
717iEL
ZX pectrum

11111:111Usi_XY
' RIMER

 (R) EirnIb
ZX Spectrum
micro-PROLOG Primer

K L Clark F G McCabe J A Ennals

First published in 1983
Sinclair Research Ltd
25 Willis Road Cambridge CBI 2AQ England

ISBN 0 85016 0163

© Copyright Logic Programming Associates Ltd

micro-PROLOG is a trade mark of LPA Ltd

All rights reserved. No part of the program, packaging or documentation may be
reproduced In any form. Unauthorised copying, hiring, lending or sale and
repurchase prohibited.

Production supervised by
Rodney Dale French's Mill Cambridge CB4 3NP

Printed in Great Britain by
Richard Clay (The Chaucer Press) Ltd,
Bungay, Suffolk

micro-PROLOG Primer

Contents

Preface

0. Introduction

0.1 Why program in micro-PROLOG
0.2 Chapter descriptions

Part I Basic concepts
K.L. Clark, J.R. Ennals & F.G. McCabe

1. Facts and queries
	 11

1.1 Developing a database of facts 	 11
1.2 Queries 	 27
1.3 Arithmetic relations 	 36
1.4 Evaluation of queries 	 43
1.5 Efficient queries 	 57

2. Rules 	 59

2.1 Turning queries into rules 	 59
2.2 How queries involving rules are evaluated 	 69
2.3 Recursive descriptions of relations 	 76

3. Lists
	 89

3.1 Lists as individuals 	 89

3.2 Getting at the members of a list of fixed length
3.3 Getting at the members of a list of unknown length
3.4 The length of a list
3.5 Answers sets as lists

Part II Logic programming using micro-PROLOG
K.L. Clark & F.G. McCabe

4. Complex conditiions in queries and rules

4.1 Negated conditions
4.2 The isall condition
4.3 The forall condition
4.4 The or condition
4.5 Expression conditions
4.6 querying the user using is-told
4.7 Comment conditions

5. List processing

5.1 The append relation
5.2 Rules that use append
5.3 Recursive description of the sort relation
5.4 List functions

6. Introduction to parsing

6.1 Parsing sentences expressed as lists of words
6.2 An alternative parsing proggram
6.3 General use of difference pairs

7. Some pragmatic considerations

7.1 Limiting a condition to a single solution
7.2 Controlling the backtracking with a / condition
7.3 Query stack and space saving
7.4 Tail recursive definitions
7.5 Use of modules

8. Metalogical programming

8.1 Relation names and argument lists as variables
8.2 Metaprograms that check conditions of use

Contents

91
95

103
113

119

121

121
128
135
139
141
153
160

163

163
168
173
178

181

181
187
191

194

195
198
202
204
209

215

215
220

Contents

8.3 Programs that manipulate other programs 	 223
8.4 Unary relations as commands 	 231

Part III Core micro-PROLOG 	 245
K.L. Clark & F.G. McCabe

9. The standard syntax of micro-PROLOG 	 247

9.1 Atoms and clauses 	 248
9.2 Programming in the standard syntax 	 251
9.3 Parsing sentences into clauses 	 257
9.4 Meta-variables in standard syntax programs 	 260
9.5 The clause accessing primitive CL 	 269

Answers to exercises 	 273

Preface

This book is a self instruction tutorial on logic
programming using Spectrum micro-PROLOG for someone
unfamiliar with PROLOG logic programming. The concepts of
logic programming and the corresponding features of micro-
PROLOG are introduced step by step through the development of
a series of example programs.

Exercises, with answers given at the back of this book, re-
inforce and elaborate on the example programs. Ideally, the
examples and exercises should be followed using a computer, but
this is not essential.

micro-PROLOG is currently also available for Z80 machines
under CP/M80, 8088/86 machines under MSDOS, the Acorn BBC
micro and other computers which have the UNIX operating
system.

Since micro-PROLOG is one of the PROLOG family of
logic programming languages (PROLOG stands for PROgramming
in LOGic), each of which is a derivative of the version of the
language as first implemented in 1972/73 in Marseilles, the book
also serves as an introduction to logic programming using any
version of PROLOG. The differences between micro-PROLOG
and the other PROLOGs are mostly in the syntax of programs
and in the allowed forms of query.

Structure of the book

The book is divided into three parts. Part I introduces the
basic concepts of logic programming emphasising the use of logic
and of micro-PROLOG as a data description and data query
language. Part II deals with more advanced concepts and the
corresponding features of micro-PROLOG. The emphasis is more

Preface

on the list processing uses of logic. Part III introduces the
standard syntax of micro-PROLOG, the syntax into which the
programs of Parts I and II are compiled. It also describes features
of the language that enable other logic programming systems to
be implemented on top of micro-PROLOG.

The Chapters in each section are more fully described in the
introductory Chapter 0 that precedes Part I. This Chapter also
gives a flavour of the style of programming that is logic
programming.

System note - using this book in conjunction with a computer - if you have
access to a Spectrum with micro-PROLOG on it, you may want to
follow the examples and exercises in this book on the computer. To
allow this we have included a number of System notes (such as this
one) on using micro-PROLOG on a real computer. Usually System
notes refer to non-logic programming activities such as interrupting
program execution.

If a computer is used you may sometimes need to consult the
micro-PROLOG Reference Manual or the introductory booklet for
micro-PROLOG on the Spectrum.

Acknowledgements

The approach to programming using logic which underlies
many of the ideas presented in this book was supported by the
British Science & Engineering Research Council in a series of
research grants held by R.A.Kowalski and K.L.Clark at Imperial
College. Of particular relevance is the 'Logic as a Computer
Language for Children" project which is concerned with teaching
the principles of logic programming to school children. This
project uses micro-PROLOG. The extension to the standard
micro-PROLOG, which is the SIMPLE program development
system described and used 'In this book, is an enhancement of the
program development system that was used on the school's
project. We are also grateful to the groups of people in various
parts of the world who have acted as hosts for demonstrations
and talks on logic programming using micro-PROLOG. These
provided excellent opportunities for testing different methods of
explanation to interested non-specialists.

Finally, the authors would like to thank Diane Reeve and
Sandra Evans whose patient 'slaving over a hot word processor'
during the preparation of the early drafts made this book possible.

0. Introduction

0.1 Why program in micro-PROLOG

Ever since von Neumann first described the form of the
stored program computer they have been programmed in
essentially the same way. The first programming language was the
binary language of the machine itself: machine code; then came
assembler, which is symbolic machine code; then the so-called
high level languages like FORTRAN, COBOL and BASIC,
followed by today's more modern variants ADA and Pascal. All
of these programming languages share a common characteristic:
the programmer must describe quite precisely how a result is to
be computed, rather than what it is that must be computed.

A computer program in one of these programming
languages consists of a script of instructions each of which
describes an action to be performed by the computer. For
example, the meaning of the BASIC statement:

10 LET X = 105*X+10

is that the memory location whose name is X should have its
contents updated to 10 plus 105 times the old value in the
location.

Languages like BASIC are primarily imperative programming
languages. Programs in these languages mostly comprise
commands which specify actions to be performed. They are
geared to the description of the behaviour needed to achieve the
desired result.

While undoubtedly we sometimes think behaviourally, most
often we do not. For example, the first question we ask someone
about a particular computer program is:

0. Introduction

What does it do?"
not:

"How does it do it?"

Certainly the answer to the first question will not be:

1 INPUT X,Y

2 IF X>Y THEN 5
3 PRINT Y

4 GOTO 6
5 PRINT X

6 END

We shall not list the program. What we are more likely to do is

to describe the relation between the input and output of the

program. We might say, for example, "it prints the greater of the
two numbers read-in". If our enquirer did not understand what

"greater of two numbers" meant we would give a descriptive
definition of the relation, perhaps defining the "greater-of"

input/output relation in terms of the '>" order relation on

numbers.
Even imperative programming languages have descriptive

components. For example, the expression 105*X+10 in the above

example assignment is a description of the value to be assigned.

It is not the sequence of actions that the computer must perform
in order to compute its value. Arithmetic expressions are small

descriptive programs - they describe the value to be computed
and only indirectly do they prescribe the way it should be

computed. Indeed, in some programming languages the order of

evaluation of expressions is explicitly left undefined.
The high-level imperative languages are easier to use than

assembler language precisely because they are more descriptive.
Generally, the more descriptive the language the easier it is to
develop a correct program, and the closer the program to a

specification of what it computes.

Descriptive versus imperative languages

The alternative to an imperative programming language with

a descriptive component is a descriptive language with an
imperative component: a language in which programs are primarily

descriptive definitions of a set of relations or functions to be

computed.

0.1 Why program in micro-PROLOG

The execution of a descriptive program is then a use of the
definitions to find an output corresponding to a given input. The
way in which the definitions are used in order to compute the
output value gives each definition an alternative imperative or
control reading. By taking into account the control reading we
might prefer one set of definitions to another, and we might
improve the efficiency of the evaluation by adding extra control
conditions to the definition which are ignored in the descriptive
reading. This is the pragmatics of programming in a descriptive
language. However, it is still the case that the program is
primarily a description of what it is supposed to compute, rather
than a description of how to compute it.

micro-PROLOG is an example of a descriptive language. It
is based on predicate logic, a language developed by logicians as
a formal language of description. 'PROLOG" stands for
PROgramming in LOGic. The 'micro" means that it is
implemented on micro-computers.

A micro-PROLOG program is essentially a set of logical
definitions of relations. An execution of the program is a use of
these definitions to compute instances of the relations.

The following micro-PROLOG program:

x greater-of (x x)
y greater-of (x y) if x LESS y

greater-of (x y) if y LESS

is a definition of the input/output relation of the above BASIC
program. It is a program comprising three rules expressed as
sentences of predicate logic. The x and y are variables
representing any numbers. Each rule is a true statement about the
"greater-of' relation. To use it to find the greater of two numbers
3.45 and 67.34 we pose the query:

which(x : x greater-of (3.45 67.34))

The answer 67.34 is returned by an evaluation which computes a
value of x that satisfies the condition "x greater-of (3.45 67.34)"
using the definition of the relation.

0. Introduction

Multi-use definitions

This single definition of the relation is a program for
finding or checking the greater of a pair of numbers. This ability
to use definitions of relations for both finding and checking is a
distinctive feature of logic programming and micro-PROLOG.
Indeed, it is often the case that a single definition of some
input/output relation can be used in the inverse mode. It can be
used to find an input that will give rise to a particular output!
This invertibility of use is onle possibly because the program is
descriptive. In an imperative language programs have only one use
because they directly encode the sequence of evaluation steps of
that use.

An example of an invertible program is the program for the
pre-defined relation TIMES (it is part of the micro-PROLOG
language).

TIMES(x y z)

is satisfied if and only if zxy. This relation can be used both
to multiply and divide. To multiply we use a query such as:

which(x : TIMES(34 2.4 x))

To divide we use a query such as:

which(x : TIMES(23 x 106))

Data base programs

Logically viewed, a data base is a set of facts defining one
or more relations. micro-PROLOG treats data base relations in the
same way that it treats input/output relations of programs. Data
base relations are defined by a sequence of facts such as:

(Smith D) salary 1800
(Jones K L) salary 1850

To retrieve Smith's salary we use the query:

which(x : (Smith D) salary x)

0.1 Why program in micro-PROLOG

The execution of a descriptive program is then a use of the
definitions to find an output corresponding to a given input. The
way in which the definitions are used in order to compute the
output value gives each definition an alternative imperative or
control reading. By taking into account the control reading we
might prefer one set of definitions to another, and we might
improve the efficiency of the evaluation by adding extra control
conditions to the definition which are ignored in the descriptive
reading. This is the pragmatics of programming in a descriptive
language. However, it is still the case that the program is
primarily a description of what it is supposed to compute, rather
than a description of how to compute it.

micro-PROLOG is an example of a descriptive language. It
is based on predicate logic, a language developed by logicians as
a formal language of description. PROLOG" stands for
PROgramming in LOGic. The micro" means that it is
implemented on micro-computers.

A micro-PROLOG program is essentially a set of logical
definitions of relations. An execution of the program is a use of
these definitions to compute instances of the relations.

The following micro-PROLOG program:

greater-of (x x)
y greater-of (x y) if x LESS y

greater-of (x y) if y LESS

is a definition of the input/output relation of the above BASIC
program. It is a program comprising three rules expressed as
sentences of predicate logic. The x and y are variables
representing any numbers. Each rule is a true statement about the
greater-of' relation. To use it to find the greater of two numbers

3.45 and 67.34 we pose the query:

which(x : x greater-of (3.45 67.34))

The answer 67.34 is returned by an evaluation which computes a
value of x that satisfies the condition "x greater-of (3.45 67.34)"
using the definition of the relation.

0.1 Why program in micro-PROLOG 	 5

To find all the employees with a salary less than 1800 the query:

which(x : x salary y & y LESS 1800)

is used. LESS is another pre-defined relation of micro-PROLOG.
We can also include rules in the definition of a data base

relation. For example, we might have the rule:

salary 1600 if x job-is junior-clerk

expressing the company 'rule' that all junior clerks have a fixed
salary. By mixing facts and rules we get deductive data bases.
Retrieving information from a deductive data base is a
computational inference using the facts and the rules.

Pattern directed rule based programming

micro-PROLOG computes by trying to find values for the
variables of a query such that every condition of the query is a
consequence of the definitions of the program.

It does this by searching through all the sentences for each
condition matching the condition with the conclusion of the
sentence. When it finds a match, the pre-conditions of the
matched sentence represent a new query which must be solved to
give a solution to the matched condition.

This use of a matched rule to reduce a condition to a new
query is pattern directed rule based programming. It is a style of
programming that is increasingly being used in Artificial
Intelligence, particularly for Expert Systems.

List Processing

Using special list patterns, relations can be defined over lists.
As an example

• belongs-to (xlz)
• belongs-to (ylz) if x belongs-to

defines the list membership relation. The pattern "(xlz)" is read: the
list which is the element x followed by the list z. This definition
can be used for checking membership or as a non-deterministic

0. Introduction

program for generating elements of a list. It is used in both roles
in the query:

all(x : x belongs-to (1 2 3 4) & x belongs-to (3 4 5 6))

which has the answers M. all is a synonym for which. Non-
deterministic pattern directed list processing is a unique feature of
PROLOG and logic programming.

Imperative features

micro-PROLOG does have imperative features. For example,
it has commands to add and delete sentences in programs, to edit
sentences, and to read or write to the terminal or a file.
Commands can be used in programs and program defined
relations can be used as commands. Thus, micro-PROLOG
programs can be written which define new commands in terms of
the primitive commands of the system. In this way the
knowledgeable programmer can tailor the system to a specific
application, or build up his own programming environment of
special commands.

0.2 Chapter descriptions

The rest of the book is divided into three parts. We briefly
describe the contents of each chapter.

Part I Basic Concepts

Chapter 1 introduces micro-PROLOG by using it to develop
and query a data base of facts. The ease with which one can
construct and query such a data base is one of the prime features
of the language. The chapter also introduces the built-in
arithmetic facilities of micro-PROLOG. These are quite different
from those of a conventional programming language. We add and
subtract by querying an (implicit) data base of facts about the
addition relation, likewise we multiply and divide by querying a
data base of 'times tables'.

Chapter 2 describes how the data base can be augmented by
rules. Rules can be used to abbreviate queries. They can also be
used to give a recursive definition of a relation.

In Chapter 3 introduces lists and describes how they can be

0.2 Chapter descriptions

used to structure information, often compressing many statements
into one. The elements of a list are accessed using special list
patterns. This pattern processing of lists is a major feature of
micro-PROLOG. The chapter ends by introducing the "isall"
condition. This can be used to wrap up the set of answers to a
query as a list. It provides the interface between the use of
micro-PROLOG as a data base language and its use as a list
manipulation language.

Part II Logic Programming using micro-PROLOG

Chapter 4 describes new forms of condition that can be
used in queries and rules. These involve the use of: not",
"forall .. then .." and "either .. or ..". The use of these conditions
significantly enhances the power of micro-PROLOG for data base
applications and for the development of 'executable specifications.
Expressions are also introduced: these are compiled into conditions
for the arithmetic primitives described in Chapter 1.

Chapter 4 also describes the relation is-told which can be
used to make micro-PROLOG query us whilst it is answering one
of our queries. This relation can be used to facilitate the top-
down development of programs and to write simple 'query the
user expert systems.

Chapter 5 describes several programs for more complex list
processing tasks. In particular it examines the "append" program
that defines the appending relation over lists. We shall see that it
has very many uses. It can be used not only to append two lists
but to find all splittings of a list, even to define the membership
relation for a list. The Chapter ends with the development of
three list sorting programs, one of which is a specification of the
sort relation.

Chapter 6 is an introduction to the use of micro-PROLOG
for parsing . the mapping of lists of words into lists of lists that
reflect the grammatical structure of the sentence. Parsing and
natural language understanding are major applications of logic
programming, applications for which it is highly suited.

Chapter 7 deals with some issues concerned with the
pragmatics of programming in micro-PROLOG. It describes
various features of the language that can be used to reduce the
space used or the time taken during a query evaluation.

In Chapter 8 the imperatives of micro-PROLOG are
introduced. These are built-in relations that have a side-effect
when they are evaluated. An example is the built-in relation that
reads data from the terminal. Its logical reading is: something that

0. Introduction

can be read at the terminal. Its control reading is: read the next
thing to be typed.

The imperatives of micro-PROLOG detract somewhat from
its descriptive nature, a program that uses them is not a purely
descriptive program. However, as we shall see, the use of the
imperatives can often be restricted to the definition of one or two
auxiliary relations, the rest of the program being entirely
descriptive.

More positively, the availability of such imperatives as
primitives of the language enables the programmer to tailor the
system to his own needs by developing his own program
development system. This is illustrated by the development of a
simplified version of the is-told relation introduced in Chapter 4.

Part III Core micro-PROLOG

In Chapter 9 we describe the standard syntax of a micro-
PROLOG program. This is the form in which the facts and rules
are accessed and evaluated by the micro-PROLOG interpreter. It
is also the form in which programs are saved on tape. The user
friendly sentence syntax, the syntax used in Chapters 1 to 8, is
translated into the standard syntax by the SIMPLE program
development system used to develop the programs of Parts I and
II. SIMPLE is itself a micro-PROLOG program written in the
standard syntax.

All micro-PROLOG programs are just lists of a special
form. It is therefore very easy to write micro-PROLOG programs
that manipulate lists that are other micro-PROLOG programs. In
Chapter 9 we show how this is done by the SIMPLE program
and we introduce one or two features of micro-PROLOG that
can only be used by programs written in the standard syntax. We
also give micro-PROLOG definitions of the various forms of
query that have been used in Parts I and II and show how
alternative query evaluators can be defined as micro-PROLOG
programs.

PART I

1. Facts and queries

1.1 Developing a data base of facts

In this chapter we introduce some of the basic ideas of
logic programming by giving an example of the setting up and
querying of a data base in micro-PROLOG.

System note - using micro-PROLOG on a computer - If you have access
to a Spectrum which has micro-PROLOG we recommend that you
follow through the examples and exercises using the computer. You
need to load the SIMPLE front-end system along with micro-
PROLOG. SIMPLE is a micro-PROLOG program supplied on the
micro-PROLOG distribution tape. Consult the introductory booklet for
details of how to start up micro-PROLOG and LOAD SIMPLE. It will
be useful if you read the whole of this booklet before you continue
with the chapter.

Adding facts

Let us suppose that we want to set up a data base
describing the family relationships of some group of people. We
will do this by making statements about these relationships,
adding them one at a time to the data base.

The statements are expressed as sentences of symbolic logic.
There are two kinds of sentences: simple and conditional. To begin
with we shall only need simple sentences which express facts.

In any family there are a number of facts about the
relationships between individuals. Let us suppose that for our
group of people two such facts are:

Henry Snr is the father of Henry 	 (1)
Henry Snr is the father of Mary 	 (2)

12 	 1. Facts and queries

There are many such facts, each of which describes an instance of
one of the family relationships. Now these English sentences are
almost sentences of micro-PROLOG! One form of micro-
PROLOG sentence has three components:

name-of-individual name-of-relationship name-of-individual

In sentences (1) and (2) above the name-of-relationship is "is the
father of. In micro-PROLOG we have to make this into one
word by hyphenating, so we must use: "is-the-father-of" or "father-
of" for brevity. Similarly, we must name individuals by a single
word. Again we can do this by hyphenating, writing 'Henry-Snr"
instead of "Henry Snr". Rewriting (1) and (2) in this way
transforms them into sentences of micro-PROLOG.

Henry-Snr father-of Henry
Henry father-of Mary

These two sentences in a micro-PROLOG data base are a
direct representation of the two facts (1) and (2). We enter them
into the data base using a special add command.

& .add (Henry-Snr father-of Henry)
& .add (Henry father-of Mary)

Notice that the sentence to be added is surrounded by brackets.
The brackets are essential: they tell micro-PROLOG where the
sequence of words in the sentence to be added begins and ends.
For micro-PROLOG a sentence is a bracketed list of words of a
certain form.

System note - errors and prompts - The "&." is not typed, it is the
prompt printed out by micro-PROLOG to tell us it is ready to accept
a command. Moreover, each add command must be terminated by
hitting the ENTER key on the keyboard. Before you hit this key you
can correct typing mistakes using the DELETE key to delete back to
before the mistake. Which one you use depends on the computer.

Alternatively, you can use the cursor keys of the Spectrum. This
will enable you to correct mistakes without the need to retype every
thing after the mistake. For details of how to use the cursor keys see
the introductory booklet.

When you are satisfied that what you have typed needs no more
correction, hit the ENTER key. micro-PROLOG will then obey the
command. If there is a mistake in the syntax of the sentence, for

1.1 Developing a data base of facts 	 13

example if you forget to put the hyphen in father-of", you will get an
error message telling you that the sentence is not a valid simple
sentence form. If you misspell the "add", using say "ADD" instead, you
will get the error message

No definition for relation
trying ADD(......

This is because the relation/command name "ADD" is not one of the
defined command names of micro-PROLOG or the SIMPLE front-end
system that we are using. If you get either error message the sentence
has not been accepted, so try again with a new add command. (If you
correctly spell add and you get an error message of the form:

Error: 2

this probably means that you have forgotten to LOAD SIMPLE.)
You do not have to type all of the bracketed sentence on a

single line; indeed, some sentences may be longer than the 32 characters
of the display line. As you come to the end of the display line, check
that what you have typed on that line is correct and edit it if need be.

When you are satisfied that there is no mistake, hit the ENTER
key. You will now get the prompt

instead of the usual command prompt "&." This indicates that micro-
PROLOG knows that the current command is not complete. Actually,
the "1" indicates that micro-PROLOG is still waiting for the single right
bracket that marks the end of the sentence to be added. The "." is the
read prompt that micro-PROLOG always displays when it is ready to
read from the keyboard.

If you have used brackets within the sentence, and later we shall
make considerable use of bracketed lists within sentences, the prompt
may be 2," or "3." or even some higher number. The number is always
the number of right brackets needed to properly finish the sentence.
You will find this right bracket prompt very useful when we start using
lists.

Different kinds of relationship

A relationship such as "father-of" holds between pairs of
individuals, in this case between a 'father' and a 'child'. It is a
binary relation. Not all relationships are between pairs, some relate
three or more individuals, and some are properties that apply to
single individuals. The genders "male" and "female" are properties.
(More technically, they are unary relations.) The relation of someone

14 	 1. Facts and queries

giving something to someone is a three place relation (a ternary
relation). Sentences giving facts about these non-binary relations
have a slightly different syntax.

Sentences about properties are written in the postfix form

name-of-individual name-of-property

In which the name of the property follows the name of the
individual. Sentences about all other relations are written in the
prefix form

relation-name(individual-name .. individual-name)

in which the relation name precedes a bracketed list of the
individuals related by the relation.

The form:

name-of-individual relation-name name-of individual

used for sentences about binary relations is called infix form.

Examples of sentences for non-binary relations are:

Henry male
Gives(Henry Mary book)
SUM(2 3 5)

The prefix form of sentence is the most general form. Sentences
for binary relations and for properties can be also be entered
using the prefix form. Thus,

father-of(Henry-Snr Henry)
is-male(Henry)

are accepted equivalents of

Henry-Snr father-of Henry
Henry male

but the infix and postfix forms are arguably more readable. Even
if you enter sentences about binary relations or properties in the
prefix form micro-PROLOG will display them in the binary and
postfix forms when you list or edit the program.

1.1 Developing a data base of facts 	 15

A technical term - argument of a relation

A fact tells us that certain individuals are related by some
relation. In mathematics and logic the individuals are called the
arguments of the relation. We also talk about the first argument,
the second argument, etc., of the relation. This names the
argument by its position in the list of arguments of the prefix
form of sentence for the relation. In the sentence

Gives(Henry Mary book)

"Henry" is the first argument, "Mary" the second and "book" the
third.

System note - the use of spaces - The spaces separating the names of the
individuals and the names of the relations are necessary. In micro-
PROLOG spaces and the new lines generated by hitting the ENTER key
are word separators. However, micro-PROLOG only knows about the
new lines that result from the hitting of the RETURN or ENTER keys.
An automatic new line caused by your typing beyond the end of the
previous line is ignored by micro-PROLOG. It does not count as a
separator.

The number of separators you use does not matter, but failure to
use a separator may mean that micro-PROLOG makes into one name
what you intended to have as two names.

You do not always need to use a separator: micro-PROLOG can
sometimes detect the end of one word and the beginning of the next
by a change of character type. For example, a "(" or ')" always signals
the end of the word that precedes it so you never need to follow or
precede a bracket with a space.

For more detailed information on what is or is not understood by
micro-PROLOG as a word boundary, we refer the reader to the
Reference Manual. If in doubt, use a space.

The converse of the need to use spaces as separators is the need
to hyphenate phrases such as "father of" in order to make it one name,
not two.

Adding some more facts

Carrying on, let us enter some more family relationship
facts.

& .add(Elizabeth 1 mother-of Henry)
& .add(Katherine mother-of Mary)

16
	 1. Facts and queries

&.add(Henry father-of Elizabeth2)
&.add(Ann mother-of Elizabeth2)
&.add(Henry father-of Edward)
&.add(Jane mother-of Edward)
&.add(Henry-Snr male)
&.add(Henry male)
&.add(Elizabeth 1 female)
&.add(Katherine female)
&.add(Mary female)
& .add(Elizabeth2 female)
&.add(Ann female)
&.add(Female(Jane))
& .add(Male)Edward))

Notice that we slipped in some 'mother-of" facts and some facts
about who is male and female. We can add sentences of any
relationship at any time using the add command. The sentences
are collected together by name of relationship. The vocabulary of
a program consists of the names of the relationships and the
names of the individuals; the vocabulary defines the 'things" that
a subsequent query can talk about. Our vocabulary so far is

Henry-Snr
Henry
Mary
Elizabeth 1
Katherine 	 Names of individuals
Elizabeth2
Ann
Edward
Jane

father-of
mother-of 	 Names of relations
Male
Female

Notice that we have used numerals in the names
"Elizabethi" and "Elizabeth2" to distinguish the two Elizabeths.
Numerals and "-" and all the letter characters of the keyboard all
count as alphabetic characters in names. The only restriction is

1.1 Developing a data base of facts 	 17

that the name Cannot begin with a numeral. So,

4jane

is not allowed although

jane4

is. In fact, micro-PROLOG will interpret the

4jane

as 4 jane

that is, as the number "4" followed by the separate name "jane".
This is an example of the situation where micro-PROLOG
interprets a change in character type as equivalent to the insertion
of a separating space.

Names made up of letters, numerals and ".' are just one
type of name. They are called alphanumeric constants. Other kinds
of constants . symbolic constants and quoted constants can also
be used as names. We refer the reader to the micro-PROLOG
Reference Manual for details. We shall mostly use alphanumeric
constants as names.

The accept command

The last two facts about the male and female properties
that we added were expressed in the prefix form. There is a
special command that speeds up the entering of a set of facts
that are expressed in the prefix form: this command is accept. If
you enter

accept female

you will get the prompt

female.

Now enter the list of arguments for the female fact that you
want to enter, in this case a list of one argument. You will again
get the name of the relation as a prompt. You can continue in
this way, not having to type the name of the relation, only the
list of arguments, until you have no more facts to enter about

18
	

1. Facts and queries

the relation. You signal this by entering end when you receive
the relation name prompt.

Using accept, the following interaction could have been used
to enter all the male and female facts that we have added so far.

& accept male
male.(Henry-Snr)
male.(Henry)

male.(Edward)
male.end

&.accept female

female.(Elizabeth 1)
female.(Katherine)
female.(Mary)

female.(Elizabeth2)

female.(Ann)
female.(Jane)
female.end

The emphasized text is what we entered, the prompt being

supplied by micro-PROLOG.

Listing and saving a program

We can display our data base program by using another

command list. This command can be used to display on the

screen all the sentences entered, or just those for a specified
relation. To list the full program we type:

1.1 	Developing a data base of facts 	 19

&.Iist all
Henry-Snr father-of Henry
Henry father-of Mary
Henry father-of Elizabeth2
Henry father-of Edward
Elizabeth 1 mother-of Henry
Katherine mother-of Mary
Ann mother-of Elizabeth2
Jane mother-of Edward
Henry-Snr male
Henry male
Edward male
Elizabeth 1 female
Katherine female
Mary female
Elizabeth2 female
Ann female
Jane female
&.

The sentences are grouped according to the name of the
relation that they are about, not the order in which they were
entered. However, the listing of the sentences for each relation
does correspond to the order in which they were entered.

We can choose a particular relation and list that. For
instance:

&.list mother-of
Elizabeth 1 mother-of Henry
Katherine mother-of Mary
Ann mother-of Elizabeth2
Jane mother-of Edward
&.

We can save the current state of the data base onto cassette
tape giving it a unique name of our choice, as follows:

&.save FAMILY

This copies all the sentences of the current program into a named
file on backing store. The sentences still remain in the data base.
However, on a subsequent occasion, we can retrieve these
sentences and have them automatically added to any data base

20 	 1. Facts and queries

simply by typing:

&.Ioad FAMILY

For more information on the use of save and load consult the
introductory booklet.

Editing by adding and deleting sentences

Editing of a micro-PROLOG program can be achieved by
deleting a whole sentence and adding a new one to replace it.
Let us suppose that the name of Elizabeth2's mother has been
misspelled, and that it should be 'Anne". The simplest way to
remove the sentence "Ann mother-of Elizabeth2" is to use:

& .delete(Ann mother-of Elizabeth2)

This use of delete is the opposite of add. If the bracketed
sentence given as the argument to the command is in the
program, the delete command removes it. If it is not in the
program, you will get a message telling you that there is no such
sentence. You will get this message unless there is an exact match
between the sentence to be deleted and some sentence of the
current data base.

There is another way to delete a sentence, we can refer to
it by its position in the listing of the sentences for its relation. In
the listing of the relation "mother-of" given above the sentence
"Ann mother-of Elizabeth2" was the third sentence to be listed.
So, instead of giving the sentence to delete we can use an
alternative form of the delete command in which the sentence is
identified by its relation name and its position.

& delete mother-of 3

Having deleted the sentence, using either form of the delete
command, we can add the new version:

& .add(Anne mother-of Elizabeth2)

If we now list the "mother-of" relation we will get:

1.1 Developing a data base of facts 	 21

&.list mother-of
Elizabeth 1 mother-of Henry
Katherine mother-of Mary
Jane mother-of Edward
Anne mother-of Elizabeth2
&.

The new sentence

Anne mother-of Elizabeth2

is now listed at the end because it was entered last.
Let us now correct the spelling of "Ann" in the "female"

relation. This time we will rep/ace the sentence "Ann female" with
"Anne female". We do this by deleting the old sentence and
adding the new one so that it occupies the same position in the
listing of "female" sentences, The following are the commands
needed together with the micro-PROLOG responses.

& list female
Elizabethl female
Katherine female
Mary female
Elizabeth2 female
Ann female
Jane female
& delete female 5
&.add 5 (Anne female)
&.list female
Elizabethi female
Katherine female
Mary female
Elizabeth2 female
Anne female
Jane female
&.

We have used a variant of the add command in which the
position which the added sentence is to occupy is given.

add 5 (Anne female)

makes the added sentence the fifth sentence in a new listing of
the relation. It does this by inserting it between the current fourth

22 	 1. Facts and queries

and fifth sentences, which is where the deleted sentence was.

Editing using the line editor

A quicker way to change a sentence about a relation,
especially when the change required to the text is small, involves
using the line editor. You invoke the line editor using the edit
command. Like the second form of delete, this identifies the
sentence to be edited by the name of its relation and its current
position in the listing of the sentences for the relation.

edit female 5

will result in

5 (Anne female)

being displayed ready for editing using the line editor. You can
now use the cursor keys to edit the sentence (see introductory
booklet).

Notice that the position of the sentence is given along with
the bracketed sentence. By editing the position, say changing it
from 5 to 4, you can reposition the sentence. Do not delete the
brackets surrounding the sentence. Just as when you add a
sentence, micro-PROLOG needs the brackets to delimit the text
of the sentence when you exit the line editor.

Summary of program development commands

All of the following commands operate on the current
program which is held in the user workspace area by micro-
PROLOG. In giving the general form of each command we shall
use angle brackets to denote some syntactic form. For example,
we shall use entence>to indicate that any sentence can be used.

add 	(i) add (<sentence>)

will add its bracketed sentence argument to the end of the
current listing of sentences for its relation.

(ii) add n (<sentence>)

will add the bracketed sentence as a new n'th sentence in the

1.1 Developing a data base of facts 	 23

listing of sentences for its relation. If there are currently less than
n Sentences it becomes the new last sentence. Otherwise, it is
inserted between the current n-l'th sentence and the current n'th
sentence.

delete 	(i) delete (<sentence>)

will remove <sentence> from the current program.

(ii) delete <relation name> n

will remove the n'th sentence in the current list of sentences for
the named relation.

list 	(i) list <relation name>

lists all the sentences for the named relation in the current
program.

(ii) list all

lists all the sentences in the workspace program.

save 	save <file name>

will save all the sentences of the current state of your program in
a file on backing store.

System note - micro-PROLOG files - The given file name must be
different from the name of any relation of the program, and different
from the name of any command. If it is not you will get the 'File
error" message and the save operation will be aborted. Try again using
a different name. We suggest you use all capitals in the names of files
to avoid clashes with relation names. If you inspect or list the saved
program file outside micro-PROLOG you will find that the sentences of
your program have not been saved in the form in which you entered
them. They are saved in a special compiled form that uses the standard
syntax of micro-PROLOG.

kill 	(i) kill <relation name>

deletes all sentences for the named relation.

(ii) kill all

24 	 1. Facts and queries

deletes all sentences from the workspace program. You should
only use this command after you have saved the program -
it clears the workspace for a fresh program.

edit 	edit <relation name> n

Allows the current nth sentence for the named relation to be
edited using the Spectrum cursor keys. The sentence (in brackets)
and its position will be displayed ready for editing. By changing
the position number you can reposition the sentence within the
listing of sentences for its relation. You can change the position
without changing the sentence if you just want to reposition. You
can also change the relation name of the edited sentence. The
position number is then the position that will be used when the
edited sentence is added to the listing of sentences for the
changed relation name.

NEW NEW.

this command restarts micro-PROLOG. As with 'kill all', you
should save your workspace program before using it because you
will lose all your current program as well as all the loaded
utilities. (You will need to reload SIMPLE if you use "NEW". If
you use "kill all" you do not need to re-load SIMPLE.) The
after the "NEW" is important. It is needed because all micro-
PROLOG commands must have at least one argument. In this
case the argument is the (ignored) ".". Any argument can be used.

NEW goodbye

will work just as well, but is not so brief.

Exercises 1-1

System note . save your program now . If you are following the text with
a computer, at this stage you should save the program that has been
developed, using the command:

save FAMILY

Before you attempt Exercise 2 you should clear the workspace of the
family relations sentences using the command

kill all

1.1 Developing a data base of facts 	 25

After each exercise we suggest you save the current workspace and then
clear it before entering the sentences for the next exercise. Answers to
all the exercises are given in an Appendix.

1. Using the program developed above:

a. Show how you would edit the program to change the spelling
of "Katherine' to Catherine" in each sentence in which it
appears using delete and add commands. Do this in such a
way that the new sentences are in the same positions in the
program as those they replace.

b. Add the two sentences necessary to express the information
that Henry-Snr had a son called Arthur. Add these new
sentences so that they will be listed at the beginning of the
sentences for their relation.
Clear the workspace before you attempt the next exercise.

2. Set up a data base of sentences describing countries in
different continents using the following vocabulary:

Names of Individuals

Washington-DC USA 	 North-America
Ottawa 	Canada 	Europe
London 	United-Kingdom Africa
Paris 	 Italy
Rome 	 Nigeria
Lagos 	 France

Names of Relations

capital-of
country-in

As examples, your data base should contain the sentences:

Washington-DC capital-of USA
USA country-in North-America

Save this data for future use using the save command and then
clear the workspace.

26
	 1. Facts and queries

3. Set up a data base of simple sentences describing the books of
different kinds written by different people. Use the following
vocabulary:

Names of Individuals

Tom-Sawyer 	 Mark-Twain 	Novel
For-Whom-The-Bell-Tolls Ernest-Hemmingwalay
Oliver-Twist 	 Arther-Miller
Great-Expectations 	Charles-Dickens
Macbeth 	 William-Shakespeare
Romeo-And-Juliet
Death-Of-A-Salesman

Names of Relations

type
written-by
writer

For example, you should have the sentences

Tom-Sawyer written-by Mark-Twain
Tom-Sawyer type Novel
Mark-Twain writer

in your data has Save this data for future use with the save
command then clear the workspace.

4. Set up a data base describing the structure of a bicycle using
the vocabulary:

1.1 Developing a data base of facts

Names of Individuals

27

bicycle 	wheel
frame 	spoke
brake-system hub
brake-cable brake-block
gear-selector chain
lights 	electric-flex

pedals
saddle
handle-bars
lighting-system
dynamo
gear-cogs

Names of Relations

part-of

For example, your data base should contain the sentences:

wheel part-of bicycle
spoke part-of wheel
hub part-of wheel

Use the accept command to enter the sentences. Again, save the
workspace sentences for future use and clear the workspace.

5. Set up a data base of your own family using the relation
names of the example. Save it in the file MYFAMILY for future
use and clear the workspace.

1.2 Queries

We now look at how a micro-PROLOG data base program
is queried. This is done via one of the query commands. We
shall illustrate the query commands using the FAMILY data base
developed in 1.1. If this data base is not in the workspace (test
this by trying to list the sentences for the father-of" relation)
clear the workspace and then load the FAMILY data with a "load
FAMILY" command.

Confirmation

The simplest form of query is the is query which asks for
confirmation of some fact. We explain this and other queries by
posing some example questions in English. Below the questions

28 	 1. Facts and queries

we give the micro-PROLOG equivalent and the answers given by
micro-PROLOG. A brief explanation is provided of points arising
from the query.

Is Henry the father of Elizabeth2?
&.is(Henry father-of Elizabeth2)
YES

The query is asking about a particular member of the "father-of"
relation described by the micro-PROLOG sentence "Henry father-
of Elizabeth2". The is query is asking whether this sentence is in
the data base. As with the add command the sentence to be
'looked up' must be bracketed. There is a match between the
query sentence and the sentence

Henry father-of Elizabeth2

in the data base, so the answer is "YES", an abbreviation for
"Yes, fact is confirmed".

Is Katherine the mother of Edward?
&.is(Katherine mother-of Edward)
NO

In this case there was no match between the query sentence and
a sentence in the current data base so the answer is "NO", short
for "No, fact is not confirmed".

Is the mother of Mary known?
& .is(x mother-of Mary)
YES

In this query we are trying to find out whether the data base
contains a sentence that records who the mother of Mary is. The
"x" stands for the mother, whose name is unknown to us. micro-
PROLOG searches the sentences of the "mother-of" relation,
looking for a sentence of the form

x mother-of Mary.

It finds the sentence

Katherine mother-of Mary

1.2 Queries 	 29

and so returns the answer "YES". It does not tell us that the
unknown x is Katherine. To retrieve this information we need to
use a different form of query - the which query described below.

Variables in queries

The letters x, y, z, X, Y, Z are variables of micro-
PROLOG. The variable in a query is a very simple concept: it
stands for some unknown individual. It is a place holder, ready
to be filled in by a name. Variables are the formal equivalent of
pronouns in English. Where in English we would say something,
someone, it or he, in micro-PROLOG we use a variable.

Just as pronouns cannot be used in English as names,
without risk of ambiguity, so in micro-PROLOG variables cannot
be used as names of individuals or relations. You cannot enter a
fact about an individual whose name is x!

The variable names of micro-PROLOG were chosen so that
this problem is highly unlikely to arise. Even so, if ever you do
want to use x as a name, you can do so by quoting it with
quotation marks. "x" is not a variable. It can be used either as
the name of an individual or the name of a relation. For more
information on quoting and name conventions consult the micro-
PROLOG Reference Manual.

The letters x,y,z,X,Y,Z are actually variable prefix letters. A
variable prefix may be be followed by a positive integer subscript
made up of a sequence of decimal digits. Variables are different
if they have different prefixes or different subscripts. Thus x and
y are different, x2 and y2 are different, and xi and x2 are
different. The variables xi and xOl are not different because 1
and 01 are the same integer number.

Data Retrieval

To retrieve the names of unknown individuals we use the
which form of query.

Who is the father of Edward?
&.which(x : x father-of Edward)
Henry
No (more) answers

A which query has two components separated by a colon.
The second component is the query condition. In this case it is a

30 	 1. Facts and queries

simple sentence pattern

x father-of Edward

The first component is the answer pattern. Here it is the single
variable x of the query condition. More generally, the answer
pattern is a sequence of variables that appear in the query
condition.

In answering a which query micro-PROLOG finds all the
instances of the query condition that are facts that can be
confirmed. In doing this it 'fills in' the variable slots of the query
condition with the names of individuals, which are then displayed
in accordance with the answer pattern. In this case, there is only
one instance of

x father-of Edward

that can be confirmed. This is the instance with x=Henry. It is
confirmed because

Henry father-of Edward

is a sentence of the data base. So we get the answer

Henry

followed by the message that there are no more answers.

Conjunctive queries

Queries with several conditions can be expressed directly in
both is and which form.

Is Henry-Snr the father of Henry and of Edward?
&.is(Henry-Snr father-of Henry
Land Henry-Snr father-of Edward)
NO

Recall that the prompt 1." means that micro-PROLOG is
expecting a closing right bracket before it considers that the
query is complete.

For an is query with a conjunctive condition to receive the

1.2 Queries
	

31

answer YES all of its conditions must be confirmed. If they can't
all be confirmed then the answer NO is returned. In this case the
second sentence is not contained in the data base, so the answer
to the conjunctive query is "NO".

Notice how in micro-PROLOG we must make explicit the
question "is Henry-Snr the father of Edward" that is implicit in
the English phrase "and of Edward".

Who is both a child of Henry-Snr and
the father of Elizabeth2?

&.which(x : Henry-Snr father-of x and
1. x father-of Etizabeth2)
Henry
No (more) answers

Who are the daughters of Henry?
&.which(x Henry father-of x & x female)
Mary
Elizabeth2
No (more) answers

Notice that in this query we have used "&" as an abbreviation for
"and". This is an abbreviation that micro-PROLOG understands.

Who is a mother (of somebody)?
&.which(x : x mother-of y)
Elizabethi
Katherine
Jane
Anne
No (more) answers

We do not get the names of the children because the unknown
child y of the query condition is not given in the answer pattern.

Who are all the mother, child pairs?
which(x y : x mother-of y)
Elizabeth Henry
Katherine Mary
Jane Edward
Anne Elizabeth2
No (more) answers

32 	 1. Facts and queries

Who are all the father, son pairs
which(x y : x father-of y & y male)
Henry-Snr Henry
Henry Edward
No (more) answers

In this query the answer pattern is the pair of variables x y both
of which appear in the query pattern. They are the unknown
father and unknown son referred to in the query pattern. Note
that we must use the vocabulary of the data base. The data base
does not include any facts that directly describe the father-son
relationship, so we describe what we want using the 'father-of"
and "male" relations. We had to do the same thing in the earlier
query to find the daughters of Henry. We had to characterize a
daughter as a female child.

Summary of query commands

This has the form:

is(<condition> Land ... <condition>1)

where each <condition> is a simple sentence in which one or more
individuals may be named by variables. This query checks to see
if each of the given conditions can be confirmed using the facts
in the data base. It responds 'YES" if each can be confirmed,
and "NO" if not. If the same variable occurs in more than one
condition it denotes the same unknown individual.

which This has the form:

which(<answer pattern> : <condition> Land ... <condition>])

This query returns the answers to the query condition or the
conjunction of conditions that follow the ':". Each answer is
some instance of the <answer pattern> in which variables are
replaced by the names of individuals that satisfy all the query
conditions. The answer pattern is a variable or sequence of
variables that appear in the query conditions.

The different variables of the answer pattern must be
separated by spaces. After all the different answers have been
given the message "No (more) answers" is displayed. The
separating the two components of the query is important. If you

1.2 Queries 	 33

miss it Out you will get the error message that there is a missing
colon and the query will not be answered. This is because
without the ":" micro-PROLOG cannot tell where the <answer
pattern> ends and where the first query condition begins.

The command name all is an accepted alternative to which.

one 	The form of the query is:

one(<answer pattern> : <condition> [and ... <condition>])

The one query is similar to the which query except that after
each answer is found and displayed micro-PROLOG interrupts the
query evaluation and waits for an input to indicate whether it
should look for more answers or stop. It prompts for this input
with the message "more?(y/n)". If you respond by entering y (for
yes) then the next solution is sought. If you enter n (for no) the
evaluation stops. For example, we might ask for the children of
Henry one at a time:

& .one(x Henry father-of x)
Mary
more?(y/n)y
Elizabeth2
more?(y/n)n
&.

Because we quit the evaluation before micro-PROLOG was sure
that there were no more answers we do not get the usual
terminating message "No (more) answers". We just get the "&."
prompt to indicate that it is ready for another command.

System note . syntax errors - if there is a mistake in the syntax of any
of the query commands you will get an error message identifying the
error and the query will not be answered. micro-PROLOG usually
displays the part of the query in which the syntax error occurs. For
example, if one of the conditions is not a valid simple sentence you
will get the message

Syntax error: <condition> not a valid simple sentence form

If the condition contains variables the variable names in the displayed
condition will probably not be the same as the ones that you used in
the query. This is because micro-PROLOG forgets variable names, it
just remembers the positions that each variable occupies in the query.

34 	 1. Facts and queries

So, when it prints out the error message it assigns new variable names
to the variable positions in the condition. We shall say more about this
renaming of variables in the next chapter.

Finding the names of your relations

Each time you add a sentence about a new relation to your
program the add command records the name of the new relation
in a dict sentence added to your program. You can therefore find
out what relation names you have used with the query

all(x : x dict)

or equally:

list dict

When you do a list all what you get is a listing for all the
relations recorded by a dict sentence.

When you get rid of all the sentences about a relation
using a kill command the dict sentence for the relation will be
automatically deleted. However, it will not be removed if you get
rid of each of the sentences one by one using delete. So the fact
that the relation name is displayed in answer to the dict query
does not guarantee that it has any defining sentences. To check if
there are defining sentences for some relation R use the query

is(R defined)

A YES" answer tells you that there is at least one sentence for
the relation, a 'NO" reports that their are no sentences for R.
The defined relation can only be used for checking. Unlike the
dict relation it cannot be used to find the names of the relations
that you have used which are still defined. To do this use dict
and defined together in the query

all(x : x dict & x defined)

Predefined relations and modules

micro-PROLOG contains several predefined relations some
of which we shall meet in the next section. micro-PROLOG does
not allow you to alter the definitions of these predefined relations.
If you accidentally try to add a sentence for one of these

1.2 Queries 	 35

relations you will get the error Cannot add sentences for R"
where R is the name of the relation.

You will get the same message if you try to add a sentence
about one of the command or relation names defined by the
SIMPLE front-end program. For example, if you try to add a
sentence about the is relation. Even though SIMPLE is a micro-
PROLOG program its definitions are protected in this way
because it comprises three special forms of program called
modules.

Modules are named collections of relation definitions that
explicitly export the names of certain relations. Only the exported
relations can be used by other programs and their definitions are
protected from accidental alteration. Modules are more fully
described in Chapter 7 which also tells you how you can convert
one of your programs into a protected module.

You can find out the names of the relations exported by
SIMPLE by using the query:

all(x : x reserved)

The answer will be a list of names that you should not use for
the names of your relations. You can use this query to remind
you of the command names such as which and all because these
are included in the list of reserved names.

Exercises 1-2

1. Using the FAMILY data base developed in this chapter, give or find
the answers to the following queries and give an English equivalent for
each query:

a. is(Jane mother-of Elizabeth2)
b. is(Henry-Snr father-of x)
c. which(x : Henry-Snr father-of x)
d. is(Katherine mother-of x and x female)
e. all(x : Henry father-of x and x male)
f. which(x y : x father-of z & z father-of y)

2. Using the vocabulary of the FAMILY data base, express these
English questions as micro-PROLOG queries:

a. Is Katherine the mother of Ed ward?
b. Who is a father (of somebody)?
c. Is Jane the mother of someone whose father is Henry.Snr?

36 	 1. Facts and queries

d. Who has Henry as their father and Katherine as their mother?

3. Using the geographical data base started in Exercisel-1, express these
English questions as micro-PROLOG queries:

a. Is Rome the capital of France?
b. Is Washington-DC the capital of a country in Europe?
c. Which are the capitals of countries in Europe?
d. Is the capital of Italy recorded?
e. For which North-American countries is the capital known?
f. For which continents are the capitals of countries known?

4. Using the books data base started in Exercise 1-1, give the answers
to the following micro-PROLOG queries and for each query give an
equivalent English question:

a. is(Oliver-Twist written-by William-Shakespeare)
b. is(x written-by Mark-Twain and x type Novel)
c. which(x y : x type Play and x written-by y)
d. which(x : x type Novel and x written-by Charles-Dickens)
e. which(x : y written-by x)

5. Using the bicycle parts data base of Exercise 1-1 express the
following as micro-PROLOG queries:

a. Which are the parts of a bicycle?
b. Is a dynamo part of a bicycle?
c. Is a spoke part of something?
d. Which part of a bicycle is a dynamo part of?
e. Which are the parts of the braking-system?

1.3 Arithmetic relations

micro-PROLOG is not particularly well suited for
applications which need a lot of routine numerical work.
However, we can do arithmetic using four built-in arithmetic
relations SUM, TIMES and LESS and INT and we can use
arithmetic expressions in query conditions. We shall introduce
arithmetic expressions in Chapter 4. Here we shall illustrate the
use of the arithmetic relations since they are used and queried in
exactly the same way as data base relations. Arithmetic expressions
are ultimately evaluated using the SUM and TIMES relations.

Although each arithmetic relation is implemented by a
machine code program, so as to make use of the hardware
operations of the machine, we can think of each relation as being

1.3 Arithmetic relations 	 37

defined by an implicit data base of facts. This is why we can
query them in the same way as we query relations defined by a
real data base of facts.

Addition and Subtraction using the SUM relation

The SUM relation is a three argument relation such that

SUM(x y z) holds if and only if z = x + y.

The implicit data base describing the relation contains sentences
such as SUM(2 3 5) and SUM(-3 10.6 7.6). We do addition &
subtraction by querying this implicit data base.

Uses of the SUM relation

Checking:

&.is (SUM(20 30 50))
YES

Adding:

&.which(x : SUM(5.6 -2.34 x))
3.26
No (more) answers

Subtracting:

&.which(x : SUM(x 34 157))
123
No (more) answers

or:

&.which(x : SUM(34 x 157)
123
No (more) answers

38 	 1. Facts and queries

Restrictions on the use of SUM

A query condition for the SUM relation can have at most
one unknown argument. This constraint would not apply if there
was a real data base for the relation. It applies because micro-
PROLOG simulates the data base and for efficiency supports only
a restricted range of query patterns. This means that a query such
as

which(x y : SUM(x y 10))

will not be answered. It will result in a "Too many variables"
error message. Try it! The "Too many variables" message is the
one you will get when you try to use any of the built-in relations
of micro-PROLOG and there are too many unknown arguments.

Syntax of numbers

The above queries made use of both integers and floating
point numbers. All the arithmetic relations take arguments that are
either integers or floating point numbers. If you mix the two
types of number micro-PROLOG automatically converts the
integers to floating point numbers.

A positive integer is a sequence of decimal digits without
any preceding "+" sign. Indeed, you must not use a "+" to
indicate that a number is positive. If you do you will get an error
when the query is evaluated.

A negative integer is a sequence of decimal digits with a
preceding "-" sign. Thus:

234 7056 89004

are all positive integers and

-34 -56004 -11000

are all negative integers.
A positive floating point number is a sequence of decimal

digits (again without a preceding "+" sign) which contains a
decimal point. It can be optionally followed by an integer
exponent expressed as the letter "E" followed by an integer. For

1.3 Arithmetic relations 	 39

example:

23.45 2.345E1 0.02345E3 2345.OE-2

are all different representations of the same floating point number.
The ." in a floating point number must always be preceded by at
least one digit, which can be 0. The exponent is the power of 10
by which the number preceding the exponent should be
multiplied.

A negative floating point number has the same form as a
positive floating point number except that it is preceded by the

sign. Thus:

-34.678 -0.0783E-34 40005

are all negative floating point numbers.

System note - floating point numbers - The form 2.345E1 is the standard
form for the number 23.45. Floating point numbers can be entered in
any form but they are displayed in their standard form. That is, they
are expressed as a number between -10 and 10 with the appropriate
exponent. When this exponent is 0, that is when the number does lie
between .10 and 10, the exponent is suppressed. That is why the
number 3.26E0 which was the answer to one of the above queries was
displayed without the exponent as 3.26.

Integers must be in the range .32767 to 32767. Floating point
numbers can have upto 8 significant digits (leading Os are not
considered significant). Exponents must be in the range -127 to 127. If
the evaluation of an arithmetic condition would give an answer that is
too small to represent as a floating point number you will get the
"Arithmetic underfiow error message. If it would give a number that is
too large to represent as a floating point number you will get the
"Arithmetic overflow" message. If a condition with integer arguments
has an answer that is too large to represent as an integer the answer
will be given as a floating point number.

Conversion and testing of number types

The INT relation has two forms of use. It can be used as a
property relation to test if a number is an integer, or more
exactly to test if the number is an integer or a floating point
number that does not have a fraction part. It can also be used as
a binary relation to find the integer part of a floating point

40

number.

Uses of I NT

Testing:

& .is(45 INT)
YES

1. Facts and queries

&.is(4.67 INT)
NO

&.is(3.567E3 tNT)
YES

Use for conversion

which(x : 3.45 TNT x)
3
NO (more) answers

which(x : - 3.56498E3 TNT x)
-3564

Restrictions on use the of tNT

When it is used as a property relation the single argument
must be given. It can only be used to test, not to find an integer
number.

When it is used as a binary relation, the first argument
must be given and the second one must be unknown, that is,
represented as a variable. The evaluation of the condition will give
the variable the value of the integer part of the first argument.
So, in the two argument form tNT cannot be used as a test that
some number is the integer part of another. It can only be used
to find an integer part. To test that some number is the integer
part of another we must use tNT and then another micro-
PROLOG primitive relation EQ to test that the found integer part
is identical to the given value.

&.is(6.78 INT x & x EQ 6)
YES

The placing of the EQ test after the tNT condition is important:

1.3 Arithmetic relations 	 41

we shall discover why in Section 1.4.

Multiplication and division using TIMES

The TIMES relation is such that

TIMES(x y z) holds if z = x * y

(lies of the TIMES relation

Checking a product:

&.is (TIMES(3 4 12))
YES

Checking for exact division:

&.is(TIMES(3 y 12) & y INT)
YES

&.is(TIMES(3 y 11) & y INT)
NO

Multiplying:

&.which(x : TIMES(5 4.3 x))
2.15E1
No (more) answers

Division:

&.which(x : TIMES(x 24 126))
5.25
No (more) answers

&.which(x : TIMES(24 y 126) & x tNT y)
5
No (more) answers

&.is(TIMES(x 3 10) & TIMES(x 3 10))
NO

42 	 1. Facts and queries

System note - accuracy of floating point numbers - The NO answer to the
last query may surprise you, but it should not. The result of dividing 3
into 10 cannot be accurately represented as a floating point number.
The answer that micro-PROLOG gives is 3.3333333 which is only a
close approximation of 10 divided by 3. So, when micro-PROLOG
multiplies this result by 3 to check the second condition it gets
9.9999999 and not 10. You must be careful when using floating point
numbers in any programming language to remember about such
rounding errors.

Restriction on TIMES queries

The restrictions on the use of TIMES are the same as those
for SUM. At most one argument can be unknown, but this can
be any of the three arguments. This covers the use for
multiplication and division.

Testing for order using the LESS relation

The primitive LESS relation can only be used for checking.

LESS(x y) holds if x is less than y in the usual ordering of the
numbers

Uses of LESS

&.is(3 LESS 4)
YES

&.is(4 LESS 3)
NO

&is(TIMES(3 x 10) & TIMES(3 x y) &
1. SUM(y z 10) & z LESS 0.1E-5)
YES

LESS can also be used for comparing two names. The
ordering used is that of the dictionary. LESS(x y) holds for words
x and y if x comes before y in a dictionary. Example:

&is(FRED LESS FREDDY)
YES

& .is(ALBERT LESS HAROLD)

1.3 Arithmetic relations
	 43

YES

&.is(SAM LESS BILL)
NO

The alphabetical ordering of the characters that can appear
in the names is the ASCII ordering of all the keyboard characters.
In this ordering precedes all the numerals which come before
all the capital letters which come before all the lower case letters.

So, we have

SAM LESS Sam

Sami LESS Samantha

Sam-1 LESS Sami

Exercises 1-3

1. Answer the following micro-PROLOG queries:
a. is(SUM(9 6 15))
b. which(x : SUM(4 18 x))
c. which(x : SUM(x 23 40))
d. is(9 LESS 10)
e. is(SUM(9 8 x) and x LESS 19)
f. which(x : TIMES(9 7 x))
g. is(TIMES(li 8 80))
h. which(x y : TIMES(4 zi 14) & zi INT x & TIMES(x 4 z2) &

SUM(z2 y 14))

2. Write micro-PROLOG queries to ask the following English questions:
a. What is 9 plus 7?
b. What is the integer part of the result of 65 divided by 7?
c. What is the result if you add 29 and 53, and divide the total by 2?
d. Can 93 be exactly divided by 5?
e. Is the result of multiplying 17 and 3 less than 50?

1.4 Evaluation of queries

This is an appropriate point to say something about the way
in which micro-PROLOG evaluates queries.

When querying a data base of simple sentences we can, for
the most part, ignore the way that queries are evaluated. However,

44 	 1. Facts and queries

we shall see that the ordering of the conditions in a conjunctive
query can affect the time that micro-PROLOG takes to answer
the query. Unless an error occurs, it will not affect the answers
that we get. Choosing an ordering that facilitates the evaluation is
part of the pragmatics of using micro-PROLOG.

For certain conjunctive queries, for example the query:

which(x : TIMES(37 51 y) & SUM(y 73 x))

we must know about the order of evaluation of the component
conditions. Does micro-PROLOG solve the SUM or the TIMES
condition first? If it is the SUM condition we will get a Too
many variables error message because there are two unknown
arguments y and x. If micro-PROLOG answers the TIMES
condition first there will be no problem providing the answer
obtained for the unknown y is 'passed on' to the SUM condition
before it is solved.

Fortunately (in this case) this is exactly what micro-
PROLOG does. micro-PROLOG evaluates conjunctive queries by
solving the conditions in the left to right order in which they are
given passing on any values for variables that it has found. So, by
the left to right ordering in which we give the conditions we
control the evaluation order.

The ordering of the conditions is the control component of
the query. The conjunction of the conditions is the logical
component. In posing a query our primary concern should be a
correct logical description of what we want to ask or retrieve.
Our secondary concern should then be with the ordering of the
conditions for efficient and error free evaluation.

Evaluation of is queries with one condition

The simplest form of query is the is query of the form

is(C) where C is a simple sentence without variables

micro-PROLOG evaluates this query by searching through
the sentences in the data base that are about the relation of the
condition C. It does not search the whole data base. micro-
PROLOG stores the sentences about each relation in a list, the
ordering of the sentences on the list being the order in which
they are displayed by the list command. micro-PROLOG runs
down this list, comparing C with each sentence in turn. If it finds

1.4 Evaluation of queries 	 45

an exact match between C and a sentence in the list it terminates
the search and gives the answer 'YES'. If it reaches the end of
the list of sentences without finding a match, it displays the
"NO" answer.

Example I

is(Henry male)

The sentences in the FAMILY data base about "male" are stored
in the order

Henry-Snr male
Henry male
Edward male

because this is the order in which they are listed by the "list
male" command. First micro-PROLOG compares the query
condition

Henry male

with the sentence

Henry-Snr male

that heads the list. The sentences do not match because "Henry"
and "Henry-Snr" are different names. Since this match fails, micro-
PROLOG then moves on to the next sentence. We now have an
exact match, so micro-PROLOG terminates the search and gives
the answer "YES".

If we pose the query

is(Edward3 male)

micro-PROLOG compares "Edward3 male" with each sentence in
turn. In no case is there an exact match. So we get the answer
"NO".

46
	

1. Facts and queries

is query with a sentence pattern

An is query of the form

is(C) 	where C is a simple sentence pattern, i.e. a simple
sentence with at least one variable standing for an
unknown individual

is answered in much the same way. The only difference is that
when looking for an exact match micro-PROLOG is allowed to
give each variable in C a value which is the name of some
individual.

Example 2

is(x father-of Elizabeth2)

The sentences for the father-of relation are stored in the order

Henry-Snr father-of Henry
Henry father-of Mary
Henry father-of Elizabeth2
Henry father-of Edward

micro-PROLOG compares the sentence pattern

x father-of Elizabeth2

with each sentence in turn. There is an exact match with the
third sentence when the variable x has the value "Henry". At this
point micro-PROLOG terminates the search and gives the answer
"YES".

Example 3

is(x father-of x)

This query is asking whether the data base contains any fact that
says that someone is their own father. micro-PROLOG will give
us the answer "NO", but it is instructive to see why.

It tries to match the sentence pattern

1.4 Evaluation of queries 	 47

x father-of x

with each of the above sentences. It gets a partial match with the
first sentence

Henry-Snr father-of Henry

by giving x the value "Henry-Snr". This makes the sentence
pattern become the sentence:

Henry.Snr father-of Henry-Snr

But it is not an exact match because by giving x this value
micro-PROLOG must replace both occurrences of x in the
sentence pattern by the name Henry-Snr". This creates a
mismatch between the names of the children. The same thing
happens in the attempt to match all the other sentences of the
data base. So the query is answered, "NO".

Now consider the query

is(x father-of y)

In answering this query, micro-PROLOG does not encounter the
same problem because it can give the different variables x and y
different values. In fact, there is an immediate match with
x = Henry-Snr and y = Henry.

In answering a query micro-PROLOG can give different
variables different values, but it may also give them with the same
value. Thus, if we had a data base that contained just the single
"likes" sentence

Tom likes Tom

then both

is(x likes x)

and

is(x likes y)

would be answered affirmatively. In the second query we are
asking whether the data base knows anything about some x liking
some y. It does, when x and y are the same person Tom. This

48 	 1. Facts and queries

convention that different variables can stand for the same
unknown person micro-PROLOG inherits from symbolic logic. To
insist that different variables name different individuals we must
add an extra condition that says just that. We shall see how we
can do this in Chapter 3.

Evaluation of which queries with one condition

The single condition which query is of the form

which(P : C) 	where P is an answer pattern and C is a
simple sentence pattern

micro-PROLOG takes the sentence pattern C and compares it
with each of the sentences for its relation in the data base. A
match of C with a sentence in the data base results in each
variable of C being given a value. For each match of C with a
data base sentence the answer pattern P is displayed with its
variables replaced by the values for that match.

Example 4

which(x Henry father-of x)

The sentences of the data base are compared with the query
pattern in the listing order given above. There is no match with
the first sentence

Henry-Snr father-of Henry

because the fathers "Henry", "Henry-Snr" do not match. There is a
match with the second sentence,

Henry father-of Mary

providing xMary. Because it has found a sentence that matches
the query pattern micro-PROLOG has found one answer to the
query. It therefore displays the answer pattern, x, with x replaced
by its value "Mary". We get the first answer:

Mary

The evaluation continues with the attempt to match the

1.4 Evaluation of queries
	

49

query pattern Henry father-of x" with the remaining sentences:

Henry father-of Elizabeth2
Henry father-of Edward

There is a match with the first of these providing x = Elizabeth2.
So we get the second answer:

Elizabeth2

There is also a match with the last sentence, providing
xEdward. This gives us the last answer

Edward
No (more) answers

Evaluation of conjunctive which queries

We illustrate the method of evaluation by two examples.
We shall describe the method more formally in the next chapter.

Example 5

which(x : Henry father-of x & x male)

This query is a restriction on the query of example 4 to find only
the male children of Henry. What micro-PROLOG has to do is
to find all the names that can replace x such that both

Henry father-of x

and

x male

are sentences of the data base.
It finds all these x's by initially ignoring the second

condition of the query. It starts by looking for all the x's that
satisfy

Henry father-of x

We know that there are three sentences of this form, the first

50 	 1. Facts and queries

one being

Henry father-of Mary

micro-PROLOG matches the query condition with this sentence
and finds a possible answer, x=Mary, for the conjunctive query.
At this point micro-PROLOG interrupts the search for solutions
to the first condition in order to see whether this value for x is
compatible with the second condition of the query, the condition
"x male". It sees whether it can find a successful match for this
condition if x has the value "Mary". This is equivalent to finding
a successful match for the query condition

Mary male

It tries to confirm this condition by searching the list of
sentences about the "male" relation. Since it does not find the
sentence "Mary male", it cannot confirm the extra condition on x
for the value xMary. It therefore returns to its interrupted
search for all the solutions to

Henry father-of x

It finds the next solution to this with the match against the
sentence

Henry father-of Elizabeth2

This gives the value x = Elizabeth2. Again, micro-PROLOG
interrupts the search for other solutions to the "father-of"
condition to check if "x male" can be confirmed when
xElizabeth2. That is, it checks to see if the condition

Elizabeth2 male

can be confirmed. This attempt also fails. So micro-PROLOG
again returns to its interrupted search for all the x values that
satisfy the first condition

Henry father-of x

It finds the next possible value for x with the match against

Henry father-of Edward

1.4 Evaluation of queries 	 51

which makes x=Edward. Interrupting the search once more,
micro-PROLOG tries to confirm the second condition "x male"
with x=Edward which is the condition

Edward male

This time it succeeds, for the sentence "Edward male" is in the
data base. micro-PROLOG has at last found an answer to the
compound query, which it immediately displays.

Since the query requires all solutions, micro-PROLOG once
more returns to its interrupted search for x's that satisfy "Henry
father-of x". There are no more because micro-PROLOG has
already looked at all the sentences that match this pattern. It
therefore displays the message No (more) answers".

The method of evaluation of the query

which(x Henry father-of x & x male)

can be captured in the control reading

for all the x that satisfy the condition Henry father-of x
if x is male, display x

Example 6

which(x z : x father-of y & y father-of z)

This is a request for all the pairs of people in the paternal
grandfather relation. The answers to this query are the names
assigned to x and z for each solution to the conjunctive condition
of the query. A solution is an assignment of values to variables in
this query pattern such that each of its sentences become facts in
the data base. In this case, it is an assignment to x, y, z such
that

x father-of y and y father-of a

are both sentences of the data base.
Again, micro-PROLOG searches for all the solutions to both

conditions by initially ignoring the second condition. It starts by
looking for all solutions to the first condition

x father-of y.

52 	 1. Facts and queries

It finds the first solution with the match against the sentence

Henry-Snr father-of Henry

which makes xHenry-Snr, yHenry. At this point micro-
PROLOG interrupts its search for all the solutions to the first
condition. It now looks for all the solutions to the rest of the
query which are compatible with this solution (xHenry-Snr,
yHenry) to the first condition. In other words, it looks for all
solutions to the condition

y father-of a (with x = Henry-Snr, y = Henry)

This is the condition

Henry father-of z.

There are three solutions to this:

zMary, zElizabeth2, z=Edward.

These three solutions for a give three solutions:

xHenry-Snr, yHenry, zMary
x = Henry-Snr, y = Henry, z = Elizabeth2
x = Henry-Snr, y = Henry, a = Edward

to the conjunctive condition

x father-of y & y father-of z.

As micro-PROLOG finds each z solution it displays the answer
pattern x z" with the variables replaced by their solution values.
Hence micro-PROLOG gives us:

Henry-Snr Mary
Henry-Snr Elizabeth2
Henry-Snr Edward

as its first three answers to the query.
When micro-PROLOG has found all the answers to the

second condition 'y father-of a" for yHenry it can only find
more answers to the query by returning to its interrupted search

1.4 Evaluation of queries 	 53

for all solutions to first condition "x father-of y'. The next
solution it finds is

x=Henry, y=Mary

produced by the match with the sentence

Henry father-of Mary.

micro-PROLOG again interrupts the search for all the solutions to
"x father-of y", to find all the solutions to the remaining
condition

y father-of z (with x = Henry, y = Mary)

This is the condition

Mary father-of z

There are no solutions to this condition for there are no
matching sentences in the data base. So the xHenry,yMary
solution to the first condition is not compatible with the second
condition and does not lead to any solutions to the conjunctive
query. Once more micro-PROLOG returns to its search for the
solutions to x father-of y'. The last two solutions it finds are:

x = Henry, y = Elizabeth2
xHenry, yEdward

On finding each solution micro-PROLOG again interrupts its
search to look for all solutions of the second condition y father-
of z" with the found value of y. The first solution of these two
solutions causes it to look for all solutions to

Elizabeth2 father-of z,

and the second causes it to look for all solutions to

Edward father-of z.

In each case, there are no solutions; there are no values for z that
make them sentences of the data base. So micro-PROLOG finds
no more answers to the original query.

The method of evaluation of

54 	 1. Facts and queries

which(x z : x father-of y & y father-of z)

can be expressed in the control reading

for all the x and y that satisfy x father-of y
find each z that satisfies y father-of z
and display x and a

Evaluation of conjunctive is queries

The evaluation of an is query with a conjunctive condition
proceeds in exactly the same way as that of a conjunctive which
query. micro-PROLOG starts off as though it were trying to find
all the solutions for the conjunction of conditions given in the
query. It stops as soon as it finds one solution to the query,
giving the answer YES'. If it cannot find any solution, we get
the answer 'NO".

System note - tracing queries using the SIMTRACE program - if you are
using a computer to follow the examples and the exercises you can use
a special program called SIMTRACE to follow through the evaluation
of both which and is queries. This program will be on the distribution
tape along with the SIMPLE front-end program. To use the trace
program do a

load SIMTRACE

command. Now, instead of using all or which use all-trace and instead
of is use is-trace.

As an example, if you pose the query

all-trace(x Henry-Sot father-of x & x male)

you will be taken step by step through the evaluation of the query. The
first thing you will see is the message

(1) Henry-Sne father-of X trace?

and the evaluation will suspend waiting for your response. The "(1)" tells
you it is the first condition of the query. Notice that the "x" of the
query has become "X". This is the variable renaming that micro-
PROLOG does which we have already mentioned. When a condition is
displayed by the trace program the first variable in the condition will
always be named "X", the second "Y", the third '7" and so on in the

1.4 Evaluation of queries 	 55

sequence X, Y, Z, x, y, a, Xl, Yl,
For tracing you should respond by entering y (that is, type y and

then hit the RETURN or ENTER key). If you do not want tracing of
this condition enter n. With the y response micro-PROLOG will take
you through its scan of sentence for "father-of" telling you whether
there is a successful match or not. With the n response it will just tell
you when it has solved the condition. When the condition is solved
you will get the message

(1) solved : Henry father-of Mary

with the variable replaced by the value found by the successful match
with a sentence. The trace will then move on to the next condition,
replacing the x variable of that condition with the value it has found.
You will then get the prompt:

(2) Mary male trace?

If you respond by entering y you will be taken through the attempts to
match the condition with each sentence about male'. When it has
unsuccessfully tried the last sentence you will gee the message

failing (2)

and the trace will return to find the next solution to the first condition
and so on. You always get the "failing" message for a condition when
micro-PROLOG has reached the end of the list of sentences for its
relation even if a match with an earlier sentence had been successful.
So, just before the end of the evaluation of the query you will get the
message

failing (1)

to indicate that all the sentences for "father-of" have been scanned. You
will then get the finish message

No (more) answers.

Try all-trace and is-trace with several queries until you understand
the evaluation method.

For more information on the use of the trace program consult the
chapter on SIMPLE in your Reference Manual. There are other
responses that you can make when prompted with "trace?". In particular,
q will quit the evaluation of the traced query.

To get rid of the trace program when you have finished using it
you can do a

&. kill simtrace-mod

56 	 1. Facts and queries

command. "simtrace-mod' (all lower case) is the name of the single
module contained in the SIMTRACE program. This is another use of
kill. It can be used to get rid of a whole set of relation definitions
wrapped up as a module just by giving the name of the module. All
the modules supplied with the micro-PROLOG system have names of
the form "<name>-mod".

Exercises 1-4

1. We will add further sentences to our geographical data base, giving
information about the latitude and longitude of each city, using the
form

city location (latitude longitude)

with figures given in degrees. Figures North and East are given as
positive integers, figures South and West as negative integers.

Washington-DC location (38 -77)
Ottawa location (45 -76)
London location (51 0)
Paris location (48 2)
Rome location (41 12)
Lagos location (6 -3)

Give the micro-PROLOG queries that correspond to the following
English questions:

a. Which cities are North of London?
b. Which cities are West of Rome?
c. Is there a European country whose capital is North of Rome and

South of London?
d. Which countries in Europe have capitals that are East of London?
e. In which country and continent is there a city that is South and

West of Rome?

2. 1 have been sent on a shopping expedition, with a data base
describing the financial situation.

Wallet contains 98
Cheese costs 84
Bread costs 40
Apple costs 12

Obtain answers to the following questions, using micro-PROLOG
queries:

1.4 Evaluation of queries 	 57

a. How many apples can I afford to buy?
b. Can I afford to buy the bread and the cheese?
c. How much is left in my wallet after I have bought the cheese and

one apple?
d. How much more money will I need in order to buy five apples

and three loaves of bread?

3. Add information about the year of publication to the books data
base using sentences such as:

Oliver-Twist published 1849
Great-Expectations published 1853
Macbeth published 1623

Guess the dates if need be.

Pose the following as micro-PROLOG queries:
a. Was Oliver-Twist published in 1850?
b. What was published in 1623?
c. When was Tom-Sawyer published?
d. Were Oliver-Twist and Great-Expectations published in the same

year?
e. Was Macbeth published before Romeo-And-Juliet
f. What was published before For-Whom-The-Bell-Tolls
g. Was anything published before 1600?

1.5 	Efficient queries

Now that we know how micro-PROLOG evaluates queries,
particularly conjunctive queries, we can see that the way in which
we pose a query can effect the efficiency with which micro-
PROLOG finds the answers. Thus,

which(x : Henry father-of x and x male) and
which(x : x male and Henry father-of x)

are equivalent queries and will produce exactly the same set of
answers. However, in answering the first query, micro-PROLOG
will use the condition, Henry father-of x" to find values for x
that it checks with the 'x male' condition. In answering the
second, it uses the condition "x male" to find the different values
for x which it then checks with the "Henry father-of x" condition.
So the queries are not control equivalent. Their respective control
readings are

58
	

1. Facts and queries

For all the x that satisfy Henry father-of x
if x satisfies x male, display x

For all the x that satisfy x male
if x satisfies Henry father of x, display x

In a much larger data base than our FAMILY data base,
where there will be far fewer children of Henry than males, the
first query will be answered more efficiently. For each child of
Henry it will do a search through all the sentences for the 'male"
relation. In evaluating the second query, for each male recorded in
the data base it will search through all the sentences for the
"father-of" relation. As a general rule, when a query has two or
more conditions on a variable we should put first the condition
which will have the fewest number of Solutions.

2. Rules

Often we want to ask the same conjunctive query many
times, in which case it becomes tedious to be have to repeat the
same conjunction of conditions. It would be convenient if we
could in some way abbreviate the query condition. Also it would
be useful to be able to draw conclusions from the facts in the
data base. For example, that Henry-Snr is the father of Henry
implies that he is a parent of Henry. We would like to be able
to conclude "Henry-Snr parent-of Henry" without having to have
this as an explicit fact in the data base. To be able to draw
conclusions and to abbreviate queries we need to use rules.

2.1 Turning queries into rules

If we look at Exercise 1-2(1).f we see that we are really
asking for all instances of the paternal grandfather relation defined
by the conjunctive condition of the query:

which(x y : x father-of z and z father-of y) 	 (A)

The pairs x y which are produced as answers to the query
are all the pairs in the "paternal-grandfather-of" relation that the
data base knows about.

If we often wanted to find instances of this relation it
would be more convenient if the data base recorded all the
instances

Henry-Snr Mary
Henry-Snr Elizabeth2
Henry-Snr Edward

that are given as answers to the query. A straightforward way to
do this, is to explicitly record them by adding facts about the
'paternal-grandfather-of" relation:

Henry-Snr paternal-grandfather-of Mary
Henry-Snr paternal-grandfather-of Elizabeth2 	 (1)

Henry-Srir paternal-grandfather-of Edward

60 	 2. Rules

We could now get the effect of query (A) with the simpler query

which(x y : x paternal-grandfather-of y) 	 (B)

There is an alternative to this explicit recording of the
instances of the new relation defined by a query. We can add
just one sentence that links the new relation to the conjunctive
query condition that defines it. This new sentence is a rule that
gives an implicit definition of the new relation. The rule is
expressed using a new form of sentence, the conditional sentence.
The which query:

which(x z : x father-of y and y father-of z)

becomes the rule:

paternal-grandfather-of y if x father-of z 	 (2)
and z father-of y

A conditional sentence is added to the program in just the same
way that simple sentence facts are added:

add(x paternal-grandfather-of y if x father-of z
and z father-of y)

Rule (2) is equivalent to the set of facts (1). When used to
answer query (B), it has the effect of transforming it into our
original query (A).

The logical (or descriptive) reading of the rule is:

x is a paternal grandfather of y if
x is the father of z and
z is the father of y, for some z.

The control (or imperative) reading reflects the way it is
used to solve query conditions for the"paternal-grandfather-of"
relation. We should read it as:

To solve: x paternal-grandfather-of y,
solve the conjunction : x father-of z and z father-of y

For different specific uses we can elaborate this control reading.
For example, for the finding grandchildren use it can be read:

62 	 2. Rules

of the 'parent-of" relation provided by these two rules is just as
good as a set of simple sentences giving all the facts about the
relation. Indeed, they are better. By having "parent-of' defined by
rules we automatically augment the instances of this relation that
we can retrieve whenever we add new "father-of" or new "mother-
of" facts. If the relation was described by facts we should also
have to explicitly add new "parent-of' facts. The way they are
used is indicated by the following control reading of the two
sentences:

To solve a condition of the form : x parent-of y,
solve the condition x father-of y.

or
solve the condition : x mother-of y

Here, the or is a non-deterministic branch giving an alternative
way of solving the condition to be used after the first method
has been tried.

The two rules give micro-PROLOG two different ways of
solving conditions about the new relation "parent-of". They are a
complete program, because logically they together cover all the
instances of the relation implicitly given by the "father-of",
"mother-of" facts of the data base.

To answer the query:

which(x : x parent-of Elizabeth2)

micro-PROLOG will use both rules. Using the first rule
transforms the condition of the query into:

x father-of Elizabeth2

and the second rule transforms it into:

x mother-of Elizabeth2

We therefore get the two answers:

Henry
Mary

They come in this order, because rule (3) comes before rule (4)
and so will be used first,

2.1 	Turning queries into rules 	 63

Variables in rules

If we list the rules for the relation we get:

&.Iist parent-of

X parent-of Y if
X father-of Y

X parent-of Y if
X mother-of Y

&.

Again the rules are listed in the order that they were added.
But notice that micro-PROLOG has changed our lower case "x"
and "y" to upper case X" and 'Y". It can do this because the
actual variable names used in a rule are not important. It can
replace a variable, without affecting the meaning of the rule,
providing the replacement appears in exactly the same position as
the variable it replaces. micro-PROLOG changes variable names
but never violates this constraint. It actually 'forgets' the original
variable names and remembers only the positions that they
occupied in the rule.

Conditional Sentences

The rules we have used so far are examples of conditional
sentences. A conditional sentence is a sentence of the form

<simple sentence> if <condition> [and ... and <condition>]

where each condition is a simple sentence.
A conditional sentence is technically termed an implication.

The conclusion (technically the consequent) is the simple sentence on
the left of the if'. The condition of the sentence (technically the
antecedent) is the single condition or the conjunctive condition on
the right of the "if".

Any sentence that contains variables is a rule. So far we
have only used simple sentences without variables and conditional
sentences with variables. The former we have called facts. We can
also have conditional sentences without variables, e.g.

Bill likes Jim if Jim likes Bill,

64 	 2. Rules

and we can have simple sentences with variables, e.g.

Bill likes x 	(Bill likes everyone).

In the next chapter we shall have frequent need of these
simple sentence rules. For the time being we shall continue to use
only facts (simple sentences without variables) and conditional
rules (conditional sentences with variables).

The set of all the facts in a micro-PROLOG program is Its
data base. The conditional rules enable us to abbreviate queries by
defining new relations in terms of the relations of the data base.
When queried about these new relations micro-PROLOG uses
these rules to interrogate the data base.

Logical reading of a conditional rule

Suppose we have a conditional rule of the form

S if C

Let yl.....yk be the variables of the sentence that only appear
in the antecedent C. We can read the rule as the implication:

S if C, for some yl.....yk.

It is understood that each variable xl,..,xn in the consequent S
represents an arbitrary individual. The rule says that for any
x1.,xn the conclusion S is true whenever the condition C is for
some yl.....yk.

We can now see why the rule:

x paternal-grandfather-of y if
x father-of z &
z father-of y

is read as:

is the paternal grandfather of y if x is the father of
z is the father of y, for some z.

The for some a is tagged on because z only appears in the
condition of the rule.

2.1 Turning queries into rules 	 65

Control reading of: S if C

The general purpose control reading is:

to answer a condition of the form: S,
answer the condition: C.

For particular uses of the rule, that is for cases where we can
assume that certain arguments of the relation of S are given
whilst the others are to be found, we can often refine this general
purpose control reading.

Exercziei 2-1

1. Using the FAMILY data base, add rules to define the following
relations:

a. x maternal-grandmother-of y
b. x father-of-son y
c. x mother-of-daughter y

2. Using the geographical example developed in Exercise 1-1(2),
complete these rules:

a. x city-in Europe if
b. x North-of London if
C. x West-of y if

Use these rule defined relations to pose the following queries:

d. What cities are there in Europe?
e. Is anywhere north of London?
f. Which places are north of London and west of Rome?

3. Using the books data base developed in Exercise 1-1(3), express the
following information as rules added to the program:

a. A book is classified as fiction if it is a novel or a play. Give two
rules of the form: x fiction if

b. Anything written by William-Shakespeare or Charles-Dickens is a
classic.

Give rules of the form: x classic if

66 	 2. Rules

c. Any book published after 1900 is contemporary literature. Give a
rule of the form: x cont-literature if

Use these relations to pose the following:

d. Which books are classics?
e. Who wrote books published before 1900?
f. Which books of fiction are also contemporary literature.

Rules can use rule-defined relations

The relations that we have defined using rules can
themselves be used in rules to define further relations. We can
build up a hierarchy of such relations with the data base relations
at the bottom. We can, for instance, define the relationship
grandparent-of" in terms of "parent-of". In semi-English we would

say:

Somebody x is a grandparent of somebody y
if x is the parent of z and z is a parent of y, for

some z.

We can add a conditional sentence to our program expressing this
rule:

grandparent-of y if
parent-of z and
parent-of y

The general purpose control reading of the rule is:

To answer a condition of the form x grandparent-of y,
answer the conjunctive condition:

parent-of z and z parent-of y

We leave the reader to give the refinements of this control
reading for the special cases of finding a grandchild and finding a
grandparent. The control reading for the checking use is:

To check that x grandparent-of y for given x and y
find a z such that x parent-of z
such that z parent-of y can be confirmed

The grandparent-of" rule makes use of the 'parent-of"

2.1 Turning queries into rules 	 67

relation which is itself defined by rules. This does not matter.
micro-PROLOG can use this rule defining the grandparent relation
independently of whether the parent relation is defined explicitly
by facts in the data base, or implicitly by rules. It discovers
which is the case, and behaves accordingly, when it reduces a
condition about 'grandparent-of" to the conjunctive condition
about "parent-of".

The program co far

Our program, from simple beginnings, has now grown
somewhat. To conclude its development at present, let us list it in
its current state, to see what our changes have produced.

&.list all
Henry-Snr father-of Henry
Henry father-of Mary
Henry father-of Elizabeth2
Henry father-of Edward
Elizabeth 1 mother-of Henry
Katherine mother-of Mary
Jane mother-of Edward
Anne mother-of Elizabeth2
Henry-Snr male
Henry male
Edward male
Elizabethi female
Katherine female
Mary female
Elizabeth2 female
Anne female
Jane female

paternal-grandfather-of y if
x father-of z and
z father-of y

parent-of y if
x father-of y

parent-of y if
x mother-of y

grandparent-of y if
parent-of z and
parent-of y

&.

facts

rules

68 	 2. Rules

System note - Suspending the screen display - This program is sufficiently
large to not fit onto a single screen. micro-PROLOG allows you to
suspend the display on the screen temporarily so that you can read the
information at your leisure. The display is stopped by using the STOP
key (SYMBOL SHIFT together with A) and restarted bagain by typing
any key.

Exercises 2-2

1. Give micro-PROLOG rules that define
a. x grandfather-of y
b. x grandmother-of y
c. x child-of y
d. x grandchild-of y

2. Answer the following micro-PROLOG queries about the FAMILY
data base:
a. which(x : x parent-of y)
b. one(x : Henry-Snr grandfather-of x)
c. is(Henry parent-of x and y grandfather-of x)

3. Give the micro-PROLOG queries for the following English questions:
a. Who was Edward's paternal grandmother?
b. Who are the mothers of Henry-Snr's grandchildren?
c. Did Katherine have a male child?
d. Who was the mother of a male child of Henry?

More on answer patterns

So far answers to queries have just been values for variables
given in the answer pattern of the query. We can also have text
displayed with each answer. We simply insert the text in the
answer pattern of the query. As an example, consider the query:

What are the names of mothers and their children?
which(x y : x mother-of y)
Elizabethi Henry
Katherine Mary
Jane Edward
Anne Elizabeth2
No (more) answers

We just get the pairs of names, which is not very informative.
We can also get the answers in the form:

2.1 Turning queries into rules 	 69

Elizabethi is the mother of Henry
Katherine is the mother of Mary

etc.

in which the inserted text "is the mother of' helps us to interpret

the answer. Each of these answers are instances of the answer
pattern

x is the mother of y

To get the message, we use this pattern instead of the answer
pattern "x y" of the original query:

&. which(x is the mother of y x mother-of y)
Elizabethi is the mother of Henry

Katherine is the mother of Mary
Jane is the mother of Edward
Anne is the mother of Elizabeth2

No (more) answers

We have simply added text to the answer pattern to affect the
form of our displayed answers. The text is only coincidentally

similar to the query pattern "x mother-of y". We can insert any
text into the list of variables of an answer pattern. It has no

effect on the query evaluation. The only constraint is that the

variables must be separated from the text by spaces. If they are
not, they will not be recognized as variables and their values will

not be displayed.

2.2 How queries involving rules are evaluated

We shall just consider the case of the evaluation of which
queries. The other query forms are answered in almost the same

way. The only difference is that for a one query we can quit the

evaluation each time an answer is found by entering n when
prompted, and for an is query the evaluation is always stopped

when one solution to the query condition is found.

In describing the way that micro-PROLOG answers which
queries with rule-defined relations we shall describe the general

method used by micro-PROLOG to find all the solutions to a
conjunctive query. This method applies whether the relations of
the conjunction are defined by facts, by general rules, or a

mixture of the two.

70 	 2. Rules

A conjunctive which query is of the form:

&.which(P : C & C' ..)

where C and C etc. are simple sentences. The query conditions C,
C'... will contain variables, some or all of which will appear in the
answer pattern P.

What micro-PROLOG must do is find all the different ways
in which the variables of the conjunction of conditions can be
given values so that each of the conditions becomes a sentence in
the data base, or a sentence that can be inferred from the data
base using the rules. Each set of values is a solution to the
conjunctive condition of the query. For each solution, micro-
PROLOG displays the answer pattern P.

micro-PROLOG begins its search for all the solutions to the
conjunction of conditions by looking for all the different ways it
can solve the first condition C. As soon as it solves C it
interrupts its search for further solutions to C. If C contained
variables the solution will have given values to these variables.

micro-PROLOG now looks for all the solutions to the rest
of the conjunctive query that are compatible with these found
values. In effect, it 'passes on' the values for the variables that
solve C to the rest of the query.

When it has found all the solutions to the rest of the query
that are compatible with this first solution to C, it returns to find
the next way to solve C. On finding the next solution, it again
immediately passes any variable values of this solution on to the
rest of the query.

Only when it has found all the solutions to the rest of the
query compatible with this second solution to C does it return to
look for the third solution to C. It continues in this way until it
can find no more solutions to C.

Backtracking

The way that micro-PROLOG searches for all the solutions
to a conjunctive condition is called a backtracking search. When
micro-PROLOG finds a solution to the first condition C, and
passes it on to the remaining conditions C &.., it is 'tracking
forward'. When it returns to find the next solution for C, it is
'tracking backward', or backtracking.

The evaluation of a conjunctive which query is a forwards
and backwards shuffle through the conditions of the query. Let us

2.2 How queries involving rules are evaluated 	 71

suppose that there are three conditions

C & C & C.

micro-PROLOG finds the first solution to C and passes it on to

C , & C.

It now looks for all the solutions to C & C" that are compatible

with this solution to C. It again starts by looking for a solution
to the first condition C.

It tries to solve C with the variable values given by the
first solution to C. If it can do this, it moves forward to U. It

tries to solve C" with the variable values given by the solution to

C & C that it has just found.
When it has found all solutions to C" (compatible with the

values for the variables of C and C'), it backtracks to look for

the next solution to C. It shuffles backwards and forwards
between C and C" until it has found all the solutions of

C & C"

compatible with the first solution to C. At that point, it

backtracks to look for the next solution to C.

The process of 'passing' on solutions to the rest of the
query represents a flow of 'information' from left to right in the

query. The first condition in which a variable appears is the
generator of values for that variable. These values are passed on to

the other conditions of the query in which the variable appears.

Rules

This backtracking search for all the solutions to a

compound query applies irrespective of whether the relations in

the query are defined by facts, rules or a mixture of the two. The
difference occurs only when micro-PROLOG picks off a condition

C in the query and starts to look for a solution to that

condition.
Let us suppose that the condition C refers to a rule defined

relation R. micro-PROLOG searches for solutions to the condition
as for a data base relation. It scans the list of sentences about R
looking for a match with the query condition. It scans them in

the order in which they were added to the program (the order in

72 	 2. Rules

which they are listed by the list command).
The extra complication is that it now has to match the

query condition with the consequent of a rule, which may contain
variables. Then, even when it has found a match, it has not yet
found a solution. It must interrupt its scan of the sentences for R
to find a solution to the query given by the condition of the
rule. Each solution to this auxiliary query is a solution to the
condition C.

Each time it finds a solution to the auxiliary query micro-
PROLOG interrupts its search to pass the solution on to any
remaining conditions of the original query. Now, backtracking to
find the next solution to C means backtracking to look for the
next solution to the auxiliary query. When it has found each
solution to the auxiliary query, it returns to its scan of the
program sentences for the relation R. Each rule with a consequent
that matches C gives rise to an auxiliary query. The solutions to
each of these auxiliary queries combine to give all the solutions
to C.

Summary of evaluation method

The evaluation method can be summarised by:

To find all the solutions to a conjunctive query:
for each way of solving the first condition find all the
compatible solutions of the remainder of the query.

To find all the solutions to a single condition
for each matching sentence, if it is a conditional rule
then find all the solutions to the conditions of the rule,
otherwise the matching sentence gives the solution.

Matching sentences are found by searching down the list of
sentences for the relation of the condition.

Example evaluation

Let us illustrate the invocation of rules during the evaluation
of a query by a simple example. Consider the query:

which(y : Henry-Snr grandfather-of y) 	 (E)

We shall assume that the rule

2.2 How queries involving rules are evaluated 	 73

grandfather-of y if
x father-of z and 	 (5)
z parent-of y

has been added to the program. (This was one of the answers to
Exercise 2-1.) micro-PROLOG must find all the values for the
variable y that are solutions to the query condition:

Henry-Snr grandfather-of y 	 (F)

There is only one sentence in the program about this
relation, the rule (5) given above. Now, remember that micro-
PROLOG forgets the variables used in a rule. It remembers only
their positions. When it starts to match a condition with the
consequent of the rule it gives the variables of the rule names. It
always gives them names that are different from the variable
names used in the query. Let us suppose it gives the x variable
of the rule the name xi, the y variable the name yl, and the z
variable the name zi. micro-PROLOG must match the query
condition (F) with the consequent

xi grandfather-of yl

of the rule

xi grandfather-of yl if
xi father-of zi and
zI parent-of yl

Matching is now a little more complicated. To obtain a
match, variables of the query condition and variables of the rule
may be given values. In this case only variables of the rule are
affected. The values xlHeriry-Snr and yly give an exact
match. Notice that yl has a value which is not the name of an
individual but the name of a variable in the query. With xi and
yl given these values the antecedent of the rule becomes the
conjunctive condition

Henry-Snr father-of zi and zi parent-of y

The task of finding all the solutions of

Henry.Snr grandfather-of y

74 	 2. Rules

has become the task of finding all the solutions of the new
conjunctive condition

Henry-Snr father-of zi and zi parent-of y 	 (G)

This is solved in the usual way. micro-PROLOG Starts by looking
for a solution to the condition Henry-Snr father-of zi". It finds
the first solution, zlHenry, by matching with the fact

Henry-Snr father-of Henry

micro-PROLOG immediately suspends its scan of the "father-of"
sentences to find all the solutions to the next condition

zi parent-of y

that are compatible with zi = Henry. It must find all the solutions
to the condition

Henry parent-of y 	 (H)

We now have another rule-defined relation. This time there
are two rules, which with renamed variables are:

x2 parent-of y2 if x2 father-of y2
x3 parent-of y3 if x3 mother-of y3.

The query condition Henry parent-of y" matches the first rule
when x2Henry, y2y, and it matches the second rule when
x3Henry,y3y. micro-PROLOG tries these rules one at a time,
in the above order. After the successful match with the first rule,
micro-PROLOG replaces condition (H) by the condition

Henry father-of y 	 (J)

The three solutions y=Mary, yElizabeth2, yEdward of
this condition are solutions of (H). All these solutions of (H)
paired, with the solution zi = Henry for the first condition of (G),
are solutions of (G). Finally, the y values of the solutions of (G)
are solutions of the single condition (F) of the original query. So
the first three answers to (E)

Mary

2.2 How queries involving rules are evaluated 	 75

Elizabeth2
Edward

will be displayed as each solution to (J) is found. When all the
solutions have been found micro-PROLOG backtracks to find
more ways of solving (H). It uses the second rule for parent-of".
This gives rise to the auxiliary query condition

Henry mother-of y

to which there are no solutions.
Remember (H) was produced when micro-PROLOG found

the first solution to the first condition of

Henry-Snr father-of zi and zi parent-of y

To find more solutions to the this conjunctive condition, and
hence more solutions to the original query, it returns to the task
of finding all the solutions to the first condition

Henry-Snr father-of zi

It continues its scan of the data base of sentences for "father-of".
There are no more sentences which match the condition. micro-
PROLOG must now backtrack to the original query condition

Henry-Snr grandfather-of y

to see if there are other sentences in the data base about
"grandfather-of". There are no more sentences so the search for
solutions stops.

System note - Tracing the evaluation - In Section 1.4 we briefly described
a utility module in the file SIMTRACE that can be used to trace the
evaluation of queries. If you are using a computer we strongly
recommend that you load SIMTRACE and use its all-trace command
to trace the above query. Try it on several queries with rule-defined
relations until you understand the evaluation method. During the trace,
the rule sentence that is being used to try to match a query condition
is identified by its position in the listing of sentences for its relation
together with the conclusion of the rule. If there is a successful match,
the new conditions introduced by the preconditions of the rule are
displayed as:

new query: <preconditions of the rule>

76 	 2. Rules

Now, when you are prompted with a condition of the new query
and asked whether it should be traced you will find that the condition
is identified by a list of numbers not just a single number. For
example, an identifier "(1 3)" will tell you that it is the first condition
of the query introduced by using a rule for the third condition of the
original query. The first number always gives the position in the Current
query. The rest of the list is the history back to the original query.

2.3 Recursive descriptions of relations

So far our rule-defined relations have been such that they
could be dispensed with. Queries using these relations could
always be expanded to longer queries that used only the relations
of the data base. This is because each rule defined a new relation
solely in terms of previously defined relations. There are some
relations that cannot be so simply defined. These are relations that
can only be described recursively, by definitions that refer back to
the relation being defined. For such relations the use of rules is
essential.

As an example, suppose that our FAMILY data base had
many generations in it, and that we wanted to query the data
base to find all the ancestors of Edward. If we knew that the
data base referred to exactly four generations of ancestors of
Edward we could find all of them with the query:

which(xl x2 x3 x4 : xi parent-of-x2 and
x2 parent-of x3 and
x3 parent-of x4 and
x4 parent-of Edward)

But if we do not know how many ancestors are given in the
data base we Cannot find all the ancestors with a single query.
This is because we cannot know how many "parent-of" conditions
will be needed to chain back to the earliest recorded ancestor. To
find all the ancestors with a single query, we need to define the
relation "ancestor-of".

If we wanted to explain to someone who their ancestors
were we might say:

Your ancestors are your parents and all the ancestors of your
parents.

2.3 Recursive descriptions of relations 	 77

This is a recursive (i.e. coming back on itself) definition because
the explanation makes use of the concept being explained. If they
'think through' the definition it tells them that their ancestors are:

their parents
their grandparents (who are the parent ancestors of

their parents)
their great-grandparents (who are the parent ancestors

- 	 of their grand-patents)
their great-great-grandparents (who are the parent

ancestors of their great-grandparents),

and so on until the records run Out.

We can express this recursive definition as the pair of micro-
PROLOG rules:

• ancestor-of y if x patent-of y
• ancestor-of y if z parent-of y and

x ancestor-of z

The logical reading is quite simply:

• is an ancestor of y if x is a parent of y.
• is an ancestor of y if z is a parent of y

and x is an ancestor of z, for some z.

The general purpose control reading of the two rules is:

To solve a condition the form : x ancestor-of y
solve the condition : x parent-of y.

To solve a condition of the form : x ancestor-of y
solve the conjunctive condition:

z parent-of y & x ancestor-of z

Notice that the definition comprises a recursive rule and a
non-recursive rule. All recursive definitions must have at least one
non-recursive rule or fact otherwise they are completely circular.

Given the task of finding all the ancestors of Edward with
a query:

which(x : x ancestor-of Edward)

78 	 2. Rules

micro-PROLOG will begin by using the first rule to replace the
condition of the query with the condition

parent-of Edward

When all the solutions to this condition have been found, and
the parents of Edward are found and listed, it will backtrack to
use the second rule to find more ancestors of Edward. This
converts the condition into

z parent-of Edward and x ancestor-of

Since the rule defining a parent as a father comes first, the
condition "a parent-of Edward" will be solved with z = Henry who
is the the father of Edward. Given this value for z, micro-
PROLOG looks for all solutions to the second condition which is
now

x ancestor-of Henry

When this has been answered, and all the ancestors of Henry
have been found, micro-PROLOG backtracks to the second way
of finding a parent of Edward. It finds his mother Jane. It then
finds and lists all her ancestors.

System note - tracing "ancestor-of' - Again we suggest that you use all-
trace to follow the evaluation of this query and other queries involving
ancestor-or on a computer. You will have to add the two rules

defining the relation to your program.
Notice the effect of the order of the two rules for "ancestor-or'

on the way that ancestors are found. If the recursive rule is placed
before the non-recursive rule the distant ancestors are found before the
parent ancestors. But also notice that the ordering in which the
recursive rule is second is crucial if we use the definition to answer the
query:

which(x y : x ancestor-of y)

Hand evaluate this query or follow it through using all-trace. Then
follow it through with the recursive rule first. You will find that micro-
PROLOG never finds an answer because it continually re-uses the
recursive rule on the 'ancestor-or' condition introduced by the use of
the rule. (If you use all-trace you can quit the trace by entering q
when prompted.) The moral is: put recursive rules defining a relation

2.3 Recursive descriptions of relations 	 79

after the non-recursive rules especially if the definition is to be used to
find all instances of the relation.

Separate definition of inverse relations

Logically our two rules defining the ancestor relation also
define the inverse relation descendant-of. To find the
descendants of Henry we could use the query

which(y Henry ancestor-of y)

micro-PROLOG will again begin by using the first rule to find
and list the children of Henry. It will then backtrack to expand
the query using the second rule to replace the query condition by

z parent-of y and Henry ancestor-of z

The finding of all solutions of this derived query condition
is a very inefficient search for the descendants of the children of
Henry. For in order to try to satisfy the condition "z parent-of y"
it will find each parent/child pair recorded in the data base and
check to see if the found parent is a descendant of Henry. The
only way to avoid this inefficiency is to give a separate definition
of the "descendant-of" relation, a definition that will be logically
equivalent to the definition of "ancestor-of" but which will have a
different control behaviour.

In particular, when used for finding descendants it will
generate the same kind of directed search as does the "ancestor-
of" definition when used to find ancestors.

The problem with the use of the "ancestor-of" definition for
finding descendants relates to the flow of values via the variables
of the rule. The rule:

x ancestor-of y if z parent-of y and x ancestor-of z

gives efficient retrieval if y is given. For then the first condition
"z parent-of y", with y known, has a much smaller set of possible
z values to pass on to the "x ancestor-of z" condition. To get a
similar flow for the case when x is given and y is to be found,
we should use the given x, find a child z of x, then find all the
descendants of z.

To optimize the finding of descendants, we must separately
define the "descendant-of" relation by the rules:

80 	 2. Rules

y descendant-of x if
parent-of y

y descendant-of x if
parent-of z and

y descendant-of z

These constitute a correct alternative definition of the
relation that holds between two people x and y when x is an
ancestor of y and, equivalently, when y is a descendant of x. For
purely pragmatic reasons, we should use these rules for finding
descendants and the ancestor rules for finding ancestors. For
checking whether two people are in the ancestor/descendant
relation either set of rules can be used. The queries:

is(Henry ancestor-of Edward)
is(Edward descendant-of Henry)

are logically equivalent and micro-PROLOG does comparable
work in answering each query. To answer the first it walks over
the family tree beginning at Edward, for the second it begins at
Henry. If the families described in the data base have on average
more than two children, the "ancestor-of form" of the query is
more efficiently answered. Why?

The contrast between the "ancestor-of" rules and the
"descendant-of" rules is reflected in the control reading of their
respective definitions for the finding descendants use. For this use
the "ancestor-of" program is read:

To find a y such that x ancestor-of y for given x
find a y such that x parent-of y

or
find a y and z such that z parent-of y and
check that x ancestor-of z can be confirmed

for the found z

The "descendant-of" rules are read:

To find a y such that y descendant-of x for given x
find a y such that x parent-of y

or
find a z such that x parent-of z for the given x
and then find a y such that y descendant-of z

for the found z

2.3 	Recursive descriptions of relations 	 81

We leave the reader to give appropriate control readings for each
definition for the finding ancestors and for the checking uses.

To observe the differences between the use of the 'ancestor-
of" definition and the use of "descendant-of" definition trace a
few queries using the relations with all-trace.

Exercises 2-3

1. Answer the following micro-PROLOG queries, using the FAMILY
data base:
a. which(x is male grandchild of y

grandchild-of y & x male)
b. one(x is a wife of Henry

y child-of Henry & x mother-of y)
c. which(x : x ancestor-of Edward)
d. which(x : x descendant-of Elizabethi)
e. is(Henry descendant-of Mary)
f. which(x : x descendant-of Henry-Snr and x female)

2. We have used the built-in relation LESS in queries. This can also be
used to define rules for other relations. For instance, to define the
relation "lesseq" (which means less than or equal to) we need just two
rules:

x lesseq x

This rule simply stares that everything is less than or equal to itself.
The other rule is:

x lesseq y if x LESS y

This rule says that if two numbers (or words) are in the LESS relation
then they are also in the lesseq relation.

a. Define the relation "greater-than'.
b. Define the relation "greateq" (greater than or equal to).
c. Define the relation "divisible-by" in terms of TIMES.

Notice that because of the restrictions on the use of the arithmetic
primitives your rules for these relations can only be used for
confirming.

82 	 2. Rules

3. Using the books data base, add rules defining the relations:
a. x Nineteenth-Century-Author : x has written a book published in

the 19th century.
b. x Contemporary-Playwright: x has written a play published in the

20th century.

Add a rule to express the following information:
c. A book is available from the time it is published. Do this by

defining the relation x available-at y" which holds when x is a
book and y is a year later than the year of publication.

Express the following questions as micro-PROLOG queries:
d. What books were available in 1899?
e. What works of nineteenth century authors were available in 1980?

4. The bicycle parts data base of Exercise 1-1(4) made use of a single
relation 'part-or' to describe the structure of a bicycle. This was actually
the direct part of relation which was why the query

is(lights part-of bicycle)

gets the answer NO" even though lights are indirectly part of a bicycle
since they are part of the electrical system which is part a bicycle.
What we need to do is define the relation 'indirect-part-or'. This bears
the same relation to "part-or' as the relation "descendant-or' bears to
-parent-or'.

a. Define the relation: x indirect-part-of y
b. Define the relation: x indirectly-contains y

Add these definitions to the parts data base and use them to
answer the questions:

c. What are all the indirect parts of a bicycle?
d. What parts indirectly contain spokes?

Recursive description of arithmetic relations

In the above exercise some new arithmetic relations were
defined in terms of the arithmetic primitives. If we use recursive
definitions we can define every arithmetic function as a micro-
PROLOG relation.

Let us first consider the factorial function. The factorial of
a positive integer N is the product of all the numbers between 1
and N:

2.3 Recursive descriptions of relations 	 83

i*2* *N

Since this product can be written as

(i*2* ... *(Ni))*N when NM

we can see that the factorial of a number greater than 1 is the
factorial of (N-i) multiplied by N. This gives us the recursive
characterization we need. As we have already remarked, every
recursive definition must have at least one non-recursive sentence.
In the case of factorial, the non-recursive rule will be a fact
which defines factorial when N = 1.

Let us use x factorial y" to mean that y is the factorial of
the positive integer x. The following two sentences give us a
complete recursive definition of the relation:

1 factorial 1
x factorial y if

1 LESS x &
SUM(xl 1 x) &
xi factorial yl &
TIMES(x yi y)

If we add them we can use them to find factorial values with
queries such as:

which(x : 6 factorial x)

The control reading of the rules for the use to compute
factorial values is:

To find a y such that x factorial y for given x
if x1,y1 or
if 1 LESS x

subtract 1 from x to give xi
find yl such that xi factorial yl
multiply yi by x to get y

Because of the test restriction on the use of LESS the
definition can only be used when the first argument is given. It
can therefore only be used for finding factorials or for testing
that a pair of numbers are in the factorial" relation.

84 	 2. Rules

&.is(3 factorial 6)
YES

If we try to use the definition to find the factorial of a
negative number or a non-integer number micro-PROLOG's use
of the definition will ultimately fail to solve the query condition.
For a negative number, neither rule applies. For a positive non-
integer number the use of the recursive rule will eventually reduce
the condition to the task of finding the factorial of a number less
than 1 and again neither rule will apply. This failure is entirely
appropriate, since the "factorial" relation is only supposed to relate
positive integers. We could extend the relation by replacing "1
factorial 1" by the rule:

x factorial 1 if x lesseq 1

Now it is defined for all numbers greater than or equal to one.
Try the new definition to find the factorial of 4.5. You will need
to enter the definition of "lesseq" given in Exercise 2-3(2).

Recursive definition of a range of integers

The definition of "factorial' cannot be used compute the
inverse of the factorial function because of the test only
restriction of LESS. But let us suppose that the relation could be
used to generate as well as test to see how our factorial
definition might have been used to find a number whose factorial
is a given value. In solving a condition in which y is given and
is to be found, the rule

x factorial y if
1 LESS x &
SUM(xl 1 x) &
xi factorial yl &
TIMES(x yl y)

will try to use the condition "0 LESS x" to generate candidate
values of the number x greater than 0. The factorial of each
candidate value will then be computed and checked against the
given y. If LESS were defined in such a way that it would
generate different integer values for x in the order 2,3,4.... then
the use of the rule would be an iterative search through the
sequence of values to find a number whose factorial is y. In fact,
we know that the value of x can never be more than y. So for a

2.3 	Recursive descriptions of relations 	 85

definition of the factorial relation for the inverse use we can
replace the condition

1 LESS x

by the stronger condition

x between (2 y)

where "x between (y z)" holds when y <= x and x < z. Let us
see if we can define this relation in such a way that it can be
used to generate all the x's in a given range (y z).

Let us first try to get a non-recursive rule. What number is
definitely in the range y <= x < z. The number y is, providing y
is less than a. This gives us a non-recursive rule:

y between (y z) if y LESS z

This covers the case of x being at the left end of the interval.
We now look for a recursive rule for "x between (y a)" to cover
the case when x is inside the interval. What conditions guarantee
that a value x other than y is between y and a. The conditions
that y + 1 is less than a and that x is between y + 1 and z. This
gives us a recursive rule:

x between (y z) if
SUM(y 1 yl) &
yl LESS z &
x between (yl z)

Now let us turn to its use by micro-PROLOG to find all
the numbers in a given range.

In answering the query

all(x : x between (1 3)) 	 (A)

micro-PROLOG will first use the non-recursive rule which will
give x the value 1 and reduce the condition "x between (1 3)" to

1 LESS 3

which will be solved. This gives the first answer to the query.
Backtracking will then result in the use of the recursive rule
which transforms (A) into

86 	 2. Rules

SUM(1 1 yl) & yl LESS 3 & x between (yl 3)

When the first two conditions are solved this becomes the single
condition

x between (2 3)

which will give all the remaining answers to the original query.
Again the non-recursive rule will be applied to find the first

value x = 2 that satisfies this condition and then the use of the
recursive rule reduces it to

SUM(2 1 yl) & yl LESS 3 & x between (3 3)

This time the second condition cannot be confirmed for the value
yl3. So this last application of the rule fails to find more
solutions. The answer to the query is therefore

2
3
No (more) answers

For the use to find a number in a given range the control
reading of the between' program is

To find an x such that x between (y a) for given y,z
if y LESS a, let xy

or
add 1 to y to get yl then
if yl LESS z, find an x such that x between (yl a)

Defining inverse factorial

Let us now return to the definition of the factorial relation.
We can define the inverse relation "fact-of" by a single rule:

y fact-of x if x between (1 y) & x factorial y

The extra condition "x between (1 a)" is logically redundant but is
there to act as a generator of candidate values for x when y is
given. Each candidate value is tested by the condition 'x factorial
y" which uses the old definition to check if its factorial is y. The

2.3 Recursive descriptions of relations 	 87

definition should not be used to find a y given x for with y a
variable the evaluation of "x between (1 y)" will result in a "Too
many variables" error when the condition "1 LESS y" is checked.
However, like the "factorial" definition it can be used for
checking that a pair of numbers are in the factorial relation.

For the inverse factorial use it has the control reading

To find an x such that y fact-of x for given x
find an x in the range 1 to y
such that x factorial y is confirmed

Defining the property of being a divisible integer

A positive integer x has a proper divisor if there is some
integer between 2 and x that divides x. This gives us the
definition:

x has-divisor if y between (2 x) & TIMES(y z x)

The definition can be used as a micro-PROLOG program to test
if a number has a divisor. Coupled with a "between" condition it
can be used to find all the divisible numbers in a given range.

all(x : x between (2 10) & x has-divisor)

will give you all the divisible integers between 2 and 10.

Exercises 2-4

1. Consider the following two rules about greatest common divisors:

Rule (A): The greatest common divisor of a pair of equal positive
integers is their common value.

Rule (B): The greatest common divisor of a pair of unequal
positive integers is the greatest common divisor of the smaller integer
and their difference.

Encode these properties of the relation as a recursive micro-
PROLOG definition of the relation

(x y) GCD a

which holds when x and y are positive integers and z is their greatest
common divisor. Rule (B) will need to be expressed as two rules, one

88
	

2. Rules

for the case when x is less than y and the other for the case that y is
less than x. Use your definition to find the greatest common divisor of
different pairs of positive integers.

2. The definition of between' given above excludes the upper end of
the interval. Add an extra rule so that it is included. Where must you

position the rule so that the upper limit is the last value given when
you are trying to find all the numbers in an interval.

3. Define the property 'even" that holds if a number is divisible by 2
using the TIMES relation. Use this relation and "between" to define

x even-num-in (y a)

x is an even integer in the range y <= x

Use the definition to find all the even numbers in the range 1 to 100.

4. Pose a query to find all the pairs of positive integers whose product
is 12. You need to use "between'.

5. Define the relation

x divisor-of y

is an integer between 2 and y that exactly divides y

Use your definition to find all the positive integer divisors of some
integer.

	

3. 	Lists

	

3.1 	List as Individuals

So far we have only seen how to handle facts that referred
to single individuals. Sometimes it is more convenient to have a
fact that refers to a list of individuals. This is quite common in
English. We say:

John enjoys football, cricket and rugby

which is a fact that relates John to the list (football cricket
rugby) of games that he enjoys. We can represent this compound
fact in micro-PROLOG by three simple sentences:

John enjoys football
John enjoys cricket 	 (1)
John enjoys rugby

We can also represent it by a single sentence:

John enjoys (football cricket rugby) 	 (2)

in which we collect together the games that John enjoys as a list
(football cricket rugby). The query:

&.which(x : John enjoys x)

used with this single sentence program (2) will produce the
response:

(football cricket rugby)
No (more) answers

90 	 3, Lists

because the pattern "John enjoys x" matches the data base
sentence only when x is this list. The advantage of using lists in
place of single individuals is that we often get a more natural
and compact representation of information. The disadvantage is
that we must sometimes do some work to get at the individuals
in a list. With the information about John represented by the
three sentences (1) we can directly query the data base about
individual games. The query:

&.is(John enjoys football)

will return the answer YES'. But for representation (2) the query
will get the answer "NO". This is because there is no sentence in
the data base that exactly matches the query. To find out if John
enjoys football we must be able to get at the components of the
list of games (football cricket rugby).

Exercises 3-1

1. You have this micro-PROLOG program which is an alternative
representation of the bicycle parts data:

(wheel frame pedals saddle handle-bars
lighting-system brake-system) part-of bicycle

(hub spokes gear-cogs) part-of wheel
(brake-cable brake-block) part-of brake-system
(dynamo lights electric-flex) part-of lighting-system

Answer these micro-PROLOG queries:
a. which(x : x part-of y)
b. is(x part-of dynamo)
c. which(x : y part-of x)
d. is(dynamo part-of lighting -system)

2. Re-express the books data base information using lists of words for
titles and author names. For example, the sentence:

Oliver-Twist written-by Charles-Dickens
becomes

(Oliver Twist) written-by (Charles Dickens)

This enables us to separate authors' surnames from their first name.
"written-by" is now a relation between a list of words of the title and a
list of the names of an author.

3.2 Getting at the members of a list of fixed length 	 91

3.2 Getting at the members of a list of fixed length

To get at the components of a list we have to elaborate
the idea of patterns and pattern-matching introduced earlier. To
illustrate these ideas, let us look at a different way of representing
information about family relationships which makes use of lists.

Initially we recorded the parent-child information by having
separate sentences giving each of the children of each parent.
Using lists we can collect together all the information about a
particular family in one sentence of the form:

(father mother) parents-of (all their children)

The facts of the family relations data base are now sentences
such as:

(Henry Sally) parents-of (Margaret Bob)
(Henry Mary) parents-of (Elizabeth Bill Paul)
(Bill Jane) parents-of (Jim)
(Paul Jill) parents-of (John Janet)

The sentence

(Bill Jane) parents-of (Jim)

records the only child of Bill and Jane in a list with just one
name. In this case, we might have expressed this information in
the sentence

(Bill Jane) parents-of Jim

But then our facts about families would not have been all of the
same form. In some we would have lists of children, in some just
single names. It is important that all sentences about a relation all
have a uniform pattern. micro-PROLOG retrieves data by
matching sentences with patterns, and patterns are critical when
we use lists. So, for uniformity, we have recorded the only child
in a list of one name.

The expression "(Jim)" is a list because of the brackets. If
we drop the name altogether, writing "Q", we have a list of no
names: we have an empty list. We can use the empty list to
record information about couples with no children. We can have

92
	

3 Lists

a sentence such as:

(Samuel Sarah) parents-of Q

This records the fact that Samuel and Sarah are to be treated as
a couple but it also tells us they have no children. (If we had
been using the father-of", mother-of" relations to record the
family data we would have to record this information using an
auxiliary relation partner-of".)

System note - use accept - If you are following the text using a
computer enter the above "parents-of" facts using accept. When you
give the list of the two arguments of the relation remember that each
argument is now itself a list. So, the above fact is represented in the
prefix form required by accept as

parents-of ((Samuel Sarah) ())

Suppose that we now want to retrieve the children of
Henry. The data giving Henry's children is contained in all the
sentences of the form:

(Henry y) parents-of

So the query is:

which(x : (Henry y) parents-of x)
(Margaret Bob)
(Elizabeth Bill Paul)
No (more) answers

Consider the sentence pattern

(x y) parents-of (xi x2 0

This will match any fact in the data base about a family with
three children xl, x2, x3. We can therefore use this to retrieve
information about all the three-child families.

all (children xi x2 x3 father x mother y
(x y) parents-of (xi x2 x3))

(children Elizabeth Bill Paul father Henry mother Mary)
No (more) answers

3.2 Getting at the members of a list of fixed length 	 93

Here we have used an answer pattern to rearrange the retrieved
data and to give some documentation.

The pattern

(x y) parents-of z

matches every fact in the data base about families. In this pattern
x is the father, y is the mother and z the list of children. We
can, therefore, define 'father-of-children" and mother-of-children"
relations with the rules:

x father-of-children z if (x y) parents-of z
y mother-of-children z if (x y) parents-of z

Then a typical query to find the children of Jill would be:

which(z : Jill mother-of-children z)
(John Janet)
No (more) answers

We get a list of children because we have defined "mother-of-
children" as a relation between an individual and the list of
children with the same father.

Exercises 3-2

1. Using the notation for the empty list, give a definition of the
relation "x childless-wife" in terms of "parents-of".

2. Using the example program above, answer the following micro-
PROLOG queries:
a. which(x : (Bill x) parents-of y)
b. which(x y : (z x) parents-of (x y))
c. is((Henry x) parents-of (y z X))
d. which(x : (x y) parents-of z)
e. all(x father y mother z child X child : (x y) parents-of (a X))
f. which(x : Paul father-of-children x)

3. Using the new books data base, answer the following micro-
PROLOG queries:
a. which(x : (Oliver Twist) written-by (Charles x))
b. is((Great x) type Novel)
c. which(x y : x written-by (Mark y))
d. which(x was a great playwright : (Macbeth) written-by x)

94 	 3, Lists

e. which(x (x y) written-by z)

Lists of lists

Just as the individuals of a relation can be lists, so the
individuals, more technically the elements, of a list can be lists.
Indeed we can arbitrarily mix names of individuals with lists, with
lists of lists, and so on. There is no constraint on the mix that
we can have or the degree to which we can have nested list
structures. As an example

((a b) c () ((d) e))

is a list of four elements. The first element is a (sub)list of two
names "a" and 'b". The second element is a name, "c'. The third
is the empty list "Q", and the fourth is a list comprising a
(sub)list of one name "(d)" and the name "e".

Of course, if we do use such nested Structures to record
information we should normally stick to one 'pattern', the pattern
that we can then use to get at the components of the structure.

We can use lists of lists to put more information into each
fact of our family data base. Instead of having each person
represented just by their name we could represent them by a list
of data about them. For example, we could use a list of two
elements comprising the name and age. We would then have facts
such as

((Bill 53) (Jane 47)) parents-of ((Jim 17))

The above definitions for "father-of-children" and "mother-of-
children" are still valid. The only difference is that they now
define relations between a list (representing a single parent) and a
list of lists (representing a list of children). To find the children
of Jane we must use the query

which(x (Jane y) mother-of-children x)
((Jim 17))
No (more) answers

Notice that we have named Jane with the list (Jane y). This is
because we know that she is denoted by such a two-element list
in which the second element is her age. By giving the age as a
variable in the query we do not need to guess the age. The

3.2 Getting at the members of a list of fixed length 	 95

answer we get is a list of lists telling us that she has one
seventeen-year old child named Jim.

Termi

We are now in a position to give a complete description of
the syntax of the allowed arguments relations. The argument of a
relation can be term, where a term is:

a constant (i.e. a name)
a number
a variable
a (possibly empty) list of terms

3.3 Getting at the members of a list of unknown length

Using a list representation of family relationships we are still
not able to check, with a single query, whether or not someone
is some particular child's mother. The trouble is that a single
pattern Cannot covet all the different size lists of children that we
can get back in response to a mother-of-children query. The rules:

y mother-of-child xi if (x y) parents-of (xi x2)
y mother-of child x2 if (x y) parents-of (xi x2)

define the mother-of-child relation for families with two children
because such families are recorded by sentences of the form
"(x y) parents-of (xi x2)". Each rule selects out one of the pair of
children (xi x2). But we also need a rule to cover single-child
families:

y mother-of-child z if (x y) parents-of (z)

and rules for three, four and even bigger size families.
We can make do with a single rule:

y mother-of-child z if
(x y) parents-of Z and z belongs-to Z

if we could define the relation "z belongs-to Z" that holds for
every element z that appears in an arbitrary size list of individuals
Z.

3.3 Getting at the members of a list of unknown length 	 97

way, it is the element A followed by the empty list (). Other
examples of the use of "I" in list patterns are:

(x y I z)

This denotes a list of two individuals x y followed by some
remainder list a. Since z can be the empty list, the pattern
denotes any list of two or more individuals. Matched against the
list (A B C D) we get the values xA, y=B, z(C D). It fails
to match the list (A) because this only has one element.

(x y a I Z)

is a list of three individuals x y z followed by some remainder
list Z. It denotes any list of at least three elements.

We can describe a list of at least n individuals by having n
different variables before the "I". We should always follow the I'
with a variable or another pattern that describes a list. For
example, (xi x2(x3 x4)) is the list xi x2 followed by the list of
two elements x3 A. In other words, it denotes the list of four
individuals (xi x2 x3 x4).

In this case, there is no point in using the "I". Indeed there is
only a point in using "I" when we do not know anything about
the remainder of the list, i.e. when we describe it by a variable
that can match any remaining list of elements.

If we are using lists of lists we use nested list patterns. The
pattern

((x y) I Z)

represents any list which starts with a sub-list of two elements. It
matches the list

((a b) c) with xa,yb,Z(c)

The pattern

((xIY) I Z)

describes any list that begins with a sublist which has at least one
element, the element x. It matches

((a)) with xa,YQ,Z()
((a b) c) with xa.Y(h),Z(c)

3.3 Getting at the members of a list of unknown length 	 97

way, it is the element A followed by the empty list (). Other
examples of the use of "I' in list patterns are:

(x y I z)

This denotes a list of two individuals x y followed by some
remainder list z. Since z can be the empty list, the pattern
denotes any list of two or more individuals. Matched against the
list (A B C D) we get the values x=A, y=B, z(C D). It fails
to match the list (A) because this only has one element.

(x y z I Z)

is a list of three individuals x y z followed by some remainder
list Z. It denotes any list of at least three elements.

We can describe a list of at least n individuals by having n
different variables before the I'. We should always follow the I'
with a variable or another pattern that describes a list. For
example, (xi x2Kx3 x4)) is the list xi x2 followed by the list of
two elements x3 A. In other words, it denotes the list of four
individuals (xi x2 x3 x4).

In this case, there is no point in using the "I". Indeed there is
only a point in using I" when we do not know anything about
the remainder of the list, i.e. when we describe it by a variable
that can match any remaining list of elements.

If we are using lists of lists we use nested list patterns. The
pattern

((x y) I Z)

represents any list which starts with a sub-list of two elements. It
matches the list

((a b) c) with xa,yb,Z(c)

The pattern

((xIY) I Z)

describes any list that begins with a sublist which has at least one
element, the element x. It matches

((a)) with xa,YQ,Z()
((a b) c) with xa,Y(h),Z(c)

98 	 3. Lists

Exercises 3-3

1. What values if any, are assigned to the variables when (x y ztZ) is
matched against:
a. (ABCDE)
b. (A B C D)
c. (ABC)
d. (A B)
e. (A)
f. ()

2. Give the pattern that represents
a. a list of three elements whose second element is a sublist of two

elements.
b. a list whose first element is a sublist of at least two elements.

3. What values are given to x and y when the list patterns
((A B) I x) and (y Cy) are matched.

Hint: ((A B) I x) matches any list that has as its first element the sublist
(A B).

4. Give a different representation of the bicycle parts data of the form:

(component number) part-of component

For example,

(wheel 2) part-of bicycle
(spokes 60) part-of wheel

Define the relations

(x y) indirect-part-of
y number of x's are contained in z

z indirectly-contains (x y):
contains y number of x's

in an analogous way to the relations defined in Exercise 2-3(4). Do not
forget to multiply the number of components in the recursive rules. The
answer to

which(y : (spokes y) indirect-part-of bicycle)

should be 120 not 60.

3.3 Getting at the members of a list of unknown length 	 99

Belongs-to

Using the "I" pattern, we can express our rules (3) and (4)
about "belongs-to" directly as micro-PROLOG rules:

• belongs-to (XIZ) 	 (5)
• belongs-to (YIZ) if X belongs-to Z 	 (6)

Let us illustrate how this definition is used by micro-PROLOG to
find all the elements on a list (A B C D E). If we ask:

all(x : x belongs-to (A B C D E))

we first get the answer

A

This is produced by the attempt to use the first sentence, rule (5),
to find a solution to the query condition

belongs-to (A B C D E) 	 (7)

The condition is matched against

X belongs-to (XJY) 	 (the first rule (5))

Matching X with x makes X=x. So, when the second argument
(XIY) is matched against (A B C D E) micro-PROLOG is really
matching (xIY) against the list. This makes xA and Y=(B C D
E). Since there are no preconditions to the rule the successful
match immediately results in an answer to the query, the answer
A. micro-PROLOG now backtracks to try the second sentence for
"belongs-to" in order to find more solutions to the query
condition. It now matches (7) against

X belongs-to (YIZ) 	(the conclusion of the rule (6))

This results in the values Xx, Y=A, Z(B C D E). With
these values for the variables the precondition of the rule becomes

x belongs-to (B C D E) 	 (8)

100 	 3. Lists

All the solutions to this condition are all the remaining solutions

to the original query condition (7).
micro-PROLOG continues in this way, first using rule (5)

then rule (6), until it has found all the elements of (B C D E).
The last element E is found when it applies rule (5) to the
derived condition

belongs-to (E) 	 (9)

But micro-PROLOG does not yet know that it is the last answer.

There is still a sentence about the relation, namely rule (6), that it
has not yet used to try to find a solution to this condition. The

application of rule (6) matches (9) against

X belongs-to (YIZ)

This results in the values Xx, YE, ZQ and the reduction
of (9) to the new condition

belongs-to 0

Neither sentence for "belongs-to' matches this condition, so
it has no solutions. This failure to match with either sentence is

what tells micro-PROLOG that there are no more solutions to be
found and so the evaluation of the query stops. The full answer

to the query is therefore:

A

B
C
D

E
No (more) answers

System note - tracing 'belongs-to" - If you are using a computer, load
SIMTRACE and trace the evaluation of the query by using all-trace.

We can now get at the individual children of Jill. Assuming
the simpler representation in which people are denoted just by

their names, we can either use the query

which(x : Jill mother-of-children Z & x belongs-to Z)

or we can add the rule

3.3 Getting at the members of a list of unknown length 	 101

y mother-of z if (x y) parents-of Z & z belongs-to Z

and use the query

which(x : Jill mother-of x)

In either case we will get the answers

John
Janet
No (more) answers

Notice that "mother-of" is a rule-defined relation that is the same
as the fact-defined relation of Chapter 1.

Exercises 3-4

1. You have this micro-PROLOG program:

(English Welsh Gaelic) spoken-in United-Kingdom
(English French) spoken-in Canada

Answer these micro-PROLOG queries:
a. which(x : x spoken-in Canada)
b. which(x : (xr) spoken-in z)
c. which(x : y spoken-in United-Kingdom and x belongs-to y)
d. is (x spoken-in United-Kingdom and y spoken-in Canada and z

belongs-to x and a belongs-to y)
e. Give a definition of the relation "x British-language' which is

defined to be a language spoken both in the United-Kingdom and
Canada.

f. Assuming that the languages have been listed in order of
importance in each case, give a definition of the relation x Minor-
language : x a language of some country but not the most
important spoken language of the country.

2. Answer these micro-PROLOG queries:
a. which(x : x belongs-to (R 0 B E R T) and x belongs-to (B 0 B))
b. is(x belongs-to (A L F) and x belongs-to (F R E D))

The spaces between the letters in these queries are important; spaces
separate the members of a list. The list (R 0 B E R T) has six
elements, each of which is a single letter. However, the list (ROBERT)
has just one element, the word "ROBERT". It has one element because

102 	 3. Lists

there are no separating spaces.
In the answer to query b. you will get the letter "B twice. This is

because there are two ways of showing that the "B" of "(R 0 B E R
T)' also appears on (B 0 B). In answering the conjunctive query, micro-
PROLOG finds each letter in (R 0 B E R T) as a candidate value for
x. For each value it looks for all ways of showing that the found x is
also on the list (B 0 B). Each time it succeeds in doing this, it
displays that value for x. If (R 0 B E R T) had been given as (R 0 B
B E R T), with the two B's instead of one, "B" would be displayed
four times. micro-PROLOG would find it twice, and each time twice
confirm that it is also on the list (B 0 B).

3. Using the program developed in Section 3.2, give definitions of:
a. x parent-of-children y
b. x child-of y

In each case make use of the "belongs-to" relation.

Alternative uses of "belongs-to"

In Exercise 2 above the "belongs-to" program is used both
for finding and for checking. The program is more versatile than

that. We can use it to find all the lists with a given element.
Since there are an infinite number of such lists, we must use the

one query that allows us to finish when we have seen enough

answers.

one(x : 2 belongs-to x)

(21X)
more?(y/n)y

(X 21Y)
more?(y/n)y

(X Y 21x)
more?(y/n)n

The answers are not particular lists but list patterns. The first
answer (21X) is the pattern representing any list that begins with 2.

The second answer (X 21Y) represents any list on which 2 is the
second element. The third answer is any list on which it is the

third element and so on. We can even use the program to find

all instances of the relation with the query

one(x X : x belongs-to X)

What do you think the answers will be?

3.3 Getting at the members of a list of unknown length 	 103

Control reading of the belongs-to" rides

The two rules:

• belongs-to (XIY)
• belongs-to (YIZ) if X belongs-to Z

can be given different control readings depending on the use. For
the use to find an element on a list the appropriate reading is as
the non-deterministic program:

(1) To find an element x on a given non-empty list (ylY)
return x=y

or
find an element x on the tail list Y

For the use to check if a given element is on a given list
the appropriate reading is:

(2) To check if something x is on a non-empty list (ylY)
check if xy

or
check if x is on the tail list Y

(3) For the non-terminating use to find a list on which an
element occurs it is read:

To find a non-empty list Z on which x occurs
return the list pattern Z(xY) or
find a list Y on which x occurs and return the list
pattern Z(yIY) where y is a variable not on Y

This use has an infinite number of solutions because the 'else'
branch will always apply to each recursively derived condition to
find a list on which x occurs.

3.4 The length of a list

A very useful list program is the "has-length" program which
is a definition of the relation between a list and its length. There
are just two sentences in the "has-length" program, a fact and a
rule:

104
	

3. Lists

o has-length 0
(AX) has-length z if X has-length y and SUM(y 1 z)

The logical reading of these rules is:

The empty list () has length 0

A non-empty list (AX) has length one more than the length
of its tail sub-list X

As with the belongs-to" relation the control reading is best
linked with a particular use. Let us first examine some different
uses.

To find the length of the list (A B C D) we use the query

which(x : (A B C D) has-length x)
4
No (more) answers

To check that the list has length 4 we use

is((A B C D) has-length 4)

The finding length and checking length uses are to be expected.
The rules can also use be used (somewhat inefficiently) to find a
list pattern of a given length, or to find all instances of the "has-
length" relation.

one(x : x has-length 4)
(X Y Z x)
more?(y/n)n

and

one(x y : x has-length y)
o 0
more?(y/n)y
(X) 1
more(y/n)y
(X Y) 2
more?(y/n)y
(X Y Z) 3
more?(y/n)n

3.4 The length of a list 	 105

System note - tracing 'has-length" - If you have a computer handy,
define "has-length" and try the queries. Better still, trace their evaluations
using all-trace. Stop the evaluation of the first query after it has given
you the one list pattern of length 4. If you do not micro-PROLOG
will continue indefinitely and fruitlessly trying to find another pattern of
length 4. (If you use all-trace you can follow through the initial steps
of this fruitless search.) Keep responding with y to the second query
until you get tired of seeing the answers. There an infinite number of
answers to the query. It is important that you add the "has-length" fact
before the rule. If you do not you will not get any answers to either
of these queries.

Control readings

The different control readings reflect the way micro-
PROLOG will use the definition to find a solution for each type
of use.

(1) For the use to find the length of a given list it is read:

To find the length z of a given list Y
if Y Q, return z = 0

or
if Y is of the form (AX),
find the length y of X, return z'(y+l)

(2) For the use to find some instance of the relation it is read:

To find a Y and z satisfying Y has-length z
return Y = () and z = 0

or 	find an X,y satisfying X has-length y
return the list pattern Y(xIX) and the number z(y+1)
where x is a variable not on X

(3) For the use to find a list pattern of a given length it is read:

To find a list Y of a given length z
if the length z0, return YQ

or
find a pair X and y that satisfies X has-length y such
that the condition y(z+1) can be confirmed
return the list pattern Y(xIX) where x is a variable
not on X.

106 	 3. Lists

Notice that for this third inverted use the same program is also
used as a generator of pairs X,y of lists and their lengths which
are checked by the condition y(z+1) on the length. It is not
the most efficient way to find a list pattern of a given length.
But there is another more serious disadvantage. We know that
there are an infinite number of X,y pairs satisfying the condition
"X has-length y". This means that micro-PROLOG's backtracking
search will enter a bottomless pit if there is an attempt to find a
second solution to a condition to find a list pattern of a given
length. To see how this can happen let us examine the evaluation
of the query:

one(x : x has-length 4) 	 (A)

We assume that the sentences for "has-length" are as originally
given, with the fact before the rule.

micro-PROLOG first tries to use the fact

0 has-length 0

to match the query condition

has-length 4

It fails to get a match, since 4 and 0 are different. It can only
solve the condition by using the rule, which with renamed
variables, is

(xlIXl) has-length zi if
Xl has-length yl & SUM(yl 1 zi)

There is a successful match with the query condition providing
x(xlIXl) and z14. micro-PROLOG reduces the condition of
(A) to

Xl has-length yl & SUM(yl 1 4) 	 (B)

The answer to (A) is

(xlIXl)

where Xl has the value given by the solution to (B).
The condition "Xi has-length yl" of (B) becomes a

generator for candidate values for Xl and yl with the yl value

3.4 The length of a list 	 107

checked with the SUM(yl 1 4) condition. Now we know that
there are an infinite number of solutions to the "Xi has-length
yl" condition and that the solutions will be generated in order of
increasing length. When the solution X1(x2 x3 x4), yl3 is
generated we get the answer (xl x2 x3 x4) to query (A).

This is, of course, the only answer. But micro-PROLOG
does not know this. It will happily continue generating more and
more candidate solutions for the condition "XI has-length yl"
checking if the value of yi is one less than 4. If we let it, after
giving us the only answer, micro-PROLOG will enter a bottomless
pit in its search for a second answer. It will not be able to
detect that are no more answers.

This is similar to the problem that can arise if we do not
choose a judicious ordering for the rules of a recursively defined
relation. In this case, the problem is that the ordering of the
preconditions of the rule

(xIX) has-length z if
X has-length y & SUM(y 1 z)

is not appropriate for the use in which the length is given and a
list of that length is to be found. For this use, we should put the
SUM(y 1 z) condition first. But if we do this we shall have a
problem with the finding length use. For then micro-PROLOG
will encounter the problem of trying to find a solution to
SUM(y 1 z) with both the arguments y and a unknown. As with
the ancestor-of" relation of Chapter 2 we need a separate
definition of the inverse relation, "length-of'.

The two sentences,

o length-of ()
y length-of (xIX) if

y INT & 0 LESS y &
SUM(z I y) & z length-of X

are a definition of the relation with an ordering of the
preconditions of the rule that limits the use to queries in which
the length of the list, which must an positive integer, is given.
But for that use, it is an efficient, safe program. We can even use
it to evaluate the query

which(x : 4 length-of x)
(X Y Z x)
No (more) answers

108 	 3. Lists

This time, micro-PROLOG stops when it has found the only
answer, and tells us there are no more answers.

System note - tracing "length-of' - Follow through the evaluation by
hand or trace it using the all-trace. You will see that the evaluation
stops because the condition SUM(z 1 y), with y given, only has one
solution and because the attempt to use the recursive rule to solve the
final condition "0 length-of x4" will fail when it reaches the LESS

condition of the rule. As with the definition of between' given in
Chapter 2, the LESS condition is logically redundant but is necessary in
order to forstall an infinite recursion when the rule is applied to a
condition with a non-positive length.

Conclusion

To find the length of a list use the "has-length" relation
defined by the sentences:

o has-length 0
(xIX) has-length z if

X has-length y and SUM(y I z)

To find a list of variables of a given length, use the
"length-of' relation defined by the sentences:

o length-of 0
y length-of (xIX) if

y INT & 0 LESS y &
SUM(z 1 y) & z length-of X

For this use a suitable control reading of the "length-of" program
is:

To find a list Y of variables of a given length y
if the length y0 return the list Y()

or
check that y is an integer & y > 0, subtract one from y
to give z and then find a list X of variables of length
z, then return the list pattern Y(xlX) where x is a
variable not on the list X

To check that a given list has a given length, use either
relation. For the checking use the "has-length" program can be
read:

3.4 The length of a list
	

109

To check that a given list Y has a given length y
check that Y=O and yO

or
if Y has the form (AX), find the length of the list X
and then check that this is one less than the given
length y

whereas the length-of" program is read:

To check that a given list Y has a given length y
check that yO and Y0

or
if Y has the form (AX) check that the length y is a
positive integer, subtract I from y to give z, check that
z is the length of X

Do not use either relation to find some instance of the
relation that will be checked by a second condition. This is
because there are infinite number of answers to the condition

X has-length y

and micro-PROLOG's backtracking evaluation will enter a
bottomless pit generating all the different solutions. This problem
will not arise with "length-of". Instead, micro-PROLOG will give a
"Too many variables" error message when trying to answer

y length-of X

This is because it will try to evaluate an INT condition with the
argument unknown.

Taking into account these sorts of restrictions on the use of
micro-PROLOG programs, particularly programs that embody a
recursive definition or use the arithmetic primitives, is part of the
pragmatics of programming in the language.

Incidentally, the "has-length" program has no problem
finding the length of a list of variables. The query

which(x y : 4 length-of x & x has-length y)

will produce the response

110 	 3. Lists

(X Y Z x) 4
No (more) answers.

Try it!

Exercises 3-5

1. Use the 'has-length" program to define a rule which gives the
number of children a mother has, and find out how many children Jill
has.

2.
a. Pose the query: Who has five children? (use the "has-length"

program in your query.)
b. Pose the same query, but this time use "length-of".

3. What answers will you get to the query
all(x : 3 length-of x & 2 belongs-to x)

Unification and the EQ relation

We can get answers to queries that contain variables because
micro-PROLOG uses a powerful pattern matching method called
unification. In a unification two patterns can be matched. The
result of such a unification is an assignment of values to the
variables of the two patterns so that each pattern becomes
identical. The assignment of values produces a common instance
of each pattern. Moreover, this common instance is always the
most general common instance. That is, if a variable can be left
unassigned it is left unassigned. So the common instance may be
itself a pattern.

An example of this unification of patterns is the matching
of

(X Y IZ) and ((x y) I z)

The most general instance of the two patterns is

((x y) Y IZ)

The assignment X=(x y), z(YIZ) reduces each pattern to this
most general common instance. It is a most general common
instance because any other common instance, for example

3.4 The length of a list 	 111

((a b) C IZ)

can be obtained by assigning values to its variables. The
assignment x=a, yb, Yc converts

((x y) Y IZ)

into this other common instance.
The matching that micro-PROLOG performs whenever it

compares a condition with a simple sentence always produces an
assignment of values that produces a most general common
instance. If there is no such assignment, the match fails. The
match also fails if there are no variables to be given values and
the condition and sentence are not identical.

An example of a pair of patterns that cannot be unified is

(A y y) and (x x C)

There is no common instance because the first pattern insists that
the second and third elements are the same and the second insists
that the first and second elements are identical. This means that a
common instance must have all three elements identical. This is
not possible since the first list already contains an A and the
second a C.

There is a primitive relation of micro-PROLOG called EQ
the evaluation of which is an attempt to unify its two arguments.
Its built-in definition is the single rule

x EQ x

It holds only if its two arguments are identical or can be made
identical by a unification match. The query

which((x y b) : (x y b) EQ (z (3 a))

will give the answer

(b () b)

since this is the only common instance of the two list pattern
arguments of the EQ condition.

Using the EQ relation we could rewrite every rule so that
the consequent only had variables as arguments. Thus, the rule

112
	 3. Lists

belongs-to (xly)

is equivalent to

belongs-to z if z EQ (xly)

However, rules with patterns in the consequent are generally more

readable than rules with EQ preconditions.

Building a chain of descendants

The 'length-of" program can be used to construct a list of

variables given a length. Programs that can be used to construct
lists are exceedingly useful. We shall deal with them more fully in

Chapter 5. We shall complete this section by giving a program
that is similar to length-of". It can be used to find a list of

intermediary parents that connect two individuals in a parent-of

chain. It is a program that defines the relation

(x y) have-descendant-chain X:

y is a descendant of x and
X is the list of intermediary parents.

Its definition is:

(x y) have-descendant-chain 0 if

parent-of y
(x y) have-descendant-chain (zIX) if

parent-of z and
(z y) have-descendant-chain X

The logical reading of the two rules is:

0 is the descendant chain between x and y

if x is a parent of y

(AX) is the descendant chain between x and y
if z is some offspring of x and

X is the descendant chain between a and y

For the use to find descendant chains connecting a pair of given

people the control reading of the pair of rules is:

3.4 The length of a list 	 113

To find the descendant chain between given x and y
return the list () if x is a parent of y or
find an offspring z of x,
find the descendant chain X between z and y,
return the list (AX)

It can also be used to check that a pair have a given
descendant chain, to find pairs connected by a given chain, even
to find all x y pairs with their connecting descendant chains.

The program is a classic example of how the data base
handling and the list processing sides of micro-PROLOG co-
operate. When used to find the ancestor chain between two
individuals, the recursive 'walk' over the "parent-of' data base that
is performed is combined with the construction of a list. This list
reflects the sequence of steps needed to 'complete' the descendant
link between the pair of individuals.

Exercises 3-6

1. Using the program for "have-descendant-chain", pose and answer these
questions:
a. What is the list of descendants between Arthur and Robert
b. How many generations are there between Jane and Robert?
c. Give all the pairs of people separated by one intermediary parent,

i.e. the grandparent, grandchild pairs.

Make use of the following facts:

Jane parent-of Arthur
Arthur parent-of Peter
Mary parent-of Peter
Peter parent-of Robert

2. Define "is-a-great-grandparent-or' in terms of "has-descendant-chain".

3.5 	Answer sets as lists

We shall now look more closely at the relationship between
information represented by facts about individuals and the same
information represented by facts about lists of individuals. We
started the chapter by observing that a lot of facts can often be
more compactly represented using lists. For example, in the family

114 	 3, Lists

relationship data base we can have a single fact giving both
parents and all the children instead of several facts describing
each father-of", mother-of" relationship.

These two representations of the family information both
contain essentially the same information. The parents-of" facts
relating both the parents to their children implicitly contains the
"father-of", "mother-of" relations. Indeed we have already seen how
we can define the "father-of" and "mother-of' relations in terms of
the "parents-of" relation using "belongs-to". The definition of
"father-of" is:

x father-of y if
(x z) parents-of Y and y belongs-to Y

Using "belongs-to" we can always define relations over
individuals in terms of relations over lists of individuals. Can we
do the reverse definition? Can we define the "parents-of' relation
in terms of the "father-of' and "mother-of' relations? The answer
is YES.

The complex condition isall

We make use of a complex condition of micro-PROLOG
called isall. A complex condition is like the simple sentence
conditions we have seen so far, except that it involves a
combination of one or more simple sentences. We shall briefly
introduce the isall condition here. It is more fully described
together with the other types of complex condition in micro-
PROLOG in the next chapter.

What isall does is wrap up all the answers to a query as a
list. Consider the query:

all(y : Henry father-of y)

The answer to this query is all the children of Henry. micro-
PROLOG displays them as:

Mary
Elizabeth2
Edward
No (more) answers

Using isall we can put all these answers into a list in the reverse

3.5 	Answer sets as lists
	

115

order in which they are displayed. Thus, the query:

which(x : x isa!! (y : Henry father-of y))

has one answer:

(Edward Elizabeth2 Mary)
No (more) answers

We can use isall to define the relation father-of-children" in
terms of the "father-of" relation. The latter relates a father to a
single child, the former relates him to the list of all his children.
The rule defining the relation is:

x father-of-children Y if
Y isall (z : x father-of z)

We can also use isall to define the "parents-of" relation
using both the "father-of" and "mother-of" relations. Its definition
is:

(x y) parents-of Z if
Z isall (z : x father-of z and y mother-of z)

and its logical reading is:

x and y are the mother and father of all the children of list Z
if Z is the list of all the children of x
that are also children of y

Just like a which or all query the condition of an isall can be
any conjunctive condition.

The isall condition has many useful applications, all
stemming from its ability to make available in a list all the
answers to some query. For example, coupled with "length-of" we
can use it define a relation that gives the number of children
when we only have the "parent-of" relation for individuals.

x has-no-of-children y if
isa1! (X : x parent-of X) & z has-length y

116 	 3. Lists

Exetcises 3-7

1. Give a query which asks how many male children someone (Peter,
say) has.

2. Suppose that we extend the FAMILY data base by giving family
names with facts such as:

Henry-Snr family Smith
Elizabethi family Smith
Charles family Jones
George family Clarke

Pose the following questions as queries that use sail:
a. What is the list of people in the Smith family?
b. How many Jones's are there?

3. Give the rules which define the relation: x is the last element of a
list Y.
Hint: The last member of a list with only one element is that element.
The last element of a list of at least two elements is the last element
of the tail of the list.

4. Define the relation (x y) adjacent-on z" which holds when the pair
of elements x and y are next to each other somewhere on the list z.
Hint: treat the two cases:
a. x and y are the first two elements of the list,
b. x and y are adjacent elements on the tail of the list.

Test Out your answers to 3 and 4 on various forms of query.

System note - interrupting execution - you can always interrupt the
evaluation of a query that you think may have got into a bottomless
pit by hitting the BREAK key (SYMBOL SHIFT together with SPACE).

5. In the introductory chapter we gave the rules

• greater-of (x x)
• greater-of (x y) if y LESS
y greater-of (x y) if x LESS y

defining the "greater-of' relation. Use the relation in a recursive
definition of "x max-of Y" : x the greatest number on the non-empty
list Y. Treat the two cases:
a. Y only has one element
b. Y has more than one element.

3.5 	Answer sets as lists
	

117

6. The "belongs-to' relation defined by the pair of sentences

• belongs-to (xIZ)
• belongs-to (yIZ) if x belongs-to Z

is a relation between a list and its 'top-level' elements. It does not
allow us to get at the elements of any sublists that might be on the
list. Thus, the query

is(b belongs-to (a (b) c)

will be answered "NO" because "b" is not a top-level element of the
list. It is an element of the sublist "(b)" which is a top-level element.
The query

is((b) belongs-to (a (b) c)

will get the answer "YES". Now consider the relation "somewhere-on
defined by

• somewhere-on X if x belongs-to X
• somewhere-on X if y belongs-to X & x somewhere-on y

What answers will you get from the query

which(x x somewhere-on ((a b) () (c (d e) 1) g)

Give an alternative definition of "somewhere-on" that does not make use
of "belongs-to".
Hint: the definition is similar to that for "belongs-to" except that you
need an extra rule for the case when the first element of the list is a
sublist of at least one element.

PART 11

4. Complex conditions in queries and rules

At the end of the last chapter we introduced the isall
condition. isall is an example of a complex condition that can be
used in queries and the condition side of rules. There are several
other complex conditions that we can use. ItT this chapter we
introduce these other complex conditions and we give a more
complete description of isall. We also describe the use of is-told
which we can use to make micro-PROLOG query us for
information whilst it is answering one of our queries.

4.1 Negated conditions

Sometimes the condition that we want the retrieved data to
satisfy is more naturally expressed by giving a positive condition
that it must satisfy and then giving an extra negative condition
that it must not satisfy.

As an example, suppose that we wanted to retrieve all the
descendants of Henry-Snr who do not themselves have any
children, or rather, who do not have any children recorded in the
data base. What we want are the x's such that

x descendant-of Henry.Snr

can be confirmed, but for which the extra condition

parent-of y

cannot be confirmed. In micro-PROLOG we express this negative
condition using not. We pose the query:

which(x : x descendant-of Henry-Snr &
not x parent-of y)

122 	 4. Complex conditions in queries and rules

Since it is a general property of micro-PROLOG that any query
expression can be used as the right-hand side of a rule, negated
conditions can also be used in rules. Thus, the rule:

x childless-descendant-of a if
x descendant-of z and
not x parent-of y

generalizes the query and defines the property of being a childless
descendant.

Syntax of negated conditions

Syntactically, we have a new type of condition. Until we
met the isall condition in the last chapter conditions were just
simple sentences. A negated condition has the form:

not C

where C is a single condition or a bracketed conjunctive
condition. In other words, if we want to negate several conditions
we must surround them with brackets. The brackets are needed to
tell micro-PROLOG the extent of the negation.

We can have nested negations, for one or more of the
conditions in a negated conjunction can be another negated
condition.

The descriptive reading of a negated condition in a query or
rule is:

It is not the case that C for some yl,..,yk

Here, yl,..,yk are all the variables of C that do not appear
elsewhere in the query or rule. They are the local variables of the
negated condition. Variables that appear in C which also appear
elsewhere are its global variables.

The rule defining childless-descendant-of is read:

x is a childless descendant of z if
x is a descendant of z &

it is not the case that
x is a parent of y, for some y

We say, some y" because y is a local variable of the negated

4.1 Negated conditions 	 123

condition. The x is global because it appears elsewhere in the
rule.

The query

which(x : x male & not (x father-of y & y male))

finds all the men who do not have sons. The negated condition
is read as

x is not the father of some male y

because y is local to the condition.
Another example of the use of negation is in the query:

all(x : x city-of England & x population-is y &
not y LESS 10000)

Used with a data base of cities and their populations it will give
all the English cities of the data base that have a population
greater than or equal to 10000.

Restrictions on use of not

A negated condition can only be used for checking values
already given to its global variables. It cannot be used for
generating candidate values for these global variables. This means
that in a query a negated condition must be preceded by a
positive condition for each of its global variables. In the
evaluation of the query these positive conditions will be used to
find values for the variables that the negated condition checks.

Control reading

The checking restriction on the use of negation is reflected
In its control reading:

to confirm a condition : not C
check that the query is(C) cannot be confirmed.

After the evaluation no variable of C will have a value. In other
words, the evaluation of the negated condition

not C

124 	 4. Complex conditions in queries and rules

becomes the evaluation of the query

is(C)

with a NO" answer interpreted as "YES' and a "YES" answer
interpreted as "NO".

Let us see what happens if we ignore the positioning rule
for negative conditions. Suppose we posed the query about the
childless descendants of Henry-Snr as:

which(x : not x parent-of y & x descendant-of Henry-Snr)

When micro-PROLOG evaluates the query it will now encounter
the condition "not x parent-of y" with x not yet given a value.
The evaluation of the condition reduces to the evaluation of

Is(x parent-of y)

which will, of course, be confirmed. (We have at least one person
who is the parent of someone,) Confirmation of the is query is
failure to confirm the negated condition. So micro-PROLOG will
immediately print out

No (more) answers,

This incorrect answer is a consequence of not placing the
negative check on x after the positive generator for x which is
the condition "x descendant-of Henry-Jnr".

For safety micro-PROLOG should give us an error message
when it reaches a negative condition in which there is a global
variable which has not been assigned a value. This would stop it
giving an incorrect answer to the above query because x is a
global variable of the negated condition without a value when the
condition is checked.

micro-PROLOG does not give such an error message
because to check that each global variable has a value each time
a negated condition is evaluated would be a time consuming test.
The decision was made to put the responsibility for ensuring that
negated conditions will only be used for checking onto the
programmer.

You must make sure that negative conditions will only be
used for checking by a suitable ordering of the conditions of the
query or rule. In practice this is not a problem.

4.1 Negated conditions 	 125

Negated equalities

One of the most common uses of negation is a negated EQ
condition. This confirms that the arguments of the EQ are not
identical, or rather, cannot be unified.

Suppose that we wanted to define the relation

x brother-of y.

We must find some query condition that defines the brother
relation. Two individuals x and y are brothers if:

they are male 	 x male & y male
they are different people 	not x EQ y
they have a common parent z parent-of x & z parent-of y

This gives us the rule:

x brother-of y if
x male & y male &
not x EQ y &

parent-of x & z parent-of y

The negated condition "not x EQ y" has global variables
and y but it comes after the positive conditions 'x male" and 'y
male" that will be generators of candidate values of these variables
if the rule is used to find a pair of brothers.

Checking versus generating rules

When we use not in a rule we need not always make sure
that it is preceded by positive conditions for its global variables.
But, if we do not do this, we should make sure that the rule is
only used for checking values of the global variables which are
given in the condition to be solved.

As an example, consider the rule:

x childless if not x parent-of y

This is read:

126 	 4. Complex conditions in queries and rules

x is childless if it is not the case that
x is a parent of y, for some y.

Because the global variable of the negated condition must have a
value when the condition is evaluated this rule can only be
correctly used for checking that someone is childless. It cannot be
used for finding childless people. For generality of use we would
need to add an extra condition:

x childless if x person & not x parent-of y

Here person' is defined by the two rules:

• person if x male
• person if x female

This rule can be used both for checking and generating.
When used for checking that someone is childless the "person"
condition is redundant. Thus, if we only use the childless
condition as a checking condition, the shorter restricted use rule
might be preferred. But to use rules that can only be used as
checking rules is to live dangerously. micro-PROLOG does not
check that the restriction is adhered to. If you make a mistake,
and try to use the rule to generate, you will get incorrect
answers.

The rule that has the "person" condition also has another
merit. It makes sure that only people are confirmed as childless.
The shorter rule will confirm the condition "6 childless" because 6
is something for which there is no "parent-of" fact. So the
condition

not 6 parent-of y

will be solved.

not with belongs-to

We can use a negated condition to check that something is
not on a list. As an example, the query:

which(x : x belongs-to (a cow jumped over the moon)
& not x belongs-to (a the))

4.1 Negated conditions 	 - 	 127

will give us all the words in the list (a cow jumped over the
moon) which are not one of the articles (a the).

The query:

which(Z : Z isall
(x : x belongs-to (P A L I N D R 0 M E)

& not x belongs-to (A E I 0 U)))

gives the answer

(M R D N L P)

which is a list of all the non-vowels in the letters of
PALINDROME.

Exercises 4-1

1. Give a definition of an odd number that makes use of the even"
number definition of Exercise 2-5.

Notice that your programs for "even" and "odd" can only be used for
testing the relations they define.

2. Answer the following micro-PROLOG queries:

a. all(x : x belongs-to (the quick brown fox) and not x belongs-to
(how now brown cow))

b. which(x : x isall (y : y belongs-to (F R E D) and not y belongs-to
(D 0 R I S)))

3. Using the relations of the FAMILY program:

a. Define the relation "a-man-with-no-sons".
b. Define the relation "a-mother-with-no-daughters".

4. We can extend the BOOKS program into a library loan system.
Records of book issues can have the form:

Issue (Name Title Author Issue-Date Due-Date)

for instance, the sentence:

Issue((Jim Gunn)
(Oliver TwistXCharles Dickens)
(4 6 80X18 6 80))

128 	 4, Complex conditions in queries and rules

records the fact that Jim Gunn borrowed Oliver Twist, by Charles
Dickens, on 4 June 1980, and is supposed to return it by the 18th,
Our records of book returns can have the form:

Return (Name Title Author Return-Date)

for instance:

Return((Jim GunOliver TwistXCharlesDickensX12 6 80))

tells us that Jim Gunn returned his book on the 12th of June (before it
became overdue)

a. Add the following definition to your program:

A book is overdue if it has been issued, it has not been
returned, and the date is after the Due-Date.

Assume that the data base has an assertion "(....) date" which gives
the current date as a list of three numbers in the order (day month
year).

b. Give the definition of "after" that you will use.
c. Add the following rule to your program as a definition of the

property "Banned":

Anybody who has an overdue book is banned from the library.

5. In Section 2.3 we defined the relation "has-divisor" in terms of
"between" and "divides". Define "prime" in terms of "has-divisor" using
not. Your definition can only be used for checking that a number is
prime, i.e. that it has no divisors. Give the query to find all the prime
numbers between 2 and 15.

6. An atomic part is a part with no sub-parts. Define "atomic-part" in
terms of the "part-of" relation used for the bicycle parts data base. Give
the query to find all the indirect atomic parts of a bicycle.

4.2 The isall condition

The isall condition is another form of complex condition.
At the end of Chapter 3 we had some examples of its use.

4.2 The isall condition
	

129

Syntax of !sail conditions

An isall condition has the form:

L isall (A : C)

where (A : C) are an answer-pattern and a query-condition as in a
which query and L is a variable or a list pattern. The condition
is read:

L is a list of all the A's such that C for some yl,..,yk

Here, yl,..,yk are the local variables of C, the variables that only
appear in C. The global variables of C are the variables that also
occur outside the isall condition somewhere else within the query
or rule in which the isall is used.

Restrictions on use

As with negated conditions, when the isall condition is
evaluated all the global variables of C must have values. So in a
query we must precede an isall condition with generator
conditions for its global variables, and in a rule we must have
preceding generators or make sure that the global variables will
be given values when the rule is used. micro-PROLOG does not
check that the global variables of C have values when it evaluates
the isall condition. As with not it is likely to give incorrect
answers if they do not have values.

Generate use

Usually, the L argument of the isall condition will be a
variable. The evaluation of the condition then generates a single
value for the variable which is the list of all the answers to the
query "all(A : C)" in the reverse order that they are found.

Checking use

In general, it is not wise to give L as a particular list and
use the isall in a checking mode. This is because the condition
will only be confirmed when the given L is identical to the list
of answers that would be constructed in the generate use of the

130 	 4. Complex conditions in queries and rules

condition. Only if there is an exact match will the condition be
solved. Thus, the query:

is((Tom Dick Peter) isall (y : Mary mother-of y))

may fail to be confirmed even though Tom, Dick and Peter are
the only answers to the query:

which(y : Mary mother-of y)

This happens if the evaluation of this query would generate the
answers in a different order from the reverse of the list (Tom
Dick Peter). In Section 4.3 we shall see how we can get around
this problem using a relation that checks that two lists have the
same elements irrespective of the order.

If the given list L is empty, or only contains one element,
this problem of exact ordering of the elements does not arise. So
sail can be safely used to check that there are no answers or
that some individual is the only answer.

is(() isall (x : Tom father-of x))

checks that Tom has no children. It is equivalent to the query

is(not Tom father-of x)

The query

is((Bill) isall (x : Tom father-of x))

checks that Bill is the only child of Tom.
Finally, the list L can be given as a list of variables. The

query:

which(xl x2 x3 z
(xl x2 x3Iz) isall (y : Mary mother-of y))

checks that there are at least three children of Mary, and if there
are, gives us the names of three of them as the values of xl, x2
and x3. The names of any other children will be in the list value
of z. The query

which(x : 3 length-of x & x isall (y : Mary mother-of y))

4.2 	The isall condition 	 131

checks that there are exactly three children and gives us their
names. It uses the relation "length-of' that we discussed and
defined in Chapter 3 to generate the list of three variables that is
passed on to the isall condition. In this case we could equally
have used has-length' and the query

which(x : x isall (y Mary mother-of y) & x has-length 3)

Only the evaluation behavior is different.

Control reading

The way an isall condition is evaluated is reflected in the
alternative control reading:

To solve the condition : L isall (A : C)
generate the list of answers to all(A : C) in the
reverse of the order that they are found,
then unify L with this list of answers

After the evaluation no variable of C will have a value.

Notice that any duplicate answers to "all(A : C)" appear as
duplicates on the list L.

micro-PROLOG generates a reverse list of answers because
in some implementations there is a very efficient implementation
of the the isall construct that adds each answer to the front of a
partial list of answers as it is found. It adds it to the front rather
than the back of the partial answer list because adding elements
to the front of a list is a much faster operation than adding them
to the back.

In the next chapter we shall define a relation that can be
used to add elements to the back of a list. We shall also define
relations that can be used to reverse a list, to order a list or to
remove duplicate elements. They can be used to manipulate the
answer lists produced by isail.

Use of isall and "belongs-to"

The rule:

X intersection-of (Y Z) if X isall
(x : x belongs-to Y & x belongs-to Z)

132 	 4. Complex conditions in queries and rules

defines the relation that is satisfied when x is a list of all the
individuals that appear on the lists Y and Z. Because of the
restrictions on the use of isall it should only be used for
construction of an intersection list. Notice that if Y or Z contains
a duplicate of a common member this duplication will be
repeated on the list X. But X will be without duplicates if Y and
Z are without duplicates.

The rule:

X difference-between (Y Z) if
X isall (y : y belongs-to Y & not y belongs-to Z)

defines the relation that holds when X is the list of elements on
• that are not on Z. It should only be used for finding X given
• and Z. The constructed list X will be without duplicates if Y
is without duplicates.

Exercises 4-2

1. Using the relation "member-of-either" defined by the two rules:

x member-of-either (y a) if x belongs-to y
x member-of-either (y a) if x belongs-to

give a rule for the relation "x union-of (y z)" that can be used for
constructing a list x of all the individuals that are members of y or z.

2. Define the "subset-of" relation: x subset-of y holds when all the
elements of x also belong to y. (Hint: x is a subset of y if x is the
intersection of x and y.) We will revisit this example later.

3. Define the relation: X set-union-of (Y Z) which is the same as
"union-of" except that its use will always give a list X without
duplicates if Y and Z are without duplicates. Define it in terms of the
"union-of", "intersection-of' and "difference-between",

4. Exercise 3-7(6) asked for a recursive definition of the relation
"x somewhere-on Z" which holds when x is on Z or is somewhere on
a sublist of Z. The definition allows x to be a list. The following
sentences define a restricted form of this relation "x individual-on Z"
which holds when x is a non-list element somewhere on the list Z. In
other words, it excludes the sub-list elements.

x individual-on (xIZ) if not x LST

4.2 The isall condition 	 133

• individual-on ((yrY)Z) if x individual-on (ylY)
• individual-on (ylZ) if x individual-on Z

The relation LST is a primitive test relation of micro-PROLOG that is
confirmed only when its argument is a list. (Specifically, LST is true of
the empty list: "0" and the list pattern: "(XIY)" where X and Y are any
terms.)

An example use of individual-on" is:

all(x : x individual-on ((a b) 0 (c (d))
a
b
C

d
No (more) answers

Use "individual-on" and isall to define the relation

x flattens-to y

which holds when y is a list of all the individuals that appear
somewhere on x. As an example,

((a (b c)) d e ((0) (0 (g (h (i j)))

flattens to (I i h g f e d c b a). What happens to the order in which
you get the elements of the flattened list if you reorder the sentences
defining "individual-on" so that the last rule becomes the first rule?

Generate and check

Sometimes we want to check that the answers to a query
all satisfy some condition. In the next section we will show how
this can be tested directly with a single forali condition. As an
exercise in the use of isali we show how it can be done using
isail together with a recursively defined check on the answer list.

Suppose that we have a family data base and that we want
to find all the men who only have sons. Earlier, we had the
query

all(x : x male & not (x fathet-of y & y male))

to find all the men who do not have a son. To find those who
only have sons is to find those who do not have a daughter. We
can therefore replace the "y male" condition in the above query
by "y female", or, to give an example of the use of a nested

134 	 4. Complex conditions in queries and rules

negation, by the condition "not y male". The query

all(x: x male & not(x father-of y & not y male)) 	(A)

is read as

all the x's such that
• is male and it is not the case that
• is the father of some y who is not male

We can also express the query using isall. A male x satisfies
the condition if all the answers to the query

all(y : x father-of y)

are male. By wrapping up these answers as a list using sail, we
can check the condition using the "all-male" relation defined by:

o all-male
(ubc) all-male if u male & x all-male

This is the property that holds for a list if it is a list of males.
The query to find all the men who only have sons can be posed:

all(x : x male & Z isall (y : x father-of y) & Z all-male) (B)

Notice that this query, and query (A) above, are both satisfied by
men who have no children at all. This is a correct and strict
interpretation of the condition "only have sons". If we wanted to
insist that each man had at least one child we could replace the
"x male" condition of both query (A) and query (B) by the
condition "x father". This is defined by the single rule:

x father if x father-of y.

(A) and (B) are equivalent ways of expressing the same
query. There is a third way using another complex condition.

all(x : x male & (forall x father-of y then y male)) 	(C)

This uses the forall condition we are about to describe. It has the
effect of testing that all the children of x are male without the
need to construct the list of these children. In this respect it is
similar to query (A). Notice that in (A), (B) and (C) the global

4.2 The isall condition 	 135

variable x of the complex condition of each query has a
preceding generator, 'x male".

4.3 The forall condition

Syntax of forall conditions

A forall condition has the form:

(forall C then C')

where C and C' are single conditions or conjunctive conditions.
The outer brackets are essential. They tell microPROLOG where
the C ends and the next condition after the forall starts.

Logical reading

Its logical reading is:

for all the xl,..,xk such that C then C

where xl,..xk, are all the local variables of the forall condition
that appear in both C and C.

The forall condition of query (C) of the preceding section is
read

for all the y such that x is the father of y then y is male

Restrictions on use

The global variable restriction applies. All global variables of
the condition, variables of C and C that appear elsewhere in the
query or rule, must have values before the condition is evaluated.
Again, micro-PROLOG does not check that this constraint is
satisfied. If it is not satisfied, micro-PROLOG's evaluation of the
condition may not be correct. As with not and isall you must
precede the condition with generators for its global variables, or
make sure the rule in which it appears will only used for
checking given values of the global variables.

136 	 4. Complex conditions in queries and rules

The control reading

to check the condition (forall C then C')
answer the query all(xl x2 ..xk C)

as each answer is generated check that C' holds for
that set of values of the shared local variables
xl,..,xk

if C' does not hold for some answer fail the forall
condition and abandon the search for solutions to C

if C' holds for every found answer, or if there are
no solutions to C, report the forall condition as
solved.

At the end of the evaluation no variable of the forall condition
will have a value.

Equivalent double negation

The forall condition

(forall C then C)

is equivalent to

not (C and not (C'))

It is equivalent because the double negation holds only if
there is no solution to

C and not(C')

There is no solution to this conjunction of conditions if there is
no solution to C, or any found solution to C is such that when
it is passed on to not(C) this condition cannot be confirmed, i.e.
C' can be confirmed. These are exactly the same conditions under
which the forall condition is confirmed.

We had an example of this equivalence with the alternative
query conditions:

x male & not(x father-of y & not y male)

4.3 The forall condition 	 137

x male & (forall x father-of y then y male)

in which C is "x father-of y" and C' is "y male". (In the double
negation form brackets are not needed around the "y male"
because it is a single condition.)

The forall form is easier to read and understand. However,
micro-PROLOG converts all forall conditions into double
negations before it evaluates them. The double negation form can
therefore be viewed as the definition of forall.

Example uses of torah

(1) The rule:

X subset-of Y if
(forall x belongs-to X then x belongs-to Y)

can be used to check that all the members of a list X are
members of Y. The rule:

X same-elements-as Y if X subset-of Y & Y subset-of X

can be used to check that all the members of X are members of
Y and vice-versa.

Notice that this defines a set equality with sets represented
by lists of their elements. It can also be used to check if some
list is just a permutation of the elements of another list. The
relation can be used in conjunction with isall to check whether
some particular set, represented as a list, is the set of answers to
some query.

As an example, suppose that we wanted to check that
Mary's children were Tom, Dick and Peter. The query

is(x isall (y : Mary mother-of y) &
x same-elements-as (Tom Dick Peter))

checks this. It does not depend in any way on the order in
which the answers to (y : Mary mother-of y) are placed on the
answer list x. The use of "same-elements-as" is therefore the way
round the restriction on the test use of isall that we discussed
earlier.

138 	 4. Complex conditions in queries and rules

(2) An ordered list is a list such that for all pairs of adjacent
elements the condition "x lesseq y" holds. This gives us the rule:

X ordered if (forall (x y) adjacent-on X then x lesseq y)

This specification-like rule can be used for checking the ordered
condition. The relation "(x y) adjacent-on X" which holds when (x
y) are a pair of adjacent elements on a list X can be defined by:

(x y) adjacent-on (x y I X)
(x y) adjacent-on (z j X) if (x y) adjacent-on X

This definition of the relation was the answer to Exercise 3-7(5).
The relation "lesseq" was defined in Exercise 2-3(3).

Exercises 4-3

1. Using the relations of the books data base, i.e. "writer', "written-by",
"type', "published", define the following relations. Use forall.
a. x novelist : x is a writer whose books are all novels.
b. x modern-author : x is a writer whose recorded books are all

published in the twentieth century.

2. Use forall to define:
a. x positive-nums : x is a list of numbers greater than 0.
b. x all-male : x is a list of names of males.

3. Define the relation disjoint(X Y): X and Y are lists with no
common element. Define it using:
a. not
b. isall
c. torah

Any of these definitions can be used for testing the relation (but
only for testing).

4. In Exercise 4-1(5) you were asked to define "prime" in terms of "has-
divisor" using not. Give an alternative definition in terms of "divides"
using forall and not. This should read as a high school definition of
the property of being a prime number. Use your definition to test the
property.

4.4 The or condition 	 139

4.4 The or condition

In Chapter 2 when we defined "parent-of" in terms of
father-of" and mother-of" we used two rules:

• parent-of y if x father-of y
• parent-of y if x mother-of y

Using or we can compress them into one rule:

parent-of y if (either x father-of y or x mother-of y)

micro-PROLOGs use of this single rule is equivalent to its use of
the two rules. When asked to solve a condition about "parent-of"
it will search father-of" sentences first because this is the either
branch condition. Only when it has exhausted all the sentences
defining "father-of" will it use the sentences defining the or
branch condition "mother-of".

The or condition is particularly useful in queries. To avoid
its use in

all(x: (either x in London or x in New-York) &
supplies IBM)

we would need to use two queries or first define "x in-L-or-NY"
using the two rules:

• in-L-or-NY if x in London
• in-L-or-NY if x in New-York

We could then use the single query

all(x : x in-L-or-NY & x supplies IBM)

The use of the or condition makes the query easier to understand
and quicker to pose.

140 	 4. Complex conditions in queries and rules

Syntax of or conditions

The condition has the form

(either C or C')

where C and C' are single conditions or conjunctive conditions.
As with forall the outer brackets are needed to tell micro-

PROLOG where C' ends. The conditions in C and C' can be any
conditions. They can be simple sentences, negated conditions, isall
conditions, forall conditions or nested or conditions.

An example use of a nested or is the query

all(x : (either x lives-in London or
(either x lives-in New-York

or x lives-in Paris)))

Note the necessary use of the inner brackets around the inner
either. or...

Logical reading

The condition (either C or C')
is read as : either C or C'

Control reading

To solve a condition of the form (either C or C')
solve the condition C

or
solve the condition C'

Here, the or is a non-deterministic branch giving an alternative
solution path to be tried after the first C branch has been fully
explored.

Single rules for list relations

If we want to absorb two rules defining a list relation into
a single rule we usually have to make use of explicit EQ
conditions to specialize or replace the list patterns used in the

4.4 The or condition 	 141

conclusions of the separate rules. The two rules:

• belongs-to (xr)
• belongs-to (ylz) if x belongs-to

can be expressed as the single rule

belongs-to (ylz) if (either x EQ y or x belongs-to z)

The condition "x EQ y" specializes the pattern (ylz) to the pattern
(xlz) of the first of the pair of rules. In this case the single rule
gives a readable and clear definition of the relation. However,
more often than not the use of separate rules with different list
patterns in the conclusion of each rule gives a clearer definition
than a single either.. or.. rule. The pair of rules:

o has-length 0
(zIZ) has-length y if Z has-length yl & SUM(1 yl y)

are a far clearer definition of has-length' than the single
equivalent rule:

has-length y if
(either x EQ 0 & Y EQ 0
or x EQ (ziZ) & Z has-length yl & SUM(1 yl y))

Exercises 4-4

1. In Exercise 4-2(1) you were asked to define the relation "union-of"
using isall and the auxiliary relation "member-of-either". Give a direct
definition of "union-of" in terms of "belongs-to" using an either. or..
condition. This is an example of a clearer definition using either. or...

2. Give a single rule definition of the relation 'last-of" that you defined
in Exercise 3-7(3).

3. Give a single rule definition of the relation "adjacent-on" which you
defined in Exercise 3-7(4).

4.5 Expression Conditions

At the end of Chapter 1 we introduced the primitive
arithmetic relations of micro-PROLOG. To evaluate an arithmetic

142 	 4. Complex conditions in queries and rules

expression such as (3 * 5 + 9) using these relations we have to

use the conjunction of conditions

TIMES(3 5 x) & SUM(x 9 y)

where y is the value of the expression and x is an intermediate

variable used to help compute y. Most programming languages
allow you to directly enter expressions like (3 * 5 + 9) and

many of them compile such expressions into a sequence of

operations as represented by the conjunction of the TIMES and

SUM conditions. So it is with micro-PROLOG.

System note - using expressions on the Spectrum - before you use
expressions you need to load in an extra program from the file
EXPTRAN by typing load EXPTRAN". This extends the SIMPLE
front end so that it can recognise and compile expressions. A relation
Expression-Parse defined in EXPTRAN is used to compile and
decompile expressions.

Expressions can be used in two new kinds of condition:

equality conditions and expression conditions.

Equality conditions

An equality condition has the form

El = E2

where El and E2 are expressions. The relation is an elaboration of
the primitive EQ relation that was introduced in Chapter 3. The
difference is that when an = condition is solved the two

arguments are evaluated before they are compared using EQ.

When one of the expressions is just a variable, the effect is to

give it the value of the other expression.

Examples

x = (y * 67 + z)

can be used to give x the value of the bracketed expression if y
and z have values at the time that the condition is evaluated. If
they do not, there is a Too many variables' message as when

you directly use one of the arithmetic primitives and the
condition has two many unknown arguments.

4.5 Expression Conditions 	 143

(x y)((2*z) (z/45))

will cause (x y) to be matched against the list comprising the
values of (2*2) and (z/45). It is therefore equivalent to the
conjunction of equalities

x =(2*z) & y(z/45)

The equality

24(2*x *x + 7*x)

can be used to check that some given value of x satisfies the
equation:

2x 2 + 7x = 24

It cannot be used to find the roots of the equation. To find an
integer root of the equation in the range 1 to 24 we can use the
between relation as in the query:

which(x : x between (1 24) & 24(2* x*x + 7*x))

In Exercise 1-4(2) you were asked to give the query to find
how much money is needed to buy five apples and three loaves.
Using only the arithmetic primitive relations the query is:

which(x : Apple costs y & Bread costs z &
TIMES(y 5 X) & TIMES(z 3 Y) & SUM(X Y x))

Using an equality condition it is

which(x : Apple costs y & Bread costs z &
x = (y*5 + z*3))

Syntax of expressions

Formally, an expression is

a constant
a number
a variable

144 	 4. Complex conditions in queries and rules

an arithmetic expression
a function call

or
a list of expressions

As we shall see arithmetic expressions and function calls are both
just special kinds of lists. Notice the similarity between the
definition of expression and the definition of term that we gave
in Section 3.2. A term is an ordinary argument of a relation, an
argument that does not contain any arithmetic expressions or
function calls.

Syntax of arithmetic expressions

An arithmetic expression is a list of the form

(<expression> <operator> <expression>)

where the operator is one of

* 	 for multiplication
Of / 	for division

+ 	 for addition
- or 	for subtraction

The outermost brackets of an arithmetic expression are essential -
an arithmetic expression is a three-element list whose second
element is an operator. However, if the expression arguments of
this operator are also arithmetic expressions the inner brackets
around them may be dropped in accordance with the following
rules:

A , / or % is evaluated before an adjacent +, 	or -

For a pair of adjacent , / or % operators the left one is
evaluated first.

For a pair of adjacent +, 	or - operators the left one is
evaluated first.

The % is the main division operator with / an accepted
synonym. If you use / in an expression in an added sentence you
will find that it has been converted into a use of % when you
list the sentence.

4.5 Expression Conditions 	 145

Likewise, - is the main subtraction operator with 	an
accepted synonym. All uses of 	will be converted to uses of -.
However, in general you should use 	when you enter
expressions rather than -. This is because of the other syntactic
roles of - to indicate that a number is negative and to hyphenate
names. Thus, in the expression (x 4) the use of will be
recognized as a use of the subtraction operator. If you use (x-4)
this will be interpreted as a list containing the single hyphenated
name "x-4". Likewise, the expression ((x*7) 6) will be recognized
as equivalent to ((x * 7) - 6), but ((x*7)6) will be interpreted as
the list of expressions ((x * 7) -6), i.e. as a list of two elements
comprising the value of (x * 7) and the number -6.

If you do use - make sure that you always surround it with
spaces. Spaces are not needed around the other operators.

Examples of arithmetic expressions

(x * y +3/z) is equivalent to ((x * y) + (3 % z))
(x+y/(5+z)) is equivalent to (x + (y % (5 + z)))
(x * y/5 z) is equivalent to ((x * y) % 5) - z))

Function call expressions

Function calls are another form of expression. They allow
program defined relations to be used as functions in expressions.

Examples

Suppose the relations div and mod are defined by the rules:

div(x y z) if TIMES(y zi x) & INT(zl z)
mod(x y z) if div(x y zi) & z(x y *zl)

INT is the primitive of micro-PROLOG that we introduced
in Chapter 2 which can be used to test if a number is an integer
or to find the integer part of a number, as here. So, div(x y z)
can be used to find the integer divisor z of x and y and
mod(x y z) can be used to find the remainder z of the integer
division of x by y. For both div and mod the last argument is
functionally determined by the first two arguments. To use 'div'
and "mod" in expressions we declare that the last argument of
each relation is a function of the preceding arguments with the
commands:

145 	 4. Complex conditions in queries and rules

function div
function mod

These two commands add the two sentences:

div func
mod func

to our program which record that they are special func relations.
It is the presence of these func sentences that enables the
expression compiler to recognize the use of "div' and "mod" in
expressions as function calls. We can now use "div' and "mod" in
expressions:

x((mod 85 23)*34)
y=(div z (X * 6))

Thus, a function call in an expression is a list that begins with
the name of a func recorded relation. The rest of the list are the
arguments needed to find the value of the call. The function call
(mod 85 32) has the value that would be given to x by an
evaluation of the relational condition mod(85 32 x).

Syntax of function calls

A function call is a list of the form

(R El ., En-1) 	 (A)

where El. - En-1 are expressions and R is a n-ary relation name
that has been declared a function with the command

function R

The expressions are the first n-i arguments of what would
otherwise be given as a relational condition of the form

RIV1 ,, Vn-i xl 	 (B)

where Vi .. Vn-1 are the values of the expressions El .. En-l.
The value of function call (A) is the value that would be

given to x when (B) is solved.

4.5 Expression Conditions 	 147

Warning

If you forget to declare that some relation R is a function
before using it in an expression the expression parser will not
compile the function call into a relation condition. It will leave it
as a list within the expression. However, whenever it ignores a list
that might be intended as a function call the expression compiler
warns you about this by giving you the message

R assumed not to be a function

If the function call was in a query you will now get the wrong
answers. If it was used in an added sentence you can easily
recover from this mistake. Declare R as a function with a

function R

command and edit the sentence. Just call the editor and then
immediately exit the editor. The editor dc-compiles the compiled
form of the original sentence, mapping compiled expressions back
into expression form. It re-compiles the expressions on exit. This
time the use of R as a function call will be recognized because
of the declaration.

You can always discover what functions have been declared
using

which(x : x func)
or

list func

If you kill a relation that has been declared a function the func
sentence for the relation will be automatically deleted.

Nested expressions

Function calls can be arguments to arithmetic operators and
arithmetic expressions can be arguments to function calls. This is
because each is just another form of expression and both take
any expression as an argument. Function calls and arithmetic
expressions can be nested inside each other without restriction.

148 	 4. Complex conditions in queries and rules

Expression conditions

The equality condition is a special form of expression
condition in which expressions can be evaluated and compared.
When = is used in a sentence or query its use signals the fact
that its arguments are expressions and that they should be
compiled.

The default assumption for all other relations is that their
arguments are not expressions, but are ordinary terms. Since this
is invariably the case, this default assumption saves the time that
would be wasted trying to compile non-expression arguments.
However, we can override this default assumption, and cause
micro-PROLOG to examine and compile expression arguments to
any relation, by signalling their use. We do this by placing a
between the name of the relation and its list of expression
arguments.

Example

LESS # ((2*x) (5+y))

is a LESS condition with arguments the values of the expressions
(2* x), (5+y).

Syntax of expression condition

Expression conditions have the form

R # (El E2 .. Ek)

where R is the name of a relation and El ... Ek are expressions.
The # is the signal that El ... Ek are not normal arguments

but that some or all of them contain arithmetic operators and
function calls. Notice that expressions can only be used as
arguments in relation conditions expressed in the prefix simple
sentence form.

The equality condition

El = E2

is equivalent to the expression condition

4.5 Expression Conditions 	 149

EQ # (El E2)

Compiled form of expression conditions

Examples

(1) The relational form into which the condition

LESS # ((2* x) (5+y))

is compiled as:

(X LESS Y) # (* (2 x X) and + (5 y Y))

The # in this form should be read as where. So this condition
is read as

X LESS Y where X is 2 * x and Y is 5 + y

The arguments X, Y in the compiled LESS condition are such
that the evaluation of the conjunctive condition

* (2 x X) and + (5 y Y)

will result in their having the values of the expressions (2*x) and
(5+y) as required.

(2) The equality condition

(2*x) = (7%y)

is compiled into the relational form

(X EQ Y) # (S (2 x X) and %(7 y Y))

(3) The equality

x ((y*6) (56x) 27)

which makes x a list of three numbers is compiled into

(x EQ (Y Z 27)) # (*(y 6 Y) and -(56 x Z))

150 	 4. Complex conditions in queries and rules

More generally, the relational form into which an expression
condition

R # (El E2 .. Ek)

is compiled is the single # complex condition

(R(tl t2 .. tk)) # (<conjunctive condition>)

The evaluation of the bracketed conjunctive condition which
follows the # will produce values for the variables of the terms
ti, t2, .. tk so that they become the values of the original
expressions El, E2. .. Ek.

The expression condition is compiled into a single #
condition so that it can be recognized and quickly mapped back
into the expression condition when the program is listed or
edited.

Special arithmetic relations

The compiled form of an arithmetic expression does not
make use of the arithmetic primitives. Instead it uses arithmetic
relations which have the names of the arithmetic operators. These
+, -, * and % relations are defined within SIMPLE in terms of
the arithmetic primitives. Their definitions are:

+(x y z) if SUM(x y z)
-(x y z) if SUM(y z x)

y z) if TIMES(x y z)
%(x y z) if TIMES(y z x)

The auxiliary relations are used instead of the arithmetic primitives
so that the compiled expressions can be quickly dc-compiled back
into expression form. You can of course make direct use of these
extra arithmetic relations in your programs.

System note - displaying the compiled form - You can see the compiled
relational form of the expression and equality conditions used in your
program by simply adding the sentence 'rel-form" to your program with
an

add(rel-form)

4.5 Expression Conditions 	 151

command. Now, when you list or edit your program the expression
conditions will be displayed in the relational form. You can still use
expressions in queries and in other sentences that you add to your
program. The rel-form" sentence does not prevent expressions from
being compiled. It only prevents them from being dc-compiled on
listing or editing. By getting rid of this sentence with a

kill rd-form

EXPTRAN will revert to both compiling and dc-compiling expressions
in the normal way.

Adding the 'rd-form" sentence is a useful way of checking that
the value you intended to denote when you used an expression will be
the value computed by micro-PROLOG.

Evaluation of expression conditions

When an expression condition is evaluated, the conjunction
of extra conditions that produces the values of the expression
arguments is evaluated first, then the condition is evaluated. On
backtracking, alternative solutions will be sought for the condition
with the computed values of the expression arguments but there
will be no attempt to find alternative values for the expression
arguments.

Example

The condition

salary # (x (12*157))

in the query

all(x : salary#(x (12*157))

is compiled into the relational form:

(x salary X) # (* (12 157 X))

The * condition computes the value of (12*157) and so the
evaluation of the entire # condition will reduce to the evaluation
of

152 	 4. Complex conditions in queries and rules

x salary 1884

in order to find an x with recorded salary of 1884. Backtracking
will result in different values for x being sought, but will not
result in a recompuration of the value 1884.

The # expression query

You can also use a special kind of query to find the value
of an expression. The symbol # followed by an expression has a
single answer which is the value of the expression.

&.#(3*5+9)
24
&.

It is a briefer alternative to

which(x : x (3*5+9))

The general form of the query is

<expression>

Its single answer is the value of the expression.

Exercises 4.5

1. In Chapter 2 we defined the relation "x factorial y" which held when
y was the factorial of positive integer x. Redefine this using equality
conditions instead of the SUM and TIMES primitive relations. Then
declare it as a function and use it in expression queries to find:

a. The value of factorial of 6 divided by 3
b. The value of the factorial of the "mod" of 27 divided by 4.

2. What is the relational form of the expression conditions:

a. LESS#((factorial (x*7)) (3 +y*9))
b. (factorial (rem 56 (y - 1)))z

3. Redefine the "x has-length y" relation of the last chapter using an
equality condition. This time call the relation length". Define an

4,5 Expression Conditions 	 153

analogous relation "x sum y" which can be used to find the sum y of
a list of numbers x. Declare both as functions and use them in queries
to find:

a. The length of the list (2 4 6 -8 23 9)
b. The average of the same list of numbers.
c. Define the relation "x average y" : y is the average of a list of

numbers x. Use function calls to sum" and length.

4. Suppose that you have a set of marks defined by facts of the form

number mark

e.g 34 mark

records the mark of 34. Suppose that each mark is out of a possible
maximum of 60. Give queries that use equality conditions to find:

a. All the marks expressed as a percentage.
b. The percentage equivalent of the average mark.

For b. you also will need to use isall.

4.6 Querying the user using is-told

In the last exercise we assumed that we had a set of marks
recorded by facts already added to the program. Let us suppose
that we did not want to have a permanent record of these marks
stored in the program and that they had been added solely in
order to be able to convert them to percentages.

It would be preferable if we did not have to explicitly add
the mark facts but could pose the query in such a way that
micro-PROLOG asks us to give each mark when it is needed for
the conversion to a percentage.

We can do this using the is-told condition, is-told is a
special relation which asks the user questions. It has a single
argument called the question pattern. The question pattern is
similar to the answer pattern in which and all queries; except
that it forms a question that micro-PROLOG poses the user,
rather than an answer that micro-PROLOG displays to a user's
query.

System note . "is-told" on the Spectrum - as with expressions it is
necessary for you to load an extension to SIMPLE if you wane to use
the is-told condition. The extension is in the file TOLD of the

154 	 4. Complex conditions in queries and rules

distribution tape. So do a load TOLD".
In the query

all(mark X is Z percent : (mark X) is-told &
Z=(X/60*100))

the question pattern of the is-told condition is (mark X)", and
the questions will be of that form. This query sets up an
interaction between us and micro-PROLOG. With our response
emphasized an example interaction is:

mark X ans 20
mark 20 is 3.3333333E1 percent
mark X ans 15
mark 15 is 25 percent
mark X ? just 30
mark 30 is 50 percent
No (more) answers

The condition "(mark X) is-told" is not solved by matching
with any "mark" sentences in the program. It is solved by micro-
PROLOG displaying the condition and waiting for us to give a
value for the variable in the condition with our "ans ..." response.
When we respond

ans 20

it is equivalent to a successful match with the sentence

20 mark

Just as a query that used a normal "X mark" condition
would backtrack to find another sentence to match with the
condition, so micro-PROLOG will backtrack on the is-told
condition to allow us another way of answering the question.
Each different answer we give represents a different mark that we
might have explicitly recorded with a "mark" fact before posing
the query.

A normal query will terminate when it has exhausted all the
"mark" sentences. We must explicitly say that we are giving the
last answer by using the form "just ...". When we do this we are
not asked for any more answers to the "(mark X) is-told"
condition.

Another example of its use is the query

4.6 Querying the user using is-told 	 155

which(Smith sells electrical x : Smith sells x
& (x electrical) is-told))

This can be used to find all the goods that Smith sells that are
electrical without us having to explicitly record which goods are
electrical with sentences in the data base. Suppose the program
contains the facts:

Smith sells bacon
Smith sells light-bulbs
Smith sells string

about what Smith sells. The interaction will be:

bacon electrical ? no
light-bulbs electrical 	yes
Smith sells electrical light-bulbs
string electrical 	no
No (more) answers

This time the questions do not contain variables so we must give
a "yes" or "no" answer. The "yes" is equivalent to micro-PROLOG
making a successful match of the displayed condition with a
sentence in the program, the "no" is equivalent to it failing to
find a successful match for the displayed condition.

is-told in rules

Like any query condition the is-told condition can also be
used in rules. Let us return to the BICYCLE parts data that we
used in Chapter 2 in which direct parts are recorded by "part-of"
facts and the "indirect-part-of" relation is recursively defined using
"part-or'. Let us suppose that we are interested in using this
information to help us to repair a bicycle. Before we can use it
we should perhaps get hold of a bicycle repair expert to tell us
what observed problem indicates a fault in some part of the
bicycle by giving us some facts of the form:

problem indicates (fault in part

e.g.

flat-tyre indicates (puncture in wheel

156 	 4. Complex conditions in queries and rules

flat-tyre indicates (faulty-valve in wheel)
wheel-wobble indicates (loose-spokes in wheel)
slack-chain indicates (too-many-links in chain)
no-lights indicates (loose-connection in electrical-system)
no-lights indicates (fault in dynamo)

Notice that where an observed problem indicates more than one
possible fault we have separate indicates" facts.

Consider the pair of rules:

possible-fault-in y if z indirect-part-of y and
• indicates (x in z) and
• is-reported

X is-reported if (X a problem) is-told

which can be read

x is a possible fault in y if x is a fault in some indirect
part of y indicated by a reported problem

X is reported if we are told that X is a problem

To help us overhaul a bicycle, we can use the query

all(x : x possible-fault-with bicycle)

The evaluation will use the "z indirect-part-of bicycle' condition of
the rule to walk over the structure of the bicycle as recorded in
the "part-of' facts. For each part z, the 'X indicates (x in z)"
condition will be used to find possible faults and the problems
associated with them. For each such symptomatic problem we will
be asked if we can report the presence of the problem with a
question such as

flat-tyre a problem

For each "YES" response we give we will be given a possible
fault answer to the query.

There is a slight drawback with this query. Answers to is-
told conditions are not remembered. Because we have associated
two possible faults with the same flat-tyre problem we will be
asked about this problem twice. A solution that we will return to
later in the book is to define "is-reported" in such a way that our

4.6 Querying the user using is-told 	 157

answers are remembered.
An alternative way of using the trouble-shooting data makes

use of a set of 'problem" facts to generate the names of the
problems about which we are queried. If we recorded each
problem once with a sentence such as

flat-tyre problem

we could use the query

all(x possible fault : y problem &
y is-reported &
y indicates (x in z))

to find all the possible faults with our bicycle. Now the
"problem" data is used to generate the names of the problems
about which we are questioned. Since each one is recorded by
only one "problem" fact, we will only be asked once.

Yet another use, that requires us to know the names of the
problems, is to let us volunteer the observed problems. The query

all(x possible fault : y is-reported &
y indicates (x in z))

sets up an interaction of the form

X a problem ? ans flat-tyre
puncture possible fault
faulty-valve possible fault
X a problem ? just slack-chain
too-many-links possible fault
No (more) answers

The above example is the bare bones of a very simple
expert system in micro-PROLOG. The above queries access the
expert's data in a particular systematic way and ask us to supply
information about observed problems.

We can also get at the expert's knowledge by directly
querying the "indicates" data.

all(x : z indirect-part-of electrical-system &
y indicates (x in z))

will tell us all the possible faults with the electrical system.

158 	 4. Complex conditions in queries and rules

General form of is-told conditions

An is-told condition has the form

<question-pattern> is-told

When evaluated, the sequence of elements in the question
pattern (which should be a list) are displayed followed by a
indicating that we must provide an answer for the condition. The
answers and their effects are:

answer effect

yes 	The is-told condition is assumed to be true.
Backtracking will not cause the question to be posed
again.

no 	The is-told condition is assumed false (the condition
fails).

ans .. 	The .. is a sequence of values, one for each different
variable in the question pattern. The is-told condition is
solved for values of the variables given in the response.
The i'th value in the response sequence becomes the
value for the ith variable in the question pattern in the
left to right order of the text.

Example, if the is-told condition was
"(X likes Y) is-told" the response

X likes Y 	ans torn bill

makes Xtom and Ybill. Backtracking will result in
the message being redisplayed when an alternative
solution can be given. This repeated prompting for new
solutions on backtracking continues until you enter no
or just.

just .. 	The same as ans except that on backtracking you are
not asked for another solution. It is assumed to be the
last solution to the is-told condition.

4.6 Querying the user using is-told 	 159

Exercises 4-6

1. Give a query that will enable you to find the sum and average of
several lists of numbers that are given as different user replies to an is-
told condition "(X a list) is-told. A sample reply might be

ans (23 -45 98 34.6 -5)

2. Give a query that will prompt you to enter three numbers X, Y, Z
and which will display these three numbers as an answer to the query
only if Z(X*Y). This is a query that you can use to test your mental
arithmetic capabilities.

3. Suppose that we have a family relations data base which does not
record who is male or female. Give rules for these relations such that
you will be queried when a male or female" condition needs to be
solved.

What will be the difference between the interactions that result
from the two queries
a. all(x Tom father-of x & x male)
b. all(x : x male & Tom father-of x)

Top-down development of programs

is-told can be used to help with the top-down development
of a program. As an example, in Section 4.3 we gave the
following definition of "ordered"

X ordered if (forall (x y) adjacent-on X then x lesseq y)

which was to be used in conjunction with auxiliary definitions of
"adjacent-on" and "lesseq". We can test out this definition, before
giving the proper definitions of these relations, by adding the
following pair of definitions:

(x y) adjacent-on X if ((x y) adjacent-on X) is-told

x lesseq y if (x lesseq y) is-told

If we pose the query

is((35 5 6) ordered)

160 	 4. Complex conditions in queries and rules

the interaction will be

(X Y) adjacent-on (3 5 5 6)? ans 3 5
3 lesseq 5 ? yes
(X Y) adjacent-on (3 5 5 6)? ans 5 5
5 lesseq S ? yes
(X Y) adjacent-on (3 5 5 6)? just 5 6
S lesseq 6 ? yes
YES

Our series of answers to the "(X Y) adjacent-on (3 5 5 6)"
question gives all the pairs of adjacent elements. Note that the
last pair is signalled by the "just".

4.7 Comment conditions

With a judicious choice of relation names micro-PROLOG
programs entered using SIMPLE can be self-documenting. Even
so, comments are sometimes needed to remind us of certain
restrictions on the use of programs or to remind us of the role
of certain of the arguments. This is especially the case when we
use relations with more than two arguments and the infix form is
not sufficient to indicate the role of each argument. There are
two ways in which we can associate comments with a micro-
PROLOG program. We can add sentences about some "comment"
relation, or we can add ignored comment conditions using a
micro-PROLOG primitive relation /*,

The / 0 comment condition

The relation name / 	is specially treated by micro-
PROLOG. Any condition which uses this relation name is ignored
during an evaluation. Another way of looking at it is that every
/* condition is always true. We can therefore use /0 to add
comment conditions to rules.

Example

function factorial

1 factorial 1 if /0(can only be used to find factorials and is
declared a function)

4.7 Comment conditions 	 161

factorial y if /*(vars (x int) (y vat)) &
1 LESS x & y =(x*(fac torial(x 1)))

is a commented version of the 'factorial" program which reminds
us of the restrictions on its use and which reminds us of the rote
of the arguments with a comment about the variables of the
recursive rule. (Notice the use of the "factorial" function call in
the recursive rule. This is possible because of the pre-declaration
that "factorial" is a function.)

The use of the commented program will be slightly slower
because micro-PROLOG will momentary look at the comment
conditions before it ignores them.

Comment sentences

As an alternative or an addition to comment conditions we
can add sentences for some "comment" relation. Thus, instead of
having the restrictions of use comment embedded in the
"factorial" program we can use the following "comment" fact.

factorial comment
(can only be used to find factorial values and
is declared a function)

The disadvantage of having a separate "comment" fact is that we
do not automatically see the comment when we list the "factorial"
program. The advantage is that we can kill the "comment" relation
in order to get rid of all the comments at one go. (The
comments do take up space.) To access the comment for some
relation we query "comment".

which(y : factorial comment y)
(can only be used to find factorial values and is declared
a function)
No (more) answers

Such a "comment" relation is a simple minded description of
a program. By adding rules, we can make our "comment"
program as sophisticated as we like. For example, we might add
facts describing which relations are directly used in the definition
of another relation, itself a useful form of program comment.

162 	 4. Complex conditions in queries and rules

factorial uses (factorial LESS *

Then, the rule

comment (x is recursively defined) if
• uses Y and
• belongs-to Y

automatically gives us an extra answer to a "comment" query
about a recursively defined relation.

By using such auxiliary programs you can use the full
power of micro-PROLOG to provide a very sophisticated 'active'
documentation of a program.

5. List Processing

We have seen that we can access the components of lists

and construct new lists Out of existing lists by defining relations

with lists as arguments. When we query these relations we are
processing lists. In this chapter we look at some more list

relations and their uses.

5.1 The append relation

We begin by examining a very powerful little list program
for the relation "append". This has many uses apart from the

'normal' one of appending two lists together; as we shall see, it

can be used to find all the ways of splitting a list, to remove an
initial or tail segment of a list, even to split a list on a given
element.

The condition

append(x y a)

holds when z is the result of appending the list x to the front of
the list y.

An example of this is:

append((A B) (C D E) (A B C D E))

Note that z is not simply the list (xly). For the above example,
(xly) is the list

((A B) C D E)

which begins with a sublist which is the list x. This is quite
different from the list

164 	 5. List Processing

(A B C D E)

which begins with the first element of the list x.
Before defining append", let us consider an example to

illustrate its use. I am trying to remember what I ate for lunch
today. It was served in two courses. Each course can be described
by a list of its ingredients. Thus

(fish chips) served-in first-course
(rhubarb custard) served-in second-course

What I ate altogether was the list of things I ate in the first
course appended to the list of things I ate in the second course.
So

Z served-in dinner if
x served-in first-course &
y served-in second-course &
append(x y Z)

which(x : x served-in dinner)
(fish chips rhubarb custard)
No (more) answers

Notice the difference between this answer, which is one list, and
the answer to:

which(x y : x served-in first-course &
y served-in second-course)

(fish chips) (rhubarb custard)
No(more) answers

The answer to this is a pair of lists. The two lists are not 'glued'
together in a single list. This is the rle of "append".

To develop our program for "append(x y a)" we must make
statements about the relation that together completely define the
relation. As a rule of thumb, when defining relations over lists,
we should pick one of the arguments of the relation and give
sentences for different cases for that argument. The cases should
together cover all the different types of lists that might appear in
that argument of the relation.

For the "append(x y a)" relation, let us pick the first
argument x. We will completely define the relation by having a
sentence about all instances of the relation when x is the empty

5.1 The append relation 	 165

list (), and another sentence about all instances of the relation
when x is a non-empty list represented by the pattern (AX).

When x is (), it is always the case that y and z are the
same. (Glueing no elements to the front of y leaves it
unchanged.) This is expressed by the unconditional rule

append(() y y)
	

(1)

which we read as,

for all y,
empty list () and y append to y.

Notice that we do not have to have an explicit condition that
says that y and z are the same. We express this implicitly by
having the same variable in each argument position.

When x is a non-empty list of the form (xIX) we know that
z must also begin with x. So z must be of the form (xIZ) for
some Z. We cannot unconditionally state

append((xIX) y (xIZ))

because this does not hold for all X, y and Z. The X, y and Z
cannot be arbitrary lists. However, whenever

append(X y Z)

holds, then we can be sure that

append((xIX) y (xIZ))

also holds. This is illustrated by the picture:

z
X 	 y

(x) 	(........)

(xIX)
IN

(xIZ)

This gives us the conditional rule

166
	

5. List Processing

append((xIX) y (xIZ)) if append(X y Z) 	 (2)

(1) and (2) are a pair of sentences that together completely define
the 'append' relation. They are a logic program for the relation.

Using append to split a list

Queries to the "append" relation in which x and y are given
will return a z that is the concatenation of x and y. To use it to
split a list, we give the a and leave x and y as variables.

which(x y : append(x y (2 3 4)))
0 (2 3 4)
(2) (3 4)
(2 3) (4)
(2 3 4) 0
No (more) answers

In the answers that we got, two were a pair consisting of
the empty list and the original list. To exclude these answers we
simply replace x and y by patterns that denote non-empty lists,

which((xIXyIY) : append((xIY) (ylY) (2 3 4)))
(2) (3 4)
(2 3) (4)
No (more) answers

By describing the second list with the pattern (AY) we can
insist that the split is at a point where the first element of the
list recurs:

which((xIX) (xIY) : append((xIX) (AY) (2 4 2 51 2 3)))
(2 4) (2 5 1 2 3)
(2 4 2 51) (2 3)
No (more) answers

Alternatively, we can insist that the second list begins with
some particular element, say 3. We do this by denoting it by the
pattern (3rY).

which(x (31Y) : append(x (31Y) (2 3 5 31)))
(2) (3 5 31)

5.1 The append relation 	 167

(2 3 5) (3 1)
No (more) answers

This finds all the splittings of the list that Start at the given
number 3.

As a last (but by no means exhaustive) example of the use
of append', consider the query

which(x append(y (xIX) (2 3 4)))

What will the answers be?

Exercises 5-1

Answer these micro-PROLOG queries:

1. which(x : append((J U M) (B 0) x))

2. which(x y : append(x y (J 0 H N)))

3. which(x y : append(x (RIy) (C Y R I L)))

4. which(x y : append((D A M) (S 0 N) x) & x has-length y)

5. Try the query
one(x y 2 : append(x y a))

Hand evaluate it to the point where you get 4 answers if you have not
got a computer.

6. Give the query that checks that the list (2 3 4 2 3 4) is the result of
appending some list to itself and which returns that list.

7. Give the query that returns the second list of all the splittings of the
list of words

(the man closed the door of the house)
at the word "the".

8. Use the "belongs-to" relation to pose a query that finds all the
second halves of the splittings of

(Sam threw a ball into the lake)
that start with one of the words in the list (a the).

9. Using "append" pose the query to find the last element of the list (2
3 4).

168 	 5. List Processing

10. Give an alternative recursive definition of the relation "x ordered"
that was defined in Section 4.3. Treat the four cases:
a. x the empty list
b. x a list with one element
c. x a list with at least two elements y & z the same
d. x a list with at least two elements y,z with y LESS

11. Give a recursive definition of the relation
remove-all(x X Y): Y is the list X with all occurrences of x removed.
Hint: treat the three cases
a. X the empty list
b. X a non-empty list that begins with x
c. X a non-empty list that begins with a y different from x.

12. Give a recursive definition of the relation
X compacts-to Y:Y is the list X with all but the first occurrence of
any duplicated elements removed. Define it using the "remove-all"
relation of Exercise 11.
Hint: if X is a non-empty list beginning with x then Y must also begin
with x but the tail of Y will be a compacted version of the tail of X
after all recurrences of x have been removed. Now say this in micro-
PROLOG using list patterns and a conditional rule. Do not forget the
case when X is empty.

Notice that this relation can be used for removing duplicates from
a list of answers given by an isall condition. We use a conjunctive
condition of the form:

X isall (A : Q) & X compacts-to Y

However, "compacts-to" is a time-consuming operation.

5.2 Rules that use append

(1) The rule:

front(x y z) if append(y yl z) & y has-length x 	 (A)

defines the relation front(x y z) which holds when y comprises
the first x elements of z. It can be used for finding the first x
elements of a list as in:

which(x : front(3 x (A B C D E F)) 	 (B)
(A B C)
No (more) answers

5.2 Rules that use append 	 169

In answering this query the condition "append(y yl z)" of the rule
is used to generate candidate splittings of the list
(A B C D E F). micro-PROLOG will test every splitting with the
"y has-length x" condition.

Notice that we can also define the relation using "length-of":

front(x y z) if x length-of y & append(y yl z) 	 (C)

Used to answer the same query, the condition "x length-of y" will
be used to construct a list of three variables (xi x2 0 as the
value of y that is passed on to "append(y yl z)". The evaluation
of this condition then finds values for xi, x2 and x3. In other
words, in answering query (B), after the first condition of the
derived query

3 length-of x & append(x yl (A B C D E F)))

has been solved the evaluation is reduced to solving the condition

append((xl x2 x3) yl (A B C D E F))

Here we have a powerful use of partial answers that are list
patterns. The evaluation of (B) using definition (C) does not
involve the generation of candidate splittings of the given list. In
consequence, the evaluation using definition (C) is much more
efficient than the evaluation that uses definition (A). The one
drawback of the second definition is that it can only be used if
the length of the front list is given. This is because of the
restriction on the use of 'length-or' that we noted in Chapter 3.

(2) The rules:

(AX) initial-segment-of z if append((xIX) y z)
(ylY) back-segment-of z if append(x (ylY) z)

define the relations suggested by the relation names. Notice the
requirement that the initial and back segments be non-empty lists.

We can use these relations to define the relation
"x segment-of z" which holds when x is a non-empty segment of
contiguous elements on the list z. Such a list x is an initial
segment of a back segment of z.

170
	

5. List Processing

segment-of z if y back-segment-of a &
initial-segment-of y

which(x x segment-of (A B C))
(A)
(A B)
(A B C)
(B)
(B C)
(C)
No(more) answers

(3) The rules:

(x) reverse (x)
(x yIX) reverse z if (X) reverse Y & append(Y (x) a)

define the relation a reverse-of x' that holds when z is the non-
empty list x in reverse order. They can be used for checking the
relation or for finding the reverse of a list with a query in which
the first argument is given and the second is to be found.

which(z : (A B C D E) reverse a)
(E D C B A)
No (more) answers

Why should it not be used with the first argument given and the
second to be found? Follow through the evaluation to see what
happens in this case.

(4) The rule:

delete(x X Y) if append(X1 (xIX2) X) & append(X1 X2 Y)

defines the relation which holds when Y is the list X with some
single occurrence of x removed.

We can use this relation to give a recursive definition of
the relation

Y permutation-of X: Y is some re-ordering of the list X

It is defined by the pair of rules:

() permutation-of ()

5.2 Rules that use append 	 171

(ylY) permutation-of X if
delete(y X Z) & Y permutation-of Z

The second rule tells us that the list (ylY) is a permutation
of the list X if the first element y appears somewhere on X and
the remainder Y is a permutation of the list X when y has been
removed. This diagram illustrates this relationship between (ylY)
and X.

Y 	 x

y 	y....

--
permutation-of

Remember that in Chapter 4 we defined the relation 'X same-
elements-as Y" which was true of a pair of lists if every element
of X appeared on Y and vice versa. This is equivalent to
"Y permutation-of X" when X and Y have the same length.
However, because "same-elements-as" was indirectly defined using
forall it can only be used for testing. Our recursive definition of
"Y permutation-of X" can be used for testing or generating. To
generate all the permutations of a list we give X and ask for Y.

which(Y : Y permutation-of (5 3 7))
(5 3 7)
(5 7 3)
(35 7)
(3 7 5)
(7 5 3)
(7 3 s)
No (more) answers

To find an ordered permutation we pose the query:

which(Y : Y permutation-of (s 3 7) & Y ordered)
(35 7)
No (more) answers

Here, "ordered" is the relation defined using forall in Chapter 4.
Finally, we can give a definition of the sort relation

172 	 5. List Processing

• sorts-to y: y is a sorted version of the list x

It is: • sorts-to y if y permutation-of x & y ordered

This can be used, somewhat inefficiently, to sort a list with a
query condition in which x is given and y is to be found. It
sorts the x by generating successive permutations until one is
found that is ordered. In the next section we shall give an
alternative recursive definition of the sort relation which is a
much more efficient micro-PROLOG program.

Exercises 5-2

1. Using the relations defined above, answer:
a. which(x : front(4 x (J K L M N P Oj)
b. which(x : x segment-of (F R E D A))
c. which(x : (E R I C) reverse x)

2. Define the relation "last-of" of Exercise 3-7(3) in terms of "append".
Notice that this is a non-recursive definition of "last-of" in terms of the
recursively defined "append".

3. Define the list membership relation "belongs-to" in terms of "append".

4. The 'power list' of s list is directly analogous to the power see
concept in set theory: i.e. the power-list of a list is the list of all sub-
lists of the list. Define the relation "x power-list y" which holds when y
is the power list of x.

Try your program on the following query:

which(x : (A B C D) power-list x)

(Hint: remember that the empty list is also a sublist, but only once.
Don't forget about isall.)

5. Define the relation: palindrome(x) which holds when x is a list that
reads the same forwards or backwards. Thus, (M A D A M) is a
palindrome list of letters, (1 2 2 1) is a palindrome list of numbers.
Define it in terms of "reverse". Use your definition to test the above
two palindromes.

6. Define the relation adjacent-on" of Exercise 3-7(4) but this time give
a non-recursive definition by using "append".

5.2 Rules that use append 	 173

7, Give an alternative recursive definition of the relation delete(x X Y)
which was defined above using append".
Hint: treat the two cases:
i. the deleted x is the first element of X.
ii. the deleted x is not the first element of X.

8. Consider the relation
split.on(y X XI X2): XI X2 is a splitting of the list X such that Xl is
of length y.
a. Define it using "append" and 'has-length".
b. Define it using "length-of' and "append".
c. Give an alternative recursive definition.

Compare the programs with respect to efficiency for splitting a list
given the length.

5.3 	Recursive definition of the sort relation

Next, we develop a recursive description of the sort relation
between lists that will provide us with a much more efficient sort
program than the one defined above using "permutation-of". We
Start by making one or two simple observations about the
relation.

First we know that a singleton list is already sorted, i.e. a
list with one element in it is already in the right order. Similarly
the empty list is sorted by default. These two facts about the sort
relation are expressed by:

o sort () 	 (1)
(x) sort (x) 	 (2)

However, most lists are neither empty, nor singleton; so we
have to be able to sort these too. One way of dealing with
bigger lists is to make them small ones; i.e. use some kind of
divide and conquer strategy. This would involve splitting the list
(which has at least two elements) into two smaller ones, sorting
each of the bits and putting them back together again. This
means that we must look for a recursive description of the "sort"
relation for lists of at least two elements.

174 	 5. List Processing

Merge sort

The method of splitting that we shall use merely involves
dividing the list into two nearly equal halves: i.e. they are within
one element of each other in length. We can do this by taking a
front segment and a back segment such that when appended
together again they make up the original list; making sure at the
same time that the lengths are nearly equal.

Let us call this relation split. Thus,

split((xl x2Ix) Xl X2)

holds when

append(X1 X2 (xl x2Ix))

holds and the length of Xl is the length of X2, plus or minus 1.
Now, if Xl, X2 are such a splitting of (xi x2Ix), and yl, y2

are sorted versions of Xl, X2 respectively, then the sort of
(xl x2Ix) is some y which is an order preserving interleaving of yl
and y2. Let us call this relation between yl, y2 and y, merge(yl
y2 y). The following rule gives us a recursive description of the
"sort" relation that corresponds to this method of sorting:

(xl x2Ix) sort y if split((xl x2Fx) Xl X2) & 	 (3)
Xl sort yl & X2 sort y2 & merge(yl y2 y)

Rule (3) fairly naturally encodes the English statement of
sorting using the divide and conquer method. The merge program
we shall look at in a moment is clearly the 'guts' of the sort
program, it has to be able to take two ordered lists, and merge
them into one. This job is easier than sorting a list since we can
make use of the knowledge that the two 'input' lists are already
ordered.

In defining the "merge' relation we shall need to treat
several cases. The first two are when either yl or y2 is the empty
list:

merge(() x x) 	 (4)
merge(x () x) 	 (5)

The remaining case is where both yl and y2 are non-empty.

5.3 Recursive definition of the sort relation 	 175

In this case we have three possibilities: either the first element of
each list is equal, the first element of yl is less than the the first
element of y2 or vice-versa.

Notice that it is here that we have to start discussing what
it means for an element of a list to be less than or greater than
another element. Up until now we have not actually needed to
define what criteria we use to sort lists.

We can define our own notion of order amongst elements
which will allow us to sort different types of list. Let us call this
relation "less". If we want to sort numbers or constants we simply
define "less" as the pre-defined LESS relation by adding the
definition

x less y if x LESS y

to the sort program. Alternatively, we could define it as

x less y if (x less y) is-told

using the is-told relation described in Chapter 4. By interactively
supplying the answers to the "less" conditions we can sort to any
criterion of order.

Returning to the problem of merging two lists together,
having decided that the first element of one is less than the first
element of the other we put that element as the first element of
the merged list. Assuming that we are supposed to be sorting
into increasing order, the smaller of the two elements must form
the first element of the merged list.

First the rule for when both the first elements of Yl and
Y2 are identical:

merge((xIyl) (xy2) (x xly)) if merge(yl y2 y) 	 (6)

This rule states that the merge of the two lists with identical first
elements starts with two of that element, and the tail is obtained
by merging the tails of Yl and Y2.

The next rule deals with the case when the first element of
Yl is less than the first element of Y2. In this case the first
element of the merged list is the first element of Yl. The tail of
the merged list is found by merging the tail of Yl and the
whole of Y2:

merge((xlIyI) (x2i2) (xliy)) if 	 (7)
xl less x2 &

176 	 5. List Processing

merge(yl (x21y2) y)

In a similar way we get the last rule for merge, which is
symmetric to (7):

merge((xlIyl) (x2y2) (x2Iy)) if 	 (8)
x2 less xl &
merge((xlIyl) y2 y)

Finally, we need to define the split relation. We can say
that split(X Xl X2) holds if yl is approximately half the length
of (xl x2Ix) and XI X2 are a splitting of X such that Xl has yl
elements. This gives us the rule:

split(X Xl X2) if split-onl((div (length X) 2) X Xl X2)

Here, 'split-on" is the relation defined in Exercise 5.2(8). The
functional relation "div" was defined in Section 4.5 and "length"
defined in Exercise 4-5(3).

The complete merge-sort program is as follows:

o sort ()
(x) sort (x)
(xl x2Ix) sort y if

split((xl x2x) Xl X2) &
Xl sort yl & X2 sort y2 &
merge(yl y2 y)

merge(() x x)
merge(x () x)
merge((xlyl) (xIy2) (x xly)) if merge(yl y2 y)
merge((xlIyl) (x2Fy2) (xlIy)) if

xl less x2 &
merge(yl (x21y2) y)

merge((xlFyl) (x21y2) (x2ty)) if
x2 less xl &
merge((x1y1) y2 y)

split(X Xl X2) if split-on#((div (length X) 2) X Xl X2)

split-on(O X 0 X)
split-on(y (xIX) (xIXl) X2) if

o LESS y &
split-on#((y 1) X Xl X2)

5.3 	Recursive definition of the sort relation 	 177

And, just to make sure it works, let us try sorting a list of
numbers. We add the definition

x less y if x LESS y

and pose the query:

which(x : (4 3 6 100 -5 3) sort x)
(-5 33 4 6 100)
No (more) answers

Quick sort

The same basic strategy for divide and conquer can lead to
completely different sort programs if we choose slightly different
methods of dividing. For example, in our split, we simply
chopped the list into a front and a back half. If instead we had
chosen to partition the list in such a way that all the elements of
one list were less than all the elements in the other we get a
quite different recursive description of the sort relation.

The first thing to notice about this scheme for splitting is
that when we are merging the two lists back together again we
can take advantage of the fact that one list is entirely less than
the other. In other words each element of one partitioned list
(and hence its sorted variety) is less than all the elements of the
other list. This enables us to replace the "merge" part of the sort-
is program by a simple "append".

On the other hand the partitioning of the lists is more
complicated; it has to do the main work of the sort.

Exercises 5-3

1. Assume that you have some suitable definition of the relation
partition(x y zi z2): each element of the list x which is less than y
appears on the list zi, all the other elements of x appear on z2. Give a
definition of the sort relation that makes use of "partition". Call the
relation "quick-sort". Add the definition

partition(x y zi z2) if (partition x y zi z2) is-told

to your program and test it by sorting some small lists. You supply the
answers to the "partition" condition when they are required. Make sure

178 	 5. List Processing

each answer you give is a just .." answer so that micro-PROLOG does
not ask you for an alternative partitioning.

2. Give a recursive definition for partition", and delete its is-told
definition. How does the complete quick-sort program compare with the
merge-sort program for speed of sorting?

3. Inefficiency in the merge sort program results from the need to
continually recompute the length of a list on each recursive call. This is
not necessary since the split relation effectively finds the lengths of the
lists Xl and X2 that are recursively sorted. Change the definition of the
"sort" relation so that it is a relation between a pair (x X) and a list Y
where Y is the sorted version of X and x is the length of X. You will
need to change the recursive rule for "sort" and the rule that defines
"split". Call the new sort relation "merge-sort", and the new split
relation, "merge-split". Do not forget the base cases for "merge-sort".
Compare the speed of this program with that for "sort" and quick-
sort".

5.4 List functions

We can declare some of our list relations as functions and
then use them in expressions. For example, we can declare
"append" a function with

function append

because the last argument of "append(x y z)" is uniquely
determined by the first two arguments. Now, each appending use
of the relation can be expressed as a function call.

The expression query

#(append (1 2) (append (3 4) (5 6)))

gives the value (1 2 3 4 5 6). The rule

(AX) reverse z if X reverse Y & z(append Y (x))

uses a function call to "append" instead of an appending relation
condition.

We can also declare "sort" a function and use "sort"
function calls to sort lists,

(sort (3 2 4 1))

5.4 List functions 	 179

(1 2 3 4)

using I in expressions

The expression query

l(2 31 (append (4 5) (6 7))

will give you the answer

(2 3 append (4 5) (6 7))

not the answer

(2 3 4 5 6 7)

which is 2 followed by 3 followed by the result of appending
(4 s) to (6 7).

The reason is that expressions are just special forms of list,
and the list pattern

(2 31 (append (4 5) (6 7))

is just another way of writing the list

(2 3 append (4 5) (6 7))

in which the function call sublist has disappeared. If you follow a
I in a list pattern with a list micro-PROLOG automatically
simplifies the pattern absorbing the sublist following the I into the
main list. This means that when the expression parser is passed
the abovc list to parse as an expression it does not see the sublist
function call to "append". It sees a list of four elements and
leaves it unchanged.

The moral is you can never use I in an expression followed
by a function call sublist. When you do want to denote the rest
of a list by a function call you must use an explicit CONS
function call which adds an element to the front of a list. The
above expression query must be re-expressed as

#(CONS 2 (CONS 3 (append (4 5) (6 7))))

CONS is defined in the SIMPLE front-end program. It is

180
	 5. List Processing

automatically recognized as a function in expressions. Its definition
is

CONS(X Y (XIY))

System note - other predefined list relations - SIMPLE also contains
definitions of the relations APPEND and ON. APPEND is exactly the
same as the append" relation we have defined in this chapter. Like
CONS it can be used as a function in expressions without your having
to declare it a function. ON is exactly the same as the 'belongs-to"
relation we defined in Chapter 3. The definitions of these relations are
embedded in SIMPLE because they are so frequently used. Whilst you
are using SIMPLE you can use them as though they were built-in
relations of micro-PROLOG. From now on we shall use APPEND and
ON instead of "append" and "belongs-to".

6. Introduction to Parsing

One of the more impressive application areas for logic
programming has been in natural language understanding. We
introduce this application area by looking at a very simple
example of parsing. Parsing involves splitting up a list of words
or symbols into sublists that satisfy certain syntactic constraints.

Our first program will make use of the APPEND relation to
do the splitting. It will parse very simple sentences of English.
Although the program is not very efficient, it is very close to a
specification of the grammar of the English sentences that it
recognizes.

We shall then rewrite the program so that the splitting of
the list is done implicitly rather than explictly with an APPEND
condition. This will give us a very efficient parsing program. It
will also introduce us to the important logic programming
concept of difference pairs of lists.

6.1 Parsing sentences expressed as lists of words

The English sentence to be parsed is represented as a list of
words. The various ways that this list of words can be broken up
represent the various possible 'parsings' of the sentence. For
example the sentence the boy kicked the ball' is represented by
the list:

(the boy kicked the ball)

By re-organizing this list into a list of nested sub-lists we can see
some of the grammatical structure of the sentence:

((the (boy)) (kicked (the (ball))))

We can then augment the list with labels which describe the

182 	 6. Introduction to Parsing

various parts of speech:

(SENTENCE (NOUN-PHRASE (DETERMINER the)
(NOUN boy))

(VERB-PHRASE (VERB kicked)
(NOUN-PHRASE (DETERMINER the)

(NOUN ball))))

This nested list structure represents the grammatical structure
of our sentence, except of course that it is highly simplified: there
is no tense to the verb, and there is no representation of plurality
in the noun phrases. Still, this kind of grammar is a suitable base
for further development.

The program which recognizes sentences like this is
composed of rules and facts which are organized around the parts
of speech found in sentences. For example the rule for "is-
sentence" can recognize a sentence, and the rules for "is-noun-
phrase" can recognize a noun phrase. The most simple rule for
recognizing sentences is:

x is-sentence (S X Y) if
APPEND(xl x2 x) and
xi is-noun-phrase X and
x2 is-verb-phrase Y

In other words, if we can split the list of words x into two
sub-lists xl and x2 which form a noun phrase and verb phrase
respectively then x is a sentence. The grammatical structure of the
sentence is represented by the structure: (S X Y) where X and Y
are the grammatical structures of the noun phrase and verb phrase
respectively. (For the sake of brevity we use abbreviations such as
"5" to stand for SENTENCE)

One definition of a noun phrase is that it is a determiner
followed by a noun expression, i.e. a word like "the" or "a"
followed by a word like "boy" or a phrase such as "big silly
boy':

x is-noun-phrase (NP X Y) if
APPEND(xl x2 x) and
xi is-determiner X and
x2 is-noun-expression Y

"NP" stands for noun phrase. The program for "is-
determiner" must recognize a list which contains just one word,

6.1 Parsing sentences expressed as lists of words 	 183

which is one of the known determiners:

(x) is-determiner (DT x) if
x dictionary DET

The program for dictionary" represents the vocabulary of
the recognized sentences and it records the type of each word.
Only those words which are in the dictionary are known to the
program, if we try to parse a sentence with a word not in the
dictionary it will simply fail. The part of the dictionary program
concerned with determiners is:

the dictionary DET
a dictionary DET
an dictionary DET

The simplest kind of noun expression is just a noun. This is
expressed by the rule:

(x) is-noun-expression (N x) if
dictionary NOUN

i.e. a singleton list is a noun expression if the dictionary has that
word recorded as a noun. Some nouns are:

boy dictionary NOUN
ball dictionary NOUN
girl dictionary NOUN
apple dictionary NOUN

etc.

Going back to our rule for sentences we have yet to
describe what a verb phrase is. A very simple kind of verb phrase
is a verb expression (i.e. a verb or a verb with associated adverbs)
followed by a noun phrase, this being the object of the sentence.
This rule is expressed by:

is-verb-phrase (VP X Y) if
APPEND(xl x2 x) and
xi is-verb-expression X and
x2 is-noun-phrase Y

By ignoring problems regarding tense we can get a rule for
verb expressions which is similar to our noun expressions rule.

184 	 6. Introduction to Parsing

The simplest form of verb expression is a verb.

(x) is-verb-expression (V x) if
dictionary VERB

and we extend our knowledge of the dictionary with

kicked dictionary VERB
likes dictionary VERB
etc.

This more or less completes our first approximation to
English syntax. We can now parse some very simple sentences:

which(x : (the boy kicked the ball) is-sentence x)
(S (NP (DT the) (N boy))

(VP (V kicked) (NP (DT the) (N ball)))))
No (more) answers

One simple extension would be to add adjectival phrases.
That is, to allow noun expressions to comprise an adjective
followed by a noun expression. Some example noun expressions
involving adjectives are:

silly boy
sad girl
big fat bouncy ball etc.

We can extend the program so that it recognizes such noun
expressions by adding an extra rule for "is-noun-expression":

x is-noun-expression (NE X Y) if
APPEND(xl x2 x) and
xi is-adjective X and
x2 is-noun-expression Y

This recursive description allows an arbitrary number of adjectives
to precede the noun, and the parse structure returned tells us the
adjectives used. Of course we now need to define what an
adjective is and we need to extend the dictionary to include some
adjectives:

(x) is-adjective (A x) if x dictionary ADJ

6.1 Parsing sentences expressed as lists of words 	 185

big dictionary AD)
silly dictionary AD)
fat dictionary AD)
etc.

We can now parse sentences such as:

which(x : (the sad boy likes the bouncy ball) is-sentence x)
(S (NP (DT the) (NE (A sad) (N boy)))

(VP (V likes)
(NP (DT the) (NE (A bouncy)

(N (ball))))))
No (more) answers

Finding sentences

We can use the program, somewhat inefficiently, to find all
sentences of a given length. A query such as

which(x : 6 length-of x & x is-sentence y)

will give us all the six-word sentences recognized by the program.
If you have been following the development of the program on a
computer try the query.

We can be more precise. We can insist that xi is the" and
x5 is "a" with the query:

which((the x2 x3 x4 a x6) : (the x2 x3 x4 a x6) is-sentence X)

Finally it can be used, very inefficiently, to generate a
sentence from a parse structure. The query:

one(x : (the boy kicked the girl) is-sentence X and
x is-sentence X)

will parse the given sentence and then convert the parse structure
back to the same sentence. Try it!

The inefficiency results from the fact that the APPEND
condition of each grammar rule should really appear as the last
condition of the rule when we want to use them to generate
sentences. Placed as it is, the APPEND condition will generate
larger and larger lists of variables until one is generated that is

186 	 6. Introduction to Parsing

long enough to hold the sentence whose parse structure is given.
(Remember Exercise 5-1(5).)

This use of the APPEND condition as a generator makes
the use of the one form of query essential. The evaluation of the
analogous which query would never terminate because the
backtracking would cause the APPEND to generate larger and
larger lists of variables as candidate sentence lists.

Exercises 6-1

1. Find the parses of the following sentences (possibly involving an
extension of the vocabulary):

a. the sad boy likes a happy girl
b. the ball kicked the boy
c. a lonely man wandered the hills
d. a piper plays a tune

2. Extend the grammar program so that it can cope with verb
expressions that are verbs preceded by a conjunction of adverbs. The
new program should cope with sentences such as:

a man slowly and deliberately climbed the mountain

The extension required is analogous to that which copes with adjectives.
just add a new rule for is-verb-expression' and give rules and
dictionary entries describing adverbs. Use your new grammar to parse
the above sentence. Hint: you could treat an adverb followed by "and"
as an adverb.

3. Inefficiency in the grammar program results from the use of APPEND
to generate candidate splittings of a sentence or sentence fragment
which are then tested to see if they have a given form. The first
splitting returned by APPEND is the empty list paired with the given
list of words, which for our grammar never results in a successful parse.

We can speed up the execution of the program by constraining
the form of the splittings that APPEND generates in a particular
grammar rule. Thus, in the fragment of English that we are treating,
noun phrases always have at least two words and verb phrases at least
three words.

Modify the program along these lines. In particular, change the
rules for "is-noun-phrase" and "is-noun-expression to exploit the fact
that determiners and adjectives are always single words.

6.2 An alternative parsing program 	 187

6.2 An alternative parsing program

The last exercise was an attempt to improve the efficiency
of the parsing program by constraining the candidate splittings
produced by the APPEND condition of a grammar rule. There is
a far more radical way of rewriting the program that will make it
very efficient. Consider the top-level rule:

x is-sentence (S X Y) if
APPEND(xl x2 x) and
xi is-noun-phrase X and
x2 is-verb-phrase Y

Instead of explicitly stating that xi and x2 are some splitting of
the sentence list x with an APPEND condition we can implicitly
state this by changing the xi of the is-noun-phrase" condition to
the pair of lists '(x x2)". Here, x2 is a the tail sublist of x that is
the verb phrase and the pair (x x2)" is implicitly representing the
noun phrase initial segment of x as the difference between x and
x2. Our new version of the rule Is:

x is-sentence (S X Y) if
(x x2) is-noun-phrase X and
x2 is-verb-phrase Y

The logical reading of the rule is:

x is a sentence with parse (S X Y)
if the difference between x and
its tail end sublist x2 is a noun phrase X and
x2 is a verb phrase Y

The pair of lists

((the boy kicked the ball) (kicked the ball))

represents the initial sublist

(the boy)

because this is the difference between

188 	 6. Introduction to Parsing

(the boy kicked the ball)

and the tail end sublist

(kicked the ball)

Our rules for "is-noun-phrase" must now relate a difference
pair of lists to a parse structure. The rewrite of the first rule is:

(x z) is-noun-phrase (N X Y) if
(x y) is-determiner X and
(y z) is-noun-expression Y

Again we have removed the explicit APPEND condition. The
fact that the list which is the difference between x and z is split
into the lists that comprise the determiner and the noun
expression is now implicit in the representation of these sublists as
the difference between x and y and the difference between y and
z for some y. The logical reading of the rule is:

The difference between x and tail end sublist z
is a noun phrase of the form (N X Y)

if there is some y such that the difference between x
and tail end sublist y is a determiner X and the
difference between y and tail end sublist z is a noun
expression Y

Of course, y must be a larger tail sublist of x than z. The
following diagram illustrates the rule:

x

noun phrase 	 a

determiner 	noun expression

y

Our rule for determiner must now recognize a difference
pair that represents a list containing a single determiner. Any pair

6.2 An alternative parsing program 	 189

of lists of the form "((xix) X)" represents a list of one word x
because the difference between (AX) and the tail X is the single
element list (x).

((xlX) X) is-determiner (DT x) if
dictionary DET

Our two rules for 'is-noun-expression", which must also
relate a difference pair to a parse structure, become:

((AX) X) is-noun-expression (N x) if
dictionary NOUN

(x z) is-noun-expression (NE X Y) if
(x y) is-adjective X and
(y z) is-noun-expression Y

Finally the single rule for "is-adjective", like the single rule
for "is-determiner" must recognize any pair of lists representing a
list of one adjective.

((xIX) X) is-adjective (A x) if
x dictionary AD)

Exercises 6-2

1. Rewrite the rules for "is-verb-phrase", 'is-verb-expression" and "is-
adverb" using difference pairs of lists.

2. Trace through the evaluation of some parse query using the new
grammar program. Notice how when a condition is attempted that
involves a difference pair of lists that the tail end sublist is always a
variable that is given a value when the condition is solved. So, when
the rule

x is-sentence (S X Y) if
(x x2) is-noun-phrase X and
x2 is-verb-phrase Y

is used to parse the sentence (the boy kicked the ball) the first
condition becomes

((the boy kicked the ball) x2) is-noun-phrase X

190 	 6. Introduction to Parsing

When the condition is solved both x2 and X have values. X is (NP

(DT the) (N boy)) and x2 is (kicked the ball). Thus the evaluation of
the is-noun-expression" condition passes on to the is-verb-phrase"
condition the tail end sublist representing the point where its parsing
finished.

Finding sentences

The new program is just as efficient at generating sentences

from parse structures as it is at generating parse structures from

sentences. It is instructive to examine the behaviour of this

inverted use.
Consider the rule

x is-sentence (S X Y) if
(x x2) is-noun-phrase X and

x2 is-verb-phrase Y

For the use to generate a sentence list from a parse structure it

has the control reading:

To find a sentence list x from a parse structure (S X Y)
find a most general difference list of the form (x x2)

which represents the list of words that is parsed into X

then make x2 the list of words parsed into Y

If you try the query

which(x : x is-sentence (S (NP (DT the) (N boy))
(VP (V kicked) (NP (DT the) (N ball)))))

it will first reduce the query to the evaluation of the condition

(x x2) is-noun-phrase (NP (DT the) (N boy)))

which will have the solution

x =(the boylX), x2 = X

This makes (x x2) the most general difference list

((the boylX) X)

6.2 An alternative parsing program 	 191

representing the noun phrase (the boy). When the variable X of
such an answer is passed over to the is-verb-phrase" condition it
is given the value (kicked the ball) and the most general answer
to the "is-noun-phrase" condition becomes the specific answer

x(the boy kicked the ball), x2(kicked the ball))

When X is given the value (kicked the ball), the list pattern

(the boylX)

is transformed into the list

(the boy kicked the ball)

and there is therefore an implicit appending of the list of words
(the boy) with the list of words (kicked the ball)

Our new program is a very efficient program for generating
sentences from parse structures. If you have a computer try again
the query

which(x : 6 length-of x & x is-sentence y)

using the new program. It should be very much faster than
before.

6.3 General use of difference pairs

Difference pairs can be used in any program in which an
APPEND condition is being used to generate all candidate
splittings of a list or to append a pair of lists generated by other
conditions. We must of course alter the other conditions so that
they are relations with difference pairs as arguments. But if we do
this, we can remove the APPEND condition.

As an example let us consider the definition of the list
reverse relation:

(x) reverse (x)
(xly) reverse z if y reverse zi & APPEND(zl (x) z)

In the normal use of this program the APPEND is used to
append the result of reversing the tail y of the given list to the

192 	 6. Introduction to Parsing

single element list (x) comprising the head of the given list.
The definition

(x) D-reverse ((xIX) X)
(xly) D-reverse (z zi) if y D-reverse (z (xlzl))

defines a reverse relation that relates a list to a difference pair
representing the reverse of the list. The recursive rule has the
logical reading:

(xly) has a reverse represented by a difference pair (z 21)
if y has a reverse represented by a difference pair (z
(xlzl))

The rule records a true statement because the difference between
a and zi is the difference between z and (xlzl) with the single
element x added as a new last element.

As an example, suppose that (z (xlzl)) is ((3 2 1 0) (1 0))
representing the list (3 2). Then (z zi) is ((3 2 1 o) (o))
representing the list (3 2 1).

If you query "D-reverse" you will find that you will always
get back a most general difference pair represention of the reverse
of the list.

which(z : (1 2 3) D-reverse z)
((3 2 ilX) X))

No (more) answers

Finally, we can define "reverse" in terms of "D-reverse". If
the "D-reverse" of a list x is of the form (z ()), with an empty
tail list to 'subtract' from z, then z is the normal reverse of x.

x reverse y if x D-reverse (y 0)

This is a very efficient program for reversing lists. Trace through
its evaluation for some query using all-trace or by hand. You will
be surprised at its behaviour.

A further property of the "D-reverse" program is that it can
be used in 'reverse' as efficiently as forward. Compare the speed
of evaluating the query:

one(z : a D-reverse ((1 2 3 4 5 6 7 8 9 o) ())
(0 9 8 7 6 5 4 3 2 1) more(y/n)?n

6.3 General use of difference pairs 	 193

with the query:

one(z : z reverse (1 2 34567890))
(0 9 8 7 6 5 4 3 2 1) more(y/n)?n

(You have to use the 'one" query because otherwise micro-
PROLOG goes off into a bottomless pit after finding the first
and only solution (why).)

Exercises 6-3

1. Rewrite the "quick-sort" program of Exercise 5-3 so that it is a
program for a "D-quick-sort" relation from lists to difference pairs of
lists. Then define the old relation "quick-sort" over lists in terms of "D-
quick-sort'. This will give you a very fast program for sorting lists.

2. Extend the grammar program so that it checks that the determiner
matches the noun regarding the singular/plural case and that the
singular/plural case of the noun phrase that begins the sentence matches
the singular/plural case of the verb phrase. To do this, you will need to
extend the dictionary to record the case of each word, e.g.

boy dictionary (N SI)
boys dictionary (N PL)
a dictionary (DT SI)
the dictionary (DT x)

The variable representing the case for "the" means that it can be any
case, that is both singular and plural.

The main rule must now be something like:

x is-sentence (S (X case y) (Y case y))
if (x x2) is-noun-phrase (X case y) &

x2 is-verb-phrase (Y case y)

where the common y of the noun phrase and verb phrase parse
structures means that they have the same case. Rewrite all the other
rules to take into account the extra case component of the parse
structure.

7. Some pragmatic considerations

In this chapter we examine some more issues related to the
time required and the space needed for the evaluation of queries.
We introduce two control primitives that can be used to eliminate
redundant search during the backtracking evaluation of a query.
This speeds up the evaluation of queries. We also briefly describe
micro-PROLOG's use of memory space to keep track of the
nested sequence of queries that are generated when rules are used.
We shall see that the primitives that help to eliminate redundant
search also help to minimize the use of space during an
evaluation, an important consideration when using micro-PROLOG
on small memory machines.

Related to this minimal use of memory space, we examine a
special form of recursive definition, called tail recursive. The
evaluation of a tail recursive definition uses a fixed amount of
memory no matter how many times the recursive rule is applied.
Normally, the evaluation of a recursive definition requires an
amount of free memory space proportional to the number of uses
of a recursive rule. Tail recursive definitions of list relations are
particularly useful. They have the property that keeping track of
their recursive evaluation requires the same small amount of
memory space no matter how large the list argument.

Finally, we show how a collection of relation definitions can
be wrapped up and protected from accidental modification as a
named program module. Modules export certain relation names.
Exported relations can be used in other programs but their
definitions cannot be modified using the add, delete or edit
commands. The use of modules also helps with respect to space
management. This is because an entire module, containing
definitions of many relations, can be deleted with a single kill
command. So, if the exported relations of a module are not
required for some query evaluation the module can be deleted to
free space for the evaluation. The module can then be reloaded
as and when required.

7.1 	Limiting a condition to a single solution 	 195

7.1 Limiting a condition to a single solution

Let us consider the evaluation of the query:

which(y : Tom father-is x & y brother-of x) 	 (A)

to find the uncles of Tom. In the evaluation of the query the
first condition will be solved by scanning all the sentences about
father-is' until the one giving the father of Tom is found. This

gives a value for x which is then passed on to the second
condition.

When all the solutions to this second condition have been
found micro-PROLOG will return to its scan of sentences for
"father-is". This is because it does not know that there will be no
more matching sentences for the first condition and it is trying to
find all the solutions to the conjunctive condition. We know that
this search for a second solution to the condition

Tom father-is x

is pointless, because a person only has one father. There are two
ways that we can tell micro-PROLOG not to bother searching for
a second solution. For now we shall deal with the first method.
We shall give the second method in Section 7.2.

The first and more elegant way is to make the "x father-is
Tom" condition of the first query a single solution condition. We
express the query as

which(y : father-is!(Tom x) & y brother-of x) 	 (B)

The "!" tells micro-PROLOG to look for only one way of solving
the first condition and not to backtrack to look for alternative
ways of solving the condition once it has been solved.

The query (B) should be read

which are the y's such that y is a brother of
the only father of Tom

196 	 7. Some pragmatic considerations

General form of single solution condition

The form of a single solution condition is

R!(tl t2 .. tk)

It is the prefix simple sentence form with a "!" placed between
the relation name R and the list of arguments.

When a single solution condition is solved backtracking
does not result in a search for other ways of solving the
condition.

Single solution test conditions

Consider the query

all(x: x father-is Bill & x male)

This time we do not want to restrict the father-is" condition to a
single solution because it is being used to find all the children of
Bill but we will improve the efficiency of the evaluation if we
make the "male" condition a single solution condition. This is
because, as micro-PROLOG finds each child x of Bill it passes
this on the "x male" condition and looks for all ways of solving
this condition. That is, even after it has found a match for some
given x with a "male" sentence, it will continue scanning the list
of sentences to see if there is a second match. If there is,
because we have accidentally recorded some "male" fact twice, we
would get a repeated answer to the query.

micro-PROLOG redundantly looks for a second way of
confirming the test condition because it does not know that it is
a test. To check each condition as it is being evaluated to see if
it is a test condition because all its variables have already been
given values would considerably slow down the evaluation of
queries. The onus is upon us to tell micro-PROLOG that it is a
test condition that should be confirmed once. For the most
efficient evaluation we must pose the query in the form

all(x x father-is Bill & male!(x))

Another example of the utility of making a test a single
solution condition is the query

7.1 Limiting a condition to a single solution 	 197

all(x : x ON (R 0 E R T) & x ON (B 0 B))

which is the same as that given in Exercise 3-4(2) except that it
uses the ON relation defined in SIMPLE. You may remember that
this gives the answer "B" twice because it can be confirmed as
being on the list (B 0 B) in two different ways. We can make
sure that each letter on (R 0 B E R T) is only checked once for
being on the second list by making the second condition a single
solution condition. We pose the query in the form:

all(x : x ON (R 0 B E R T) & ON!(x (B 0 B)))

Single solution conditions in rules

We can, of course, also use single solution conditions in
rules. The rule

x is-male-with-son y if y father-is x & male!(y)

is a rule that can be used to find sons of fathers or to find all
father/son pairs. It is more efficient as a program because in
checking the condition "male!(y)" micro-PROLOG will stop
scanning the male' sentences as soon as it is confirmed that the
y value is male.

Test versions of relations

The rules

x male-test if male!(x)

x on-test y if ON!(x y)

define variants of the 'male" and "ON" relations that should only
be used for testing. For the test use they are efficient programs.
Using the "male-test" and "on-test" relations is an alternative to
using single solution conditions involving the "male" and "ON"
relations.

198 	 7. Some pragmatic considerations

Exercises 7-I

1. Re-express the following queries using single solution conditions to
speed up the evaluation:
a. all(x : John likes y & y female & y mother x)
b. which(y : Oliver-Twist written-by x & y written-by x

y published z & z LESS 1860)

7.2 Controlling the backtracking with a / condition

Let us return to query (A). The second way of preventing
micro-PROLOG from searching for further solutions to the Torn
father-is x" condition is to insert a / after the condition in the
query. We express it as

all(y : Tom father-is x & / & y brother-of x) 	 (C)

The I is a primitive of micro-PROLOG which should be
read as true" or just ignored in the logical reading of the query.
A / condition is always immediately solved when encountered
during a query evaluation. However, when it has been solved it
prevents micro-PROLOG from backtracking to find alternative
ways of solving any conditions that precede it in the query. In
this case, it prevents the evaluation of (C) from backtracking to
look for alternative ways of solving the single condition "Torn
father-is x" that precedes the I.

/ in rules

In queries single solution conditions can always be used
instead of I. However, I is more powerful when used in rules.
When a rule is invoked to solve some condition C and a / is
evaluated in the rule, the evaluation of the / not only prevents
the backtracking to look for alternative solutions to the conditions
that precede it in the rule, it also tells micro-PROLOG to treat
the rule as the last rule that can be used to find a solution to C
even if there are other as yet untried rules. It is primarily because
of this second effect of telling micro-PROLOG to ignore the
untried rules that I is used.

7.2 Controlling the backtracking with a / condition 	 199

Example use of / in rules

When we defined the "sort" relation in Chapter 5 we gave
the following definition of the merge' relation:

merge(() x x)
merge(x () x)
merge(xIy1) (xIy2) (x xly)) if

merge(yl y2 y)
merge((xlIyl) (x2i2) (xlIy)) if

xl less x2 &
merge(yl (x21y2) y)

merge((x1y1) (x21y2) (x2Iy)) if
x2 less xl &
merge((xlIyl) y2 y)

The only sensible use of this definition is the way it is used
within the "sort" program to achieve an order preserving merge of
two given ordered lists. When it is used in this way only one
rule ever applies to a given merge condition. Consider the query:

which(z : merge((2 3 6) (2 4 5 9) z))

Only the third rule applies to the condition of the query but
micro-PROLOG does not know this. Even when it has solved the
condition by applying the third rule micro-PROLOG will try to
apply the fourth and fifth rules to see if they result in an
alternative solution. Moreover, this fruitless search for other
"merge" rules that might result in a different solution will take
place when each of the recursively generated "merge" conditions
have been solved. Thus, when rule 3 is applied to the condition
of the query its application reduces it to the new "merge"
condition

merge((3 6) (4 5 9) zi)

to which only the fourth rule can be successfully applied because
3 is less than 4. However, on backtracking to find an alternative
solution to the original query micro-PROLOG will try to solve
this derived "merge" condition using the fifth rule. The rule
matches the condition but it will not lead to a solution because
the "less" test will fail.

200 	 7. Some pragmatic considerations

System note - tracing merge - if you are using a computer, trace the
evaluation of this query using all-trace. You will see micro-PROLOG
trying to use the untried sentences for each recursively generated
merge" condition even when it has found a solution.

We can prevent all this fruitless backtracking search by
always using merge" in a single solution condition. That Is, we
re-express our query as

which(z merge!((2 3 62 4 5 9) z))

and we can rewrite the recursive "sort" rule that uses "merge" as

(xl x2Ix) sort y if
split((xl x2Ix) XI X2) &
XI sort yl & X2 sort Y2 &
merge!(Y1Y2 y)

There is another remedy: by putting / conditions in the
rules, we can instruct micro-PROLOG only to use a single rule to
solve a "merge" condition irrespective of whether it is specified as
a single solution condition. We rewrite the program as

merge(() x x) if /
merge(x () x) if /
merge((xlyl) (xIy2) (x xly)) if

/ & merge(yl y2 y)
merge((xllyl) (x2Iy2) (xlly)) if

xl less x2 & /&
merge(yl (x21y2) y)

merge((xltyl) (x21y2) (x2Iy)) if
x2 less xl&
merge((xlIyl) y2 y)

In each rule, the / is ignored when giving a logical reading.
The / conditions only have a control effect. When a rule is
applied in order to find a Solution to some "merge" condition M,
as soon as the left to right evaluation of the conditions of the
rule reaches the I, micro-PROLOG will treat the rule as though it
was the last "merge" rule.

This treating of the rule as the last rule only applies to the
attempt to solve the condition M. It does not prevent the other
rules from being applied to any other "merge" condition, even one
that is recursively derived from M.

Let us see what this means. Since the / is the first

7.2 Controlling the backtracking with a / condition 	 201

condition in the first three rules a successful match between a
"merge' condition and any of these rules instructs micro-PROLOG
to ignore the other rules for that condition because no other rule
can lead to a solution. In the case of the fourth rule the / comes
after the test "xi less x2". It is therefore only after a successful
match and the confirmation of this condition that the / is
evaluated and the option to use the fifth rule is cut off.

The / cannot come before the test. If it did the fifth rule
would never be applied because any "merge" condition to which
it might apply will always also match the fourth rule. There is no
need to place a I in the last rule as there are no other rules that
need to be ignored when the "x2 less xi" condition is confirmed.

Actually, the / conditions in the two non-recursive rules can
also be dropped without too much loss since these are only
applied once at the end of the evaluation. The / conditions in
the first two recursive rules bring the greatest benefit since they
cut out all the useless backtracking search at the many
intermediary points in the evaluation at which the rules will be
applied.

Using / to define test relations

We can use a / instead of a single solution condition to
define test versions of relations.

x male-test if x male & /

x on-test y if x ON y & /

are alternative definitions to the ones we gave above. Now, the /
is not preventing the use of any other rule, it is preventing
backtracking on the evaluation of the condition that precedes it
in the rule. These rules are behaviourally equivalent to the earlier
rules that used the single solution conditions.

Query the user defaults for test relations

Consider the pair of rules

• male-test if x male & /
• male-test if (x male) is-told

They give us two ways of confirming the "male-test" relation

202 	 7. Some pragmatic considerations

for some given argument. They are read

x male-test is true if
either x can be confirmed as a male
or micro-PROLOG is told that x is male

Because of the / at the end of the first rule the second rule will
not be applied if the use of the first rule confirms that the given
x is male. The second rule is a default 'query the user' rule that
checks with us before concluding that someone really is not a
male. It gives a safety net for "male-test" conditions. In the next
chapter we shall see how we can modify the rule so that it also
automatically adds a "male" sentence whenever we have told
micro-PROLOG that someone is male even though they are not
recorded as male by some "male" sentence.

7.3 Query stack and space saving

This section and Section 7.4 can be skipped on a first reading.

When micro-PROLOG is trying to solve a query it generates
a nested sequence of derived queries as it applies rules to solve
conditions in the query.

Suppose that it is trying to solve some condition C of a
current query Q. If it applies a rule to C a new query Q is
generated which micro-PROLOG must solve before continuing
with the remaining conditions of the current query Q. Q becomes
the new current query. In solving Q further derived queries may
be generated, resulting in a nested sequence of derived queries.

micro-PROLOG keeps track of this sequence of queries by
constructing a stack of queries, rather like a stack of plates. Each
time it applies a rule which generates a new query it puts the
new query on top of the query stack. The stack starts out with
only one query on it, the initial query. As the evaluation proceeds
the stack grows. Each time a new query is generated it is put on
top of the stack of queries and it becomes the current query.

When a solution has been found to the current query,
unless it is the initial query, it means that a solution has been
found to a condition C in a query Q lower down the query
stack. (Each query on the stack refers back to the query condition
lower down the stack that it will solve.) So, on solving the
current query, micro-PROLOG returns to its task of solving the
query Q which again becomes the current query.

7.3 Query stack and space saving 	 203

micro-PROLOG will not necessarily remove the query at the
top of the query stack that it has just solved. If there are untried
sentences for any of the conditions in this top of stack query
micro-PROLOG will leave it on the stack in order to return to
its evaluation should it be necessary to seek an alternative solution
to the condition C.

A query is removed from the top of the stack only when
micro-PROLOG knows, or is told, that there is no need to seek
other Solutions to the query. This can mean that the current
query, the query for which micro-PROLOG is trying to solve
some new condition C, is not always the query at the top of the
stack.

The construction of the stack takes up memory that is
shared with your program and any modules that you are using.
Sometimes micro-PROLOG will run out of space and be unable
to add a new query to its stack of queries. When this happens
you will get the evaluation error message No space left' and the
evaluation of the current query will be aborted. On micro-
computers with very little memory this means that you may have
to kill relation definitions that are not being used and kill any
module that is not needed and try again.

Getting rid of unnecessary definitions and modules is one
way of increasing the space for query evaluation. The other way
is to write the program in such a way that the growth of the
stack is minimized. In the next section we describe a form of
recursive definition that minimizes the growth of the query stack.
The use of single solution conditions and / also help in this
matter.

For example, the top query of the stack is always removed
when the condition C that it has solved is a single solution
condition. There is no need to leave it on the query stack
because micro-PROLOG never needs to backtrack to that query
to find an alternative solution to C.

The use of / similarly reduces the size of the stack. This is
because, whenever a / condition is evaluated in some current
query Q in the stack all the queries on the stack which are above
Q are immediately removed.

They can be removed because they are always the derived
queries that were put onto the stack by the attempts to solve the
conditions that precede the / in the query Q. (Do not worry if
you do not understand why this is the case. Just accept it as a
property of the query stack.)

The queries were left on the stack because each had at least
one condition with an untried sentence. The evaluation of the /

204 	 7. Some pragmatic considerations

tells micro-PROLOG that it need not bother to keep a record of
these previously solved queries because it does not need to look
for alternative solutions to the conditions that they solved.

Finally, if the / is the last condition of the query Q, Q is
also removed from the query stack. In this case the / also tells
micro-PROLOG not to bother looking for alternative solutions to
Q.

7.4 Tail recursive definitions

When recursive definitions of relations are evaluated there is
nearly always a rapid growth of the query stack as the recursive
rules are applied. However, there is a form of recursive definition
that does not result in a growth of the stack. It is a form of
definition in which there is a single recursive rule which is the
last rule for the relation and in that rule the recursive condition is
the last condition. This last rule, last condition constraint is the
reason for the name: tail recursive definition.

A classic example of a tail recursive definition is the
append" program:

append(() x x)
append((xly) z (xlyi)) if append(y z yl)

When micro-PROLOG is using this program to solve some
'append" condition it does not need to grow the stack of queries
when it re-applies the recursive rule to a recursively derived
"append" condition, that is when it applies the recursive rule in
order to try to solve the "append" condition of the recursive rule.

We shall not go into the reasons why this is the case. We
ask the reader to accept that it is the case. It means that no
matter how large the list arguments of the "append" condition
there is only ever one new query added to the query stack when
the condition is being solved.

General form of a tail recursive definition

A tail recursive definition is a sequence of rules defining a
relation R in which the only recursive rule is the last rule which
has the form

R(tl t2 .. tn) if Cl & ... & Ck & R(t'l ... tn)

7.4 Tail recursive definitions 	 205

where only the last condition refers to R. The conditions Cl
Ck that precede it in the rule must be such that when they are
solved micro-PROLOG will know that there are no more
solutions to be found to any of the conditions.

This extra condition is always satisfied if there are no C
conditions as in the above "append" program, or if each of the
Cs is a single solution condition or a condition involving one of
the primitive relations of micro-PROLOG that only have one
solution, such as the arithmetic primitives. It is also satisfied if
the last condition Ck is a I.

Other tail recursive definitions

The "D-reverse" program that we gave in Chapter 6 is
another example of a tail recursive program:

o D-reverse (X X)
(xly) D-reverse (Y Z) if y D-reverse (Y (xIZ))

whereas the original reverse" program is not:

() reverse
 ()

(xly) reverse Z if y reverse Zi & append(y (x) Z)

This is not tail recursive because the "reverse" condition is not the
last condition of the rule. The definition of "reverse" in terms of
"D-reverse":

X reverse Y if X D-reverse (Y 0)
is therefore a more efficient program for two reasons. It does not
involve any evaluations of append conditions and its evaluation
will not result in a recursive growth of the query stack no matter
how long the list being reversed.

The definition of "split-on" that we gave in Chapter 5 is
also tail recursive.

split-on(O X 	X)
split-on(y (AX) (xlXi) X2) if

o LESS y & SUM(yl 1 y) &
split-on(yl X Xl X2)

Here LESS and SUM are primitive relations so micro-PROLOG

206 	 7, Some pragmatic considerations

knows that they only have one solution.

Changing into tail recursive form

The definition of the merge" relation that we considered in
Section 7.2 is not tail recursive because it has more than one
recursive rule. An alternative tail recursive form, which is not as
readable, is:

merge(() x x)
merge(x () x)
merge((xlIyl) (x21y2) (xly)) if

choose!((xlIyl) (x2Fy2) x Yl Y2)
& merge(Y1 Y2 y)

choose((x1y1) (x21y2) xl yl (x2'2)) if
xl less x2

choose((xlyl) (x21y2) x2 (xltyl) y2) if
not xl less x2

The auxiliary relation "choose" is used to select the minimum of
the xi x2 values and to give the Yl Y2 forms of the two lists
when this minimum has been removed from one of the lists. The
use of "choose" in the single recursive rule is a single solution
condition so that micro-PROLOG knows there are no alternative
solutions to be found.

Alternatively, the "choose" condition could have been
followed by a I, or we could have put / conditions at the end
of the first of the two rules defining "choose".

The example illustrates a general method for trying to
transform a definition in which there are several recursive rules,
each of which has a single recursive condition at the end of the
rule, into a tail recursive definition.

First, absorb all the recursive rules into one general rule.
(Unfortunately, as we saw in Chapter 4 with the use of either
or conditions, this absorbing into a single rule can often make
the program much less readable.)

Then, providing only one solution to each of the non-
recursive conditions of this general rule needs to be found for the
intended uses of the program, make each of them a single
solution condition or put a / before the recursive condition. You
are left with a tail recursive definition.

7.4 Tail recursive definitions 	 207

Generalizing relations

We can sometimes transform recursive definitions in which
the recursive condition is not the last condition into tail recursive
form by defining a more general relation.

The following is a non-tail recursive definition of the
maximum of a non-empty list:

• max-of (x)
• max-of (yiZ) if xi max-of Z & x greater-of (y xl)

• greater-of (x x)
• greater-of (x y) if y less
y greater-of (x y) if x less y

To get a tail recursive definition we must define a more
general relation

x Max-of (Z y)
x is the greater of y and the maximum of list Z

This has a tail recursive definition:

y Max-of (() y)
z Max-of ((ylIZ) y) if

y2 greater-of (yl y) & / & z Max-of (Z y2)

The second rule of this definition tells us that the greater of y
and the maximum of (ylIZ) is the greater of the maximum of Z
and whichever is the greater of y and yl.

The / condition after the greater-than condition ensures
that micro-PROLOG knows that this condition in the recursive
rule will only have one solution. This is the case for the intended
use of the program to find the maximum of a list.

We can define the original max-of" relation in terms of
Max-of". The definition is:

x max-of (yIZ) if x Max-of (Z y)

i.e. x is the maximum of (yIZ) if it is the greater of y and the
maximum of Z. The evaluation of a max-of" condition using the
tail recursive Max-of" definition will only result in one new query

208 	 7. Some pragmatic considerations

being placed on the query stack no matter how long the list for
which the maximum is to be found.

Semi-tail recursive definitions

Consider the following rules for quick-sort" which make use
of difference pairs to represent the sorted list.

o quick-sort (x x)
(x) quick-sort ((xly) y)
(x yIX) quick-sort (zi z3) if

partition((yIX) x Xl X2) &
Xl quick-sort (zi (xIz2)) & / &
X2 quick-sort (z2 z3)

In this case there are two recursive conditions but we still
have one of these as the last condition of the last rule, micro-
PROLOG will have to grow the query stack as it applies the
recursive rule to the first recursive condition, but it will not grow
the stack as it applies the recursive rule to the second recursive
condition.

The / before this condition tells micro-PROLOG that there
are no further solutions to the preceding conditions so it applies
the same optimization as it does when the last condition is the
only recursive condition. It removes the top of stack query put
there on the last application of the rule before it puts on the
query that records the new application of the rule. This means
that for this program the query stack will on average need to
grow to only half as much during the evaluation of each
recursive condition.

The optimization whereby micro-PROLOG does not grow
the query stack when it is applying a rule to the last condition of
the last rule of a program actually applies irrespective of whether
the last condition is a recursive condition. Providing micro-
PROLOG knows that there are no other solutions to the
conditions preceding the last condition, and providing the rule
being applied is the last rule for the relation of the last
condition, micro-PROLOG does not grow the query stack. The
tail recursive and semi-tail recursive forms are just special cases of
these constraints in which the same last rule is being re-applied.

7.4 Tail recursive definitions 	 209

Exercises 7-2

1. Define the "mm-of" relation for a non-empty list using a tail
recursive "Mm-or definition.

2. Use "mm-of" to give an alternative tail recursive definition of the
sort' relation for lists.

3. Give an alternative definition of the "factorial" relation defined in
Chapter 2 which makes use of an auxiliary relation that has a tail
recursive definition.
Hint: use the auxiliary relation "tail-fact(x y z)" which holds when z is
the product of x and the factorial of y. Then define "factorial" in terms
of "tail-fact".

4. Redefine the "partition" relation of Exercise 5-3(2) so that it is tail
recursive.

7.5 Use of modules

Modules are named collections of relation definitions with
two associated lists of names: an export list and an import list.

In the export list we must put all the names of relations
defined inside the module that we want to use in queries or in
rules outside the module.

In the import name list we must put all the names of
relations that will be defined outside the module but which are
used by some definition inside the module. We must also put in
the import list all the names of individuals used inside the
module that we want to use in queries to its exported relations.

When we have wrapped up a collection of definitions as a
module the definitions for its exported relations are protected. We
cannot add to or delete or kill any of the sentences of the
exported relations of the module. We can only use the exported
relations.

Moreover, all the names that are not in the export or
import name lists are local (and private) to the module. If a local
name of a module is used in a workspace program or in some
other module micro-PROLOG treats it as a quite different name.
(micro-PROLOG does this by keeping separate dictionaries for the
local names of each module and a separate dictionary for the
names of our workspace program. The dictionaries hold all the

210 	 7. Some pragmatic considerations

Constants used in a program. The program is compiled so that all
uses of the Constant become references to the dictionary entry.)

This means that the definitions of the non-exported relations
of a module are invisible outside the module because each of
these will be named by a local name of the module. Finally,
when a module program is loaded its sentences are not added to
the sentences of our existing program as with the load of a
normally saved program.

As we mentioned in Section 1.2, sentences that we enter
using the add or accept commands, or which are brought in
when we load a non-module program, are held in a special area
called the workspace. When we use the list command we only
ever see relation definitions in this workspace area. Loaded
modules do not enter the workspace. Even if we do a list all we
will not see any of the sentences of a loaded module. (However
they still take up space within the computer's memory.)

These properties of modules make them the appropriate
program structure for finished programs, for example, the 'sort"
program that we developed in Chapter 5. With some added
refinements which minimize the space needed during an
evaluation, the program is:

o sort
(x) sort (x)
(xl x2Ix) sort y if

split((xl x2lx) XI X2) &
XI sort yl & X2 sort y2 & / &
merge(yl y2 y)

merge(() x x)
merge(x () x)
merge((xllyl) (x2ly2) (xly)) if

choose!((xllyl) (x21y2) x Yl Y2)&
merge(Y1 Y2 y)

choose((xlFyl) (x21y2) xl yl (x21y2)) if
xl less x2

choose((xllyl) (x21y2) x2 (xlIyl) y2) if
not xl less x2

split(X Xl X2) if
split-on#((div (length X) 2) X XI X2)

7.5 Use of modules 	 211

split-on(O X 	X)
split-on(y (xIX) (xIXl) X2) if

0 LESS y &
SUM(yl 1 y) &
split-on(yl X Xi X2)

The / in the recursive "sort" rule tells micro-PROLOG that
there will be no alternative ways of solving the preceding
conditions and so the 'record' of their evaluations is removed
from the query stack before the tail recursive evaluation of the
"merge".

The relation "sort" is the main relation, the other relations are
auxiliary relations that we shall usually not use in queries and
other definitions. If we wrap up this program as a module we
only need to export the relation name "sort".

When we use the program we must supply an appropriate
definition of the "less" relation. So, "less" must be an imported
name. It is a relation that we shall define outside the module but
which is used inside the module.

We must also either import the names "div" and "length", or
we must include the definitions of these relations in the module.
We will take the latter option. Unlike "less" the definitions of
these relations will not change with different uses of the "sort"
program and including them in the module means that we do not
need to define them each time we want to use the module.

We do not need to import the names of the primitive
relations LESS and SUM. The micro-PROLOG primitive relations
are available to every program whether or not it is wrapped up as
a module.

However, we do need to import the name "#". This is
actually the name of a relation defined in and exported from one
of the three modules that comprise the SIMPLE front end
program that we are using. It is not a primitive relation of micro-
PROLOG. To link the definition of a relation exported from one
module with its use inside another module we must import its
name to the other module.

There are no names of individuals in the sentences of the
program so we do not need to import any other names.

212 	 7. Some pragmatic considerations

Constructing a module

We shall describe one way in which a module can be
constructed using the "sort" program as an example. For this
section we assume the reader has access to a computer with
micro-PROLOG.

First, all and only the relation definitions that are to be
included in the module must be put into the workspace area. To
do this, we must add all the definitions or load them from
various other files. We should then kill the definitions of any
relations that are not to be included in the module so that when
we do a list all only the definitions we want in the module are
displayed. In the case of the "sort" program this should be the
above definitions together with the definitions:

o length 0

(xFy) length z if y length zi & SUM(1 zi z)

div(x y z) if TIMES(y zi x) & INT(zl z)

We must now load a utility program, which is itself a
module, which is in the file "MODULES" supplied with the
micro-PROLOG system. We do this with a

load MODULES

command. This program enables us to construct and save a
module. The next step is to add a sentence to the program that
describes the module we want to Construct from the workspace
program. We must add the sentence

Module(sort-mod (sort) (less #))

for the relation name "Module". The relation has three arguments:

the name of the module, sort-mod
the export name list, (sort)
the import name list, (less #)

We now enter the command

wrap SORT

7.5 Use of modules 	 213

The entire sort program will now be wrapped up as a module
and saved, in a special module format, in the file 'SORT" and
the workspace area will be cleared.

The name of the file must be different from the name
given to the module and each of these must be different from
the names of the relations of the module.

It is a useful convention to give the module the name
"name-mod" where the file in which it is saved is called "NAME".

The wrap command uses the "Module" sentence of the
workspace program in order to discover the name of the module
and its export and import name lists. It does not save this
sentence in the module.

Whenever we want to use the "sort" program we load it
with a

load SORT

command. Because the program in the file is a module it does
not enter the workspace area and a list all command will now
not display the program. To check that it is present we can ask
if "sort" is defined with a

is(sort defined)

query. If you try to load the module and you already have a
definition for the relation "sort" that It exports you will get the
evaluation error "Illegal use of modules" and the load will be
aborted. If you try to add a sentence about the "sort" relation
after the module has been loaded you will get the error "Cannot
add sentences for sort". Both error messages are a result of the
fact that the definitions of the exported relations of a module are
protected.

Before we use the "sort" relation we must add an
appropriate definition of "less" to the workspace, for example,

x less y if x LESS y

We can then query "sort" with

which(x : (2 4 6 3 9 -4) sort x)

When we have finished using the module we can remove it with
a

214 	 7. Some pragmatic considerations

kill sort-mod

command which uses the name of the module. All the relation
definitions of the module will be deleted freeing the memory
space that the module occupied.

To change a module program once it has been created we
must first unwrap it and put it back into the workspace area
using the unwrap command of the MODULES utility. For details
we refer the reader to the section of the micro-PROLOG
Reference Manual that documents this utility program. To get out
of the MODULES utility when you have finished using it, do a

kill modules-mod

Exercises 7-3

1. Take one of your programs and convert it into a module. Do not
forget to import the names of all the individuals used in your program
that you want to use in queries to the exported relations.

8. Metalogical programming

In this chapter we introduce a style of logic programming
which is best described as metalogical programming. micro-
PROLOG is highly suited to this style of programming which we
shall more fully explore in Part III. The prefix"meta" means
1. about" and it is used because the rules and queries of a
metalogical program talk 'about' and manipulate the relation
names and rules of other logic programs.

8.1 Relation names and argument lists as variables

Consider the situation where we have a data base describing
several relations and that what we want to know is what the data
base records about some individual "Tom". An unsatisfactory
solution is to do a list all. It is unsatisfactory because we may
have many facts and rules and the information about "Tom" will
not be isolated and specially displayed in the way that an answer
to a query is. An alternative is to find Out what the names of the
relations are with a

all(x : x dict)

query and then to pose a query about each relation.
Providing we know how many arguments each relation has

we can use a series of queries of the form

all(xl ... xk R(xl ... xk) & Tom ON (xi ... xk))

in order to discover everything in the data base about "Tom". We
pose the query for each relation R. For example, if there is a
binary relation "likes" in the dict relation we can use the query

all(x y : likes(x y) & Tom ON (x y))

216 	 8. Metalogical programming

to find Out all the "likes" information about "Tom".

Variable as the list of arguments

If we cannot remember how many arguments a relation has
this strategy will not work. The ideal solution would be if we
could pose the query without specifying how many arguments the
relation has. This we can do:

all(Y : likes true-of Y & Tom ON Y)

is an alternative to the above query. The "true-of" is a meta-
relation; the condition "likes true-of Y" is read: the list of terms
Y is true of the likes relation. The Y represents any list of
arguments.

Relation name as a variable

We can also use "true-of' to pose a single query in which
the relation name is not given but is generated by a dict
condition:

all(X Y : X dict & X true-of Y & Tom ON Y)

will find each relation name, find each list of arguments for
which the relation can be confirmed, and display the relation
name and the list of arguments if "Tom" is one of the arguments.

true-of meta-condition

The true-of meta-condition has the form

<variable or relation name> true-of <variable or list pattern>

If the first argument is a variable then this must have been
given a value which is the name of a relation by the time that
the true-of condition is solved. If it does not have a value the
evaluation error message "Too many variables" will be displayed
together with a condition which has a variable in the position of
the relation name,

8.1 Relation names and argument lists as variables 	 217

If the second argument is a variable it represents any list of
arguments of the relation, otherwise it is a list pattern that will be
matched against the argument list of each sentence of the
relation. A variable appearing as the first argument is a meta-
variable standing for a relation name. A variable appearing as the
second argument is a meta-variable standing for a list of
arguments.

Examples

X true-of (x y) 	checks if x and y satisfy some
given relation X

gives true-of (Tom IY) 	checks if Tom is in the "gives"
relation to some unknown
remaining list of arguments Y

likes true-of X 	 finds an argument list X that
satisfies the "likes" relation

Exercises 8-1

1. Pose the query to find all the instances of the "employee" relation
without knowing how many arguments the relation has.

2. Pose the query to find out the information given in the "employee"
relation about "Jones". Assume that "Jones" will be the second argument
but that you do not know how many other arguments there are.

Generalized programs

The true-of relation enables us to generalize certain
programs with respect to some of the relations that they use. It
allows the name of one or more relations to be given in the
condition that will 'invoke' the program. The "sort" program of
Chapter 5 is an excellent candidate for such generalization.

You may remember that we deliberately used the relation
name "less" rather than the micro-PROLOG primitive LESS so
that the element comparison relation could be redefined for
different uses of the program. Then, when we transformed the
program into a module in the last chapter, the name "less" was
made an imported name of the module which had the effect of
generalizing the module so that the "sort" program could still be
used with different definitions of "less".

The program is not completely general because at any one

218 	 8. Metalogical programming

time it can only be used with a single definition of the less'
relation. A better generalization is to make the name of the
comparison relation an argument to the "sort" relation. When we
use the program we tell it which comparison relation to use by
passing it as an argument. We re-write the "sort" program in the
form:

sort(() () X)
sOrt((x) (x) X)
sort((xl x2Ix) y X) if

split((xl x2Ix) Xl X2) &
sort(X1 yl X) &
sort(X2 y2 X) & / &
merge(yl y2 y X)

merge(() x x X)
merge(x () x X)
merge((xliyl) (x21y2) (xly) X) if

choose!((xlIyl) (x21y2) x Yl Y2 X) &
merge(Yl Y2 y X)

choose((xlIXl) (yllYl) xl Xi (yllYl) X) if
X true-of (xi yl)

choose((xlIXl) (yllYl) yl (xlIXl) Yl X) if
not X true-of (xi yl)

The extra X argument of both "sort" and "merge" is the
name of the comparison relation. This is then used in "choose" in
a "true-of' condition to actually compare the elements of the two
lists. A use of the new "sort" is

which(x : sort((3 -5 7 2 8 4) x LESS))

in which we give the comparison relation as the primitive LESS
relation. If we Convert the new program into a module there is
no need to import the name "less" which is no longer used in
the program. We can also have several different comparison
relations "lessl", "less2" etc. defined at the same time in our own
program. When we want to sort we pass the name of the
appropriate comparison relation to the "sort" program by giving it
as the last argument.

Another example of a generalized program is the following
program for the relation "reduce". "reduce(X y x)" holds when x
is the result of 'reducing' list y using the relation X. For example,

8.1 Relation names and argument lists as variables 	 219

reduce(+ (2 3 4) 9)" holds because 9 is the addition reduction
of the list (2 3 4), it is the result of cumulatively applying + to
all the elements of the list.

The program defining the "reduce" relation is:

reduce(X (x) x)
reduce(X (x yIZ) z) if

X true-of (x y xl) & reduce(X (xlIZ) z)

When the program is used the X argument, which is the name of
the reduction relation, must be given.

If we also assume that the second list argument will also
always be given and that the true-of condition will only have one
solution, as when we reduce a list using +, we can ensure that
the program is tail recursive by putting a / before the recursive
condition of the second rule.

Exercises 8-2

1. Give a generalized definition of the program for the relation
"ordered" so that the comparison relation is given as an argument.

2. Give a recursive definition of maplist(X x y) : each top-level element
of the list x is in the X binary relation to the corresponding element of
the list y. Give queries using "maplist" to
a. Find a list of numbers that are the doubles of the numbers on the

list (3 -5 9 5).
b. Find a list of the fathers of (Tom Bill Mary).
c. Check that each element of the list (John Jill Frank) is in the

parent-of' relation to the list (Jim Mary Sally).

In the case of (a) define the auxiliary relation that you need.

3. Give queries that use the reduce" relation and which find
a. the product of the list (3 6 -5 8)
b. the number of elements in the list (2 4 -5 7 78)

In the case of (b) define the auxiliary relation that you need.

A general list mapping relation

The relation "maplist" of the above exercise relates the pair
of lists only at the top level, if the elements of the lists are
sublists it is the sublists that are related by the mapping relation

220 	 8. Metalogical programming

not the elements of these sublists. A different type of "maplist"
relation would relate two lists of arbitrary structure but insist that
the two lists have the same structure with corresponding non-list
elements related by the given relation. Its definition is:

Maplist(X 0 0)
Maplist(X (xly) (xlIyl)) if

not x LST & X true-of (x xi) &
Maplist(X y yl)

Maplist(X (xly) (xlIyl)) if
x LST & Maplist(X x xl) &
Maplist(X y yl)

Remember that LST is the micro-PROLOG primitive relation for
testing if something is an empty list or a term of the form (AZ).
So the condition not x LST" is confirmed if x is not a sublist
element of "(xly)". Notice that because we have tested the element
of the first list rather than the second list there is an implicit
assumption that the program will be used to solve conditions in
which this first list argument is always given. (There was no such
assumption in the program for "maplist" given as the answer to
the above exercise. In that program either or both list arguments
could be given.)

8.2 Metaprograms that check conditions of use

If the above "Maplist" program is used without the relation
name argument X being given we will get the evaluation error
"Too many variables" when the true-of condition is evaluated. To
avoid this, we could add the explicit condition "X CON" to each
rule. CON is another micro-PROLOG primitive relation for
confirming that a value is a constant. Then, the attempt to solve
some "Maplist" condition with X not given as a constant will fail
rather than result in an error. To make sure that we also have a
definition for the given relation we could also add the condition
"X defined". This would transform the first rule into

Maplist(X () Q) if X CON & X defined

"defined" is a relation exported from the SIMPLE front-end that
we met in Chapter 1. "defined" is a metalogical relation because it
tests if there is a program for a given name.

A better solution is to define an auxiliary relation

8.2 Metaprograms that check conditions of use 	 221

"MAPLIST" which we use instead of "Maplist". The program for
this auxiliary relation is a metalogical program that tests if the
conditions of use for the "Maplist" program are satisfied. If they
are, it reduces to the evaluation of the corresponding "Maplist"
condition. Its definition is:

MAPLIST(X Y Z) if
• CON &
• defined &
Maplist(X Y Z)

Now the tests for applicability are only done once, not each time
a rule for "Maplist" is used. Later we shall see how we can
augment this metalogical program by adding a second default rule
which causes a message to be displayed when the "Maplist"
conditions for use are not satisfied.

Selecting a definition for a given use

In Chapter 2 when we discussed the 'ancestor-of" relation
we found that the definition that was an appropriate program for
finding ancestors was not appropriate for finding descendants. We
were forced to define a program for the inverse relation
"descendant-of" which was much more suited to the task of
finding descendants. We then had to remember to use the one
relation for finding ancestors and the other for finding
descendants. An alternative is to give a metalogical program for
an auxiliary relation "Ancestor-of" which tests for conditions of
use for each relation and which uses one or other relation as
appropriate. Its definition is:

• Ancestor-of y if y CON & I & x ancestor-of y
• Ancestor-of y if not y CON & y descendant-of x

We can now use "Ancestor-of" both for finding ancestors and for
finding descendants without loss of efficiency. If the y argument
is given the "ancestor-of" program is used and the / prevents any
attempt to use "descendant-of" program on backtracking. The
"descendant-of" program is used if the y argument is not given.
This is because the "y CON" condition of the first rule will fail
to be confirmed if the y argument does not have a value.

An equivalent program for this relation is

222 	 8. Metalogical programming

• Ancestor-of y if y VAR & / & y descendant-of x
• Ancestor-of y if not y VAR & x ancestor-of y

This uses another primitive test relation of micro-PROLOG, the
VAR relation. A VAR condition is confirmed only if its single
argument is a variable which has not yet been assigned a value.
VAR is one of the metalogical primitives of micro-PROLOG.

Exercises 8-3

1. In Chapter 3 we needed to give two definitions of the relation
between a list and its length. The one for the relation name "has-
length' was to be used to find the length of a given list, the other for
the relation name "length-of" was to be used to find a list of variables
of a given length. Either program could be used for checking. Give a
metalogical program for the relation "length-is" which can be used in
any way.

8.3 Programs that manipulate other programs

In Section 4.6 we introduced a simple bicycle fault finder
program which contained the following two rules:

x possible-fault-in y if
a indirect-part-of y and
• indicates (x in z) and
• is-reported

X is-reported if (X a problem) is-told

together with facts such as:

flat-tyre indicates (puncture in wheel)
flat-tyre indicates (faulty-valve in wheel)

To help in finding faults with a bicycle we could use a
query such as

all(x : x possible-fault-with bicycle)

and we would be asked to report on the various problems, such
as "flat-tyre", given in the "indicates" facts. We will be asked

8.3 Programs that manipulate other programs 	 223

questions such as

flat-tyre a problem

The drawback which we noted in Chapter 4 is that the reported
problems are not remembered. Whatever we answer to this
question we will be asked the same question again when the next
indicates" fact is used. The program for "is-reported" is actually a

metalogical program because it switches the problem of solving
an 'is-reported" condition to a query to an external data base in
our heads. It would be a much more sophisticated metalogical
program if it also remembered the results of these external queries
by storing them as facts in the internal data base of micro-
PROLOG.

At the end of an interaction in which we are prompted to
report on the presence or otherwise of certain problems we can
always add sentences, such as

flat-tyre was-present
wheel-wobble was-absent

to the fault finder data base which explicitly records our answers.
Ideally, the "is-reported" program should add these facts
automatically as we give the answers to the is-told prompts.

As a first step we can put an add condition at the end of
the single "is-reported" rule.

is-reported if (x a problem) is-told &
(x was-present) add

Notice that this is making use of the command add as a
unary relation. We simply switch the order of the command name
and its bracketed sentence argument. The bracketed sentence is,
of course, just a list of terms satisfying certain syntactical
constraints. (It is a general rule of micro-PROLOG that all
command names can also be used as relations in rules and
queries. A one-argument use of the command becomes a unary
relation, a two-argument use becomes a binary relation. We shall
discuss this correspondence between relations and commands more
fully in the next section.) The effect of the add condition is that
a "was-present" fact will be added to the data base for each
problem which gets a "yes" response to the is-told condition To
remember the "no" responses we need to use two rules and a I.

224 	 8. Metalogical programming

• is-reported if
(x a problem) is-told & / &
(x was-present) add

• is-reported if (x was-absent) add & FAIL

The second rule will only be used if our answer to the
"x a problem" prompt is 'no", which is interpreted as a failure to
solve the is-told condition of the first rule The second rule will
then add the appropriate "was-absent" fact and then fail. (FAIL
is a built-in primitive that is never satisfied, logically it can read
as "false".) If the answer to the question is "yes" the is-told
condition of the first rule is confirmed and the evaluation of the
/ then prevents the use of the second rule. This is an essential
use of the I. The alternative, of having an explicit negated
condition

not (x a problem) is-told

would result in each question being asked at least twice as micro-
PROLOG checks for applicability of the second rule.

If we now pose the query

all(x : x possible-fault-with bicycle)

at the end of the query evaluation all our answers will be
recorded by facts in the data base. However, we will still be
asked about the "flat-tyre" problem twice because our "is-reported"
program does not make use of the "was-present" or "was-absent"
facts that it is itself adding to the data base. We must define "is-
reported" so that it looks for a "was-present" or a "was-absent"
fact before it uses the default 'query the user' rule. The complete
metalogical program is:

• is-reported if
x was-present & /

• is-reported if
not x was-absent &
(x a problem) is-told & / &
(x was-present) add

• is-reported if not x was-absent &
(x was-absent) add & FAIL

The first rule checks if the problem was already reported as

8.3 Programs that manipulate other programs 	 225

present and hence recorded by a was-present" fact. If it was, the
/ prevents the use of the other rules.

The second rule first checks if the problem is recorded by a
"was-absent' fact. If it is, the user has already been queried about
this problem and has answered no". Only if there is no "was-
present" or "was-absent" fact for the problem will the user be
queried about the problem.

If the response is "yes", a "was-present" fact is added and
the / prevents the use of the third rule. If the response is "no',
the third rule is used which adds a 'was-absent" fact providing
there is not already such a fact for that particular problem.

The "not x was-absent" condition in the last rule is needed
because the backtracking evaluation will try to use the third rule
when the second rule does not apply because the problem is
already recorded by a "was-absent" fact. So without this extra
check, the "was-absent" fact might be added a second time.

Our metalogical program for "is-reported" is now highly
imperative, it uses command relations that change the data base
and the program can only be understood in terms of the query
evaluation mechanism of micro-PROLOG. It also depends crucially
on the effect of the backtracking control primitive I. None the
less, the net effect of the program is logically defensible. It
progressively transfers facts from an external data base in some
user's head to the micro-PROLOG internal data base and it
makes use of this incrementally constructed extension to the
internal data base whenever it can. It is an example of an
imperative program used to achieve a logically sound effect.

There is one final thing that must be done before the
program is used. Remember that micro-PROLOG normally treats
the attempt to solve a condition for a relation name for which
there are no defining sentences as an error condition. The first
time the above rules are used to solve an "is-reported" condition
there will be no "was-present" (or "was-absent") sentences in the
data base. So the attempt to use the first rule will result in an
error. There is a way of preventing the error. We tell micro-
PROLOG that both "was-present" and "was-absent" are special
relations for which the absence of defining sentences is to be
treated as a normal failure to solve the condition, not as an error.
We do this by adding the sentences

was-present data-rel
was-absent data-rel

to our program. The "data-rel" facts tell micro-PROLOG that

226 	 8. Metalogical programming

these are data relations - relations whose programs are
manipulated by other programs. Having no defining sentences for
a data relation is not an error condition. The SIMPLE error
handler, which is described in the Reference Manual, checks to
see if a relation is a "data-rd' relation before it gives the error
message. If it is, it allows the evaluation to continue with the
condition assumed to have no solution. This is analogous to the
way that the evaluation is resumed when we give a no" response
to an is-told question.

Exercises 8-4

1. In Section 7.2 we gave the following program for the "male-test"
relation

• male-test if x male & /
• male-test if (x male) is-told

a. Give an alternative program which
(i) records each "yes" answer by adding a new "male" fact
(ii) records each "no" answer by adding a "female" fact
(iii) only asks about names not recorded as "male" or "female".

b. Further modify the program so that it only adds a new "female"
fact if the answer to the "x male" question is "no" and the answer
to a supplementary "x female" question is "yes".

Saving the answers to a query as facts

We can use add in a query to save all the answers to a
query as facts. Instead of the query:

all((x parent-of-son y) : x parent-of y & y male)

we can use:

all((x parent-of-son y) : x parent-of y & y male &
(x parent-of-son y) add)

At the end of the evaluation each "(x parent-of-son y)"
answer is recorded as a "parent-of-son" fact in the data base. We
can see the answers again by listing the "parent-of-son" relation,
and we can use the relation in subsequent queries without the
need to define it with a rule.

If we do not want to see the answers to the query

8.3 Programs that manipulate other programs 	 227

immediately we can pose the is query

is((forall x parent-of y & y male
then (x parent-of-son y)add))

The answer to this query will be the uninformative YES'.
However, its evaluation will have the imperative effect of adding
all the solutions to the forall generator condition as facts about
the 'parent-of-son" relation. This use of add together with forall
is analogous to the use of isall. While isall records all the
answers to some condition in a list the forall/add combination
records them as data base facts.

Use of delete

The delete command can be used in rules and queries to
delete sentences from the data bases. As with add, it can be used
either as a unary relation or as a binary relation. In the unary
form the sentence to be deleted must be given as the single
argument. In the binary form the sentence is specified by its
relation name and position in the listing of sentences for the
relation as in its two argument command use. (In the binary use
of add the two arguments are the position of the new sentence
and the sentence, in that order. Again this corresponds to its
command use.)

Data base as scratch pad memory

add and delete used in combination enable us to use the
data base as a scratch pad memory. As an example, suppose that
we wanted to keep track of the number of times a rule is used
during some query evaluation. Suppose that we wanted to record
how many times the parsing rule

(x x2) is-noun-expression (NE X Y) if
(x xl) is-adjective X & (xl x2) is-noun-expression Y

is used in parsing some sentence. First we need to name the rule
in some way. Let us call it "Rule-NE'. Before we start to parse
the sentence, we should add the fact

Rule-NE Count 0

8.3 Programs that manipulate other programs 	 229

X Sum y if (total 0) add &
(forall x ON X then x update-total) &
(total y) delete

update-total if
(total y) delete & SUM(y x yl) & (total yl) add

In this program, the data base is used as a temporary scratch pad
to keep a running total of the numbers in the list. As each one
is retrieved, by the "x ON X" condition, its value is added to the
current total as recorded in the "total" fact which is updated.

The advantage of this use of the data base as a scratch pad
memory is that it can be used to sum a sequence of numbers
given as data sentences about some unary relation without the
need to construct a list of the numbers. If we make the name of
the relation an argument to the condition we have the program

X Sum-is y if (total 0) add &
(forall X true-of (x) then x update-total) &
(total y) delete

Suppose now that we have a set of "num" facts such as

4 num
-3 num

and so on. We can find the sum of all these numbers with the
query

which(y num Sum-is y) 	 (A)

If we want to use the earlier recursive "sum" program we need to
first construct a list of all the numbers. We need to use the
query

which(y x isall (z : z num) & x sum y) 	 (B)

However, query (B) coupled with the recursive "sum"
program is much easier to understand than query (A) coupled
with the "Sum-is" program. Moreover, the evaluation of (B) will
be faster than the evaluation of (A) because isall conditions are
solved so quickly. The manipulation of the data base using add
and delete is a relatively slow operation.

230 	 8. Metalogical programming

Exercises 8-5

1. Use is-told together with either Sum-is or sum to pose a query that
will repeatedly prompt you with

X?

to enable you to enter the list of numbers whose sum is to be found.

2. Give the query which will give you the names of all the mothers
referred to in some mother-of fact in the data base that are not
recorded as female by some female" fact. At the end of the query a
"female" fact should have been added for each answer given.

Variables in sentences

Both add and delete when used as imperative relations
accept any micro-PROLOG sentences as arguments, they are not
restricted to unconditional sentences. The arguments are in fact
sentence lists, lists of terms that satisfy the syntactic constraints of
a valid sentence when the add or delete condition is solved. Any
variable in the list argument of an add condition, that has not
been given a value by the time that the condition is solved,
becomes a variable in the added sentence. As with the negated
condition, this means that the position of the add in a rule is
crucial. It must come after any condition that is intended to give
a value to a variable in the sentence pattern before it is added.
Thus, an evaluation of the pair of conditions

x EQ Algernon & (x male) add

adds the fact, "Algernon male". An evaluation of

(x male) add & x EQ Algernon

adds the rule

x male

which says that every one is male. It does this because x does
not have a value when the add condition is solved.

The pair of conditions

8.3 Programs that manipulate other programs 	 229

X Sum y if (total 0) add &
(forall x ON X then x update-total) &
(total y) delete

x update-total if
(total y) delete & SUM(y x yl) & (total yl) add

In this program, the data base is used as a temporary scratch pad
to keep a running total of the numbers in the list. As each one
is retrieved, by the x ON X" condition, its value is added to the
current total as recorded in the total" fact which is updated.

The advantage of this use of the data base as a scratch pad
memory is that it can be used to sum a sequence of numbers
given as data sentences about some unary relation without the
need to construct a list of the numbers. If we make the name of
the relation an argument to the condition we have the program

X Sum-is y if (total 0) add &
(forall X true-of (x) then x update-total) &
(total y) delete

Suppose now that we have a set of "num" facts such as

4 num
-3 num

and so on. We can find the sum of all these numbers with the
query

which(y : num Sum-is y) 	 (A)

If we want to use the earlier recursive "sum" program we need to
first construct a list of all the numbers. We need to use the
query

which(y : x isall (z : z num) & x sum y) 	 (B)

However, query (B) coupled with the recursive "sum"
program is much easier to understand than query (A) coupled
with the "Sum-is" program. Moreover, the evaluation of (B) will
be faster than the evaluation of (A) because isall conditions are
solved so quickly. The manipulation of the data base using add
and delete is a relatively slow operation.

8.3 Programs that manipulate other programs 	 231

x EQ likes & (Tom x Mary) add

will add the fact "Tom likes Mary'. However,

(Tom x Mary) add & x EQ likes

will result in a syntax error message when the add is evaluated.
This is because the list will still be "(Tom x Mary)" which is not
a valid sentence list, add and delete used as relations check that
their list arguments are valid sentences just as they do when used
as commands.

When using add or delete in rules you must beware! You
have to pay great attention to the way that micro-PROLOG will
use the rule. You must be especially careful when using delete.
Theoretically you can have a delete condition in a rule which has
the effect of deleting the rule when the rule is used. But if you
try to do this micro-PROLOG may get hopelessly confused. It
will probably get into an error state from which it cannot recover.
Only use delete in programs to delete sentences for other
programs.

8.4 Unary relations as commands

We have seen that we can use the commands add and
delete as relations. We can also use any of our own unary
relations as commands. We will of course not observe any 'effect'
of the evaluation of such a command unless the relation is
defined in terms of other command relations that cause micro-
PROLOG to do something.

A simple example of this is provided by the following pair
of rules which define synonyms for the command names all and
is.

x find if x all
x check if x is

If we add these rules to our program we can immediately use
"find" instead of all and "check" instead of is. We can of course
still use the predefined all and is commands.

For a more sophisticated example of the definition of a new
query command let us return to the example of the all query of
the last section which remembered the answers by adding
sentences to the data base. The query was

232 	 8. Metalogical programming

all((x parent-of-son y) : x parent-of y & y male &
(x parent-of-son y) add)

The query has the form

all(<sentence list to be added>:
<query condition> &
<sentence list to be added> add)

Its relationship to a non-remembering query of the form

all(<sentence list that could be added>:<query condition>)

is just that it has an extra condition at the end that adds the
sentence list given as the answer pattern to the data base just
before each such answer is displayed. The following rule defines a
new command relation all-rem" which takes a query of this
second form and appends the extra condition to the end of the
list of terms given as the query pattern before using the
predefined all.

(X : I Y) all-rem if
append((X : rY) (& X add) Z) &
Z all

The predefined all is a unary relation whose argument is a list of
terms which comprises a sequence of terms which is the answer
pattern followed by the colon followed by a sequence of terms
which is the conjunctive condition comprising the query pattern.
Our all-rem" insists that the answer pattern is a single term
which is also a list giving the form of a sentence to be added to
the data base each time a solution to the query is found.

When we use "all-rem" as a command, for example

all-rem ((x parent-of-son y): x parent-of y & y male)

the X of the rule becomes

(x parent-of-son y)

and the Y of the rule becomes

(x parent-of y & y male)

8.4 Unary relations as commands 	 233

The append" condition makes Z the list

((x parent-of-son y) : x parent-of y & y male &
(x parent-of y) add)

which is the single list argument passed over to all. The new
command relation automatically remembers each answer providing
the answer is a valid sentence list. If it is not, the evaluation of
the add condition will give a syntax error message and the
evaluation of the query will be aborted.

The read/write imperative relations

The query commands defined in SIMPLE and the is-told
relation are all defined by micro-PROLOG programs. They all
display messages and is-told also reads in responses. They can do
this because they make use of two primitive relations of micro-
PROLOG for reading from the keyboard and for writing terms to
the display.

As an example, a simplified version of the is-told relation
can be defined by the following program.

x Is-told if P true-of x & P(?) & R(y) & y EQ yes

The primitive relation P takes any number of terms as arguments,
displays them as a sequence on the screen, and leaves the cursor
at the end of the displayed sequence. Thus, if the "Is-told"
condition is

(Tom a male) Is-told

the first P condition of the rule is equivalent to

P (Tom a male)

and the sequence

Tom a male

is displayed. The next "P()" condition of the rule then displays a
7' leaving the cursor immediately after the '7':

234 	 8. Metalogical programming

Tom a male?

The A relation is the read primitive. It has a single
argument which must be a variable which does not have a value
when the condition is solved. It displays a read prompt which is
a "." and waits for a term to be entered. That is it waits for a
term to be typed at the keyboard followed by an ENTER. The
variable is then given the value of the entered term. So, if we
respond with a "no" as in

Tom a male?.no

then the y of the rule will have the value "no" after the R
condition is solved. The last condition of the rule checks if the
entered response is "yes". If it is not, the test fails and the "Is-
told" condition is not confirmed. If it is "yes", the "Is-told"
condition is confirmed.

The R primitive

micro-PROLOG solves an R condition by reading in the
next term typed in at the console and making this term the value
of the variable given as the argument to R.

The closest we can get to a logical reading of the relation
is:

R(x) holds if and only if x is a term.

The control reading is:

To solve a condition of the form R(x)
check that x is a variable not yet given a value,
read in the next term t entered at the keyboard,
make R(t) the only solution to the condition.

The logical reading suggests that R can be used to check if
something is a term, or to find a term. The control reading tells
us it can only be used to find a term and that this term is
always the next one to be typed at the terminal. It is the non-
logical, entirely behavioural aspect that is crucial to the use of R.
We do not use it to find an arbitrary term, we use it to read
terms from the terminal.

An attempt to use R in a checking mode results in an error
message. If we want to check that the entered response is some

8.4 Unary relations as commands 	 235

particular term, we use an "R(x)" condition followed by an
equality test as in the above rule for "Is-told".

Another example use

We can use A directly as a rudimentary form of is-told
condition to query us during the evaluation of one of our queries.
Consider the rule:

average-of-entered-list if
P(enter a number list) &
R(y) & y average x

If we query this relation with

which(x : x average-of-entered-list)

we will get the following interaction

enter a number list.(34 -5 89 66)
46
No (more) answers

We are only asked once to enter a number list because micro-
PROLOG only allows one solution to be given to a A condition.
It is not like the is-told relation that allows us to give several
answers.

The A primitive will read in any term. It may be a number,
a constant, a list or a variable. Any variables read in are
immediately converted into internal form: in particular the name
of the variable is not remembered. This has its advantages and
disadvantages, it is beyond the scope of this book to go into
them.

System note . inputting terms - when the read prompt "." is given you
can enter more than one term. That is, before hitting the ENTER key
you can type several different terms separated by spaces and you can
edit what you have typed. When you hit the ENTER, micro-PROLOG
will only use the first entered term to solve the current A condition.
However, when the next H condition needs to be solved it will use the
second term that you entered and will not display the read prompt. It
will continue using up your sequence of entered terms until it has used
the last term. Then when it needs to solve an R condition again it will
re-display the read prompt. Entering several terms for one prompt is
only sensible when we know that micro-PROLOG will want to read in

236 	 8. Metalogical programming

several terms.
A large list term as input does not have to be completed before

we hit ENTER. Just as we can add a sentence over several lines when
we use the add command we can also enter a list to be read in by the
R primitive over several lines. micro-PROLOG displays a special prompt
after each ENTER until the whole list has been read in. The prompt is
the number of right brackets that need to be entered to complete the
list.

The arguments of the add command are actually read in using R
so it is not surprising that the same rules apply for the entering of
sentence lists and the entering of any list.

Finally, to enter constants which contain special characters we
quote the constant with double quotes. Thus, if a is a sequence of any
characters other than the quote sign itself, "s' is a constant. The
sequence s can contain spaces. This means that

"any old answer"

is a single constant that can be entered in response to a read prompt.
For more details on the syntax of quoted constants and on the rules
for entering terms we refer the reader to the Reference Manual.

The P and PP primitives

As we have seen the read term relation is most often used
in combination with the write term relation, P. This relation is
unusual in that it can have any number of arguments, it is a
multi-argument relation. An approximate logical reading is:

P(tl t2 ,,. tn) is true if ti ,. tn are terms.

The control reading is:

To solve a condition of the form P(tl ,. tn),
check that tl,..,tn are terms, and (if they are)
display the terms as a sequence on the screen.

Again, the crucial property is not that it checks that its
arguments are terms but that it displays these terms on the
console. It is used for its non-logical side-effect, the side-effect of
displaying a sequence of terms.

The PP primitive also takes any number of arguments and
displays them as a sequence. The main difference is that it always
positions the cursor at the beginning of a new line after it has
displayed the terms.

8.4 Unary relations as commands 	 237

If we had used PP instead of P in the above definition of
average-of-entered-list' the interaction would be

enter a list
(34 -5 89 66)

46
No (more) answers

with the read prompt positioned at the beginning of the next line
waiting for us to enter the number list. The other difference is
the PP quotes any constant it displays if the constant would need
to be quoted on input.

PP ("an output")

displays

"an output"

whereas

P ("an output")

displays

an output

The print imperatives are useful for displaying messages
during the evaluation of a query about error conditions. (All the
error messages displayed by micro-PROLOG when we have a
syntax error or an evaluation error are actually displayed by
micro-PROLOG programs that use these relations.) The odd print
scattered around the rules of a program does not effect its
declarative reading but can give useful information during an
evaluation, especially when we are developing a program.

As an example of this use of a print, consider the extended
metalogical program for the relation "MAPLIST" defined in
Section 8.2.

238 	 8. Metalogical programming

MAPLIST(X Y Z) if
X CON & X defined & / & Maplist(X Y Z)

MAPLIST(X Y Z) if
PP(Maplist Cannot be applied to Y Z because

relation argument is not given)
& FAIL

The second rule which displays the message is only used if the
tests for the conditions of use of 'Maplist" fail. This is because
when the conditions are satisfied the / of the first rule prevents
the use of the second rule. We could drop the / but we would
then have to have the explicit negated condition

not(X CON & X defined)

at the beginning of the second rule. The effect of FAIL in the
second rule is to ensure that the "MAPLIST" condition which
does not satisfy the conditions of use of the "Maplist" program
fails to be solved. Without the FAIL condition the successful
conclusion of the PP condition would be interpreted as a solution
of the condition for the given arguments.

Printing variables

Since variables in read-in terms are converted into an internal
form, and their original names are lost, it is not possible to
display them using their original names. The first variable printed
by P or "PP' is displayed as "X", the next as 'Y' and so on in
the sequence

X, Y ,Z, x, y, z, Xl, Yl,

In other words, exactly the same rules apply to the display of
variables in printed terms as when program rules are listed. This
is not surprising as the list command of SIMPLE is defined by a
program that displays the sentences using P. Each time "P' or
PP is called the name sequence is started afresh. This can lead

to a situation where two apparently different variables have the
same print name:

is(PP(x) & PP(y))
X
X
YES

8.4 Unary relations as commands 	 239

Reading and writing to files

The above R and PP primitives are just special cases of
more general READ and WRITE primitives for transfering terms to
and from files. The save and load commands of SIMPLE are
ultimately defined in terms of these file transfer primitives.

A more elaborate "Is-told" definition

Let us look at a slightly more elaborate definition of the
"Is-told" relation which is still not as general as the is-told
described in Chapter 4. This version can display a question pattern
which is a list of constants and variables and will respond to
"ans" answers in the same way as is-told. That is, on backtracking
it will prompt us for another answer until an answer other than
"ans" is given. It does not handle 'yes" and "just" responses.

• Is-told if P true-of x & P(?) & R(y) & x answered-with y

• answered-with ans if x variables-given-values
• answered-with ans if x Is-told

(xy) variables-given-values if
x VAR & / & R(x) &
y variables-given-values

(xly) variables-given-values if
y variables-given-values

The "Is-told" rule displays the prompt sequence followed by
a "?" and then reads in the first term typed in. The "answered-
with" condition deals with the response.

If the response is "ans" the variables of the question pattern
are given the values of the sequence of terms entered after the
"ans". The program for "variables-given-values" recurses down the
message list and each time it finds a variable it reads in the next
term making it the value of the variable.

Note the use of the metalogical primitive VAR to pick up
the variables of the question pattern that do not yet have values.
Once a variable has been given a read-in value, subsequent
occurences of the variable in the message list will not be picked
up by the VAR test. The second rule for "variables-given-values"

240 	 8. Metalogical programming

skips over each item in the message list which is not a variable.
When backtracking to the "Is-told" condition an attempt is

made to find an alternative way of handling the last response
using the second rule for answered-by". This second rule, reduces
to a new "Is-told" condition for the same message list which can
be answered with another "ans" response. The prompts will
continue until something other than an "ans" is entered.

Using the read/write primitives to define new commands

The following program defines a more general version of
the accept command described in Chapter 1 which can be used
to enter a series of arbitrary sentences defining some relation until
"end" is entered. It is not restricted to the entry of the arguments
of fact sentences like accept.

x Accept if P(Sentence for x) & x R & x respond

end respond
x respond if x LST & x add & x Accept

An example use as a command is

Accept last-of
Sentence for last-of.(x last-of (xl)
Sentence for last-of.(x last-of (z) if x last-of z)
Sentence for last-of.end

Before you edit some sentence for a relation you probably
first list the relation to find the position of the sentence to edit.
The following program defines a new command "Edit" using the
predefined list and edit commands as relations. It has a single
argument that is the name of the relation to edit. It lists the
relation and then prompts for the number of the sentence to edit
before using edit as a two argument relation.

x Edit if x list & P(Sentence number) & y R & x edit y

8.4 Unary relations as commands 	 241

The built-in supervisor program

Any user defined unary relation can be used as a command
because the top level interaction between you and micro-
PROLOG is controlled by a special built-in program called the
supervisor.

The supervisor is actually a micro-PROLOG program for a
no-argument relation that is automatically invoked when you enter
the micro-PROLOG system and which never terminates. It is this
program that prints out the "&" which is part of the "&." top-
level prompt that you get when you can enter a new command.

The '.' is the read prompt that you get because the
supervisor program immediately attempts to read in two terms
which are the name of some unary relation followed by its single
argument. It then 'applies' the relation to the argument before
cycling back to read in the next unary relation name and its
argument.

The following is a simplified form of the supervisor
program.

SUPERVISOR if
P(&) and R(x) and R(y) and
(either x true-of y or P(?)) and / and
SUPERVISOR

The "x true-of y" condition is the application of the
command x to its single argument y. If the condition is not
solved the response '7" is displayed. The / before the recursive
condition ensures that the program is tail recursive. This is
absolutely essential since the program only terminates when you
switch off the computer. If it was not tail recursive it would very
quickly fill up the available space for the query stack.

Defining two argument relations

The supervisor only allows us to use unary relations directly
as commands. We can use relations with more than one argument
as commands only if we add an extra one argument rule for the
relation that reads in the extra arguments using explicit R
conditions.

For example, the edit command of SIMPLE is defined by
the following form of program

242 	 8. Metalogical programming

• edit if y R and x edit y
• edit y if

The rules defining edit as a two argument relation are the main
rules. These are the rules that are used when we use edit as a
two-argument command relation in our programs. The first rule is
the one used to solve the supervisor true-of condition when we
use edit as a command since it is the only one for a single
argument condition. The application of the rule causes the second
argument of the command line to be read in and given as the
second argument to a two argument edit condition.

The add command that has both a single and two
argument command form is defined by a program of the form

x add ifx NUM &/&yR&x add y
• add if x LST & / & 32767 add x
• add y if

If the single argument to the command is a number, giving the
position at which to add the sentence, the sentence list follows
the number and it is read in before the two argument form of
the relation is used. If the single argument is a list, it is the
sentence. The two argument form of add is then used with the
position to add the sentence given as 32767 to ensure that it is
added at the end of the sentences for its relation.

Exercises 8-6

1. Extend the second program for the "Is-told" relation given above so
that it will cope with "yes", "no" and "just" answers. You need to
extend the definition of "answered-with".

2.Extend the definition of the "Edit" command relation so that it will
re-list the program after the selected sentence has been edited and
prompt for the number of another sentence to edit. It should continue
doing this until you enter "no".

3. Define a new command "List" which can be followed by a sequence
of any number of relation names terminated by "end" and which will
list the programs for each relation. An example use is

List father-of mother-of male end

8.4 Unary relations as commands 	 243

4. Define a new supervisor program which makes use of an auxiliary
relation command" which defines which relations are commands which
can be invoked and which also states how many arguments the
command takes. For example, we might have:

add command 1
edit command 2
quit command 0

The supervisor checks each command to see if it is a valid
command, and automatically reads in the required number of arguments
before applying the command.

Remember to make sure it is a tail recursive program.

PART III

9. The standard syntax of micro-PROLOG

The programs and queries that we have used so far have
been written in a special easy to read syntax. There is another
standard syntax for programs and queries which has a simpler
structure but which is less readable. The standard syntax is the
only syntax directly understood by micro-PROLOG.

Programs written in the SIMPLE sentence syntax (i.e. the
syntax used in Chapters 1 to 8) are compiled sentence by sentence
into the standard syntax as they are entered. Similarly, queries are
converted to their standard syntax equivalents before they can be
answered. All this is accomplished by the SIMPLE front-end
program which is itself written in the standard syntax.

For example, the add command of SIMPLE takes a
sentence list as argument and converts it into another list that is
the standard syntax form of the sentence and stores the added
sentence in this standard syntax form. When you list or edit a
program these commands convert back from the standard syntax
to sentence syntax before displaying the sentence.

SIMPLE is a program development system that provides us
with a range of facilities for building and querying programs
using a particular user friendly syntax. As we shall see, we can
bypass the facilities of SIMPLE and even dispense with them
altogether.

In this chapter we introduce the standard syntax by
describing the compiled form of SIMPLE sentences and queries.
We then introduce some primitives of micro-PROLOG that can
be used for entering, listing and querying programs in the
standard syntax. We show how these can be used to quickly
define more elaborate program manipulation and query commands
for the standard syntax programs. The way in which sentences are
compiled into the standard syntax is also briefly described.

We then examine the meta-variable features of standard
syntax. These are much more extensive than the true-of condition
of the sentence syntax described in the last Chapter. They enable

248 	 9. The standard syntax of micro-PROLOG

us to write very elegant and powerful metalogical programs,
programs that can only be written in the standard syntax.

Finally, we describe a micro-PROLOG primitive that can be
used for accessing the rules that define a relation. Using this
primitive we can define our own query evaluator as a metalogical
program. For example, we can define an evaluator that is not
constrained to use the rules defining a relation in the order in
which they are stored but can use them in an order determined
by some other metalogical program.

9.1 Atoms and Clauses

We adopt a slightly different terminology when talking
about programs and queries written in the standard syntax. This
helps to avoid confusion when we are discussing the differences
between the two forms of syntax.

A sentence becomes a clause in the standard syntax. A
condition or conclusion of a sentence becomes an atom.

In a condition or a conclusion there is a relation name and
a number of arguments. In the atom equivalent, the relation name
becomes the first element of a list with the arguments comprising
the tail of the list. In an atom the relation name will also be
referred to as the predicate symbol

Example simple sentence atoms

simple sentence 	 Atom

John likes Mary 	 (likes John Mary)
SUM(1 2 3) 	 (SUM 1 2 3)
x male 	 (male x)

In general, the infix form

U R t2 becomes the atom 	(R ti t2)

the postfix form

R becomes the atom 	 (R t)

the prefix form

P(tl...tk) becomes the atom 	(P tl ... tk)

9.1 Atoms and Clauses 	 249

and the single name condition

N becomes the atom 	 (N)

There are no differences between the standard syntax and
sentence syntax form of the arguments which are in both cases
any micro-PROLOG term.

Definition: An atom is a list which begins with a constant called
the predicate symbol which is the name of a relation.

Remember that the SIMPLE add command accepts a
sentence list, a list of terms that satisfy the syntax conditions of a
sentence. The add command converts this list of terms into a list
of atoms. The first atom of the list of atoms is the atom
corresponding to the conclusion of the sentence, the remaining
atoms correspond to the conditions of the sentence if there are
any. Thus, an unconditional sentence becomes a list of one atom,
a conditional sentence becomes a list of more than one atom.

Definition: A clause is a list of atoms the first atom being the
conclusion of the clause. The relation name of the head atom is
the relation that the clause is about.

There are no connective words such as "if" and "and"
between the atoms of a clause.

Example sentences as clauses

sentence 	 clause

John likes Mary 	 ((likes John Mary))

x member-of (xi) 	 ((member-of x (xty)))

append (Q x x) 	 ((append () x x))

x friend-of y if 	 ((friend-of x y)
x likes y and 	 (likes x y)
y likes x 	 (likes y x))

9.1 Atoms and Clauses 	 251

loaded when you enter micro-PROLOG and cannot be deleted. In
this respect they are like the supervisor program that was
introduced in the last chapter which controls the interaction
between the user and the system. # is a meta-relation defined in
SIMPLE.

9.2 Programming in the standard syntax

When you enter micro-PROLOG and then bring in the
SIMPLE front end with a

LOAD SIMPLE

command you are using the primitive LOAD command of micro-
PROLOG to load a standard syntax program. The load command
that we can subsequently use is defined within SIMPLE in terms
of LOAD.

The primitive command and relation names of micro-
PROLOG are either symbols such as or they have entirely
upper case letter names. Remember that all the command names
of SIMPLE are lower case. This should help you to remember
what command is defined in SIMPLE and can only be used when
it has been LOADed and what commands are primitive.

Entering clauses

We enter sentences using the add or accept commands of
SIMPLE. We can directly enter a clause by typing the clause.
Instead of

&.add(Tom likes Mary)

we can use

&.((Iikes Tom Mary))

This represents another role of the supervisor program. It either
accepts the name of a command followed by its argument as
when we use add or it accepts a clause. It can tell when we have
entered a clause rather than a command name because the clause
is a list.

22 	 9. The standard syntax of micro-PROLOG

& ((likes Joe Mary))
&.((belongs-to x dy))
&.((likes Bill Joe))
& ((belongs-to x (ylz))
1. (belongs-to x z))
&.

As when we use add, we can interleave the clauses for
different relations, and each new clause is put at the end of the
current list of clauses for its relation.

There are two primitive relations ADDCL and DELCL that
can be used to add and delete clauses. Used as commands each
must have a single argument which is a clause.

&.ADDCL ((likes Bill Mary))

is equivalent to just entering the clause.

&.DELCL ((likes Bill Mary))

will delete the clause. As with delete we can use DELCL to
delete a clause matching a given pattern:

&.DELCL ((likes Bill X))

will delete the first clause about whom Bill likes.
Both ADDCL and DELCL can be used in programs and

queries to manipulate the clauses of other programs. Like add and
delete they have both single and two argument forms but only
the single argument form can be used directly as a command.

The two argument use of ADDCL is an atom of the form

(ADDCL X y)

where X is a clause and y is the clause position after which the
clause should be added. This is different from the two argument
use of add. With add the position is the position before which to
add the sentence. The following program defines a command
relation addcl" that is the clause equivalent of add.

9.2 Programming in the standard syntax 	 253

((addcl y)
(INT y)
(R X)
(addcl X y))

((addcl X)
(LST X)
(ADDCL X 32767))

((addcl X y)
(SUM yl 1 y)
(ADDCL X yl))

The command

addcl 1 ((likes John Keith))

will add the clause as a new first clause for its relation. Defining
a similar command relation that is the clause equivalent of the
delete command is left as an exercise below (Exercise 9-1(3)).

Luring clauses

We can see the clauses we have entered using the primitive
LIST command.

LIST ALL

(with the 'ALL" in uppercase) will list all the workspace program
in clause form. It does not matter whether we have entered a
clause directly or as a sentence using add. The LIST command
will still list it.

Incidentally, if you have used add the 'LIST ALL"
command will also list clauses for the 'dict" relation. You will
see a

((dict R))

clause for each relation name for which you have entered at least
one sentence using add. This is because the add command
automatically puts a "dict" clause into your workspace program
each time you add a sentence for a new relation. That is why,
when you are only using add to construct a program, you can
find out all the relation names you have used by querying the
"dict" relation or listing it.

There is a similar relation to "dict" for directly entered

254 	 9. The standard syntax of micro-PROLOG

clauses. It is the primitive DICT relation which is maintained by
the micro-PROLOG interpreter. If you do

LIST DICT

the answer will be a single clause of the form

((DICT & () (.....) likes Joe Mary belongs-to Bill ..))

The DICT relation is a multi-argument relation. After the third
argument comes a sequence of all the constants that you have
used so far in your program. It includes the names of all the
relations as well as the names of all the individuals such as 'Joe"
and Mary". The third argument is the list of all the names
exported by currently loaded modules. If you are using SIMPLE
it will include the names of all the SIMPLE commands and
relations that we have been using. This third argument of DICT is
accessed when you do a

which(x : x reserved)

query. In fact reserved is defined by the clause

((reserved (dict func data-rel IZ))
(DICT X Y Z lx))

in SIMPLE. It picks up the list of imported names and adds diet,
func and data-rel to the front.

For an explanation of the first two arguments of the DICT
relation we refer the reader to the section on modules in the
Reference Manual. Essentially they are there because the
workspace and each module has its own distinct DICT relation.
The "&" as the first argument tells us that this is the workspace
dictionary that is being displayed.

We can also use LIST to list the programs for individual
relations.

&.LIST belongs-to
((belongs-to X (XIY))
((belongs-to X (YIZ))

belongs-to X Z))
&.

or a list of relations

9.2 Programming in the standard syntax 	 255

&.LIST (likes belongs-to)

In this respect it is more general than the SIMPLE list command.
Indeed, LIST allows you to list the exported relations of the

loaded modules as well as your own relations.
Normally, we cannot use the the SIMPLE command list to

display a relation which has been entered as clauses. However, if

we also directly enter a dict clause for the relation then we can

use the list command. This is because the list command of

SIMPLE will only allow you to list programs for relations
recorded by a dict clause. Remember that the "list all" command

also only lists relations recorded by dict. So, to list our "belongs-
to" program we must first enter the appropriate dict clause.

& .((dict belongs-to))
list belongs-to

• belongs-to (XIY)
• belongs-to (YIZ) if

X belongs-to Z

&.

(What would happen if we used the command:

add(belongs-to dict)

to add the dict clause?) The clauses are now displayed as

sentences even though they were not entered as sentences.
We suggest that you load in some previously saved program

and LIST its various relations to see what the definitions look like
in clause form. This will help you to become familiar with the

clause notation.

Exercises 9-1

1. Give the clauses that correspond to the "has-length" program of
Chapter 3

2. Give the clauses that correspond to the sentences of the geography
data base of Exercise 1-1(2) and Exercise 1-4(1).

3. The two argument use of DELCL is an atom of the form

(DELCL X y)

256 	 9. The standard syntax of micro-PROLOG

where X is the name of a relation and y is a positive integer. It deletes
the y'th clause for X. Define a command relation "delci" that can be
used in exactly the same way as delete.

The query primitive

There is no primitive command relation that is the
equivalent of the SIMPLE which query command. ? is the
primitive query relation and it roughly corresponds to is.

? is a unary relation which takes a list of atoms as its
argument. The evaluation is a backtracking search to find a
solution to the conjunction of conditions represented by this list
of atoms. The search for a solution is exactly the same as the
search for a solution to the conjunctive condition of an is query.

&.?((likes Bill X)(likes X Mary))
&.

The query is solved.

&.?((belongs-to 6 (4 5 7))

The query is not solved.
When ? is used as a command it does not display any

answer. If the query is confirmed we simply get the next
supervisor "&." prompt and if it is not confirmed we get the '7"
response which the supervisor displays whenever a command fails.

To see the values assigned to the variables of a solved ?
query we can use PP to display the values.

&.?((Iikes Bill X)(Iikes X Mary)(PP X))
Joe
&.

System note - tracing programs using ?? - You can trace programs in the
standard syntax by using the command. To access this trace program
you have to load the TRACE program:-

LOAD TRACE

For details of how to use this trace see the Reference Manual.

9.2 Programming in the standard syntax 	 257

? is the primitive query relation in terms of which all other
query relations are defined. The other query relations use PP to
display answers.

The following metalogical program defines the exact
equivalent of is for queries that are lists of atoms.

((IS X) (X) / (PP YES))
((IS X) (PP NO))

The / condition of the first clause ensures that the second clause
is used only when the query condition (? X)" fails. Single name
atoms are normally expressed in the form (name) and we could
have expressed the / condition as "(/)". However, I and FAIL are
specially recognized single name atoms that do not need to be
entered as a list.

The program

((WHICH (X I Y))
(FORALL Y ((PP X)))
(PP No (more) answers))

defines a command relation similar to which. Its single argument
is a list comprising an answer pattern X followed by a tail list of
query atoms Y. The primitive FORALL condition has two
arguments both of which are query lists of atoms. For each
solution S to the first query list it checks that it can confirm the
second query list with the variable values of solution S. In this
case the effect is to display the answer pattern X for each
solution to the query pattern Y.

& .WHICH(X (Bill likes X)(X likes Joe))
Mary
No (more) answers

&.WHICH((X Y) (X likes ZXZ likes V))
(Bill Joe)
No (more) answers

9.3 Parsing sentences into clauses

In this section we shall briefly describe a simplified form of
the parsing program in SIMPLE that converts sentences to clauses

258 	 9. The standard syntax of micro-PROLOG

and back again. The main parsing relations are exported from
SIMPLE and so are available for use in your programs. Most of
them make use of the difference list representation which was
described in Chapter 6.

Parse-of-SS relation

(Parse-of-SS x y z)

holds when the simple sentence which is represented by the
difference between the lists y and z forms the atom x.

(Parse-of-SS (likes Tom Mary) (Tom likes Mary) 0)
(Parse-of-SS (belongs-to X (YIZ))

(X belongs-to (YIZ) if X belongs-to Z)
(if X belongs-to Z))

are both instances of the relation. Sample clauses from the
definition of the relation are:

((Parse-of-SS (X Y Z) (Y X Z Ix) x)
(CON X)/)

((Parse-of-SS (X Y) (Y X) Z)
(CON X)/)

which deal with the infix from of simple sentence and the postfix
form respectively. The / conditions tell micro-PROLOG that only
one rule applies.

The relation can be used for parsing simple sentences into
clauses or vice versa.

WHICH((x y) (Parse-of-SS x (X likes Y if Y likes X) y))
((likes X Y) (if Y likes X))
No (more) answers

WHICH(x (Parse-of-SS (male Bill) x 0))
(Bill male)
No (more) answers

9.3 Parsing sentences into clauses 	 259

The Parse-of-ConjC relation

(Parse-of-ConjC x y)

holds when the list of terms y is a conjunctive condition
corresponding to the list of atoms x.

(Parse-of-ConjC ((father-of x yXNOT male y))
(x father-of y & not y male))

(Parse-of-ConjC ((ISALL x (y z) (likes y z))
(x isall (y z : y likes z)))

both hold. Again this can be used for converting atom lists to
conjunctive conditions or vice versa.

The Parse-of-S relation

(Parse-of-S x y)

holds when x is the clause corresponding to the sentence list y.
For example:

(Parse-of-S ((likes Bill Joe)) (Bill likes Joe))
(Parse-of-S ((likes X YXlikes Y X))

(X likes Y if Y likes X))

It too can be used for parsing or generating sentences.
The definition of Parse-of-S in SIMPLE is more complex

than the following definition. In fact, the whole program contains
meta-logical conditions to determine whether it is being used to
parse or generate so that the syntax error messages can be given
for the parsing use. The following definition gives the flavour of
the parsing program.

((Parse-of-S (X) Z)
(Parse-of-SS X Z 0)!)

((Parse-of-S (XIY) Z)
(Parse-of-SS X Z (ifiZi))
(Parse-of-ConjC Y Zi))

260 	 9. The standard syntax of micro-PROLOG

The I at the end of the first rule is purely for efficiency to tell
micro-PROLOG that when the rule is successfully used either for
parsing or generating the second rule will not apply.

Using Parse-of-ConiC you can define your own query
commands that use the sentence syntax. As an example:

((a (x : I y))
(Parse-of-ConjC Y y)
(?Y) I
(PP x))

defines a query command similar to which but it only ever gives
one answer to the query, the first one found. Another difference
is that the answer pattern must be a single term - the x of the
pattern (x : I y)" which becomes the argument of the PP
condition.

&.a((x y):APPEND(x y (2 3 4)))

(0 (2 3 4))
&.

&.a(x: Bill likes x & y male)
Joe
&.

9.4 Meta-variables in standard syntax programs

What we have seen so far of the standard syntax of micro-
PROLOG corresponds quite closely to the sentence syntax. But,
just as we can use meta-variables in true-of conditions in
sentences, so we can use meta-variables in clauses and query lists
of atoms.

The main principle behind the meta-variable is that during
the evaluation the meta-variable will be given a value before
micro-PROLOG comes to evaluate the part of the clause in
which it appears. This value must be such that it is syntactically
correct for the part of the clause represented by the meta-variable.
The clause is then used as though it had been written with the
value in place of the variable.

There are four different forms of use of a meta-variable in
standard syntax programs. These arise naturally from the list
structure of clauses. These various uses also have parallels in more
conventional programming languages, notably Pascal, ALGOL and

9.4 Meta-variables in standard syntax programs 	 261

"C". We will point out these analogies where it is appropriate.
Readers not familiar with these languages should ignore these
comments.

Incidentally, do not try to list a clause that uses one of
these forms of meta-variables. You can only list clause programs
that are of the form that would be produced by parsing a
sentence. If you have used a meta-variable in a clause the reverse
parsing of the clause into a sentence will fail or it will produce
an incorrect representation of the clause as a sentence.

Meta-variable replacing the predicate symbol of an atom

In this first case, the predicate symbol of an atom in a
query or the body of a clause is given as a variable. Recall that
an atom is a list, the first element of which is the predicate
symbol. If this is a variable, the variable must have a value which
is a relation name before the atom is evaluated. In practice this
means that the variable must appear in an earlier atom of the
query or clause.

The one constraint on this use of a meta-variable is that the
predicate symbol of the head atom of a clause can never be a
variable, it must always be a constant.

In SIMPLE queries we have to use true-of to achieve the
same effect as the predicate symbol meta-variable.

WHICH(x (dict xXx Bill Joe))
likes
No(more) answers

What this query asks is:

What relationships are known to hold between "Bill" and
"Joe'?

As a SIMPLE query this must be expressed

which(x : x dict & x true-of (Bill Joe))

Suppose we view a collection of facts about binary relations
as the description of a graph in which the nodes are labelled by
the individuals and the arcs by the relation names as in:

262 	 9. The standard syntax of micro-PROLOG

likes 	 is-a-friend-of

Jim— - John 	 Mary

likes

Used with dict the meta-variable enables us to find the names on
the arcs between particular nodes, as in the above query. It also
enables us to find all the nodes connected to a given node
together with the name of the connection:

&.WHICH((x z) (dict x) (x John z))
(likes Mary)
(is-a-friend-of Mary)
(likes Jim)
No (more) answers

The clause

((connects x y z) (dict x) (x y a))

is a rule that can be used to walk over this graph.
Just as we can use true-of to write generalized programs so

we can use the predicate symbol meta-variable. The program for
"maplist" given as the answer to Exercise 8-1(2) can be written in
clause form as:

((maplist x Q Q))
((maplist x (ylY) (AZ))

(x y z)
(maplist x Y Z))

The "reduce" relation of Section 8.1 can be written:

((reduce x (y) y))
((reduce x (yl y2IY) z)

(x yl y2 y3)
(reduce x (y3IY) a))

This use of predicate meta-variable has an analogy in many
conventional programming languages: the passing of procedures as
parameters. For example in Pascal it is possible to have a

9.4 Meta-variables in standard syntax programs 	 263

procedure or function name as the parameter of another procedure
or function (or even the same one). The 'host' procedure supplies
the actual parameters to the 'guest' procedure whose name has
been passed. However in Pascal, as in many other similar
languages, the name of a procedure is not a 'first class' object: it
cannot become the value of a variable or be stored in a data
structure.

In micro-PROLOG the predicate symbol is such a first class
object; it is a constant and as such can be stored, passed around
and retrieved with total flexibility.

Exercises 9-2

1. Write a program, in clause form, which takes a pair of lists and
returns a list of pairs: each pair coming from successive elements of the
two lists. For example:

WHICH(x (pair (1 2 3) (a b c) x))
((1 a) (2 b) (3 c))

2. Use this program, together with "maplist" and 'reduce to write the
program 'dot' which performs the dot product of a pair of lists of
numbers. The dot product is the sum of the pair-wise products of the
elements of the lists. For example, given the two lists (2 5 8) and (2 4
3) then the dot product is 4+20+24 which is 48.

3. The meta-variable can be used to implement a very simple arithmetic
expression evaluator. Such arithmetic expressions can have two shapes;
either the expression to evaluate is already a number, in which case the
value is the 	number, 	or 	it 	is 	a 	list 	of the 	form
"(leftarg operator righrarg)". In this case the value is obtained by
evaluating the left and right hand arguments and applying the relation
given as the operator to their values. Each operator must therefore be
defined as a three argument relation, with, say, the last argument being
the result of applying' the operator to the first and second arguments.

Write a program in clause form for the relation 'has-val" such that
"x has-val y' holds when x is a valid expression as defined above and y
is its value.

Test your program with a query such as

which(x : ((2 * 3)! (-3 + 5)) has-val x)
or

WHICH(x (has-val ((2 * 3)! (-3 + 5)) x))

This is quite different from the use of expressions that we described in
Chapter 4. There the expressions were compiled into a conjunction of

264 	 9. The standard syntax of micro-PROLOG

conditions that would evaluate the expressions. Here they are left as
lists that are evaluated by recursing down the expression list when the
value is needed.

Meta-variable as an atom

A whole atom can be named by a variable. This variable
must have a value which is a atom list when the condition
represented by the variable is evaluated. This form of meta-
variable is very commonly used in clause programs.

A very simple use is in the clause:

((Holds x) x)

The Holds" relation is true of a term if and only if that term i
an atom that is solved. A negated condition is the opposite of
"Holds" condition. It can be defined by the meta-logical program.

((not x) x / FAIL)
((not x))

When used to try to establish (not A), where A is some atom,
the first rule of this program is invoked. It reduces (not A) to A.
If A can be solved, the / prevents use of the second rule and
the FAIL ensures failure of the (not A) condition. Only if A
cannot be established will the second rule be used to confirm
(not A). But this is exactly the circumstance in which (not A)
holds.

This definition of "not" restricts x to a single atom. The
"not" of the sentence syntax can be applied to a conjunction of
conditions which corresponds to a list of atoms. The following
clauses define a "not" that has a list of atoms as its argument:

((not x) (? x) / FAIL)
((not x))

The difference is that here the query primitive "?" is used to
check if all the atoms on the list x can be solved.

The atom meta-variable has no obvious counterpart in
conventional programming languages (apart from LISP). There is a
link with ALGOL 60 and its close counterparts though with the
'call-by-NAME' parameter passing mechanism.

We saw above that the meta-variable as a predicate symbol

9.4 Meta-variables in standard syntax programs 	 265

was close to the procedure name passing mechanism of Pascal:
the name of the procedure was passed and the actual arguments
are given by the host procedure. In the atom form of meta-
variable the whole 'procedure call' is passed, an operation akin to
passing an unevaluated expression to a procedure. The time that
the expression is evaluated is determined by where the meta-
variable appears; this is exactly analogous to call-by-NAME. A
value passed by call-by-NAME in ALGOL 60 is actually passed as
a special unevaluated expression (called a "thunk" for the
technically curious) which is then evaluated as the corresponding
formal parameter appears in the text.

Meta-variable as the remainder of a clause

Another variant of the meta-variable is the meta-variable as
the remainder of the list of atoms of a clause. The simplest
example of this is the metalogical program for ? which is the
standard syntax equivalent of is:

((X) I X) 	 (1)

The variable "X" must be matched against a list of atoms when
the rule is used and this list of atoms becomes the list of
conditions of the clause when the clause is 'entered'. You will see
this program if you do a "LIST ?".

Below is the program for the OR meta-relation.

((OR x y) I x)
((OR x y) I y)

Yet another use is the definition of the IF relation, another
primitive meta-level relation of micro-PROLOG which does not
have a sentence form equivalent.

IF has three arguments, an atom which is the conditional
test and two 'arms' which are lists of atoms and correspond to
the 'then' and 'else' branches. Thus (IF x y z) is solved if x and
y are solved or if x is not solved and z is solved. It is defined
by:

((IF x y z) x / I y)
((IF x y z) I z)

Notice that we have two types of meta-variable in the first clause.

266 	 9. The standard syntax of micro-PROLOG

The x stands for an atom, the y for the remainder of the clause
following the I.

Exercises 9-3

The following program is an alternative definition of the
WHICH relation.

((WHICH (XIY))
(?Y)
(PP X)
FAIL)

((WHICH (XIY)
(PP No (more) answers))

In this program it is the FAIL of the first clause that causes
micro-PROLOG to backtrack to find an alternative solution to (? Y).
For each different solution the answer term X is displayed.

Using this program as a model, define a "ONE" form of query
which corresponds to the SIMPLE one query in the way that "WHICH"
corresponds to which. The program for the relation must prompt after
each solution is found. If the response is "yes" then use the "FAIL" to
force micro-PROLOG to look for the next solution, otherwise do
nothing.

Meta-variable as the remainder of the argument list

The pattern (xly) is a list with head x and tail y. When this
pattern is used in place of an atom, y is a meta-variable standing
for the list of arguments of the atom. This form of meta-variable
is used when the number of arguments is unknown.

Example use

&.WHICH((x) (dict x) (x Tomlz))

is the generalization of the query

&.WHICH((x z) (dict x) (x Tom z))

that we encountered above. The generalization removes the
restriction to binary relations. It gives all the tuples of individuals
related to Tom by any relation. This is because the pattern (x
Tomlz) denotes an atom of any number of arguments providing

9.4 Meta-variables in standard syntax programs 	 267

the first argument is Tom". To achieve the effect of this in the
sentence syntax we must use true-of. Moreover, true-of is itself
defined as a clause program which makes use of both this form
of meta-variable and the predicate symbol meta-variable:

((true-of X Y) (XIY))

A meta-variable standing for a list of arguments can appear
in the head atom of a clause. The head of a clause can be an
atom (Rix) where R is the Constant which is the predicate symbol.
This use enables us to define relations with a variable number of
arguments.

A simple example is a "Sum-up" relation which has n + 1
arguments: the first is the sum of all the others. It is defined by
the single clause:

((Sum-up xly)
(reduce SUM y x))

This makes use of the "reduce" relation defined above. A typical
use would be "(Sum-up x 3 4 5") which makes x the SUM of
the three number arguments.

This form of meta-variable doesn't normally have an
equivalent in conventional programming languages. However
systems programming languages such as "C" and BCPL do allow
you access to the arguments of a call as a list or array of items
as opposed to individual named parameters.

In practical terms multi-argument relations enable us to drop
brackets. We could have defined "Sum-up" as a binary relation
between a number and a list of numbers. Its definition would
then be

((Sum-up x y) (reduce SUM y x))

But to use the program we would now have to write the multi-
argument atom "(Sum-up x 3 4 5)" as the two argument atom
"(Sum-up x (3 4 5))" in which we wrap-up all but the first
argument as a list.

Earlier we gave a definition of a "not" relation that had a
list of atoms as its argument. An example use is

(not ((Tall Tom) (Fat Tom)))

The single argument for "not" is the list of atoms

268 	 9. The standard syntax of micro-PROLOG

((Tall Tom) (Fat Tom))

It is more convenient to have not" as a multi-argument relation,
able to take any number of atom arguments. We could then write
the condition

(not (Tall Tom) (Fat Tom))

The clauses defining such a multi-argument "not' are:

((notix) (x) / FAIL)
((notix))

An analogous modification of the earlier "not" definition

((not x) x / FAIL)
((not x))

that has a single atom argument gives us the definition

((NOTx) x / FAIL)
((NOTh))

This enables us to write single atom negations as

(NOT Male Tom) instead of (not (Male Tom)).

This is the definition of the primitive NOT meta-relation that
is embedded in the micro-PROLOG interpreter.

The primitive I which restricts an atom to a single solution
has the definition

((I X)
X/)

The / restricts the atom X to a single solution. An example use
is

(! father-of x Tom)

which is the atom form of the complex condition

father-ofl(x Tom)

9.4 Meta-variables in standard syntax programs 	 269

of the sentence syntax.
To apply NOT to several atoms we use ? as the relation

with the list of atoms as the argument.

(NOT ((Tall TomXFat Tom)))

is confirmed if and only if the query condition

(((Tall TomXFat Tom)))

fails.
The primitive FORALL is defined in terms of NOT and ?

Remember that in sentence syntax

(forall C then C)

is equivalent to

not(C and not (C'))

This equivalence is embedded in the definition of FORALL.

((FORALL X Y)
(NOT ((XXNOT ? Y))))

(FORALL X Y) is confirmed providing the query atom list

((XXNOT ? Y))

fails. This fails providing there is no solution to the query list X,
or every solution is such that it is also a solution to query list Y.

9.5 The clause accessing primitive CL

ADDCL and DELCL are micro-PROLOG program
manipulation primitives. There is another very useful primitive that
enables us to access the clauses for a relation and then to
manipulate them as list terms. The program listing commands
make use of this relation to retrieve the clauses before displaying
them and it is used by the edit and save commands. It is the
relation CL.

The relation has a single argument and a three argument

270 	 9. The standard syntax of micro-PROLOG

form. We shall just describe the single argument form. The three
argument form is fully described in the Reference Manual. An
example use of the single argument form is

WHICH(((likesiX) y IY) (CL ((likesiX) y IY)))

which displays all the conditional clauses about likes - all the
clauses that have at least one condition y.

The argument to CL is any clause pattern in which at least
the relation name of the head atom is given. CL can only retrieve
clauses for specified relations. A use such as

WHICH((x) (CL (x)))

to try to retrieve all the single atom clauses will result in an
error. We must specify the relation that the clause is about.

WHICH(((likesix)) (CL ((likesix))))

will retrieve all the single atom clauses for 'likes". The most
general use of CL is

(CL ((namely)Y))

This matches and can be used to generate as answers each clause
for the relation "name". The answers are generated in the order
that the clauses are listed. On each match with a "name" clause y
becomes the argument list of the head atom and Y becomes the
list of condition atoms. The condition fails if there are no clauses
for "name". So as a test, it tests if the relation is defined. The
defined relation of SIMPLE has the definition

((defined x)
(CON x)
(CL ((xIy)Y)))

Defining new query relations

Perhaps one of the most important uses of CL is in the
definition of new query evaluation relations. The trace commands
such as all-trace, is-trace and P are defined using CL.

The clauses

9.5 The clause accessing primitive CL 	 271

((confirmed 0)
((confirmed ((xY))

(CL ((xly)Y1))
(confirmed Yi)
(confirmed Y))

define a relation that is almost equivalent to ?. It is not exactly
equivalent because it does not handle / conditions.

The CL condition will retrieve the clauses for the relation x
of the first atom in the list of atom conditions ((xly)Y) in the
order in which they are stored; so its backtracking behaviour in
the search for a solution is exactly the same as

We can alter the way in which the clauses are tried by first
constructing a list of all the clauses that match (x). We can then
select the clauses from the list in any order we choose.

((confirmed ((xIyY))
(ISALL X ((x1yY1) (CL ((xly)Y1)))
(select ((xtyZ) X)
(confirmed Z)
(confirmed Y))

ISALL is the micro-PROLOG primitive into which isall conditions
are mapped. Its atom use is

(ISALL X Y I Z)

where X is a variable or list pattern, Y the answer term and Z
the sequence of atoms defining the query condition. When the
ISALL is solved X becomes a list of copies of the values of the
answer term Y for each solution to query list Z. In the above
definition of "confirmed" it will give X the value of a list of
copies of all the clauses that match the condition (xly).

The "select" relation must be defined so that each clause
copy on the list Z can be retrieved by a new match with the
condition (xly).

If we define "select' as ON then, since ISALL constructs the
list of copies of the answer term in the reverse of the order in
which the answers are found, queries will be evaluated by trying
clauses for each condition in their reverse order.

If we define "select' as

272 	 9. The standard syntax of micro-PROLOG

((select X Y)
(sort Y Yl fewer-atoms)!
(ON X Yi))

((fewer-atoms x y)
(has-length x xi)
(has-length y yl)
(LESS xi yl))

where "sort" is the generalized merge sort relation of Chapter 8,
the sort condition reorders the list of clauses to be a list of
clauses of increasing numbers of atoms. Queries will be evaluated
by always trying single atom clauses first, then two atom clauses
and so on no matter what order they have been entered. Such an
evaluator might be useful for a naive user of micro-PROLOG as
a data base system.

Exercises 9-4

Define a variant of the "confirmed" query evaluator which re-
orders the atoms of its query list before finding a clause that matches
the first, condition. The order relation used is that an atom is less than'
another atom if it is for a relation declared to have fewer clauses. The
declaration is a clause for the special relation "number-of-clauses". E.g.

((number-of-clauses likes 3))

declares that "likes" has three clauses. Again, such an evaluator might be
useful for a naive user of a micro-PROLOG data base who does not
know anything about the way that queries are normally evaluated.

Answers to Exercises

Chapter 1

Exercises 1-1

a. &.list mother-of
Elizabethi mother-of Henry
Katherine mother-of Mary
Jane mother-of Edward
Anne mother-of Elizabeth2
&.delete mother-of 2
&.add 2 (Catherine mother-of Mary)
&.list female
Elizabeth 1 female
Katherine female
Mary female
Elizabeth2 female
Anne female
Jane female
&.delete female 2
& .add 2 (Catherine female)
&.

b. &.add 1 (Henry-Snr father-of Arthur)
&.add 1 (Arthur male)

2. You should enter the following sentences using add or
accept:

Washington-DC capital-of USA
Ottawa capital-of Canada
London capital-of United-Kingdom

274
	

Answers to Exercises

Paris capital-of France
Rome capital-of Italy
Lagos capital-of Nigeria
USA country-in North-America
Canada country-in North-America
United-Kingdom country-in Europe
France country-in Europe
Italy country-in Europe
Nigeria country-in Africa

3. Enter the following sentences using add or accept:

Tom-Sawyer written-by Mark-Twain
For-Whom-The-Bell-Tolls written-by Ernest-Hemingway
Oliver-Twist written-by Charles-Dickens
Great-Expectations written-by Charles-Dickens
Romeo-And-Juliet written-by William-Shakespeare
Death -Of-A-Salesman written-by Arther-Miller
Macbeth written-by William-Shakespeare
Tom-Sawyer type Novel
For-Whom-The-Bell-Tolls type Novel
Romeo-and-Juliet type Play
Death-Of-A-Salesman type Play
Oliver-Twist type Novel
Great-Expectations type Novel
Macbeth type Play
Charles-Dickens writer
William-Shakespeare writer
Arther-Miller writer
Mark-Twain writer
Ernest-Hemingway writer

4. Use the following sentences:

wheel part-of bicycle
pedals part-of bicycle
frame part-of bicycle
brake-system part-of bicycle
lighting-system part-of bicycle
chain part-of bicycle
handle-bars part-of bicycle
saddle part-of bicycle
brake-cable part-of brake-system
brake-block part-of brake-system

Answers to Exercises
	 275

dynamo part-of lighting-system
lights part-of lighting-system
electric-flex part-of lighting-system
hub part-of wheel
gear-cogs part-of wheel
spoke part-of wheel

Exercises 1-2

a. NO. Is Jane the mother of Elizabeth2?
b. YES. Is Henry-Snr a father (of someone)?
c. Henry

No (more) answers
Who are the children of Henry-Snr?

d. YES. Is there a daughter of Katherine?
e. Edward

No (more) answers
Who are the sons of Henry?

f. Henry-Snr Mary
Henry-Snr Elizabeth2
Henry-Snr Edward
No (more) answers

Which are all the paternal grandfather, grandchild pairs?

2. a. is(Katherine mother-of Edward)
b. which(x : x father-of y)
c. is(Jane mother-of x and Henry-Snr father-of x)
d. which(x Henry father-of x and

Katherine mother-of x)

3. a. is(Rome capital-of France)
b. is(Washington-DC capital-of x and x country-in Europe)
c. all(x : x capital-of y and y country-in Europe)
d. is(x capital-of Italy)
e. which(x : x country-in North-America and y capital-of x)
f. which(x : y country-in x and z capital-of y)

4. a. NO. Is Oliver Twist written by Charles Dickens?
b. YES. Is there a novel written by Mark Twain?

276
	

Answers to Exercises

c. Romeo-And-Juliet William-Shakespeare
Macbeth William-Shakespeare
Death-Of-A-Salesman Arther-Miller
No (more) answers

Which are all the plays and their authors?
d. Oliver-Twist

Great-Expectations
No (more) answers

Which are the novels written by Charles Dickens?
Mark-Twain

Ernest-Hemingway
Charles-Dickens
Charles-Dickens
William-Shakespeare
Arther-Miller
William-Shakespeare
No (more) answers

Who are the people who have written something?

Charles-Dickens and William-Shakespeare appear twice
because both of them are recorded as having written two things.
In answering the query

which(x y written-by x)

micro-PROLOG finds all the sentences of the form y written-by
x" and for each one it finds it gives us the 'x'.

5. 	a. all(x : x part-of bicycle)
b. is(dynamo part-of bicycle)
c. is(spoke part-of y)
d. which(x : dynamo part-of x & x part-of bicycle)
e. which(x x part-of braking-system)

Exercises 1-3

1. a. YES
b. 22

No (more) answers

Answers to Exercises 	 277

C. 17
No (more) answers

d. YES
e. YES
f. 63

No (more) answers
g. NO
h. 3 2

No (more) answers

2. a. which(x : SUM(9 7 x))
b. which(x : TIMES(y 7 65) & y INT x)
c. which(x : SUM(29 53 y) and TIMES(x 2 y))
d. is(TIMES(x 5 93) & x INT)
e. is(TIMES(17 3 x) and x LESS 50)

Exercises 1-4

a. which(x x location (y z) and London location (X Y)
and X LESS y)

b. which(x x location (y z) and Rome location (X Y)
and Y LESS z)

c. is(x country-in Europe and y capital-of x and
y location (z X) and Rome location (Y Z) and
London location (xi yl) and
Y LESS z and
z LESS xl)

d. which(x : x country-in Europe and y capital-of x and
y location (z X) and London location(Y Z) and
X LESS Z)

e. which(x y : x country-in y and z capital-of x and
z location (X Y) and Rome location (Z xi) and
X LESS Z and xi LESS Y)

a. which(xl : Apple costs y & Wallet contains z &
TIMES(x y z) & x INT xi)

b. is(Bread costs x & Cheese costs y &
Wallet contains z & SUM(x y X) & X LESS z)

c. which(x : Wallet contains y & Cheese costs z &
Apple costs X & SUM(z X Y) & SUM(x Y y)

d. which(x : Apple costs y & Bread costs z &
TIMES(y 5 X) & TIMES(z 3 Y) &
SUM(X Y Z) &
Wallet contains z & SUM(x z Z))

278
	

Answers to Exercises

3. 	a. is(Oliver-Twist published 1850)
b. which(x x published 1623)
c. which(x : Tom-Sawyer published x)
d. is(Oliver-Twist published x &

Great-Expectations published x)
e. is(Macbeth published x and Romeo-And-Juliet published y

and x LESS y)
f. which(x : x published y &

For-Whom-The-Bell-Tolls published z &
y LESS z)

g. is(x published y and y LESS 1600)

Chapter 2

Exercises 2-1

1. a. x maternal-grandmother-of y if x mother-of z &
z mother-of y

b. x father-of-son y if x father-of y & y male
c. x mother-of-daughter y if x mother-of y & y female

a. x city-in Europe if x capital-of y & y country-in Europe
b. x North-of London if x location (y z) &

London location (X Y) & X LESS y
c. x West-of y if x location (z X) & y location (Y Z) &

Z LESS X
d. all(x : x city-in Europe)
e. is(x North-of London)
f. which(x x North-of London & x West-of Rome)

a. x fiction if x type Novel
x fiction if x type Play

b. x classic if x written-by William-Shakespeare
x classic if x written-by Charles-Dickens

c. x cont-literature if x published y and 1900 LESS y
d. which(x x classic)
e. which(x y published Z & Z LESS 1900 &

y written-by x)
f. which(x x fiction & x cont-literature)

Answers to Exercises
	 279

Exercisej 2-2

1. 	a. x grandfather-of y if x father-of
and z parent-of y

b. x grandmother-of y if x mother-of
and a parent-of y

c. x child-of y if y parent-of x
d. x grandchildof y if y grandparent-of

a. Henry-Snr
Henry
Henry
Henry
Elizabeth!
Katherine
Jane
Anne
No (more) answers

Notice that we get Henry" three times. This is because Henry
has three children recorded in the data base.

b. Mary
more? (y/n) y
Elizabeth2
more? (y/n) V
Edward
more? (y/n) V
No (more) answers

c. YES

3. a. which(x y father-of Edward & x mother-of y)
b. which(x : y grandchild-of Henry-Snr & x mother-of y)
c. is(x child-of Katherine & x male)
d. which(x y child-of Henry & y male &

x mother-of y)

Exercises 2-3

1. a. Edward is male grandchild of Henry-Snr
Edward is male grandchild of Elizabeth!
No (more) answers

280
	

Answers to Exercises

b. Katherine is a wife of Henry
more?(y/n) y
Anne is a wife of Henry
more?(y/n) y
Jane is a wife of Henry
more?(y/n) y
No (more) answers

c. Henry
Jane

l enry-Snr
Elizabethi
No (more) answers

d. Henry
Mary
Elizabeth2
Edward
No (more) answers

e. NO
f. Mary

Elizabeth2
No (more) answers

2. a. x greater-than y if y LESS
b. x greateq x

x greateq y if y LESS x
c. z divisible-by x if TIMES(x y z) and y TNT

3. a. x Nineteenth-Century-Author if y written-by x and
y published z and
1800 lesseq z and z LESS 1900

b. x Contemporary-Playwright if
y written-by x & y type Play &
y published z and 1900 lesseq

c. x available-at y if x published z and z LESS y
d. which(x x available-at 1899)
e. which(x : x written-by y and

y Nineteenth-Century-Author and
x available-at 1980)

4. 	a. x indirect-part-of y if x part-of y
indirect-part-of y if z part-of y &

x indirect-part-of z

Answers to Exercises 	 281

b. x indirectly-contains y if y part-of
indirectly-contains y if y part-of Z &

indirectly-contains Z
c. all(x x indirect-part-of bicycle)
d. all(x x indirectly-contains spokes)

Exercises 2-4

1. (xx)GCDx
(x y) GCD a if

x LESS y & SUM(x yl y) &
(x yl) GCD z

(x y) GCD a if
y LESS x & SUM(y xl x) &

(xi y) GCD a

2. y between (x y) if x LESS y as the last rule

3. x even if TIMES(y 2 x)
x even-num-in (y z) if

x between (y z) & x even
all(x : x even-num-In (1 100))

4. all(x y : x between (1 13) & TIMES(x y 12) & y INT)

5. x divisor-of y if x between (2 y) & TIMES(x z y) & z INT

Chapter 3

Exercises 3-1

1. a. (wheel frame pedals saddle handle-bars lighting-system
brake-system)

(hub spokes gear-cogs)
(brake-cable brake-block)
(dynamo lights electric-flex)
No (more) answers

b. NO

282 	 Answers to Exercises

c. bicycle
wheel
brake-system
lighting-system
No (more) answers

d. NO.

2. (Oliver Twist) written-by (Charles Dickens)
(Great Expecations) written-by (Charles Dickens)
(Macbeth) written-by (William Shakespeare)

(Macbeth) type Play

(Charles Dickens) writer

Exercises 3-2

1. x childless-wife if (y x) parents-of 0

2. a. Jane
No (more) answers

b. No (more) answers
c. YES
d. Henry

Henry
Bill
Paul
Samuel
No (more) answers

e. Henry father Sally mother Margaret child Bob child
Paul father Jill mother John child Janet child
No (more) answers

f. (John Janet)
No (more) answers

Answers to Exercises
	

283

a. Dickens
No (mote) answers

b. YES
c. (Tom Sawyer) Twain

No (more) answers
d. (William Shakespeare) was a great playwright

No (more) answers
e. Tom

Oliver
Great
No (more) answers

Exercises 3-3

1. a. x=A; yB; zC; Z(D E)
b. xA; y=B; zC; Z(D)
c. xA; yB; zC; Z()
d. No match
e. No match
f. No match

	

2. 	a. (x (y z) xi)
b. ((x yIzY)

3. x(C A B); y(A B)

	

4. 	a. (x y) indirect-part-of z if (x y) part-of z
(x y) indirect-part of z if

(xi yl) part-of z &
(x y2) indirect-part-of xl &
TIMES(yl y2 y)

z indirectly-contains (x y) if (x y) part-of
z indirectly-contains (x y) if

(x yl) part-of zi &
indirectly-contains (zi y2) &

TIMES(yl y2 y)

Exercises 3-4

	

1. 	a. (English French)
No (more) answers

b. English
English
No (more) answers

284
	

Answers to Exercises

c. English
Welsh
Gaelic
No (more) answers

d. YES
e. x British-language if y spoken-in United-Kingdom and

z spoken-in Canada and
belongs-to y and x belongs-to

f. x Minor-language if (ylz) spoken-in X and x belongs-to

2. a.O
B
B
No (more) answers

b. YES

3. a. x parent-of-children y if z parents-of y &
belongs-to

b. x child-of y if z parents-of X and
belongs-to X and y belongs-to

Exercises 3-5

1. x mother-of-children-number y if
x mother-of children z and z has-length y

which(x : Jill mother-of-children-number x)

2. a. which(x : y parents-of z
& z has-length 5 & x belongs-to y)

b. which(x 5 length-of X and
y parents-of X and x belongs-to y)

3. (2XY)
(X 2 Y)
(X Y 2)
No (more) answers

Exercises 3-6

a. which(x : (Arthur Robert) have-descendant-chain x)
(Peter)
No (more) answers

Answers to Exercises
	

285

b. which(x : (Jane Robert) have-descendant-chain y &
y has-length x)

2
No (more) answers

c. which(x y : (x y) have-descendant-chain (z))
John Peter
Arthur Robert
Mary Robert
No (more) answers

2. 	x is-a-great-grandparent-of y if
(x y) have-descendant-chain (zi z2)

Exercises 3-7

1. which(x : y isall(z : Peter parent-of z and z male) and
y has-length x)

2. a. which(x : x isall(y : y family Smith))
b. which(x : y isall (z : z family Jones) &

y has-length x)

3. x last-of (x)
x last-of (yl y2Iz) if x last-of (y2)

4. (x y) adjacent-on (x ylz)
(x y) adjacent-on (2]X) if (x y) adjacent-on X

5. x max-of (x)
x max-of (y ZJX) if xi max-of (ZIX) &

greater-of (xi y)

6. (a b)
0
(c (d e)
g
a
b
c
(d e)
f
d
e
No (more) answers

286
	

Answers to Exercises

• somewhere-on (AX)
• somewhere-on (yIX) if x somewhere-on X
• somewhere-on ((yIYX) if x somewhere-on (ylY)

Chapter 4

Exercises 4-1

1. x odd if x INT & not x even

	

2. 	a. the
quick
fox
No (more) answers

b. (E F)
No (more) answers

3. a. x a-man-with-no-sons if x male &
not(x father-of y & y male)

b. x a-mother-with-no-daughters if x mother-of y &
not(x mother-of z & z female)

4. a. x Overdue if
Issue(y x z X Y) &
not Return (y x z Z) &
xi date &
xi after Y

b. (x y a) after (X Y Z) if Z LESS z
(x y a) after (X Y z) if Y LESS y
(x y a) after (X y z) if X LESS x

c. x Banned if Issue(x y z X Y) and y Overdue

5. x prime if x INT & not x has-divisor
which(x : x between (2 is) & x prime)

	

6. 	x atomic-part if not y part-of x
which(x : x indirect-part-of bicycle & x atomic part)

Answers to Exercises 	 287

Exercises 4-2

1. x union-of (y z) if x isall(X X member-of-either (y z))

	

2. 	x subset-of y if
X intersection-of (x y) &
() difference-between (x X)

3. X set-union-of (Y Z) if
XI union-of (Y Z) &
X2 intersection-of (Y Z) &
X difference-between (XI X2)

	

4. 	x flattens-to y if y isall (z : z individual-on x)
Flattened list preserves the order of elements if the last rule for
individual-on" becomes the first rule

Exercises 4-3

	

1. 	a. x novelist if
x writer &
(forall y written-by x then y type Novel)

b. x modern-author if
x writer &
(forall Z written-by x & Z published y then

1900 lesseq y & y LESS 2000)

	

2. 	a. x positive-nums if
(forall y belongs-to x then 0 LESS y)

b. x all-male if
(forall y belongs-to x then y male)

	

3. 	a. disjoint(X Y) if
not(x belongs-to X & x belongs-to Y)

b. disjoint(X Y) if
() isall (x : x belongs-to X & x belongs-to Y)

c. disjoint(X Y) if
(forall x belongs-to X then not x belongs-to Y)

4.

288
	

Answers to Exercises

x prime if (forall y between (2 x) then not y divides x)

Exercises 4-4

x union-of (y z) if
isall (X : (either X belongs-to y or X belongs-to z))

2. x last-of y if
(either y EQ (x) or y EQ (zIZ) & x last-of Z)

3. (x y) adjacent-on z if
(either z EQ (x yIZ) or
z EQ (xi ylIZ) and (x y) adjacent-on (ylIZ))

Exercises 4-5

1 factorial 1
x factorial y if

1 LESS x &
xl = (x - 1) &
xi factorial yl &
y = (yix)

function factorial

a. #(factorial (6/3))
b. #(factorial (mod 27 4))

2. a. (X LESS Y) #
(*(x 7 Xl) &
Xl factorial X &
*(y 9 YO & +(3 Yi Y))

b. (x EQ z) # (-(y 1 yl) &
rem(56 yl y2) & y2 factorial x)

3. () length 0
(xi) length z if y length zi & z = (zi + 1)
o sum 0
(xi) sum z if

y sum zi &
a = (zi + x)

function length
function sum

Answers to Exercises 	 289

a. l(length (2 4 6 -8 23 9))
b. #((sum (2 4 6 -8 23 9))/(length (2 4 6 -8 23 9)))
c. x average y if

y = ((sum x)/(length x))
function average

4. a. all(x : y mark & x = (y/60 * 100))

b. which(z : x isa!! (y : y mark) &
z = ((average x)/60 * 100))

Exercises 4-6

1. which(sum y average z : (X a list) is-told &
y = (sum X) &
z = (average X))

2. all(product of X and Y is Z
(give X Y and product Z) is-told & Z = (X * Y))

3. 	x male if (x male) is-told
x female if (x female) is-told

a. You will only be asked YES/No questions about the recorded
children of Tom.
b. You will be asked to volunteer names of all the males which
are then checked using the father-of" condition.

Chapter 5

Exercises 5-1

1. (JUMBO)
No (more) answers

2. O(JOHN)
(J) (0 H N)
(J 0) (H N)
(JO H) (N)
(JO H N) 0
No (more) answers

290
	

Answers to Exercises

3. (CY)(IL)
No (more) answers

4. (DAMSON)6
No (more) answers

5. () X X more? (y/n).y
(X) Y (XIY) more? (y/n).y
(X Y) Z (X YIZ) more? (y/n).y
(X Y Z) x (X Y Zix) more? (y/n).n

6. which(x append(x x (2 3 4 2 3 4))
(2 3 4)
No(more) answers

7. which((thely)
append(x (thely) (the man closed the door of the house))
(the man closed the door of the house)
(the door of the house)
(the house)
No(more) answers

8. which((ylz) y belongs-to (a the) &
append(x (ylz) (Sam threw a ball into the lake))

(a ball into the lake)
(the lake)
No(more) answers

9. which(y : append(x (y) (2 3 4)))
4
No(more) answers

10. () ordered
(y) ordered
(y ylx) ordered if

(ylx) ordered
(y zlx) ordered if

y LESS z &
(zlx) ordered

Answers to Exercises 	 291

11. remove-all(x () ())
remove-all(x (xIX) Y) if

remove-all (x X Y)
remove-all(x (yIX) (ylY)) if

not x EQ y &
remove-all(x X Y)

12. () compacts-to ()
(AX) compacts-to (xIZ) if

remove-all(x X Y) &
Y compacts-to Z

Exercises 5-2

1. a.(JKLM)
No (more) answers

b. (F)
(F R)
(F R E)
(F R E D)
(F R E D A)
(R)
(R E)
(R E D)
(R E D A)
(E)
(E D)
(E D A)
(D)
(D A)
(A)
No (more) answers

c. (C I R E)
No (more) answers

	

2. 	y last-of z if append(x (y) z)

3. y belongs-to z if append(x (ylY) z)

	

4. 	x power-list (y) if y isall(z : z segment-of x)

5. x palindrome if x reverse-of x

292
	

Answers to Exercises

6. (x y) adjacent-on Z if append(X (x yIXI) Z)

7. delete(x (xIX) X)
delete(x (yIX) (ylY)) if delete(x X Y)

8. a. split-on(x X Xl X2) if
append(X1 X2 X) &
Xl has-length

b. split-on(x X Xl X2) if
length-of Xl &

append(X1 X2 X)
c. split-on(O X () X)

split-on(y (xIX) (xIXl) X2) if
0 LESS y &
SUM(yl 1 y) &
split-on(yl X Xl X2)

a. is the least efficient since it uses appends-to" to generate
canditate splittings that are then checked for the tight length.
b. is more efficient. There is no search but "length-of" and
"appends-to" are both recursively defined so there is a double
recursion in the use of b.
c. only involves one recursion. It is the most efficient although
perhaps the least 'obvious' definition of the relation.

Exercises 5-3

1. () quick-sort 0
(x) quick-sort (x)
(xl x2IX) quick-sort y if

partition((x2IX) xl yl y2) and
yi quick-sort Yl and
y2 quick-sort Y2 and
append(Y1 (xlIY2) y)

2. partition(() X () 0)
partition((xly) X (xIyl) y2) if

x LESS X and
partition(y X yl y2)

partition((xly) X yl (xIy2)) if
not x LESS X and
partition(y X yl y2)

Answers to Exercises 	 293

3. (0 ()) merge-sort 0
(1 (x)) merge-sort (x)
(y X) merge-sort Z if

1 LESS y &
merge-split((y X) Yl Y2) &
Yl merge-sort ZI &
Y2 merge-sort Z2 &
merge(Z1 Z2 Z)

merge-split((y x) (yl xl) (y2 x2)) if
yl = (div y 2) &
y2 = (y - yl) &
split-on(yl x xi x2)

plus the old rules for merge' and "split-on".

To sort using this program, we use a query such as

which(x : (6 (4 3 6 100 -5 3)) merge-sort x)

In which the length of the list to be sorted is also given.

Chapter 6

Exercises 6-1

a. (S (NP (DT the)
(NE (A sad)

(N boy)))
(VP (V likes)

(NP (DE a)
(NE (A happy) (N girl)))))

b. (S (NP (DT the) (N boy))
(VP (V kicked)

(NP (DT the) (N ball))))
c. (S (NP (DT a) (NE (A lonely) (N man)))

(VP (V wandered)
(NP (DT the) (N hills))))

d. (S (NP (DT a) (N piper))
(VP (V plays) (NP (DT a) (N tune))))

294
	

Answers to Exercises

2. The extension needed is:

is-verb-expression (VE y z) if
APPEND(xl x2 x) and
xi is-adverb y and
x2 is-verb-expression a

(x and) is-adverb (AD x) if
x dictionary ADVERB

(x) is-adverb (AD x) if
dictionary ADVERB

slowly dictionary ADVERB
deliberately dictionary ADVERB

3. x is-noun-phrase (NP X Y) if
APPEND((xl) (x21x3) x) &
(xi) is-determiner X &
(x21x3) is-noun-expression Y

(x) is-noun-expression (N x) if
dictionary NOUN

x is-noun-expression (NE X Y) if
APPEND((xl) x2 x) &
(xi) is-adjective X &
x2 is-nound-expression Y

Note that we can remove the 'APPEND" condition in the "is-
noun-phrase" rule and in the second rule for 'is-noun-expression"
altogether, e.g.

(xlIx2) is-noun-expression (NE X Y) if
(xi) is-adjective X &
x2 is-noun-expression Y

Exercises 6-2

1. (xl x2) is-verb-phrase (VP X Y) if
(xl x3) is-verb-expression X &
(x3 x2) is-noun-phrase Y

(xl x2) is-verb-expression (VE X Y) if
(xl x3) is-adverb X &
(x3 x2) is-verb-expression Y

Answers to Exercises
	

295

((xly) y) is-adverb x if
x dictionary ADVERB

Exercises 6-3

() D-quick-sort (z a)
(xIX) D-quick-sort (Zi Z2) if

partition(X x Yl Y2) &
Yl D-quick-sort (Zi (xIZ3)) &
Y2 D-quick-sort (Z3 Z2)

quick-sort y if
x D-quick-sort (y ())

2. (xi x2) is-verb-phrase ((VP X Y) case Z) if
(xl 0 is-verb-expression (X case Z) &
(x3 x2) is-noun-phrase (Y case Zi)

(xl x2) is-verb-expression (VE X Y) case Z) if
(xl x3) is-adverb X &
(x3 x2) is-verb-expression (Y case Z)

(xl x2) is-verb-expression (X case Z) if
(xl x2) is-verb (X case z)

((XIy) y) is-verb ((V X) case Z) if
X dictionary (V Z)

etc..

Chapter 7

Exercises 7-1

a. alI(x : John likes y & female!(y) & mother!(y x))
b. which(y written by!(Oliver-Twist x) &

y written-by x & published!(y z) & a LESS 1860)
There is no need to make the LESS a single solution condition
since it is a micro-PROLOG primitive.

296
	

Answers to Exercises

Exercises 7-2

1. x mm-of (yz) if
x Mm-of (z y)

y Mm-of (Q y)
z Mm-of ((ylIZ) y) if

smaller-ofl(y2 yl y) &
z Mm-of (Z y2)

2. 	() sort ()
x sort (y) if

y mm-of x &
delete(y x xl) & / &
xl sort z

3. 	tail-fact(x 1 x)
tail-fact(x y z) if

tai1fact((x*y) (y - 1) z)

x factorial y if
tail-fact(1 y x)

4. 	partition(() x () ())
partition((xly) X yl y2) if

(either x LESS X & yl EQ (xIYl) & y2 EQ Y2
or not x LESS X & yl EQ Yl & y2 EQ (xIY2)) &
/ & partition(y X Yl Y2)

Chapter 8

Exercises 8-1

1. all(x : employee true-of x)

2. which((x Jonesly) employee true-of (x Jones y))

Exercises 8-2

Answers to Exercises 	 297

1. 0 ordered y
(x) ordered y
(xl x21x) ordered y if

y true-of (xi x2) &
(x2Ix) ordered y

2. maplist(X 0 0)
maplist(X (xlxl) (yi1)) if

X true-of (x y) &
maplist(X xi yl)

a. which(x : maplist(double (3 -5 9 5) x))
x double y if TIMES(x 2 y)

b. which(x : maplist(father-of x (Tom Bill Mary)))
c. is(maplist (parent-of (John Jill Frank) (Jim Mary Sally)))

3. a. which(x reduce(TIMES (3 6 -5 8) x))
b. which(x : reduce(addl (0 2 4 -5 7 78) x))

addl(x y z) if
SUM(x 1 z)

Notice that a 0 has been added to the front of the list.

Exercises 8-3

1. 	x length-is y if
x VAR &
y has-length

x length-is y if
not x VAR &

length-of y

Exercises 8-4

a. x male-test if
x male

x male-test if
not x male &
not x female &

x ask-about

x ask-about if
(x male) is-told & / &
(x male) add

298
	

Answers to Exercises

x ask-about if
(x female) add & FAIL

b. ask-about" needs to be defined as:

• ask-about if
(x male) is-told & / &
(x male) add

• ask-about if
(x female) is-told &
(x female) add &
FAIL

Exercises 8-5

1. which(x : is-told Sum-is x)
or which(x : y isall(z : z is-told) & y sum x)

2. all(x : x mother-of y & not x female & (x female) add)

Exercises 8-6

1. x answered-with yes
• answered-with no if FAIL
• answered-with just if

has-given-values

2. 	x Edit if
x list & P(sentence number) &
y &
y respond-edit x

no respond-edit y
respond-edit y if x INT &

y edit x &
x Edit

3. 	end List
x List if x list &

y &
y List

Answers to Exercises
	

299

4. New-Super if P(&) & R(x) &
(either x command y & y get-args a &

(either x true-of z or PP())
or PP(Invalid command)) & /
& New-Super

o get-args 0
x get-args (XIY) if

XR&
get-args#((x - 1) Y)

Chapter 9

Exercises 9-1

((has-length () 0))
((has-length (xly) z)

(has-length y zi)
(SUM zi 1 z))

2. ((capital-of Washington-DC USA))
((capital-of Ottawa Canada))
((capital of London United-Kingdom))
((capital-of Paris France))
((capital-of Rome Italy))
((capital-of Lagos Nigeria))
((country-in USA North-America))
((country-in Canada North-America))
((country-in United-Kingdom Europe))
((country-in France Europe))
((country-in Italy Europe))
((country-in Nigeria Africa))
((location Washington-DC (38 -77)))

etc..

((delcl x)
(CON x)
(R y)
(DELCL y x))

((delcl x)
(LST x)
(DELCL x))

300
	

Answers to Exercises

Exercises 9-2

1. ((pair 0 0 0))
((pair (xIxl) (ylyl) ((x y)z))

(pair xi yl a))

2. ((dot x y z)
(pair x y Z)
(maplist sum-pair Z Zi)
(reduce SUM Zi a))

((sum-pair (x y) z)
(SUM x y z))

3. ((has-val x x)
(NUM x))

((has-va! (x y a) Y)
(has-va! x X)
(has-va! a Z)
(y X Z Y))

Exercises 9-3

((ONE (xly))
(? y)
(P x "more(y/n)")
(R z)
(IF (EQ a "n')

0
(FAIL)))

((ONE (xly))
(PP No (more) answers))

Exercises 9-4

((confirmed X)
(select x X Y)

(CL (xiZ))
(confirmed Z)
(confirmed Y))

((Select x y z)
(sort y (Az) fewer-clauses) /)

((fewer-clauses x y)
(number-of-clauses x xi)

Answers to Exercises 	 301

(number-of-clauses y yl)
(LESS xi yl))

Note that we could define number-of-clauses" using the program:

((number-of-clauses x y)
(isall z (CL (xIX)))
(length-of z y))

11 1-11=111 1—
ZX Spectrum

TITRIOIN:TOIW

is 'rimer as seen produced to accompany t e
micro-PROLOG software package specially
adapted for use on your ZX Spectrum

Traditional computer languages consist of
sequences of instructions to the computer. micro-
PROLOG is different — it's a high-level language

ritten for the user, working with familiar concepts
.nd ideas.

PROLOG is an extremely flexible language: it can
se used for many different applications. Used in
•njunction with the software, this book is a
omplete introduction to the language Starting
ith the fundamentals, the text and exercises

sradually take you through the techniques of logic
programming

PROLOG sets the standard for future computer
languages With this version, micro-PROLOG,
you can play an important part in its development

SBNO8 016 016

