 or the graphics
‘naracters 128 to 164, and will expand all the keywords 165 to
255 10 their corresponding strings of ASCII characters

or receiving:
I'he b channel receives the full 8 bit code that 1s sent to it

"he t channe! will ignore the 8th bit of any code it receives, thus
estricting it to the standard 0 to 128 ASCII character set

t should be ¢lear that the t channel is an attempt to reconcile the
.pectrum’s extensions to the standard ASCII character set. For
xampie, if the RS232 interface is connected to a printer,

JPEN #4, “b" (LIST #4

¥1il list the current program, but as the keywords will be sent as
angie character code, they will either not be printed or cause the
printer to do something strange. But

JPEN #4, “t" (LIST #4.

viil give a perfectly readable listing, as the codes for the keywords
viil be expanded to the sequence of characters that normally
epresents them.

s the b channel works with the full range of character codes, it
can pe used Lo transmit the contents of memory locations. To make

nterface 1 and Communication 149

his easier, the SAVE*, LOAD*, VERIFY* and MERGE?* can all
efer to the b channel. Forexample. SAVE*“b™ and LOAD*“b™ are
>oth permissible. Of course. without special software these
-ommands only permit the exchange of programs between two
spectrums. (The network provides an easier method of program
‘Xchange between S pectrums, but the R§232 interface does have the
iavantage that it can be used to transler programs over a telephone
ine with the aid of a modem.)

“here is one other difference between the b and t channels that is
mportant, and that 1s the treatment of the ENTER character code.
vs alwavs. the b channcl passes every code unaltered, but the t
:nannel replaces each ENTER (code 13) by the two-character
equence 13,10 which is ENTER [ollowed by line (eed. Some
orinters and VDUs will automaltically start a new line when they
eceive ENTER: others also need the line feed code. If the printer
10esn’t need the line feed code 1t will throw a blank line hetween each
ine ol text. There is nothing that can be done about this problem
ipart trom stopping the printer from starting a new line when it
ccerves the ENTER code. (That is, if possible, turn off the auto line
eed facilitv)

lotice that the t and b channels can also be used with the MOVE
-ommana. For example, to send the data {rom the R5232 interface
o the screen use:

VIOVE “b” TO #2

Setting the baud rate

‘ven though the commands for using the R8232 channels have been
nven. they remaln unusable because the method of setting the baud
-ate hasn’t vet been described. When the Spectrum is first switched
. the baud rate is imtialised to 9600). T'o change it to another value
ASE

‘ODORMAT “b™:; baud
or
ORMAT “t";baud

vnere ‘baud’ 1s one of 50, 110, 300, 600, 1200, 2400, 4800, 9600 and
'9200. These are the standard baud rates tound on most computer
:auipment. In the case of the Spectrum, the baud rate can be roughly

1850 An Expert Guide to the Spectrum

nterpreted as ten times the number of characters transmutted per
secona. So 300 baud is about 30 characters a second. Handshaking
viil sometimes stop the transmission of data, so the actual ratc may
e less. In most cases it 1s advisable to use the highest baud rate that
he two pieces of equipment can both be set to. A high baud rate
neans tess time waiting for data to be transferred. However, if for
iny reason vou are not using the handshaking lines then the
‘pectrum will not receive data accurately at baud rates above 304, In
act there is no guarantece that it will receive every character at 300
raud, but without handshaking the slower the better!

To set a non-standard baud rate vou can POKE an appropriate
:onstant into the new two-bvte system variable BAUD. The
:onstant 15 given by:

3500000/ (26*baudrate))—2.

Using both tand b

here 15 nothing against using both the t and b channels at the same
ime. For example, many printers use ASCIl codes in the region 0 to
i1 as control codes to produce special printing effects, such as
‘niarged characters or graphics characters. Apart from thesecodesa
printer 1s best handled via the t channel,

10 OFEN #4,"t"

20 OFEN #5,"h"

30 FRINT #S5iCHR$c) 3 #945A%
15 a control code te be sent to the printer unchanged, and A$
‘ontains text,

Principles of R5232 operation
"he RS232 interface 1s handled by the usual system of [/ O channels

ing streams described in Chapter 5. The only new feature is the
iadition of another tvpe of channel descriptor:

dyte use

} address 8 (the error handler)
2 address B (the error handler)

nterface 1 and Communrnication 151

' t or b channel identifier
address of output routine
address of input routine

} Il (length of channel descriptor)

"his channel descriptor is the shortest and simplest of the newly
ntroduced channel descriptors. For this reason it is the one most
iten conied when introducing user-defined channels, as in the
xampie in Chapter 12. Notice that there 1s no data buffer, so R§232
ransmission and reception occurs without delay. unlike Microdrive
yperations.

“he Spectrum R$232 interface Is interesting because it 1s mostly
ortware. M ost other machines use special chips that will accept data
wites and transmit them over an RS5232 interface without any help
rom the CPU. The Spectrum contains no such special chips;
nstead. software creates the necessary signal pulses on the R5232
ine in the same way that the sound or cassette pulses are created (see
Chapter 8). In this case the 10 port invelved is 247, and the R8232
wiput line RX is controlled by the state of b0. Reading port 247
eturns the state of the data input line TX, also as bl). The two
handshaking lines are associated with 1;0O port 239, Reading the
sort returns DDTR as b3, and the state of the CTS line is set by b4,

he seguence of operations involved in sending a byte of data is:

Nait until the DTR line is high

end the bvte bit by bit using the value stored in BAUD to time
he length of each pulse.

"he sequence of operations involved 1n receiving a byte of datais a
itle more complicated:

xamine the value in the new system variable SER_FLG at
23751,

fthe value in 23751 18 non-zero, then the next memory location
1752 contains the character reguired. Alier setting 23751 to
‘ero this is returned as the input.

fthe value inSER_FLGiszero, wait until CTS is high, then wait
‘or the start of transmission, signalled by the TX data line going
ngh for one pulse time. Following this the eight data bits arc
-¢ad In and the two stop bits are momtored. Then set the CTS
ine low to stop anvthing else being transmitted.

152 An Expert Guide to the Spectrum

f this fails to stop the transmitting device in time, another
‘omplete character will be read in and stored in SER_FLG | 1.
SER_FLG will be set to | toindicate that there s already a data
wie waiting. The first byte read in 1s returned as the input.

“he description of the RS232 INPUT operations reveals that RS232
NPUT is in fact buffered, but only to the extent of one character,
“his is necessary because some sending devices do not respond
juickly enough to the lowering of the CTS line to ensure that a
:econd character will not be sent.

Assembler and the RS232 interface

“he routines within the new 8K ROM that send and receive data
1sing the RS232 interface can be used in assembler. The method is
yasically the same as that used in calling the Microdrive routine (see
he previous chapter). The routines are called using

(ST 8
ode

vhere the action produced depends on the value of ‘code’.

e action

29 Read a bvte from the RS232 interface.
“he carrv flag 1s set if a byte 1s read
refore time out. The result 1s returned 1n
the A register.

0 Write the byte in the A register to the
R5232 interface.

| hree general purpose [/O routines are also useful when writing
R5232 programs.

ode action

27 Read kevboard. Wait until key is pressed
inad return its code in the A register

8 Write character in A register to screen

~vithout counting scrolls.

‘nterface 1 and Cornmunication 1863

' Write character in A register 1o the ZX
printer.,
312 Test the kevboard. Return with the carry

lag set 1f there 1s a key pressed.

\n example of the use of these routines can he found in the next
section.

A Spectrum VDU

" he main problem with using the Spectrum’s R5232 interface for
anvthing other than driving a printer is timing. As all the signals are
ontrolled by software, the handshake lines are absolutely essential
or reliable opcration. Unlike other machines, there really are times
vhen the Spectrum is not capable of receiving or transmitting a
‘haracter.

‘onsider. for example, the problem of turning the Spectrum into
: VDU, Logcally, the problem is guite simple. Any character
-eceived over the RS232 interface should be PRINTed on the screen,
ind any character tvped on the keyboard should be transmitted on
he RS232 interface. In ZX BASIC this gives:

10 FORMAT "t"ibaud

20 OFEN #4,"t'

30 LET A%=INKEY$ *4

40 IF A%="" THEN GOTO &0

50 FPRINT A%

50 LET A%=INKEY4$

73 IF Ag="" THEW GOTO 30

30 FRINT #41Aa%;

?0 GOTO 30
I'his program works quite well as long as the handshake lines arc in
1se. put even then it is a little sluggish. The same idea can be
mpiemented in assembler as;

iddress assembly code comments
‘anguage

23206 LOOP RST 8 207 RS232 Input

13297 29 29

3298 JR NCSKIP* 48.2 no input

154 An Expert Guide to the Spectrum

3300 RST B 207 screen output
23301 28 28

’3302 SKIP RST & 207 test keyboard
73303 32 32

3304 JR NC.LOOP 48,246 no key pressed
23306 RST 8B 207 read key

23307 27 27

“3308 RST 207 RS232 output
13309 30 30

3310 NKEY RST 8 207 test for key released
3311 32 32

23312 JR:CNKEY 56252

3314 IR LOOP 24,236

ul that 1s needed to use this is 4 BASIC loader:

L0 FORMAT "RU 1200

0 DATa 207 ,29,.48,2,707,28,7207,32,
48, 246,207 ,27 207, 30,207 ,32,56,20%
24,236

30 FOR A=2329é6 TO 23315

48 READ D

20 POKE &,D

50 MEXT A

A0LET aA=USRKR 23296

"he performance of this program still leaves something to be
icsired. The handling of the Spectrum’s keyboard using the
cevboard test and kevboard read routines works, but 1t disables the
iuto-repeat, and it is still possible to "get stuck’ in the read key
ounne. The solution s to write a complete custom ‘keyboard test
ind rcad routing’ that mimics the behaviour of INKEY$. A much
nore serious problem is the way the SPACE key is treated as
3REAK by the R8232 routines. Normally you have to press CAPS
HIFT and BREAK to stop a program, but during RS$232
weratons just the BREAK/SPACE key will do. This makes i
nrtuaily impossible to write any serious communication program,
uch as the VDU program given above, unless you can find a way to
senerate the character code for SPACE without pressing the
sPACE key!

“he Spectrum’s R5232 interface is excellent for driving printers
ina transferring programs between the Spectrum and other
-omputers, but other applications require a considerable amount of

ntertace 1 and Communication 155

ortware development. The problem of SPACE acting as BREAK
nay be cleared up in later issues of the new 8K ROM | cannot
ymagine that this is a feature rather than a bug!

The Sinclair Network

Vhereas the RS232 intertace is intended to provide communication
yetween two devices, the nenwork 15 intended to allow data transfer
setween any number of Spectrums. The method of communication
1sed by the network is the same serial format used by the R5232
nterface. but there are a number of additions to make n-way
-ommunication possible. The hardware characteristics are altered
0 allow two-way communication over a single pair of wires. Atany
me moment only one of the Spectrums connected will be
ransmitting data, and a number of the others will be receiving, but
he role of the data transmitter can be adopted by any machine.
he software has been extended to include two extra tacilities.
‘irstlv. there 1s a way for any Spectrum to “claim’ the network and
secome the transmitter. Secondly. with each ‘chunk’ of data
ransmitted therc 1s an address that identifies which of the other
nacnines the data 1s intended for. These twosoltware [eatures forma
;ort ol ‘rule book' for Spectrums trying to use the net inthejargon
hev form the conumunications protocol. The Sinclair network's
ommunications protocol is not as sophisticated as that used by
ther nets. such as Ethernet, but it is suitable for many ‘group’
-amputer applications such as education and program development.

“"he BASIC net commands

he network extensions to ZX BASIC follow the usual lines of the
nannel and stream extensions to allow for the Microdrives and the
18232 interface. Of the two, the RS232 commands are closer to the
1wtwork commands. The network channelisidentified by “N™ or“n”
ina also has to identify the station that communication is to be with.
"0 make this identilication possible, each Spectrum connecled 1o
he net has to be assigned a ‘station number’ using

‘ORMAT *n”; statnum

yvnere ‘statnum’ is a number between | and 63. When any Spectrum
s first switched on 1t 1s initialised to be station 1, so 1t s important

156 An Expert Guide to the Spectrum

hat everyone using the net has agreed to use a unique station
wmoper and uses FORMATT to enforce it. In fact'statnum’ can be 0,
wut this has a verv special use that will be described later. The station
wumber is stored in the new system variable NTSTAT (23749), so
‘ORMAT “n™:statnum is equivalent to POKE 23749, statnum. To
ind the station number in use:

PRINT PEEK(23749)

"o OPEN a channel to send or recerve data to station ‘num’ use;
JPEN #5.“n”;num

‘ollowing this OPEN, the command PRINT # can be used to send
iata and INPUT # and INKEYS$ # can be used to receive data.
votice that the OPEN command must be thought of as creating a
:ommunications link between the Spectrum that uses the command
ana the station that 1s referred to in the command.

I'here is one complication in using the net to send and receive
iata: the other station must be aware it is being involved in a
‘ommunications link with another machine. If you OPEN a net
hannel to, say, station 13 and station 13 isn’t interested, doesn’t
X181 or 1s doing something else, your Spectrum will wait, possibly
orcver (or until the BREAK key is pressed), trying to receive data or
ransmit data to the missing station. In other words, data
‘ransmission on the net uses full handshaking to make sure that
vhen data is sent it is successfully received. This need for one station
o know what another station 1s doing suggests that Spectrum
1etworks are best confined to a single room! However, it is possible
(0 1tmagine additional machine code software that would add
nessage switching and other sophisticated facilitics found on other
ierworks.

"he excention to the full handshaking protocolis the INKEYS #
-ommand. This will return a null string if there is no data being
ransmitted from the station to which the stream refers, This could
e used to scan through all the stations on the net to see if any of
hem are waiting, trying to send data to your station. Otherwise
NKEYS$ # works in the usual wav and returns the next single
‘haracter sent.

1w well as handshaking, another important characteristic of the
network channels is that they are all buffered. As with the
Micredrive channel, this buffer 1s part of the channel descriptor{see
later) but it 15 only 256 bytes. The buffering action has the same sort
i1 effect on the network channels that it does on the Microdrive

‘nterface 1 and Communication 157

:nannels, That is. vou can write 256 characters to a network channel
selore anvthing is sent to the receiving station, and you can read 256
wies before the transmitting station has to transmit another buffer
of data. Also. partially filled buifers are only sent as the result of a
'LOSE# command.

n addition 1o the channel and stream commands, the network
:an aiso be used to exchange 7ZX BASIC programs. The command

CAVE* “n"num

v1il send a program to station ‘num’ which in turn would use the
‘ommand

OAD* *n":org

o recetve it, where ‘org’ 1s the number of the station sending the
program. Once again, the communication is with full handshaking,
ina both the receiving and transmitting stations will wait until their
-ounterpart 1s ready. You can also use MERGE* and VERIFY* in
he same way.

Station O and broadcasting

"he network commands described so far enable data and programs
o be exchanged between any two stations. However, it is often
iecessary to transter the same program from one Spectrum to a
wmoer ol others, This can be achieved using station number 0, the
yoadeast station, Data transmitted to station 0 will be transmitted
it once, without handshaking, and any number of stations may
-eceive It. For example, to broadcast a program all the receiving
ations should first enter

OAD#*"n™0

Thev will then wait for the transmitting station to enter
AYE* “n™:0

ina send the program currently in its memory. Notice that it is
mportant for all the receiving stations to have entered LOAD*
setore the transmitting station sends the program.

?rinciples of operation

"he network uses a two-wire connection: a signal line carrying

198 An Expert Guide to the Spectrum

sulses varying between 0 and 5V, and a ground return line. The most

tifficult part of the network’s operation 1s making sure that only one
spectrum is transmitling data at any one time. If two machines do
ransmit at the same time the high state (5V) has precedence over the
low (0V) state. In other words, it one machine is trying to drive the
1et high {1.e. 5V) and one 1s trying to drive it low (1.e. 0V) the net will
idopt the high state. However, this condition, known as net
‘orrentiorn, has to be avoided by the use of the net protocol. Beforea
nacnine transmits data it has to gain control of the net and so stop
iny other machine using it.

Vhen a station wants to send data it first monitors the state of the
et long enough to detect data pulses 1if the net 1s currently 1n the
nmiddle of transmitting a block of data. Il no pulses are detected, the
tation transmits a singie byte containing the station number. As it
ransmits each pulse, 1t monitors the net to make sure the pulses are
is 1t intended. If it finds a discrepancy - if, for instance, it has sent a
ow pulse and the net 1s in a high state - this can only mean that
inother station is trying to gain control of the net at the same time.
¥hen this happens the station that detects the crror stops
ransmitting and starts the process of trying to claim the net all over
igain.

Ynce the net 1s claimed, a header is sent which contains the
wumpoer of the station the data 1s intended for and the number of the
station that wants to send the data. The bvte that was sent to gain
-ontrol of the net is detected by all the stations trying to read data
rom the net. and they all examine the header. Any station that finds
hat the header matches its station number, and comes from a
station from which 1t expects data, will then send an acknowledge
svte (set to 1), I this is received by the transmitting station a data
slock 1s sent, and the receiving station reads 1t in. If the
acknowledgement byte 15 not received, the transmitting station
epeats the whole operation, 1ncluding claiming the net. The only
ime that this protocol can go wrongis if two stations try to claim the
1e1 at the same time. In this case the station with the lowest station
jumber will be the first to detect the error and stop transmitting. The
yther station will then continue sending its claiming byte and
omplete its data transmission. Using this protocol a number of
nachines can be sending data over the net, cach one waiting its turn
o claim the net and transmit its data block.

nterface 1 and Commurucation 159
“he network channel descriptor

“he network introduces vet another channel descriptor to ZX
JASIC. Its format is:

Dyte name comments
) = address & the crror handler
) — address 8 the crror handler
— “N” the channel identifier
= address of output routine
= address of input routine
) = 276 length of the channel descriptor

he header block

1 NCIRIS the destination station number
2 NCSELF the station number at the time the
:hannel was OPENed

13 NCNUM data block number

5 NCTYPE tvpe of data block (0=data I=EQF)
6 NCOBL number of data bytes in block
'7 NCDCS data checksum

¥ NCHCS the header checksum

reneral infomation

9 NCCUR the position of the last character
aken from buffer
3 NCIBL the number of bytes in the input buffer

1ata block

1 NCB 255 byvte data buffer

“he tormat of the channel descriptor is straightforward, and
:nould be compared to the channel deseriptions for the Microdrives
ind the RS232 interface. Notice that NCSELT contains the station
wmber at the time of OPENing. I'his means that it is quite possible
0 have a number of net channels OPEN, each with a different
tation identifier.

160 An Expert Guide to the Spectrum

The net from assembler

here are a number of machine code routines in the new 8K ROM
hat can be used by the assembly language programmer. Thecalling
nrocedure (s the same as for the Microdrives and the R8232
nterface. that is.

ST R
‘ode

vhere “code’” can be any of:

ode operation

'5 OPEN a tcmporary net channel. The system
;arlable D_STR1 should contain the destination
qtation number and NTSTAT {(23749) the current
tation number,

b CLOSE a network channel. The IX register should
rontain the address of the channel descriptor.

17 READ a net record. The [X register should
:ontain the address of the channel descriptor.

18 Write a net record. The IX register should contain

he address of the channel descriptor. A=0 will
vrite data. A= will send an end of file record.

“ote that in the above descriptions a nct rccord is a complete
ietwork transaction. including the initial control byte, header and
iata block. The ‘read a net record’ routine should return with the
carry Tlag set it no record 1s received ina reasonable amount of time.
lowever, there seems to be a bug that corrupts the carry flag and
nakes the routine almost unusable, This may be corrected in later
erstons of the new 8K ROM.,

Service Spectrums

Ine of the desirable features of a network is the sharing of
peripnerals. Obviously if the same program is to be loaded into all
he machines connected to a net. then only one machine needs to
1ave Microdrives of its own. In the same way, it would be useful to
se able to share a printer between all the machines on the net. This

Interface 1 and Communication 1671

‘an most casilv be achieved by designating one machine as a printer
ma Microdrive server. This machine simply runs a program that
iccepts data from the network and routes it to the appropriate
seripheral. There are many ways of implementing a server program
one can be found in the interface 1 manual), but none of the
nethods that 1 have seen are entirely satisfactorv. However, 1t is
mportant to realise that to share peripherals between a number of
Spectrums a machine must be set aside to run the server program,
ina this reduces the number of available machines by one.

Chapter Twelve
Advanced Programming
A~pplications

“his final chapter presents a collection of seli-contained applica-
1wons. Most of them use information from the earlier chapters. but
;ome new matenal is also introduced. Advanced programming can
ake one of two forms. The first 18 concerned with writing good.
lear. easv-to-use and bug-free programs. The second is that
iescribed in this chapter, and is concerned with using the facilities of
the machine 1n novel ways. However, this sort of advanced
programming assumes you have mastered the art of writing simple
yrograms that have a clear structure, operate in a user-friendly
ashion. and contain a minimum of bugs. Being clever with a
nacnine is no reason for abandoning good programming style!

Bvte arrays

;ometimes the need to store a large array of numbers with a limited
ange makes the direct use of a4 BASIC numeric array very
netficient. Each element of the array uses {ive bvtes, but if the
1umbers lic within the range (0 to 255 then theoretically each element
iced only occupy a single byte. In practice 1t 18 quite easy to create
:necial byte arrays using nothing but PEEK and POKE. Our
equirements are for a statement that will ‘dimension’ the array by
-eserving N bytes for it, a function that will return the I[th ¢lement,
ind a function that will store the [th element. The dimensioning 1s
10t dilficult, as the CLEAR command can be used to reserve any
wmber of bytes for special use. However, for the subroutine 1o work
vithout modification in a 16K or 48K Spectrum it must
wutomatically find the highest memory location in use. This can be
1one by PEEKing the system variable RAMTOP at 23730. Thus the
‘unction

JEF FNA(IN)=PEEK 23730+256*PEEK 23731-N

\dvanced Programming Applications 163

eturns the address N bvtes lower down than the highest memory
ocation currently in use, and the statement

CLEAR FNd(N)

¥11l reserve N memory locations lor the byte array. The functions to
sore and retrieve data are

JEF FNs(1)=PEEK 237304 256¥PEEK(23731}—1
JEF FNr (I3=PEEK(ENs(I})

"he statement
'OKE FNs (I),D

viil store the data D in array element [and
ET D=FNr (1)

viil retrieve the data stored in element I and store it in D,
‘or an exampole of the use of these ideas, the following program
1ores 256 numbers in a byte array:

20 CLEAR FNd(Z56)
310 FOR I=0 TO 255
40 FOKE FNs(I),I

30 NEZT X
"0 FRINT FNr(I)
J0 MEXT I

Jsing a byte array enly takes .25K; a standard array would need
'.25K to store the same data.

“he same technigue can be used 1o store numbers greater than 255
v using more than one memory location per element.

Passing parameters to USR functions

“he advantage of machine code routines implemented via USR
unctions has been proven many times in carlier chapters. However,
nost of the examples have carried out some action without
iitempting to return a value in the manner of a normal function. In
act USR functions return the 16-bit number in the BC register pair.
‘or example, the program

1> BC 42
RET

64 An Expert Guide to the Spectrum

viil return the value of 42 if called as a USR function. What limits
he usefulness of machine code USR functions is the difficulty of
passing parameters to the routinegs. One method that has beenused a
wmber of times in earhier chapters is to use fixed memory locations
1$ posi boxes. A post box 1s used to pass data to machine code user
ounnes bv POKEing it into the locations before calling the routine
vith USR. This works, bul it isn’t very (lexible and doesn’t fit in with
he way other functions work.
here is a wav of writing machine code routines so that they
weept standard ZX BASIC parameters. The method relies on
yuilding the USR call into a user-defined function with the required
aumber of parameters. For example. if vou want a machine code
-ounne that will add two 16-bit positive numbers together vou could
iefine a function

JEF FNa(x,y)J=USR 23296

issuming that the machine code is stored in the ZX printer buffer.
i he only problem that remains is how the USR function is to gamn
iccess to the values of the parameters *X and “y’. The solution lies in
he system variable DEFADD (23563), which contains the address
»f the first parameter ol a user-delined function while the function 1s
»eing evaluated. Thus, in the program

10 DEF FNa(x,4)=USR 23296
20 FRINT FNa(Z,3)
JEFADD will hold the address of the "X’ in line [0 when the
unction at ling 20 is executed. This means that the USR routine can
1se PEFADD to find the memory location that holds the *x” in line
0. You may be wondering why the location of the parameter name
1sed in a functionis of any use in findingits value. The answer is that
vhen a user-defined function is being evaluated by ZX BASIC, cach
)1 the actual parameters used are themselves evaluated and then
:tored 1n five bvtes following each parameter name in the function
iefinition. This means that each of the parameters is evaluated in
e 20, giving the result 2 for x and 3 fory. (Of course the evaluation
s oiten much more complicated, involving [ull arithmetic
xpressions and other functions.) Then the result 2 is stored in the
1ve bvtes following the letter x in hine 10, and the result 3 is stored in
the five bvtes following the letter v inline 10. Each of these five bytes
s nreceded by a byte containing 14, the control code indicating that
i+ number follows. This stops the parameter values appearing in
yrogram listings. Thus at the time the machine code USR routine is

ldvanced Programming Applications 165

-atled, the data stored In line 10 is:

Ivie
011 F AR sl Lo W e . B | N B SR e

E 4 | live bvie constant
|

JEFADD

y live byte constant

3v using the value in DEFADD the USR routine can easily pick up
he values of the parameters.

vthough it 18 possible to write routines that process full five-byte
loating point numbers, 11 18 much casier if parameter values are
cestricted to 16-bit integers. A 16-bit integer value is stored in a
:pecial format using the second. third and fourth bytes, In fact, if
iy positive integers are used the 16-bit value can be found in the
hird and fourth hvte of the five hytes

“he routine to add two l6-bit positive numbers 18 now easy to
write:

iadress assembly code comment
'anguage
3296 LD I[X.{23563) 221.42,11,92 load IX with the
iadress of Ist parameter
"3300 LDA A (IX+4) 221.1264 load A with Ist byvte
i1 Ist paramctcer

3303 ADD AL (IX+12) 221,134,12 add Ist byte of 2nd
parameter to A
3306 LD CA 79 store result in C

3307 LD A, (I1X+5) 221.126,5 load A with the 2nd byte
i1 the 1st paramcter
3310 ADC A(1X+13) 221.142.13 add 2nd byte of 2nd

sarameter
"33[3 LD BA 71 store result
>3314 RET 201 return to BASIC

"he following ZX BASIC program loads the routine and gives an
:xamnle of its use;
0 DATE 221,42,11,92.221,126,4,821:.104,12,

(9221 :126,:5,221,142:13,71,201

166 An Expert Guide to the Spectrum

20 FOR A=23296 TO 23314
30 KEAD D

49 FOKE A,D

50 NEXT &

40 DEF FMa(,w)=USR 237964

70 INFUT A,E

B0 FRINT FHNs(a,bd)

20 GOTO Y0
t vou enter integer values in response to line 70 yvou will tind that
heir sum is PRINTed by line 80. You might like to experiment with
1sing FNa in more complicated expressions. For example, change
ine 80 to

10 FEINT FNad(A,FNa(a,A2)

o add A to A+A. The point is that this method of passing
parameters to a machine code routine results in a function that can
se mixed with other functions, and uscd in cxactly the same way that
hev can. Of course. adding two 16-bit numbers together 1s not & very
isetul operation for a machine code function, but in the next section
he same tdea will be used to add the standard logical functions to
"X BASIC.

3it manipulation - AND, OR and NOT

Jne of the common features of programs that use a machine's
wardware directly is Air manipudation. The reason for this is that the
tate of a particular bit or group of bits often reflects or controls the
-ondition of some hardware. Another reason for wanting to
xamine and change bits, or groups of bits, is the use of different
sarts ot a byte to hold different pieces of information. Forexample,
in attribute bvte uses b7 for flashing on/ otf, b6 lor bright on/ off,
ing b5 to b3 and b2 to b0 for paper and ink colours respectively.

n other versions of BASIC, bit manipulation is performed using
he logical operators AND, OR and NOT. but in ZX BASIC these
aperators behave differently. In normal use in ZX BASIC these
wperators work with the values O and |, representing false and true
espectively. For example. the result of x AND yas 11l both x and ¥
ire 1. and 0 if either of them 1s 0. This corresponds to the usual
‘nelish interpretation of AND that *x and v’ is truc only if both x is
rue ana v 1s true. However, ZX BASIC interprets any non-zero

Advanced Programming Applications 167

anle as true, and this gives rise to the following results when x and v
ire other then 0 or [:

:aNDy = xif y is non-zero
Jifyis O

: OR v = 11if ¥ is non-zero
xifyis 0

JOT x = 01if x 1s non-zero

i x s zero

hese results are useful for writing conditional expressions as
1eseribed in Chapter 13 of the Spectrum manual, but they are not
untable for bit manipulation.

yther versions of BASIC implement AND, OR and NOT with
sirwise operations that are much more useful in bit manipulation.
‘or example, the result ol a bitwisc AND operation is arrived at by
iN[Ying the corresponding bits in each of its operands: b0 of the
‘esult 1s arrived at bv ANDing b0 of the first cperand with b0 of the
;econd, and so on, Thus the result of a bitwise AND of 7 and 1218

(000111
2 00001100
~AND 12 = 00000100

1 4 1n decimal. The Spectrum’s AND operation gives the result 7.

“he importance of bitwise operations for bit manipulation is that
Jou cdn set any bit or group of bits to zero by ANDing them with a
nask value, and you can set any bit or group of bits to one by ORing
hem with a mask value. To be precise:

1N To set any bits to zero, construct a mask value consisting of
MICS 1N cvery bit position apart from the bit positions that you
vant to sct to zero. |'his mask should then be bitwise ANDed
vith the value that contains the bits that are to be set to zero.

2) To set any bits to one, construct a mask value consisting of
eros 1n every oit position apart {from the bit positions that you
vant to set to one. 1'his mask should then be bitwise ORed with
he value that contains the bits that are to be set to one.

‘or example, to set b7 to b4 to zero the byte would have to be bitwise
vNDed with

37 b6 b5 b4 b3 b2 bl bl
SR G S v R D RS

168 An Expert Gurde to the Spectrur

.e. i51n decimal. To set b7 and b6 to one the byte would have to be
mitwise ORed with

b7 b6 b5 b4 b3 b2 bl b0
e O el

€. 192 in decimal.

M course, the trouble with these methods 1s that ZX BASIC
ioesn’t have bitwise AND. OR and NOT operators. This can easily
ne remedied using the technique described 1n the previous section for
parameter passing to USR routines, The following assembly
.anguage routine will perform the bitwise AND between two 16-bit
ntegers:

iadress assembly code comment
'anguage
3296 LD IX.(23563) 221,42,11,92 get parameter address
3300 LD A(1X+4) 221,126,4 ist byte lst parameter
3303 AND (IX+12) 221,166,12 AND with 1st byte of 2nd paramete
23306 LD C.A 79 store result
23307 LD A, (IX+5) 221,126,5 2nd byte 1st parameter
3310 AND (IX+13) 221,166,13 AND wjth 2nd byte of 2nd paramete
3313 LD BA H store result
3314 RET 201 return to BASIC

{ this AND routine is compared with the 16-bit addition routine
riven eariier, vou will see that the only difference is that the ADD
nstructions have been changed to AND. In the same way, a bitwise
)R routine can be produced by changing the two AND instructions
L0

OR (IX+12) 221,182,12
ind
JR (IX+13) 221,182,13

I'o complete the sct, a single parameter 16-bit NOT routine is
wrovided in the following way:

wddress assembly language code comment

73296 LD IX. (23563} 22142,11,92 get parameter address
23300 LD A, {(IX+4) 221,126,4 load Ist byte

Advanced Programming Applications 169

3303 CIL 47 complement (NOT) A
3304 LD CA 79 store result

3305 LIy A €1%5) 221 1265 toad 2nd byte

3308 CPL 47 complement (NOT} A
3309 LD B.A 2] store result

12310 RET 201 return to BASIC

vlthough these three routines have been described as if they were
rach intended to be loaded at the start of the printer buffer, they are
n 1act position independent, and can be loaded anywhere in
nemory. 1 he fellowing BASIC program loads the machine code for
itll three routines inte the printer buffer, and defines the three
‘unctions:

F“Nafx.y) which performs the bitwise AND of x and y
‘Nolx,v) which performs the bitwise OR of x and v and
‘Nnix) which performs the bitwise NOT ol x

' 0 DF‘!Tﬁ 2ol edd 292,228,106, 8,22Y:1066,
z‘”?’pr'b;-jpjxcp»-‘lpt.v?.ly}t"t'la:-j 1”.’1;‘0!
20 [Jrl]ﬂ el AL s L o W39 @212 1803 8,221 5182
:{#?‘?}E&?j3:1-4!&»‘9:_}:?]3-1“5}01 1;:"191131
0 DAETH :"?j:-f'?j.laei;s?és .i*'.lx.ff"' Il.’ ;.'{.?)
P2l Y28 58,8 71,20

40 FOR A4=23294 TGO 22248
30 READ D

20 FPOREE A,D

0OMEXT A

LO0 DEF FMa(X,Y)=USR 232964
110 DEF F*Nu:}(]*i,‘f)"'[l':”l't £3315
120 DEF FMNn(X)=USR 233234

130 THFUT A,
CA40 FRINT FRadh, B FNo(ALEY ,FNr(A)
LS00 GOTO 130

\s an example of how the AND, OR and NOT functions can be
15ea to simolifv things, consider the problem of separating out the
nformation supplied by the AI'TR function. In Chapter 6 this
sroblem was solved by bit manipulation techniques based on
nulitiplying and dividing by powers of two. Multiplving by two is
‘auivalent to shifting the pattern ol bits that represents a value one

170 An Exvert Guide to the Spectrum

niace to the left, and adding a zero to the right. This is equivalent to
vnat happens to the pattern of digits when multiplied by [{.
amilarly, dividing by 2 and taking the INTeger part is equivalent to
:nifting the bit pattern to the right and losing the old value of b0.
Jsing these shift operations it is possible to isolate groups of bits
vithin a bvte, and it is even possible to set individual bits to O and 1,
wut it s usually very involved. Using the bitwise logical functions
nakes the 1solation of parts of a byte very easy. For example, to
solate the ink colour {(b2,bl,b0) from ATTR is now simple:

nk=FNa(BIN 111, ATTR(line.col))
To isolate the naper colour (5,b4,b3) is just as simple:
»aper=IN l{FNa(BIN |11000,ATTR(line.col})/ &)
1nallv. bright and flash are given by
rright=INT{FNa{BIN 1000000,ATTR(linc,col}}/ 64)
ind
lash=IN1{FNa(BIN 10000000, ATTR(line.col)}/ |28

lIser-defined channels and Interface 1

"he subiect of adding user-defined channels to the basic Spectrum
1as alreadv been covered in Chapter 5. However, the addition of
nterface | and the new KK ROM introduces an extended format for
iaditional channel descrintors. With Interface | connected, the
‘matlest channe!l desceriptor corresponds tothe | bytes that describe
in R5232 channel. Of course. there is nothing wrong with changing
he address ofthe /O handler in the channel descriptor, and the first
:xampic given in the section Creating your own channels in Chapter
- will work with Interface | connected. However. if you are going to
reate an entire channel descriptor, it is better to make it fit in with
he extended formats introduced by the 8K ROM.

“he channel descrintor for your new channel should have the
ollowing format:

vte

) address of output routine
address of input routine

I one letter channel name

\dvanced Programming Applications 171

40 address of 8K ROM error routine
40 address of 8K ROM error routine
11 length of channel descriptor

he only difference between this and the RS232 channel descriptor
s the use of the first four bytes to hold the addresses of the 1/0
iandlers, and bytes 5 1o 7 to hold the address of the error handlerin
he 8K ROM. The reason for this is that any 1/0 handlers that you
vriie are going to be stored in RAM and not in the new' 8K ROM.
ypart from this change in format, the channe! descriptoralso has
o bestored in the channels area of memaory rather than in the printer
»uffer. as in Chapter 5. To accomplish this, space of | | bytes must be
nadae in the channels area using the 16K ROM routine MAKESP
5717). This will produce an area of RAM for any purpose by
:nifting all of the used arcas of RAM up by the desired amount, and
-orrectung all the system variables that are affected by this change.
“he amount of space to be created is passed in the BC register pair,
ina the address of the first location of the [ree area 1s passed in the
HL register pair. Thus

D BC. 100
.D HL,23700
ALL ST

v1il create a free area 100 bvtes long starting at 23700. When a new
-nannel descriptor 1s added to the channels area, the extra space
eauired 1s positioned at the end of all the existing channel
iescriptors. Thus the area for a user-defined channel should be
reated starting at one less than the address stored in the system
:ananle PROG. The following routine will create the required 11
wvtes of space and insert a new channel descriptor:

iadress assembly code comment
'anguage

nake [bytes of room

3296 LD HL, (23635) 42,83.92 23635 1s PROG

3200 DEC HL 43 HIL=end of chan. area
13300 PUSH HL 229 save HL

3301 LD BC. 1.11.0 amount of space needed

"1304 CALL 53717 205.85,22 make roorm

172 An Expert Guide to the Spectrum

nove the channel descriptor
nto the channels area

73307 1D HL.2333R 33.42.9] move the channel
23310 POP DE 209 descrintor given
3311 PUSH DE 213 at the end of this
23312 LD BC.11 1.11,0 routine into the
’3315 LDIR 237,176 Il bytes of free space

alculate offset for

tream table

23317 POP HL 225 calculate ‘offsct’
23318 LD BC.(23631) 237.75.79,92 value for
13322 AND A 167 stream table
3323 SRC HI..BC 237.66
13325 INC HL a5

tore 1n stream table

?3326 LD (23582),HL 34,30,92
3329 RET 201

store il'l stream 4's
entry

wiput driver

3330 OUT LD BC,245 1,254,0 output routine

3333 OUT (C)LA 237.121
23335 RET 201
nput driver
23336 IN RSTS8 207 input routine
23337 DEFB 18 18 invalid device error

‘nannel descriptor

3338 DEFB 34 34 address of OUT routing
3339 DEFB 91 9]

33400 DEFEB 40 40 address of IN routine
3341 DLCFB 91 91

3342 DEFB “E™ 69 channel identifier

3343 DEFB 40 40 error handler

3344 DEFB 0 0

3345 DEFB 40 40 error handler

73346 DEFB 0 0

73347 DEFB 11 [l length of channel

3348 DEFB 0 0

Advanced Programming Applications 173

"he output and input routines that the channel descriptor uses are
he same as used in the examples in Chapter 5. and simply send data
(o the border port. Although this routine will OPEN stream 4 by
tefault. this can be changed by storing the address of a different
:tream table entry in locations 23327 and 23328.

he ZX BASIC program given below loads the machine code
routine and provides an example of its use,

10 DATA 42,83,92, 43,”"? 1,11,0,205,8%,
20 DATA 33,42.91,209, 11 lgli;U+f3’,1?
30 DATA 225,237,75,79 2 167,237 ,66,35
40 DATA iﬂfﬁﬁ 22,201

o0 DATA 1,254,0,237,121,201

H40 DATA 207,18

710 [)ﬁr(‘\i ’3“‘1,?1,;4@,-.9’] f:'uj- h.}-aﬂ 1’..!,: p]j ::—ﬂ
80 FOR A=23296 TO 23348

?0 READ D
100 FPOKE A,D
110 NEXT &

120 LET S=45CGASUE 1000
130 FRINT #4103

140 FPRINT #4373

_._uﬂ GOTO 130

1000 LET A=23574+2x8

1010 FOKE 23327, ﬁ----Il‘«!"(ﬁ/"""sm)* Sé
1020 POKE 23328,INT(A/254

1030 LET A=USR 23296

1040 RETURN

gnes 10 to 110 form the usual machine code loader. Subroutine
(00 will OPEN stream S to the new channel descriptor, and lines
30 to 150 PRINT 0 and 7 to the border channel, so making it flash
slack and white. Notice that this method of adding a user-defined
-hannel will work both with and without Interface | connected.

Adding commands to ZX BASIC

¥ith Interface 1 attached, creating new ZX BASIC commands 1s
airly easv as long as vou are a good Z80 assembly language
srogrammer. | he key to adding vour own commands is the way that
rrors are nandled when Interface 1 is connected. When an error

L
J.? &'}

b

174 An Expert Guide to the Spectrum

accurs. a RST 8 command 1s used to call the standard error handler.
lowever, as alreadv described, the error call 1s intercepted by
interface | and the new 8K ROM 1s paged in. This examines the
1ature of the error and checks to see if the command that has caused
it can be correctly handled by it - that s, 1l it s one of the new
:ommands implemented by the 8K ROM. If it is one of its
-ommanas. the appropriate machine code routine is called, and then
-ontrol is returned to the standard 16K ROM. If the command is not
ecognised by the 8K ROM, control 1s returned to the [6K ROM at
he address given by the new system variable VECTOR (23735).
vormally this contains the address of a linal error handling routine,
Hut this address can be changed to transfer control to a user-supplied
ouune that makes a final attempt to recognise and implement
vnatever command has been rejected by both the 16K and the 8K
10OM.

hanging the address in VECTOR effectively intercepts the
iormai processing of faulty ZX BASIC and extended ZX BASIC
‘1atements. T'his imnlies that any command added to BASIC in this
vay must normally cause an error. For example vou could add
:ommanas such as

:;T
SN
CAUSE*

-ach of which causes an error because it 1s not recognised by either
ROM. This guarantees that its processing will be passed on to the
-outine that VECTOR ‘points to’.

n practice, adding commands is quite involved, and a good
cnowledge of the layout of the 16K ROM is essential. If vou are
roing to extend ZX BASIC then there is no way youcan avoid using
nany of its routines, However, when control i1s passed to vour
-outine via VECTOR, the new 8K ROM is still paged in. To call
outines 1n the [6K ROM vyou should use

RST 1&
JEFW address

vhere ‘address’ 1s the address of the 16K routine that you want to
use. All the registers are returned as the 16K ROM routine leaves
them. While the 8K ROM 1s paged in. all of the RST addresses are
different from what vou would expect with the 16K ROM in action.
I'he most important are:

\dvanced Programming Applications 175

AST 32 report an 8K ROM error,

he error code follows the RST 32
ST 40 report a 16K ROM error,

he error code 1s stored in ERRNO
AST 48 create new system variables

Qoutines to implement new commands always have the same
werall form:

1) a syntax checker

This checks to see if the new command has the correct form. I 1t
1asn’t, then an error should be reported by jumping to location
196, The syntax check should scan the line to its end and leave
"H_ADD pointing to the end of the line. The end of the
tatement should be tested for by calling subroutine 1463 inthe
iK ROM. If the syntax is only being checked, control will not
-eturn trom this subroutine, but if the program is being RUN
then control passes on to the second half of the routine,

2) a RUN time module

"his part of the routine actually does the work required to
mpiement the new command. When the RUN time module is
inished. it should return control to ZX BASIC by jumping to
473 in the 8K ROM.

“wo 16K ROM routines that are indispensible in writing new
:ommands are

iddress tunction

=

get current character in BASIC line in A register
32 get next character in BASIC line in the A register.
.uccessive calls to this routine will advance the
‘urrent character, so scanning the line

The ‘next character” routine will automatically skip over spaces and
-ontrol codes, so it should always return the next ‘useful’ character,

18 a simple example of adding a command, the following routine
mpiements the command

*AUSE *

vaich will halt processing until a key is pressed,

176 An Expert Guide to the Spectrum

iddress

13296
13297
13299
13301
13304
'3305
3307
3309
33312
3313
3315

331K
13319
23321
13323
23325
23328

assembly code comment
‘anguage
yntax check
RST 16 215 get command code
24 24.0
CP 242 254,242 PAUSE ?
JP NZ.ERR 194,240,1 error
RST 16 215 get next char.
32 32.0
CP 42 25442 map.
JP NZERR 194.240.1 error
RST 16 215 move 1o end of statement
32 320
CALL CKEND 205.183.5 Check for end of statement
un time
LOOPXORA 175 7ero A
IN A, (254) 219,254 scan kevboard
AND 31 230,31 keep only lower 3 bits
SUB 31 214,31 A=31 if no key pressed
JP Z.LOOP 202,2291 loop until key pressed
JP COMEND 195.193,5 return to 16K ROM

“he svntax check part of the routine tests for the keyword PAUSE,

ind then the character

ha Y

. As long as it finds them, control is passcd

o CKEND which only returns control to the routine if the BASIC
yrogram 15 being RUN. The RUN time part of the routine simply
oops until a key is pressed, and then returns via COMEND which
»ages in the 16K ROM and allows the BASIC program to continue.
Lhe following BASIC program leads the machine codeand POK Es
‘he new value to VECTOR.

1o

t0

i0
40
<0
40

DATA

215,24,0,254,242,194,240,

1,218,32,0,254,42,194,240,
1:2104i32,0:200,183,:5

e d

DATA
"3

FOR A=23296

READ D

FOKE &,D

MEXT @

TO

T92219,254,230,31,72
Z02,22:91,195,193,5
23330

4,31,

\dvanced Programming Applications 177

70 FOKE 2373%5,0
30 FOKE 23736,91

vter running this program the command PAUSE * will be accepted
is part of a program, and will cause the program to wait until a key is
pressed.
2outings to add other new BASIC commands take the same form
1 syntax checker and a RUN time module - but normally the RUN
ime module would be a lot more complicated than the ong given in
he example.

A stats program

"he last few examples have made a great deal of use of ZBO assembly
anguage. To illustrate the way that knowledge of the internal
vorkings of the Spectrum can prove uselul, even in apparently
traghtforward ZX BASIC programs, the following example
yresents a statistics program that will edit data, calculate statistics,
yot histograms and save and load data on tape.

“he tirst problem is how to store the data to be analysed. The most
yovious method is to usca one-dimensional numericarray. This can
sasiiv be SAVEd and LOADed, and allows as much data as can be
1wld in RAM to be analysed and edited rapidly. However, using an
irray 18 not without its problems. The {irst 18 that when an array is
_OADed using

OAD “filename” DATA D{)

he number of elements in the array is not immediately accessible.
Vhen data is ¢reated by the program. it 1s not difficult to keep track
1 the number of clements ina variable - N, say. The problem 13 how
o sct the value of N when an array 1s read in [rom tape. Onc answer
vould be to store N inone of the arrav elements before it was written
it but this 18 an unnecessary complication to the data storage
.cheme. Using the infermation about the format of array storage
aiven in Chapter 4 (see Fig. 4.1), 1t 1s possible to write a few lines of
X BASIC that will PEEK the dimension of the array. The question
s how to find the position in memory of the start of the array. One
vayv would be to write an assembly language routine that searched
he variables area for the array. but there is a much simpler way. The
svstem variable DES T (23629) holds the address of the destination
;artaole during an assignment. Thus if we want to find the address of

178 An Expert Guide to the Spectrum

.he first element of the arrav D, all that is necessary is

LET T=D(1)
.ET IX{1)=PEEK 23625+256*PEEK 23630

‘ollowing this

ET N=PEEK(D{1)-1}+256*PEEK(D(1))
ET D(D=T

viil store the dimension of the array in N and restore the value in
X1).

“he only other real problem is how to add data to an existing
irray, 1l the array holds N values, and the user wishes to add M
‘arues. then the array has to be extended to DIM D(N-+M) without
osing any of the onginal data. This could also be achieved using an
issemoly language routine, but once again ZX BASIC isenough. To
xtend thearray D to N+ M, first dimension an array DIM E(N}and
-opy all of the existing data from D to E. Then re-dimension D to
DIM DIN+M) and copy all the data back to D leaving M
‘lements free. ready for the new data, Finally re-dimension the
array £ to DIM L(1) to release the space it occupied. Not the fastest
nethod. but very simple!

'ow that these two problems have been solved the resulting stats

yrogram is:

10 REM satats proaram

500 CLS

ol PRINT TAE S3YS %2 8 ¢ 1 & t'9 o 8"
520 FRINT AT 46,0

530 PRINT "(1) Enmter rew data"

40 PRINT "(2) Generate random data"
ool PRINT “"(3) Edit data"

ab FRINT "(4) Save/load data"

270 FPRINT "“(5) Calculate Staticstics"
80 FRINT "(6) Flot histogram"

o970 FRINT “{7) Quit"

00 FRIMT AT 21.08"Type required number'
610 INFPUT sel

420 TF sel=1 THEN GOSUE 3000

230 IV sel=Z THEN GOSLUER 1000

540 IF sel=3 THEM GOSUE 4000

550 IF sel=4 THEN GOSLE J%00

560 IF sel=5 THEN GOSURE 5500

70 IF sel=46 THEN GOSUE &000

28 1l
490

1000
1010

020
Lgao
L0440
005G
LA

\dvanced Programming Applications 179

IF sel=7 THEM STOF
=OT0 S04

CLS

FRINMT "Random data®

FRIMT "How marg valoes'}

INFUT

FRIMNT

DIM i

FRINT AT 3,03YFractionzgl or integer
dats F/1"}

INFUT &%

IF a#%->"f" AND a%<>"i" THEN GOTO 10490
FRINT =%

LET +L=D

IF a%$="1i" THEN LET %=1

FRINT AT 4,0:"]lowest value "3
IMNFUT 1

FRINT 1

FRINT "highest value "3

IMFUT by

FRINT i

IF ©>1l THEN 60TO 1210

FRINT "highest<lowest!"

GOTO 1120

FOR di=1 T0O n

LET ed{id=REND X{ty=]1+t)+]

IF t=1 THEN LET dd{i)=INT d¢i)
FRINT "datea value "31ig" = "3d(i)
NEXT i

GOTO 8900

CLS

FRIMT "Save or load ozta o1

INFUT a%

TIF a$<>"1" AND a$<x"s" THEN GOTD 1500
IF a¢="1" THEN GOTO 14400

FRINT "Filename *

INFUT T4

SAVE ¢ DATA o(3

GOTO 8900

FRIMNT "Are you sure"’" wou want to joad
,.; o l E‘”

INFUT =%

IF as®="rm" THEN GCOTDO 8900

IF a%-x"w" THEN GOTCO 1600

180 An Expert Guide to the Spectrum

16440
16510
1660
146710
L6810
14690
1700
1710

2000
2010
2020
2030
20490
2050
20410
2070
2080
20910
2100
2110
2120
2130
21410

2500
2910
dad
2930
2540
2550
2860
2u7
2980

2000
30190
3020
3030
1640
3050
2040
3070
3080
3090

FRINT "Filename "

INFUT %

LOAD % DATA dd?

LET t=d(1)

LET d(l1)=FEEK Z22&29+256%PFEK
LET nm=FEEK (d(1)-1)+254AXFFEK

LET d(1}=t
FRETURN

LET =0

LET &=0

LET l=d(i)

LET h=1

FOR i=1 TO n
LET me=mtd(1?
IF 1>»d{i) THEN
IF hicd(i) THENMN
NEXT i

LET m=m/

FOR i=1 TO
LET s=s+(d(i)-m)%(d(i)~m)
NEXT i

LET a=s/¢(r-1)>

RETURN

L=

LET
LET h=d(i)

GLS

FRINT "ruamber of wvaloups= 'in
FRINT "mamimum= "ih

FRINT "mindmom= 31

FRINT "p e i ;h]
FRINT “"mearn= "im

(1 -
¢ 5

e

FRINT "variasnces
FRINT "standard
GOTO 8900

" ROR

CLS

FRINT "Datae inmput"

FRINT "how many values 7§
INFUT
FRINT n

DIM din?

FOR 1=1 T0 n

PRINT AT Z21,0;"value'"jis"
INFUT (i

FRIMNT Ci)d FRINT

-
cwd

£
~ L
=

o

(s}
11 4
4

]
——
L]

3100
3110
3120
40040
1010
4020
4030
4040
4050
40410
4071
40810
Ao
“10(
4110
4120
2130
4140

2150

1205
1210
4220
4730
4740

42510
4261
4270
42810

1290

1300
1210
4320
4430

1500
451)
4520
4530
454
455
4540

Advanced Programming Applications 181

NMEXT i
FRIMNMT "data input complete
GOTO 892040

CLS

FRINT TAE Si"Edit Data'

FRIMNT aT o,0

FRIMNT Y1) liet data"

FRINT "(2) alter data®

FRINT "(3) delete data"

FRINT "(4) add data"

FRINT "(5) return Lo mzin aeno"
FRIMT AT 21,0i"Type required pumber"
INFUT ed

IF ed=1 THEMN GOSLIE 4200
IF ad=2 THEN COSUE 4500
IF ed=3 THEM GOSUE 44600
IF ed=4 THEM GOSUE 4800
IF ed=5 THEN RETLRN
GOTO 4000

CcLa

FRINT "liat starting at 73
INFUT 1

FRINT 1

FRINT "list ending at (-] will list
to end)? Y3

INPFUT h

FRINT hi FRINT

IF h<0 THEN LET b=

IF 1>h THEN GOTO 4200

IF 1xn OR hen OR J1<1 OR h<l THEN
LOTD 4200

FOR i=]1 TO h

FRINT "data value “§it" = "3d(i)
NEXT i

GOTO 8900

ELS

FRINT "alter which valoe? "3
INFUT i

IF i<1 OR i>n THEN GOTQ 4500
FRIMT i

FRINT "courvent valoeg = " ; o 1)
FRINT "new valoue = ')

182 An Expert Guide to the Spectrum

4570 INPUT d(i)
4580 PRINT ddi)
4590 GOTO 8900

4600 CLS

1610 FRINT "delete starting from "}

4520 IMFUT 1

4630 FRINT 1

1640 PRINT "endinoe at ')

4650 INFUT K

16460 FRINT K

1670 IF K<l THEN GOTOG 4600

4680 IF h>n DR h<l OR 1>»n DR 1<1 THEN
OTH 44600

1690 PRINT

4700 PRINT "delete from "313" to "ih

4710 FRINT "is this ak 72"}

4720 INFUT =%

4730 FRINT a%

4740 IF a$(1)<>"w" THEN RETURN

47590 FOR i=h+i1 TO n

4760 LET ddl+i-h-1)=d{i)}

4770 NEXT 1

4780 LET r=n~h+l-1

1790 RETURN

4800 CLS

2810 FRINT "how many extra vaeluwes 2'3
4820 INFUT =

4830 FRINT m

4840 DIN edn)

4850 FRINT "mabking space?

4840 FOR i=1 TO

4070 LET edid=d(i?

1880 HMEXT 1

4890 FRINT "mearly ready”

4900 DIM dirtm)

910 FOR i=1 TO n

4920 LET dd(i)=edi)

4930 MEXT i

1940 FRIMT "ready"

4950 DIM ecl?

494580 FOR di=rtl TO nitm

4970 FRINT "dats valuwe "jij" = "3
4280 INFUT d(id

Advanced Programming Applications 183

4990 PRINT d(i)
G000 MNEXT 1

G010 LET r=rtm
2020 GOT0 8900

99500 CLS

9310 FRINT "calculating”®
5920 COSUEB 2000

5530 GOTO 2300

4000 CLS

A010 PRINT "how many bhins ? '3

5020 INFUT m

»030 FRINT m

5040 FRINT "mamimuom valoes "3

G030 INFUT i

5060 FRINT

H070 FRINT "minimom valuoue= '}

H08(0 INFUT 1

6090 FRINT 1

H100 IF K<l THEN GOTO &000

6110 LET a=(h-1)/m

4120 GOSUER 7000

2130 FOR i=1 TO m

H140 FPRINT AT 21,03 INT (I1xi00>/310037TAR &3
6150 IF h(idy=0 THEN GOTO &31%0

61460 FOR =1 TO h{i)/fx25

4170 PRINT CHE$ 1433

6180 NEXT 4

190 PRINT § FRINT

G200 LET 1=1+d

6710 NEXT i
67220 FRINT § FPRINT
220 GATO 89200

7000 DIM nim)

A010 FOR a=1 T0O n

D20 LET j={d{ili-1)/{h~-]2Km+]

78030 LET j=INT J

7040 IF j<1 OR jsm THEN CGOTO 7040
030 LET higd=n(j)+l

0460 MNEXT 1

7070 LET f=0

080 FOR i=1 TO #m

7090 IF f<h{i) THEN LET f=h{i)

184 An Expert Guide to the Spectrum

100 NEXT i
Z110 RETURM

A900 FRIMNT

3210 FRINT AT Z1,05"press any key to
ot i rse

8220 IF INKEY$="" THEN

3930 RETURN

GOTO 8910

I'his 1s the tongest program in this book, and as such it contains
nanv technigues and ideas that only become important when
wograms necame large! In particular, notice the use of the menus to
illow users to select the action that they want, and the extensive
NPUT checking that attempts to stop invalid data getting into the
yrogram and crashing it. The extensive use of subroutines should
nake the program easier to understand, extend and maintain. The
ollowing subroutine table should enable vou to find your wav
iround:

in¢ number description

00- 690 main menu
000 1270 generate random data
500-1710 SAVE and LOAD data
“000-2140 calculate statistics
500-2580 print results
006-3120 data input
1000- 4150 editing menu
1200 4330 list data
:500-4590 alter data
1600-4794 delete data
1800-5020 add data
500-6230 nlot histogram
0007110 construct {requency count

1900 8930 press any key to continue

“he modifications to allow this program to work with data stored
m Microdrives are simple, if you do not want to take advantage of
he increased storage they offer. The direct wav of changing the
yrogram 15 10 change the SAVE.. . DATA and LOAD... DATA
tatements into SAVE* . DATA and LOAD*, . DATA statements.
wpart from this, the only other change would be to the form of the
ilenames used. However. a better way of organising data on the

idvanced Programming Applications 185

Vicrodrives is to use PRINTT files. Instead of storing all of the data
n an arrav, a PRINT file could be used, and only a single item of
tata would be read in and processed al a time. This increases the
imount of data that can be processed to the capacity of the
Jicrodrive. rather than the amount of memory that is left over for
raniable storage. The cost of this scheme 1s time. Each time the data
s required the entire file has to be read, and operations such as
ippending new data are even more time-¢onsuming,

Using Interface 2

nterface 2 1s a very simple piece of hardware that allows standard
oysticks and ROM software cartridges to be used with the
spectrum. The most important thing about Interface 2 as far as the
yrograminer s concerned is that it introduces a standard for the use
f the kevboard in dvnamic games. The joysticks are connected as a
iunlicate’ set of top row keys, thus:

Yirection oystick 1 joystick 2
key key

eft b |

ight 7 2

Jown 8 3

Tp 9 4

re 1{} 3

wthough these kevs can be read using the standard INKEYS
unction. there is an advantage in using IN 61438 to read joystick |
ind [N 63486 to read joystick 2. The user-defined logic functions can
e used to test which keys are pressed. For examplc

300 LET A=IN 61438

510 IF FNa(a,BIN 1)=0 THEMN PRINT "fire";

520 IF FiNa(s,BIN 102=0 THEN FRINT “up'}

30 IF Fis{a,BIN 1002=0 THEN PRINT "down";
540 IF FMa(a,BIN 10003=0 THEN FRINT "right'}
590 IF FNa(za,BIN 10008)=0 THEN FRINT "left"}
560 FRINT

270 GOTO S0¢0

186 An Expert Guide to the Spectrum

viil PRINT the appropriate words when any key or group of keys is
aressca. Notice that this program has to be added to the definition of
he logic functions given earlier in this chapter.

Conclusion

“here is no end to ways in which a knowledge of the inner workings
ol the Spectrum can be put to good use. The most important advice |
‘an give Concerning your OWn programming projects is to take them
ericusivl It is all too easy to start a project without any clear
wpiectives, and give up when the going gets tough. If you start with
in accurate idea of what you want the software to do, and set the
pecifications high enough, overcoming the difficulties 1s a satisfying
nallenge, Don't give up try to isolate your problems and write
‘outines to investigate what is happening. A finished program that
10es what vou planned 18 a sufficient reward for any amount of
-1iort.

Appendix

“urther Reading

"here are a huee number of books and magazines published
-oncerning the Spectrum, and the range they present is bewildering.
I vou are looking for some further reading, you might find the
ollowing suggestions helpful.

t vou arc a self-taught BASIC programmer then The Specrrum
‘rogrammer by S. M. Gee (Granada, 1982) will help vou to clear up
iny gaps in your knowledge. It starts at a fairly elementary level but
erv quickly gets to the more interesting features of ZX BASIC,
rraphnics and sound. Even if vou are an accomplished programmer
‘ou wiil find something to learn from the early chapters about the
iatural structure of a BASIC program.

v more advanced book about good programming style 1s my own
“he Complete Progranimer: A guide 1o berter programming in
3ASIC, (Granada, 1983). This 1s not a book about the Spectrum in
rarucular but about BASIC in general, and more sophisticated
yrogramming techniques. In this sense 1t covers the machine-
ndependent side of advanced programming.

vt a shightly lower level than this book, but with many examples
flustrating fundamental programming ideas. 18 The Art of
‘rogramming the Spectrum by Mike James (Bernard Babani
Publishing, 1983).

The collection of games in The Spectrum Book of Games by Mike
‘ames, S.M. Gee and Kay Ewbank (Granada. 1982) also illustrates
nany ol the techniques described in this book. In parucular “Laser
wttack” uses functional characters, and ‘Fruit Machine® uses the
echnique of internal animation described in Chapter 7.

f vou are interested in developing Z80 assembly language
yrogramming then my own favourite 1s The Z80 Microcomputer
fandbook by William Barden (Sams. 1978) but it does include alot
T hardware information as well as software details. For an
ntroduction to Spectrum machine code sce Introducing Spectrum

188 An Expert Guide to the Spectrum

dachine Code by lan Sinclair (Granada, 1982). and if vou are
uready a préficient assembly language programmer then The
Complete Spectrum ROM Disassembly by Dr lan Logan and Dr
‘rank O’Hara (Melbourne House, 1983) is an essential companion.
t contains evervthing you could ever want to know about the 16K
OM. but vou often have to work quite hard to find it and
inaerstand it!

“nally 1t 1s worth mentioning that if you are interested in the
nore advanced software and hardware aspects of the Spectrum, and
omputing in general, then Efectronics and Computing Monthly
yrovides a welcome relief from the diet of games programs found in
:ome other magazines, and invariably has some stimulating
niormation relevant to Spectrum applications,

‘ndeXx

wading commands, 173

wadress, 1, 6

1d hoe channels, 136

iND. 166

ippend, 121

issemoly language, 138, 152, 160
vI'TR. B

ittnibute map, 79

JASIC formar.46
saud rates, 147, 149
nnary, 4

it manipulation, 166
bit manped, 73

it pattern, 4
sroadeasting, 157
wiffering, 1135, 156
s, b

wie arrays. 162

AT, 114, 120, 123
:nanne] record. 65, 132, 150, 159
‘hannels, 58, 114
‘naracter definition. 90
‘naracter tahles, X5
‘LEAR &, 12]

'LOSE. 60

LS f: 121

:onrol codes, B4
P28

‘TS, 144

iata, 3

1ata block. 109, 129
1ata files. 117, 124
1evice independence, 62
iisplay map, 78

TR, 144

na of file. 122

ERASE, 114, 123
errors, B3
eXpansion connector., 23

file organisation, 130
file specifiers, 112
floating point, 44
FOR, 54
ORMAT. 114, 128, 149, 155
free characters, 92
tunctional characters, 89

GOSUB, 52
GOTO, 50

handshaking, 144, 156
header block. 102, 129

IN, 17

NKEYS #, [17
INPUTS #, 117
Intertace 1, I}
fnterface 2, 185
internal animation, 9|

kevboard, 21
kevboard state variables, 34
kevword finder, 48

LIST, 64
LOAD routine. 103
QAD* 113

map lister, 136

mermory, 9

memory management, 37, 43
memaory map, 29

MLERGE®*, 103

viicrodrive, LI

Microdnve channel, 132

90 index

vicrodrive data format, 128
vlicrodrive mans, 131, 136
viicrodrive operation, 117
VIOVE, 114, 120

network. {55

etwork orotocol, 158
1etwork service. 160

new character sets. 90
wew system variables, [37
OT, 166

IN...GOTO, 51
JPEN. 60

R, 166
w17

saging, 127

:arallel atiributes, 73
WSsINE parameters, 163
PEEK. 1]

YOINT. R0

'OKE. 11

PRINT #. 117

RAM. 3.9

1AM boundary variables, 33
random access. 141

ecord/ sector hister. 134
‘cnumbear, 49

ewind, 140

L0OM. 3,9

AOM paging, 127

RS2312, 143

AVE routine, 103

SAVE* 113

screen scrolling, 95
SCREENS, R0

sectors, 129

ouna. (15

stack. 52

statistics program, 177
streams, 38, 63, 114
system state variables, 36
system variables, 29, 32

ape calalogue. 104
tape format. 100
tane svstem, 98

"TLA. 13, 18, 99, 105
aser-defined channels, 170
user-defined graphics, 86
user-difined sound, 107
USR functions, 163

varianle dump, 42

variable size characters, 94
-ariables format, 40

VDU program, 153
VERIFY*, 113

video display, 12, 74

video driver, 82

video oulput, 05

video system variables, 87

white noise, 107

AP, 108
ZX Printer, 108

HE SINCLAIR SPECTRUM OR CONNOFH

The continued success of the Sinclair Spectrum has been
pshenomenal. This book is a practical introduction to the
advanced features of the Spectrum covering both
hardware and software. It is aimed at the Spectrum user
who seeks a deeper understanding of the Spectrum and
its capabilities, starting with an inside view of the micro,
followed by a connoisseur’s guide to ZX BASIC and an
‘niroduction to the machine operating system. The ZX
video is covered in detail and chapters are devoted to the
‘ape system, the R$232 interface, the microdrive and
advanced programming techniques. Complete program
listings and projects are provided throughout for readers
‘o explore the more sophisticated capabilities of the
machine.

he Author
Mike James is the author of several very successful books
n programming and has been a regular contributor to
lectronics and Computing Monthly and other popular
nagazines.

Other books on the Spectrum

HE ZX SPECTRUM
ind how to get the most from it

lan Sinclair
) 00 383071 5

IHE SPECTRUM BOOK OF GAMES
. James, S. M. Gee and K. Ewbank
) 246 12047 9

HE SPECTRUM PROGRAMMER
i M Gee
) 246 12025 8

NTRODUCING SPECTRUM MACHINE CODE
an Sinclair
) 246 12082 7

SPECTRUM GRAPHICS AND SOUND
teve Money
) 00 383136 1

COLLINS

rimed ir Geeal Balan

)00 383134 5 £6.95 net

