ZX Spectrum

MICRO-PROLOG
PRIMER

KLClark FGMcCabe JR Ennals

— (g | — |

ZX Spectrum
micro-PROLOG Primer

KL Clark FG McCabe JREnnals

First published in 1983
Sinclair Research Ltd
25 Willis Road Cambridge CB12AQ England

ISBN 0 85016016 3

© Copyright Logic Programming Associates Ltd

micro-PROLOG is a trade mark of LPA Ltd

All rights reserved. No part of the program, packaging or documentation may be
reproduced in any form. Unauthorised copying, hiring, lending or sale and

repurchase prohibited.

Production supervised by
Rodney Dale French’s Mill Cambridge CB4 3NP

Printed in Great Britain by
Richard Clay (The Chaucer Press) Ltd,
Bungay, Suffolk

micro-PROLOG Primer

Contents

Preface
0. Introduction

0.1 Why program in micro-PROLOG
0.2 Chapter descriptions

Part 1 Basic concepts
K.L. Clark, J.R. Ennals & F.G. McCabe

1. Facts and queries

1.1 Developing a database of facts
1.2 Queries

1.3 Arithmetic relations

1.4 Evaluation of queries

1.5 Efficient queries

2. Rules

2.1 Turing queries into rules

2.2 How queries involving rules are evaluated
2.3 Recursive descriptions of relations

3. Lists

3.1 Lists as individuals

11

11
27
36
43
57

59
59
69
76
89

89

3.2 Getting at the members of a list of fixed length

3.3 Getting at the members of a list of unknown length
3.4 The length of a list

3.5 Answers sets as lists

Part Il Logic programming using micro-PROLOG
K.L. Clark & F.G. McCabe

4. Complex conditiions in queries and rules

4.1 Negated conditions

42 The isall condition

43 The forall condition

44 The or condition

45 Expression conditions

4.6 querying the user using is-told
4.7 Comment conditions

5. List processing

5.1 The append relation

5.2 Rules that use append

5.3 Recursive description of the sort relation
5.4 List functions

6. Introduction to parsing

6.1 Parsing sentences expressed as lists of words
6.2 An alternative parsing proggram
6.3 General use of difference pairs

7. Some pragmatic considerations

7.1 Limiting a condition to a single solution

7.2 Controlling the backtracking with a / condition
7.3 Query stack and space saving

7.4 Tail recursive definitions

7.5 Use of modules

8. Metalogical programming

8.1 Relation names and argument lists as variables
8.2 Metaprograms that check conditions of use

Contents

91
95
103
113

119

121

121
128
135
139
141
153
160

163

163
168
173
178

181

181
187
191

194

195
198
202
204
209

215

215
220

Contents

8.3 Programs that manipulate other programs
84 Unary relations as commands

Part III Core micro-PROLOG
K.L. Clark & F.G. McCabe

9. The standard syntax of micro-PROLOG

9.1 Atoms and clauses

9.2 Programming in the standard syntax

9.3 Parsing sentences into clauses

9.4 Meta-variables in standard syntax programs
9.5 The clause accessing primitive CL

Answers to exercises

223
231

245

247

248
251
257
260
269

273

Preface

This book is a self instruction tutorial on logic
programming using Spectrum micro-PROLOG for someone
unfamiliar with PROLOG logic programming. The concepts of
logic programming and the corresponding features of micro-
PROLOG are introduced step by step through the development of
a series of example programs.

Exercises, with answers given at the back of this book, re-
inforce and elaborate on the example programs. Ideally, the
examples and exercises should be followed using a computer, but
this 1s not essential.

micto-PROLOG is currently also available for Z80 machines
under CP/M80, 8088/86 machines under MSDOS, the Acorn BBC
micro and other computers which have the UNIX operating
system.

Since micro-PROLOG is one of the PROLOG family of
logic programming languages (PROLOG stands for PROgramming
in LOGic), each of which is a derivative of the version of the
language as first implemented in 1972/73 in Marseilles, the book
also serves as an introduction to logic programming using any
version of PROLOG. The differences between micro-PROLOG
and the other PROLOGs are mostly in the syntax of programs
and in the allowed forms of query.

Structure of the book

The book is divided into three parts. Part I introduces the
basic concepts of logic programming emphasising the use of logic
and of micro-PROLOG as a data description and data query
language. Part II deals with more advanced concepts and the
corresponding features of micro-PROLOG. The emphasis is more

Preface

on the list processing uses of logic. Part I introduces the
standard syntax of micro-PROLOG, the syntax into which the
programs of Parts I and II are compiled. It also describes features
of the language that enable other logic programming systems to
be implemented on top of micro-PROLOG.

The Chapters in each section are more fully described in the
introductory Chapter O that precedes Part I. This Chapter also
gives a flavour of the style of programming that is logic
programming.

System note - using this book in conjunction with a computer - if you have
access to a Spectrum with micro-PROLOG on it, you may want to
follow the examples and exercises in this book on the computer. To
allow this we have included a number of System notes (such as this
one) on using micro-PROLOG on a real computer. Usually System
notes refer to non-logic programming activities such as interrupting
program execution.

If 2 computer is used you may sometimes need to consult the
micro-PROLOG Reference Manual or the introductory booklet for
micro-PROLOG on the Spectrum.

Acknowledgements

The approach to programming using logic which underlies
many of the ideas presented in this book was supported by the
British Science & Engineering Research Council in a series of
research grants held by R.A.Kowalski and K.L.Clark at Imperial
College. Of particular relevance is the “Logic as a Computer
Language for Children” project which is concerned with teaching
the principles of logic programming to school children. This
project uses micro-PROLOG. The extension to the standard
micro-PROLOG, which is the SIMPLE program development
system described and used in this book, is an enhancement of the
program development system that was used on the school's
project. We are also grateful to the groups of people in various
parts of the world who have acted as hosts for demonstrations
and talks on logic programming using micro-PROLOG. These
provided excellent opportunities for testing different methods of
explanation to interested non-specialists.

Finally, the authors would like to thank Diane Reeve and
Sandra Evans whose patient 'slaving over a hot word processor’
during the preparation of the early drafts made this book possible.

0. Introduction

0.1 Why program in micro-PROLOG

Ever since von Neumann first described the form of the
stored program computer they have been programmed in
essentially the same way. The first programming language was the
binary language of the machine itself: machine code; then came
assembler, which is symbolic machine code; then the so-called
high level languages like FORTRAN, COBOL and BASIC,
followed by today's more modern variants ADA and Pascal. All
of these programming languages share a common characteristic:
the programmer must describe quite precisely how a result is to
be computed, rather than whar it is that must be computed.

A computer program in one of these programming
languages consists of a script of instructions each of which
describes an action to be performed by the computer. For
example, the meaning of the BASIC statement:

10 LET X = 105*X+10

is that the memory location whose name is X should have its
contents updated to 10 plus 105 times the old value in the
location.

Languages like BASIC are primarily imperative programming
languages. Programs in these languages mostly comprise
commands which specify actions to be performed. They are
geared to the description of the bebaviour needed to achieve the
desired result.

While undoubtedly we sometimes think behaviourally, most
often we do not. For example, the first question we ask someone
about a particular computer program is:

2 0. Introduction

“What does it do?”
not:
“How does it do it?”

Certainly the answer to the first question will not be:

1 INPUT XY

2 IF X>Y THEN 5
3 PRINT Y

4 GOTO 6

5 PRINT X

6 END

We shall not list the program. What we are more likely to do is
to describe the relation between the input and output of the
program. We might say, for example, “it prints the greater of the
two numbers read-in”. If our enquirer did not understand what
“greater of two numbers” meant we would give a descriptive
definition of the relation, perhaps defining the “greater-of”
input/output relation in terms of the ">” order relation on
numbers.

Even imperative programming languages have descriptive
components. For example, the expression 105*X+10 in the above
example assignment is a description of the value to be assigned.
It is not the sequence of actions that the computer must perform
in order to compute its value. Arithmetic expressions are small
descriptive programs - they describe the value to be computed
and only indirectly do they prescribe the way it should be
computed. Indeed, in some programming languages the order of
evaluation of expressions is explicitly left undefined.

The high-level imperative languages are easier to use than
assembler language precisely because they are more descriptive.
Generally, the more descriptive the language the easier it is to
develop a correct program, and the closer the program to a
specification of what it computes.

Descriptive versus imperative languages

The alternative to an imperative programming language with
a descriptive component is a descriptive language with an
imperative component: a language in which programs are primarily
descriptive de finitions of a set of relations or functions to be
computed.

0.1 Why program in micro-PROLOG 3

The execution of a descriptive program is then a use of the
definitions to find an output corresponding to a given input. The
way in which the definitions are used in order to compute the
output value gives each definition an alternative imperative or
control reading. By taking into account the control reading we
might prefer one set of definitions to another, and we might
improve the efficiency of the evaluation by adding extra control
conditions to the definition which are ignored in the descriptive
reading. This is the pragmatics of programming in a descriptive
language. However, it is still the case that the program is
primarily a description of what it is supposed to compute, rather
than a description of how to compute it.

micro-PROLOG is an example of a descriptive language. It
is based on predicate logic, a language developed by logicians as
a formal language of description. “PROLOG” stands for
PROgramming in LOGic. The “micro” means that it is
implemented on micro-computers.

A micro-PROLOG program is essentially a set of logical
definitions of relations. An execution of the program is a use of
these definitions to compute instances of the relations.

The following micro-PROLOG program:

x greater-of (x x)
y greater-of (x y) if x LESS y
x greater-of (x y) if y LESS x

is a definition of the input/output relation of the above BASIC
program. It is a program comprising three rules expressed as
sentences of predicate logic. The x and y are wvariables
representing any numbers. Each rule is a true statement about the
“greater-of” relation. To use it to find the greater of two numbers
3.45 and 67.34 we pose the query:

which(x : x greater-of (3.45 67.34))
The answer 67.34 is returned by an evaluation which computes a

value of x that satisfies the condition “x greater-of (3.45 67.34)"
using the definition of the relation.

4 0. Introduction

Multi-use definitions

This single definition of the relation is a program for
finding or checking the greater of a pair of numbers. This ability
to use definitions of relations for both finding and checking is a
distinctive feature of logic programming and micro-PROLOG.
Indeed, it is often the case that a single definition of some
input/output relation can be used in the inverse mode. It can be
used to find an input that will give rise to a particular output!
This invertibility of use is onle possibly because the program is
descriptive. In an imperative language programs have only one use
because they directly encode the sequence of evaluation steps of
that use.

An example of an invertible program is the program for the
pre-defined relation TIMES (it is part of the micro-PROLOG
language).

TIMES(x y z)

is satisfied if and only if z=x*y. This relation can be used both
to multiply and divide. To multiply we use a query such as:

which(x : TIMES(34 24 x))
To divide we use a query such as:

which(x : TIMES(23 x 106))

Data base programs

Logically viewed, a data base is a set of facts defining one
or more relations. micro-PROLOG treats data base relations in the
same way that it treats input/output relations of programs. Data
base relations are defined by a sequence of facts such as:

(Smith D) salary 1800
(Jones K 1) salary 1850

To retrieve Smith’s salary we use the query:

which(x : (Smith D) salary x)

0.1 Why program in micro-PROLOG 3

The execution of a descriptive program is then a use of the
definitions to find an output corresponding to a given input. The
way in which the definitions are used in order to compute the
output value gives each definition an alternative imperative or
control reading. By taking into account the control reading we
might prefer one set of definitions to another, and we might
improve the efficiency of the evaluation by adding extra control
conditions to the definition which are ignored in the descriptive
reading. This is the pragmatics of programming in a descriptive
language. However, it is still the case that the program is
primarily a description of what it is supposed to compute, rather
than a description of how to compute it.

micro-PROLOG is an example of a descriptive language. It
is based on predicate logic, a language developed by logicians as
a formal language of description. “PROLOG” stands for
PROgramming in LOGic. The “micro” means that it is
implemented on micro-computers.

A micro-PROLOG program is essentially a set of logical
definitions of relations. An execution of the program is a use of
these definitions to compute instances of the relations.

The following micro-PROLOG program:

x greater-of (x x)
y greater-of (x y) if x LESS y
x greater-of (x y) if y LESS x

is a definition of the input/output relation of the above BASIC
program. It is a program comprising three rules expressed as
sentences of predicate logic. The x and y are variables
representing any numbers. Each rule is a true statement about the
“greater-of” relation. To use it to find the greater of two numbers
345 and 67.34 we pose the query:

which(x : x greater-of (3.45 67.34))
The answer 67.34 is returned by an evaluation which computes a

value of x that satishes the condition "x greater-of (3.45 67.34)
using the definition of the relation.

0.1 Why program in micro-PROLOG 5

To find all the employees with a salary less than 1800 the query:
which(x : x salary y & y LESS 1800)

is used. LESS is another pre-defined relation of micro-PROLOG.
We can also include rules in the definition of a data base
relation. For example, we might have the rule:

x salary 1600 if x job-is junior-clerk

expressing the company 'rule’ that all junior clerks have a fixed
salary. By mixing facts and rules we get deductive data bases.
Retrieving information from a deductive data base is a
computational inference using the facts and the rules.

Pattern directed rule based programming

micro-PROLOG computes by trying to find values for the
variables of a query such that every condition of the query is a
consequence of the definitions of the program.

It does this by searching through all the sentences for each
condition matching the condition with the conclusion of the
sentence. When it finds a match, the pre-conditions of the
matched sentence represent a new query which must be solved to
give a solution to the matched condition.

This use of a matched rule to reduce a condition to a new
query is pattern directed rule based programming. It is a style of
programming that is increasingly being wused in Artificial
Intelligence, particularly for Expert Systems.

List Processing

Using special list patterns, relations can be defined over lists.
As an example

x belongs-to (xlz)
x belongs-to (yiz) if x belongs-to z

defines the list membership relation. The pattern “(xlz)” is read: the
list which is the element x followed by the list z. This definition
can be used for checking membership or as a non-deterministic

6 0. Introduction

program for generating elements of a list. It is used in both roles
in the query:

all(x : x belongs-to (1 2 3 4) & x belongs-to (3 4 5 6))

which has the answers 3,4. all is a synonym for which. Non-
deterministic pattern directed list processing is a unique feature of
PROLOG and logic programming.

Imperative features

micro-PROLOG does have imperative features. For example,
it has commands to add and delete sentences in programs, to edit
sentences, and to read or write to the terminal or a file.
Commands can be wused in programs and program defined
relations can be used as commands. Thus, micro-PROLOG
programs can be written which define new commands in terms of
the primitive commands of the system. In this way the
knowledgeable programmer can tailor the system to a specific
application, or build up his own programming environment of
special commands.

0.2 Chapter descriptions

The rest of the book is divided into three parts. We briefly
describe the contents of each chapter.

Part 1 Basic Concepts

Chapter 1 introduces micro-PROLOG by using it to develop
and quety a data base of facts. The ease with which one can
construct and query such a data base is one of the prime features
of the language. The chapter also introduces the built-in
arithmetic facilities of micro-PROLOG. These are quite different
from those of a conventional programming language. We add and
subtract by querying an (implicit) data base of facts about the
addition relation, likewise we multiply and divide by querying a
data base of 'times tables'.

Chapter 2 describes how the data base can be augmented by
rules. Rules can be used to abbreviate queries. They can also be
used to give a recursive definition of a relation.

In Chapter 3 introduces lists and describes how they can be

0.2 Chapter descriptions 7

used to structure information, often compressing many statements
into one. The elements of a list are accessed using special list
patterns. This pattern processing of lists is a major feature of
micro-PROLOG. The chapter ends by introducing the ‘“isall”
condition. This can be used to wrap up the ser of answers to a
query as a Jis. It provides the interface between the use of
micro-PROLOG as a data base language and its use as a list
manipulation language.

Part II Logic Programming using micro-PROLOG

Chapter 4 describes new forms of condition that can be
used in queries and rules. These involve the use of: "not”,
“forall .. then .” and “either .. or ..”. The use of these conditions
significantly enhances the power of micro-PROLOG for data base
applications and for the development of ’executable’ specifications.
Expressions are also introduced: these are compiled into conditions
for the arithmetic primitives described in Chapter 1.

Chapter 4 also describes the relation is-told which can be
used to make micro-PROLOG query us whilst it is answering one
of our queries. This relation can be used to facilitate the top-
down development of programs and to write simple 'query the
user’ expert systems.

Chapter 5 describes several programs for more complex list
processing tasks. In particular it examines the “append” program
that defines the appending relation over lists. We shall see that it
has very many uses. It can be used not only to append two lists
but to find all splittings of a list, even to define the membership
relation for a list. The Chapter ends with the development of
three list sorting programs, one of which is a specification of the
sort relation.

Chapter 6 is an introduction to the use of micro-PROLOG
for parsing - the mapping of lists of words into lists of lists that
reflect the grammatical structure of the sentence. Parsing and
natural language understanding are major applications of logic
programming, applications for which it is highly suited.

Chapter 7 deals with some issues concerned with the
pragmatics of programming in micro-PROLOG. It describes
vartous features of the language that can be used to reduce the
space used or the time taken during a query evaluation.

In Chapter 8 the imperatives of micro-PROLOG are
introduced. These are built-in relations that have a side-effect
when they are evaluated. An example is the built-in relation that
reads data from the terminal. Its logical reading is: something that

8 0. Introduction

can be read at the terminal. Its control reading is: read the next
thing 0 be typed.

The imperatives of micro-PROLOG detract somewhat from
its descriptive nature, a program that uses them is not a purely
descriptive program. However, as we shall see, the use of the
imperatives can often be restricted to the definition of one or two
auxiliary relations, the rest of the program being entirely
descriptive.

More positively, the availability of such imperatives as
primitives of the language enables the programmer to tailor the
system to his own needs by developing his own program
development system. This is illustrated by the development of a
simplified version of the is-told relation introduced in Chapter 4.

Part III Core micro-PROLOG

In Chapter 9 we describe the standard syntax of a micro-
PROLOG program. This is the form in which the facts and rules
are accessed and evaluated by the micro-PROLOG interpreter. It
is also the form in which programs are saved on tape. The user
friendly sentence syntax, the syntax used in Chapters 1 to 8, is
translated into the standard syntax by the SIMPLE program
development system used to develop the programs of Parts I and
Il. SIMPLE is itself a micro-PROLOG program written in the
standard syntax.

All micro-PROLOG programs are just lists of a special
form. It is therefore very easy to write micro-PROLOG programs
that manipulate lists that are other micro-PROLOG programs. In
Chapter 9 we show how this is done by the SIMPLE program
and we introduce one or two features of micro-PROLOG that
can only be used by programs written in the standard syntax. We
also give micro-PROLOG definitions of the various forms of
query that have been used in Parts 1 and II and show how
alternative query evaluators can be defined as micro-PROLOG
programs.

PART I

1. Facts and queries

1.1 Developing a data base of facts

In this chapter we introduce some of the basic ideas of
logic programming by giving an example of the setting up and
querying of a data base in micro-PROLOG.

System note - using micro-PROLOG on a computer - If you have access
to a Spectrum which has micro-PROLOG we recommend that you
follow through the examples and exercises using the computer. You
need to load the SIMPLE front-end system along with micro-
PROLOG. SIMPLE is a micro-PROLOG program supplied on the
micro-PROLOG distribution tape. Consult the introductory booklet for
details of how to start up micro-PROLOG and LOAD SIMPLE. It will
be useful if you read the whole of this booklet before you continue
with the chapter.

Adding facts

Let us suppose that we want to set up a data base
describing the family relationships of some group of people. We
will do this by making statements about these relationships,
adding them one at a time to the data base.

The statements are expressed as sentences of symbolic logic.
There are two kinds of sentences: simple and conditional. To begin
with we shall only need simple sentences which express facts.

In any family there are a number of facts about the
relationships between individuals. Let us suppose that for our
group of people two such facts are:

Henry Snr is the father of Henry 6]
Henry Snr is the father of Mary 2

12 1. Facts and queries

There are many such facts, each of which describes an instance of
one of the family relationships. Now these English sentences are
almost sentences of micro-PROLOG! One form of micro-
PROLOG sentence has three components:

name-of-individual name-of-relationship name-of-individual

In sentences (1) and (2) above the name-of-relationship is “is the
father of”. In micro-PROLOG we have to make this into one
word by hyphenating, so we must use: “is-the-father-of” or “father-
of” for brevity. Similarly, we must name individuals by a single
word. Again we can do this by hyphenating, writing "Henry-Snr”
instead of “Henry Snr”. Rewriting (1) and (2) in this way
transforms them into sentences of micro-PROLOG.

Henry-Sor father-of Henry
Henry father-of Mary

These two sentences in a micro-PROLOG data base are a
direct representation of the two facts (1) and (2). We enter them
into the data base using a special add command.

&.add (Henry-Snr father-of Henry)
&.add (Henry father-of Mary)

Notice that the sentence to be added is surrounded by brackets.
The brackets are essential: they tell micro-PROLOG where the
sequence of words in the sentence to be added begins and ends.
For micro-PROLOG a sentence is a bracketed list of words of a
certain form.

System note - errors and prompts - The "&." is not typed, it is the
prompt printed out by micro-PROLOG to tell us it is ready to accept
a command. Moreover, each add command must be terminated by
hitting the ENTER key on the keyboard. Before you hit this key you
can correct typing mistakes using the DELETE key to delete back to
before the mistake. Which one you use depends on the computer.

Alternatively, you can use the cursor keys of the Spectrum. This
will enable you to correct mistakes without the need to retype every
thing after the mistake. For details of how to use the cursor keys see
the introductory booklet.

When you are satisfied that what you have typed needs no more
correction, hit the ENTER key. micro-PROLOG will then obey the
command. If there is a mistake in the syntax of the sentence, for

1.1 Developing a data base of facts 13

example if you forget to put the hyphen in “father-of”, you will get an
error message telling you that the sentence is not a valid simple
sentence form. If you misspell the “add”, using say "ADD” instead, you
will get the error message

No definition for relation
trying ADIX(.....)

This is because the relation/command name “ADD” is not one of the
defined command names of micro-PROLOG or the SIMPLE front-end
system that we are using. If you get either error message the sentence
has not been accepted, so try again with a new add command. (If you
correctly spell add and you get an error message of the form:

Error: 2

this probably means that you have forgotten to LOAD SIMPLE.)

You do not have to type all of the bracketed sentence on a
single line; indeed, some sentences may be longer than the 32 characters
of the display line. As you come to the end of the display line, check
that what you have typed on that line is correct and edit it if need be.

When you are satished that there is no mistake, hit the ENTER
key. You will now get the prompt

1.

instead of the usual command prompt “&.” This indicates that micro-
PROLOG knows that the current command is not complete. Actually,
the “1” indicates that micro-PROLOG is still waiting for the single right
bracket that marks the end of the sentence to be added. The “." is the
read prompt that micro-PROLOG always displays when it is ready to
read from the keyboard.

If you have used brackets within the sentence, and later we shall
make considerable use of bracketed lists within sentences, the prompt
may be "2.” or “3.” or even some higher number. The number is always
the number of right brackets needed to properly finish the sentence.
You will find this right bracket prompt very useful when we start using
lists.

Di fferent kinds of relationship

A relationship such as “father-of” holds between pairs of
individuals, in this case between a ’father and a ’child’. It is a
binary relation. Not all relationships are between pairs, some relate
three or more individuals, and some are properties that apply to
single individuals. The genders “male” and “female” are properties.
(More technically, they are unary relations.) The relation of someone

14 1. Facts and queries

giving something to someone is a three place relation (a ternary
relation). Sentences giving facts about these non-binary relations
have a slightly different syntax.

Sentences about properties are written in the postfix form

name-of-individual name-of-property
in which the name of the property follows the name of the
individual. Sentences about all other relations are written in the
prefix form

relation-name(individual-name .. individual-name)
in which the relation name precedes a bracketed list of the
individuals related by the relation.

The form:

name-of-individual relation-name name-of individual
used for sentences about binary relations is called 7z fix form.
Examples of sentences for non-binary relations are:

Henry male

Gives(Henry Mary book)

SUM(2 3 5)
The prefix form of sentence is the most general form. Sentences
for binary relations and for properties can be also be entered

using the prefix form. Thus,

father-of(Henry-Snr Henry)
is-male(Henry)

are accepted equivalents of

Henry-Snr father-of Henry
Henry male

but the infix and postfix forms are arguably more readable. Even
if you enter sentences about binary relations or properties in the
prefix form micro-PROLOG will display them in the binary and
postfix forms when you list or edit the program.

1.1 Developing a data base of facts 15

A technical term - argument of a relation

A fact tells us that certain individuals are related by some
relation. In mathematics and logic the individuals are called the
arguments of the relation. We also talk about the first argument,
the second argument, etc, of the relation. This names the
argument by its position in the list of arguments of the prefix
form of sentence for the relation. In the sentence

Gives(Henry Mary book)

“Henty” is the first argument, "Mary” the second and “book” the
third.

System note - the wse of spaces - The spaces separating the names of the
individuals and the names of the relations are necessary. In micro-
PROLOG spaces and the new lines generated by hittini the ENTER key
are word separators. However, micro-PROLOG only knows about the
new lines that result from the hitting of the RETURN or ENTER keys.
An automatic new line caused by your typing beyond the end of the
previous line is ignored by micro-PROLOG. It does not count as a
sepaator.

The number of separators you use does not matter, but failure to
use a separator may mean that micro-PROLOG makes into one name
what you intended to have as two names.

You do not always need to use a separator: micro-PROLOG can
sometimes detect the end of one word and the beginning of the next
by a change of character type. For example, a2 “(" or)" always signals
the end of the word that precedes it so you never need to follow or
precede a bracket with a space.

For more detailed information on what is or is not understood by
micto-PROLOG as a word boundary, we refer the reader to the
Reference Manual. If in doubt, use a space.

The converse of the need to use spaces as separators is the need
to hyphenate phrases such as “father of” in order to make it ome name,
not two.

Adding some more facts

Carrying on, let us enter some more family relationship
facts.

&.add(Elizabeth1 mother-of Henry)
&.add(Katherine mother-of Mary)

16 1. Facts and queries

&.add{Henry father-of Elizabeth2)
&.add{Ann mother-of Elizabeth2)
&.add(Henry father-of Edward)
&.add{Jane mother-of Edward)
&.add(Henry-Snr male)

& .add{Henry male)

& .add(Elizabeth1 female)
&.add(Katherine female)
&.add(Mary female)
&.add(Elizabeth2 female)

& .add{Ann female)

& .add(Female(Jane))

& .add(Male{Edward))

Notice that we slipped in some “mother-of” facts and some facts
about who is male and female. We can add sentences of any
relationship at any time using the add command. The sentences
are collected together by name of relationship. The vocabulary of
a program consists of the names of the relationships and the
names of the individuals; the vocabulary defines the “things” that
a subsequent query can talk about. Our vocabulary so far is

Henry-Snr h
Henry
Mary
Elizabethl
Katherine S Names of individuals
Elizabeth2
Ann
Edward

Jane J

father-of
mother-of
Male
Female

Names of relations

Notice that we have wused numerals in the names
“Elizabeth1” and “Elizabeth2” to distinguish the two Elizabeths.
Numerals and “-" and all the letter characters of the keyboard all
count as alphabetic characters in names. The only restriction is

1.1 Developing a data base of facts 17
that the name cannot begin with a numeral. So,
4jane
is not allowed although
janed
is. In fact, micro-PROLOG will interpret the
4jane
as 4 jane

that is, as the number “4” followed by the separate name “jane”.
This is an example of the situation where micro-PROLOG
interprets a change in character type as equivalent to the insertion
of a separating space.

Names made up of letters, numerals and are just one
type of name. They are called alphanumeric consiants. Other kinds
of constants - symbolic constants and quoted constants can also
be used as names. We refer the reader to the micro-PROLOG
Reference Manual for details. We shall mostly use alphanumeric
constants as names.

The accept command

The last two facts about the male and female properties
that we added were expressed in the prefix form. There is a
special command that speeds up the entering of a set of facts
that are expressed in the prefix form: this command is accept. If
you enter

accept female
you will get the prompt

female.
Now enter the list of arguments for the female fact that you
want to enter, in this case a list of one argument. You will again
get the name of the relation as a prompt. You can continue in

this way, not having to type the name of the relation, only the
list of arguments, until you have no more facts to enter about

18 1. Facts and queries

the relation. You signal this by entering end when you receive
the relation name prompt.

Using accept, the following interaction could have been used
to enter all the male and female facts that we have added so far.

&.accept male
male (Henry-Snr)
male.(Henry)
male.(Edward)
male.end

&.accept female
fernale.(Elizabeth 1)
female.(Katherine)
female.(Mary)
female.(Elizabeth2)
female (Ann)
female.(Jane)
female.end

The emphasized text is what we entered, the prompt being
supplied by micro-PROLOG.

Listing and saving a program

We can display our data base program by using another
command list. This command can be used to display on the
screen all the sentences entered, or just those for a specified
relation. To list the full program we type:

1.1 Developing a data base of facts 19

& list all

Henry-Snr father-of Henry
Henry father-of Mary
Henry father-of Elizabeth2
Henry father-of Edward
Elizabethl mother-of Henry
Katherine mother-of Mary
Ann mother-of Elizabeth2
Jane mother-of Edward
Henry-Snr male

Henry male

Edward male

Elizabeth1 female
Katherine female

Mary female

Elizabeth2 female

Ann female

Jane female

&.

The sentences are grouped according to the name of the
relation that they are about, not the order in which they were
entered. However, the listing of the sentences for each relation
does correspond to the order in which they were entered.

We can choose a particular relation and list that. For
instance:

& list mother-of

Elizabethl mother-of Henry
Katherine mother-of Mary
Ann mother-of Elizabeth2

Jane mother-of Edward

&.

We can save the current state of the data base onto cassette
tape giving it a unique name of our choice, as follows:

& .save FAMILY

This copies all the sentences of the current program into a named
file on backing store. The sentences still remain in the data base.
However, on a subsequent occasion, we can retrieve these
sentences and have them automatically added to any data base

20 1. Facts and queries
simply by typing:
&.load FAMILY

For more information on the use of save and load consult the
introductory booklet.

Editing by adding and deleting sentences

Editing of a micro-PROLOG program can be achieved by
deleting a whole sentence and adding a new one to replace it
Let us suppose that the name of Elizabeth2’s mother has been
misspelled, and that it should be “Anne”. The simplest way to
remove the sentence “Ann mother-of Elizabeth2” is to use:

& .delete{Ann mother-of Elizabeth2}

This use of delete is the opposite of add. If the bracketed
sentence given as the argument to the command is in the
program, the delete command removes it. If it is not in the
program, you will get a message telling you that there is no such
sentence. You will get this message unless there is an exact match
between the sentence to be deleted and some sentence of the
current data base.

There is another way to delete a sentence, we can refer to
it by its position in the listing of the sentences for its relation. In
the listing of the relation “mother-of” given above the sentence
“Ann mother-of Elizabeth2” was the third sentence to be listed.
So, instead of giving the sentence to delete we can use an
alternative form of the delete command in which the sentence is
identified by its relation name and its position.

& .delete mother-of 3

Having deleted the sentence, using either form of the delete
command, we can add the new version:

& .addiAnne mother-of Elizabeth2)

If we now list the “mother-of” relation we will get:

1.1 Developing a data base of facts) 21

& list mother-of

Elizabethl mother-of Henry
Katherine mother-of Mary
Jane mother-of Edward
Anne mother-of Elizabeth2
&.

The new sentence
Anne mother-of Elizabeth2

is now listed at the end because it was entered last.

Let us now correct the spelling of “Ann” in the “female”
relation. This time we will replace the sentence “Ann female” with
“Anne female”. We do this by deleting the old sentence and
adding the new one so that it occupies the same position in the
listing of “female” sentences. The following are the commands
needed together with the micro-PROLOG responses.

& list female
Elizabethl female
Katherine female
Mary female
Elizabeth2 female
Ann female

Jane female

& .delete female 5
&.add 5 (Anne female)
& list female
Elizabethl female
Katherine female
Mary female
Elizabeth2 female
Anne female

Jane female

&.

We have used a variant of the add command in which the
position which the added sentence is to occupy is given.

add 5 (Anne female)

makes the added sentence the fifth sentence in a new listing of
the relation. It does this by inserting it between the current fourth

22 1. Facts and queries

and fifth sentences, which is where the deleted sentence was.
Editing using the line editor

A quicker way to change a sentence about a relation,
especially when the change required to the text is small, involves
using the line editor. You invoke the line editor using the edit
command. Like the second form of delete, this identifies the
sentence to be edited by the name of its relation and its current
position in the listing of the sentences for the relation.

edit female 5
will result in
5 (Anne female)

being displayed ready for editing using the line editor. You can
now use the cursor keys to edit the sentence (see introductory
booklet). ’

Notice that the position of the sentence is given along with
the bracketed sentence. By editing the position, say changing it
from 5 to 4, you can reposition the sentence. Do not delete the
brackets surrounding the sentence. Just as when you add a
sentence, micro-PROLOG needs the brackets to delimit the text
of the sentence when you exit the line editor.

Summary of program development commands

All of the following commands operate on the current
program which is held in the user workspace area by micro-
PROLOG. In giving the general form of each command we shall
use angle brackets to denote some syntactic form. For example,
we shall use sentencedto indicate that any sentence can be used.

add (i) add (<sentence>)

will add its bracketed sentence argument to the end of the
current listing of sentences for its relation.

(ii) add n (<sentence>)

will add the bracketed sentence as a new n’th sentence in the

1.1 Developing a data base of facts 23

listing of sentences for its relation. If there are currently less than
n sentences it becomes the new last sentence. Otherwise, it is
inserted between the current n-1'th sentence and the current n'th
sentence.

delete (i) delete (<sentence>)
will remove <sentence> from the current program.
(i) delete <relation name> n

will remove the n'th sentence in the current list of sentences for
the named relation.

list (i) list <relation name>

lists all the sentences for the named relation in the current
program.

(i) List all
lists all the sentences in the workspace program.
save save <file name>

will save all the sentences of the current state of your program in
a file on backing store.

System note - micro-PROLOG files - The given file name must be
different from the name of any relation of the program, and different
from the name of any command. If it is not you will get the “File
error” message and the save operation will be aborted. Try again using
a different name. We suggest you use all capitals in the names of files
to avoid clashes with relation names. If you inspect or list the saved
program file outside micro-PROLOG you will find that the sentences of
your program have not been saved in the form in which you entered
them. They are saved in a special compiled form that uses the standard
syntax of micro-PROLOG.

kill (i) kill <relation name>
deletes 4!/ sentences for the named relation.

(ii) kil all

24 1. Facts and queries

deletes all sentences from the workspace program. You should
only use this command after you have saved the program -
it clears the workspace for a fresh program.

edit edit <relation name> n

Allows the current n'th sentence for the named relation to be
edited using the Spectrum cursor keys. The sentence (in brackets)
and its position will be displayed ready for editing. By changing
the position number you can reposition the sentence within the
listing of sentences for its relation. You can change the position
without changing the sentence if you just want to reposition. You
can also change the relation name of the edited sentence. The
position number is then the position that will be used when the
edited sentence is added to the listing of sentences for the
changed relation name.

NEW NEW.

this command restarts micro-PROLOG. As with “kill all”, you
should save your workspace program before using it because you
will lose all your current program as well as all the loaded
utilities. (You will need to reload SIMPLE if you use “NEW”. If
you use “kill all” you do not need to re-load SIMPLE.) The "."
after the “NEW” is important. It is needed because all micro-
PROLOG commands must have at least one argument. In this
case the argument is the (ignored) ".”. Any argument can be used.

NEW goodbye

will work just as well, but is not so brief.

Exercises 1-1
System note - save your program now - If you are following the text with
a computer, at this stage you should save the program that has been
developed, using the command:

save FAMILY

Before you attempt Exercise 2 you should clear the workspace of the
family relations sentences using the command

kill all

1.1 Developing a data base of facts 25

After each exercise we suggest you save the current workspace and then
clear it before entering the sentences for the next exercise. Answers to
all the exercises are given in an Appendix.

1. Using the program developed above:

a. Show how you would edit the program to change the spelling
of “Katherine” to “Catherine” in each sentence in which it
appears using delete and add commands. Do this in such a
way that the new sentences are in the same positions in the
program as those they replace.

b. Add the two sentences necessary to express the information
that Henry-Snr had a son called Arthur. Add these new
sentences so that they will be listed at the beginning of the
sentences for their relation.

Clear the workspace before you attempt the next exercise.

2. Set up a data base of sentences describing countries in
different continents using the following vocabulary:

Names of Individuals

Washington-DC ~ USA North-America
Ottawa Canada Europe
London United-Kingdom Africa

Paris Italy

Rome Nigeria

Lagos France

Names of Relations

capital-of
country-in

As examples, your data base should contain the sentences:

Washington-DC capital-of USA
USA country-in North-America

Save this data for future use using the save command and then
clear the workspace.

26 1. Facts and queries

3. Set up a data base of simple sentences describing the books of
different kinds written by different people. Use the following
vocabulary:

Names of Individuals

Tom-Sawyer Mark-Twain Novel
For-Whom-The-Bell-Tolls Ernest-Hemmingwaplay
Oliver-Twist Arther-Miller
Great-Expectations Charles-Dickens

Macbeth William-Shakespeare

Romeo-And-Juliet
Death-Of-A-Salesman

Names of Relations

type
written-by
writer

For example, you should have the sentences
Tom-Sawyer written-by Mark-Twain
Tom-Sawyer type Novel

Mark-Twain writer

in your data base. Save this data for future use with the save
command then clear the workspace.

4. Set up a data base describing the structure of a bicycle using
the vocabulary:

1.1 Developing a data base of facts 27

Names of Individuals

bicycle wheel pedals

frame spoke saddle
brake-system hub handle-bars
brake-cable brake-block lighting-system
gear-selector chain dynamo

lights electric-flex gear-cogs

Names of Relations
part-of
For example, your data base should contain the sentences:

wheel part-of bicycle
spoke part-of wheel
hub part-of wheel

Use the accept command to enter the sentences. Again, save the
workspace sentences for future use and clear the workspace.

5. Set up a data base of your own family using the relation
names of the example. Save it in the file MYFAMILY for future
use and clear the workspace.

1.2 Queries

We now look at how a micro-PROLOG data base program
is queried. This is done via one of the query commands. We
shall illustrate the query commands using the FAMILY data base
developed in 1.1. If this data base is not in the workspace (test
this by trying to list the sentences for the “father-of” relation)
clear the workspace and then load the FAMILY data with a “load
FAMILY" command.

Confirmation
The simplest form of query is the is query which asks for

confirmation of some fact. We explain this and other queries by
posing some example questions in English. Below the questions

28 1. Facts and queries

we give the micro-PROLOG equivalent and the answers given by
micro-PROLOG. A brief explanation is provided of points arising
from the query.

Is Henry the father of Elizabeth2?
&.is(Henry father-of Elizabeth2)
YES

The query is asking about a particular member of the "father-of”
relation described by the micro-PROLOG sentence “Henry father-
of Elizabeth2”. The is query is asking whether this sentence is in
the data base. As with the add command the sentence to be
‘looked up’ must be bracketed. There is a match between the
query sentence and the sentence

Henry father-of Elizabeth2

in the data base, so the answer is “YES”, an abbreviation for
“Yes, fact is confirmed”.

Is Katherine the mother of Edward?
&.is(Katherine mother-of Edward)
NO

In this case there was no match between the query sentence and
a sentence in the current data base so the answer is "NO”, short
for “No, fact is not confirmed”.

Is the mother of Mary known?
&.islx mother-of Mary)
YES

In this query we are trying to find out whether the data base
contains a sentence that records who the mother of Mary is. The
“x” stands for the mother, whose name is unknown to us. micro-
PROLOG searches the sentences of the “mother-of” relation,
looking for a sentence of the form

x mother-of Mary.

It finds the sentence

Katherine mother-of Mary

1.2 Queries 29

and so returns the answer “YES”. It does not tell us that the
unknown x is Katherine. To retrieve this information we need to
use a different form of query - the which query described below.

Variables in queries

The letters x, y, z, X, Y, Z are variables of micro-
PROLOG. The variable in a query is a very simple concept: it
stands for some unknown individual. It is a place holder, ready
to be filled in by a name. Variables are the formal equivalent of
pronouns in English. Where in English we would say something,
someone, it or he, in micro-PROLOG we use a variable.

Just as pronouns cannot be used in English as names,
without risk of ambiguity, so in micro-PROLOG variables cannot
be used as names of individuals or relations. You cannot enter a
fact about an individual whose name is x!

The variable names of micro-PROLOG were chosen so that
this problem is highly unlikely to arise. Even so, if ever you do
want to use X as a name, you can do so by quoting it with
quotation marks. “x” is not a variable. It can be used either as
the name of an individual or the name of a relation. For more
information on quoting and name conventions consult the micro-
PROLOG Reference Manual.

The letters xy,z,X,Y,Z are actually variable prefix letters. A
variable prefix may be be followed by a positive integer subscript
made up of a sequence of decimal digits. Variables are different
if they have different prefixes or different subscripts. Thus x and
y are different, x2 and y2 are different, and x1 and x2 are
different. The variables x1 and x01 are not different because 1
and 01 are the same integer number.

Data Retrieval

To retrieve the names of unknown individuals we use the
which form of query.

Who is the father of Edward?
&.which{x : x father-of Edward)
Henry

No (more) answers

A which query has two components separated by a colon.
The second component is the query condition. In this case it is a

30 1. Facts and queries

simple sentence pattern
x father-of Edward

The first component is the answer pattern. Here it is the single
variable x of the query condition. More generally, the answer
pattern is a sequence of variables that appear in the query
condition.

In answering a which query micro-PROLOG finds «// the
instances of the query condition that are facts that can be
confirmed. In doing this it “fills in’ the variable slots of the query
condition with the names of individuals, which are then displayed
in accordance with the answer pattern. In this case, there is only
one instance of

x father-of Edward

that can be confirmed. This is the instance with x=Henry. It is
confirmed because

Henry father-of Edward
is a sentence of the data base. So we get the answer
Henry

followed by the message that there are no more answers.

Conjunctive queries

Queries with several conditions can be expressed directly in
both is and which form.

Is Henry-Sor the father of Henry and of Edward?
& is{Henry-Snr father-of Henry

l.and Henry-Snr father-of Edward)

NO

Recall that the prompt “1.” means that micro-PROLOG is
expecting a closing right bracket before it considers that the
query is complete.

For an is query with a conjunctive condition to receive the

1.2 Queries 31

answer YES all of its conditions must be confirmed. If they can't
all be confirmed then the answer NO is returned. In this case the
second sentence is not contained in the data base, so the answer
to the comjunctive query is "NO”.

Notice how in micro-PROLOG we must make explicit the
question “is Henry-Snr the father of Edward” that is implicit in
the English phrase “and of Edward”.

Who is both a child of Henry-Sar and
the father of Elizabeth2?

& .which{x : Henry-Snr father-of x and

1. x father-of Elizabeth2)

Henry

No (more) answers

Who are the daughters of Henry?
&.which(x : Henry father-of x & x female)
Mary

Elizabeth2

No (more) answers

Notice that in this query we have used “&” as an abbreviation for
“and”. This is an abbreviation that micro-PROLOG understands.

Who is a mother (of somebody)?
&.which(x : x mother-of y)
Elizabetht

Katherine

Jane

Anne

No (more) answers

We do not get the names of the children because the unknown
child y of the query condition is not given in the answer pattern.

Who are all the mother, child pairs?
which(x y : x mother-of y)
Elizabeth Henry

Katherine Mary

Jane Edward

Anne Elizabeth2

No (more) answers

32 1. Facts and queries

Who are all the father, son pairs?
which(x y : x father-of y & y male)
Henry-Snr Henry

Henry Edward

No (more) answers

In this query the answer pattern is the pair of variables x y both
of which appear in the query pattern. They are the unknown
father and unknown son referred to in the query pattern. Note
that we must use the vocabulary of the data base. The data base
does not include any facts that directly describe the father-son
relationship, so we describe what we want using the “father-of”
and “male” relations. We had to do the same thing in the earlier
query to find the daughters of Henry. We had to characterize a
daughter as a female child.

Summary of query commands
is This has the form:
is(<condition> [and ... <condition>])

where each <condition> is a simple sentence in which one or more
individuals may be named by variables. This query checks to see
if each of the given conditions can be confirmed using the facts
in the data base. It responds “YES” if each can be confirmed,
and “NO” if not. If the same variable occurs in more than one
condition it denotes the same unknown individual.

which This has the form:
which(<answer pattern> : <condition> [and ... <condition>])

This query returns the answers to the query condition or the
conjunction of conditions that follow the “”. Each answer is
some instance of the <answer pattern> in which variables are
replaced by the names of individuals that satisfy all the query
conditions. The answer pattern is a variable or sequence of
variables that appear in the query conditions.

The different variables of the answer pattern muast be
separated by spaces. After all the different answers have been
given the message "No (more) answers” is displayed. The ™"
separating the two components of the query is important. If you

1.2 Queries 33

miss it out you will get the error message that there is a missing
colon and the query will not be answered. This is because
without the " micro-PROLOG cannot tell where the <answer
pattern> ends and where the first query condition begins.

The command name all is an accepted alternative to which.
one The form of the query is:
one(<answer pattern> : <condition> [and ... <condition>])

The one query is similar to the which query except that after
each answer is found and displayed micro-PROLOG interrupts the
query evaluation and waits for an input to indicate whether it
should look for more answers or stop. It prompts for this input
with the message “more?(y/n)". If you respond by entering y (for
yes) then the next solution is sought. If you enter n (for no) the
evaluation stops. For example, we might ask for the children of
Henry one at a time:

&.onelx : Henry father-of x)
Mary

more?(y/n)y

Elizabeth2

more?(y/n)n

&.

Because we quit the evaluation before micro-PROLOG was sure
that there were no more answers we do not get the usual
terminating message “No (more) answers”. We just get the "&.”
prompt to indicate that it is ready for another command.

System mote - syntax errors - if there is a mistake in the syntax of any
of the query commands you will get an error message identifying the
error and the query will not be answered. micro-PROLOG usually
displays the part of the query in which the syntax error occurs. For
example, if one of the conditions is not a valid simple sentence you
will get the message

Syntax error: <condition> not a valid simple sentence form

If the condition contains variables the variable names in the displayed
condition will probably not be the same as the ones that you used in
the query. This is because micro-PROLOG forgets variable names, it
just remembers the positions that each variable occupies in the query.

34 1. Facts and queries

So, when it prints out the error message it assigns new variable names
to the variable positions in the condition. We shall say more about this
tenaming of variables in the next chapter.

Finding the names of your relations

Each time you add a sentence about a new relation to your
program the add command records the name of the new relation
in a dict sentence added to your program. You can therefore find
out what relation names you have used with the query

all(x : x dict)
or equally:
list dict

When you do a list all what you get is a listing for all the
relations recorded by a dict sentence.

When you get rid of all the sentences about a relation
using a kil command the dict sentence for the relation will be
automatically deleted. However, it will not be removed if you get
rid of each of the sentences one by one using delete. So the fact
that the relation name is displayed in answer to the dict query
does not guarantee that it has any defining sentences. To check if
there are defining sentences for some relation R use the query

is(R defined)

A "YES” answer tells you that there is at least one sentence for
the relation, a "NO” reports that their are no sentences for R.
The defined relation can only be used for checking. Unlike the
dict relation it cannot be used to find the names of the relations
that you have used which are still defined. To do this use dict
and defined together in the query

all(x : x dict & x defined)
Prede fined relations and modules

micro-PROLOG contains several predefined relations some
of which we shall meet in the next section. micro-PROLOG does

not allow you to alter the definitions of these predefined relations.
If you accidentally try to add a sentence for one of these

1.2 Queries 35

relations you will get the error “Cannot add sentences for R”
where R is the name of the relation.

You will get the same message if you try to add a sentence
about one of the command or relation names defined by the
SIMPLE front-end program. For example, if you try to add a
sentence about the is relation. Even though SIMPLE is a2 micro-
PROLOG program its definitions are protected in this way
because it comprises three special forms of program called
modules.

Modules are named collections of relation definitions that
explicitly export the names of certain relations. Only the exported
relations can be used by other programs and their definitions are
protected from accidental alteration. Modules are more fully
described in Chapter 7 which also tells you how you can convert
one of your programs into a protected module.

You can fgmd out the names of the relations exported by
SIMPLE by using the query:

all(x : x reserved)

The answer will be a list of names that you should not use for
the names of your relations. You can use this query to remind
you of the command names such as which and all because these
are included in the list of reserved names.

Exercises 1-2

1. Using the FAMILY data base developed in this chapter, give or find
the answers to the following queries and give an English equivalent for
each query:

is(Jane mother-of Elizabeth2)

is(Henry-Snr father-of x)

which(x : Henry-Snr father-of x)
is(Katherine mother-of x and x female)
all(x : Henry father-of x and x male)
which(x y : x father-of z & z father-of y)

Mo an o'e

2. Using the vocabulary of the FAMILY data base, express these
English questions as micro-PROLOG queries:

a. Is Katherine the mother of Edward?
b. Who is a father (of somebody)?
c. Is Jane the mother of someone whose father is Henry-Snr?

36 1. Facts and queries
d. Who has Henry as their father and Katherine as their mother?

3. Using the geographical data base started in Exercisel-1, express these
English questions as micro-PROLOG queries:

Is Rome the capital of France?

Is Washington-DC the capital of a country in Europe?
Which are the capitals of countries in Europe?

Is the capital of Italy recorded?

For which North-American countries is the capital known?
For which continents are the capitals of countries known?

™ho a0 oe

4. Using the books data base started in Exercise 1-1, give the answers
to the following micro-PROLOG queries and for each query give an
equivalent English question:

a. is(Oliver-Twist written-by William-Shakespeare)

b. is(x written-by Mark-Twain and x type Novel)

c. which(x y : x type Play and x written-by y)

d. which(x : x type Novel and x written-by Charles-Dickens)

e. which(x : y written-by x)

5. Using the bicycle parts data base of Exercise 1-1 express the

following as micro-PROLOG queries:

Which are the parts of a bicycle?

Is a dynamo part of a bicycle?

Is a spoke part of something?

Which part of a bicycle is a dynamo part of?
Which are the parts of the braking-system?

o anoe

1.3 Arithmetic relations

micro-PROLOG is not particularly well suited for
applications which need a lot of routine numerical work.
However, we can do arithmetic using four built-in arithmetic
relations SUM, TIMES and LESS and INT and we can use
arithmetic expressions in query conditions. We shall introduce
arithmetic expressions in Chapter 4. Here we shall illustrace the
use of the arithmetic relations since they are used and queried in
exactly the same way as data base relations. Arithmetic expressions
are ultimartely evaluated using the SUM and TIMES relations.

Although each arithmetic relation is implemented by a
machine code program, so as to make use of the hardware
operations of the machine, we can think of each relation as being

1.3 Arithmetic relations 37
defined by an implicit data base of facts. This is why we can

query them in the same way as we query relations defined by a
real data base of facts.

Addition and Subtraction using the SUM relation

The SUM relation is a three argument relation such that

SUM(x y z) holds if and only if z = x + y.

The implicit data base describing the relation contains sentences
such as SUM(2 3 5) and SUM(-3 106 7.6). We do addition &
subtraction by querying this implicit data base.
Uses of the SUM relation
Checking:

&.is (SUM(20 30 50)
YES

Adding:

&.which(x : SUM(5.6 -2.34 x))
3.26
No (more) answets

Subtracting:

&.which(x : SUM(x 34 157))
123
No (more) answers

or:
& .which{x : SUM(34 x 157)

123
No (more) answers

38 1. Facts and queries

Restrictions on the use of SUM

A query condition for the SUM relation can have at most
one unknown argument. This constraint would not apply if there
was a real data base for the relation. It applies because micro-
PROLOG simulates the data base and for efhiciency supports only
a restricted range of query patterns. This means that a query such
as

which(x y : SUM(x y 10))

will not be answered. It will result in a “Too many variables”
error message. Try it! The “Too many variables” message is the
one you will get when you try to use any of the built-in relations
of micro-PROLOG and there are too many unknown arguments.

Syntax of numbers

The above queries made use of both integers and floating
point numbers. All the arithmetic relations take arguments that are
either integers or floating point numbers. If you mix the two
types of number micro-PROLOG automatically converts the
integers to floating point numbers.

A positive integer is a sequence of decimal digits without
any preceding "+ sign. Indeed, you mast mot use a “+” to
indicate that a number is positive. If you do you will get an error
when the query is evaluated.

A negative integer is a sequence of decimal digits with a
preceding “-” sign. Thus:

234 7056 89004
are all positive integers and

-34 -56004 -11000
are all negative integers.

A positive floating point mumber is a sequence of decimal
digits (again without a preceding “+” sign) which contains a “.”

decimal point. It can be optionally followed by an integer
exponent expressed as the letter “E” followed by an integer. For

1.3 Arithmetic relations 39
example:
23.45 2.345E1 0.02345E3 2345.0E-2

are all different representations of the same floating point number.
The " in a floating point number must always be preceded by at’
least one digit, which can be 0. The exponent is the power of 10
by which the number preceding the exponent should be
multiplied.

A negative floating point number has the same form as a
positive floating point number except that it is preceded by the "-
“ sign. Thus:

-34.678 -0.0783E-34 -100.05

are all negative floating point numbers.

System note - floating point numbers - The form 2.345El is the standard
form for the number 23.45. Floating point numbers can be entered in
any form but they are displayed in their standard form. That is, they
are expressed as a number between -10 and 10 with the appropriate
exponent. When this exponent is 0, that is when the number does lie
between -10 and 10, the exponent is suppressed. That is why the
number 3.26E0 which was the answer to one of the above queries was
displayed without the exponent as 3.26.

Integers must be in the range -32767 to 32767. Floating point
numbers can have upto 8 significant digits (leading 0O's are not
considered significant). Exponents must be in the range -127 to 127. If
the evaluation of an arithmetic condition would give an answer that is
too small to represent as a floating point number you will get the
"Arithmetic underflow” error message. If it would give a number that is
too large to represent as a floating point number you will get the
“Arithmetic overflow” message. If a condition with integer arguments
has an answer that is too large to represent as an integer the answer
will be given as a floating point number.

Conversion and testing of number types

The INT relation has two forms of use. It can be used as a
property relation to test if a number is an integer, or more
exactly to test if the number is an integer or a floating point
number that does not have a fraction part. It can also be used as
a binary relation to find the integer part of a floating point

40 1. Facts and queries’

number.
Uses of INT
Testing:

&.is(45 INT)
YES

&.is(4.67 INT)
NO

&.is(3.667E3 INT)
YES

Use for conversion

which(x : 3.45 INT x)
3
NO (more) answers

which(x : -3.56498E3 INT x)
-3564

Restrictions on use the of INT

When it is used as a property relation the single argument
must be given. It can only be used to test, not to find an integer
number.

When it is used as a binary relation, the first argument
must be given and the second one must be unknown, that is,
represented as a variable. The evaluation of the condition will give
the variable the value of the integer part of the first argument.
So, in the two argument form INT cannot be used as a test that
some number is the integer part of another. It can only be used
to find an integer part. To test that some number is the integer
part of another we must use INT and then another micro-
PROLOG primitive relation EQ to test that the found integer part
is identical to the given value.

&.is(6.78 INT x & x EQ 6)
YES

The placing of the EQ test after the INT condition is important:

1.3 Arithmetic relations 41

we shall discover why in Section 14.

Multiplication and division using TIMES
The TIMES relation is such that
TIMES(x y z) holds if z = x * y

Uses of the TIMES relation

Checking a product:

&.is (TIMES(3 4 12))
YES

Checking for exact division:

&.is(TIMES(3 vy 12) & y INT)
YES

&.is(TIMES(3 y 11) & y INT)
NO

Multiplying:

&.which{x : TIMES(S 4.3 x))
2.15E1
No (more) answers

Division:

& .which{x : TIMES(x 24 126))
5.25
No (more) answers

&.which{x : TIMES(24 y 126) & x INT y)
5
No (more) answers

&.is(TIMES(x 3 10) & TIMES(x 3 10))
NO

42 1. Facts and queries

System note - accuracy of floating point mumbers - The NO answer to the
last query may surprise you, but it should not. The result of dividing 3
into 10 cannot be accurately represented as a floating point number.
The answer that micro-PROLOG gives is 3.3333333 which is only a
close approximation of 10 divided by 3. So, when micro-PROLOG
multiplies this result by 3 to check the second condition it gets
99999999 and not 10. You must be careful when using floating point
numbers in any programming language to remember about such
rounding etrors.

Ressriction on TIMES gueries

The restrictions on the use of TIMES are the same as those
for SUM. At most one argument can be unknown, but this can
be any of the three arguments. This covers the use for
multiplication and division.

Testing for order using the LESS relation

The primitive LESS relation can only be used for checking.

LESS(x y) holds if x is less than y in the usual ordering of the
numbers

Uses of LESS

&.is(3 LESS 4)
YES

&.is(4 LESS 3)
NO

&.is(TIMES(3 x 10) & TIMES(3 x y) &
1. SUMly z 10) & z LESS 0.1E-5)
YES

LESS can also be used for comparing two names. The
ordering used is that of the dictionary. LESS(x y) holds for words
x and y if x comes before y in a dictionary. Example:

&.is(FRED LESS FREDDY)
YES

&.is(ALBERT LESS HAROLD)

1.3 Arithmetic relations 43

YES

&.is{SAM LESS BILL}
NO

The alphabetical ordering of the characters that can appear
in the names is the ASCII ordering of all the keyboard characters.
In this ordering "-" precedes all the numerals which come before
all the capital letters which come before all the lower case letters.

So, we have

SAM LESS Sam
Sam1 LESS Samantha

Sam-1 LESS Saml

Exercises 1-3

1. Answer the following micro-PROLOG queries:

a. is(SUM(9 6 15))

b. which(x : SUM(4 18 x))

¢ which(x : SUM(x 23 40))

d. is(9 LESS 10)

e. is(SUM(8 x) and x LESS 19)

f. which(x : TIMES(9 7 x))

g- is(TIMES(11 8 80))

h. which(x y : TIMES(4 z1 14) & z1 INT x & TIMES(x 4 22) &
SUM(z2 y 14))

2. Write micrto-PROLOG queries to ask the following English questions:
a. What is 9 plus 7?7

b. What is the integer part of the result of 65 divided by 72

c. What is the result if you add 29 and 53, and divide the total by 2?
d. Can 93 be exactly divided by 5?

e. Is the result of multiplying 17 and 3 less than 50?

1.4 Evaluation of queries

This is an appropriate point to say something about the way
in which micro-PROLOG evaluates queries.

When querying a data base of simple sentences we can, for
the most part, ignore the way that queries are evaluated. However,

44 1. Facts and queries

we shall see that the ordering of the conditions in 2 conjunctive
query can affect the time that micro-PROLOG takes to answer
the query. Unless an error occurs, it will not affect the answers
that we get. Choosing an ordering that facilitates the evaluation is
part of the pragmatics of using micro-PROLOG.

For certain conjunctive queries, for example the query:

which(x : TIMES(37 51 y) & SUM(y 73 x))

we must know about the order of evaluation of the component
conditions. Does micro-PROLOG solve the SUM or the TIMES
condition first? If it is the SUM condition we will get a2 "Too
many variables” error message because there are two unknown
arguments y and x. If micro-PROLOG answers the TIMES
condition first there will be no problem providing the answer
obtained for the unknown y is ‘passed on’ to the SUM condition
before it is solved.

Fortunately (in this case) this is exactly what micro-
PROLOG does. micro-PROLOG evaluates conjunctive queries by
solving the conditions in the left to right order in which they are
given passing on any values for variables that it has found. So, by
the left to right ordering in which we give the conditions we
control the evaluation order.

The ordering of the conditions is the control component of
the query. The conjunction of the conditions is the logical
component. In posing a query our primary concern should be a
correct logical description of what we want to ask or retrieve.
Our secondary concern should then be with the ordering of the
conditions for efficient and error free evaluation.

Evaluation of is queries with one condition
The simplest form of query is the is query of the form
is(C) where C is a simple sentence without variables

micto-PROLOG evaluates this query by searching through
the sentences in the data base that are about the relation of the
condition C. It does not search the whole data base. micro-
PROLOG stores the sentences about each relation in a list, the
ordering of the sentences on the list being the order in which
they are displayed by the list command. micro-PROLOG runs
down this list, comparing C with each sentence in turn. If it finds

1.4 Evaluation of queries 45

an exact match between C and 2 sentence in the list it terminates
the search and gives the answer “YES". If it reaches the end of
the list of sentences without finding a match, it displays the
“NO” answer.

Example 1
is(Henry male)

The sentences in the FAMILY data base about “male” are stored
in the order

Henry-Snr male
Henry male
Edward male

because this is the order in which they are listed by the “list
male” command. First micro-PROLOG compares the query
condition

Henry male
with the sentence
Henry-Sar male

that heads the list. The sentences do not match because “Henry”
and “Henry-Snt” are different names. Since this match fails, micro-
PROLOG then moves on to the next sentence. We now have an
exact match, so micro-PROLOG terminates the search and gives
the answer "YES”".

If we pose the query

is(Edward3 male)
micro-PROLOG compares “Edward3 male” with each sentence in

turn. In no case is there an exact match. So we get the answer
“NO".

46 1. Facts and queries

is query with a sentence pattern
An is query of the form

is(C) where C is a simple sentence pattern, ie. a simple
sentence with at least one variable standing for an
unknown individual

is answered in much the same way. The only difference is that
when looking for an exact match micro-PROLOG is allowed to
give each variable in C a wvalwe which is the name of some
individual.

Example 2
is(x father-of Elizabeth2)
The sentences for the father-of relation are stored in the order
Henry-Snr father-of Henry
Henry father-of Mary
Henry father-of Elizabeth2
Henry father-of Edward
micro-PROLOG compares the sentence pattern
x father-of Elizabeth2
with each sentence in turn. There is an exact match with the
third sentence when the variable x has the value "Henry”. At this
point micro-PROLOG terminates the search and gives the answer
"YES".
Example 3
is(x father-of x)
This query is asking whether the data base contains any fact that
says that someone is their own father. micro-PROLOG will give

us the answer “NO”, but it is instructive to see why.
It tries to match the sentence pattern

1.4 Evaluation of queries 47

x father-of x

with each of the above sentences. It gets a partial match with the
first sentence

Henry-Snr father-of Henry

by giving x the value “"Henry-Snr”. This makes the sentence
pattern become the sentence:

Henty-Snr father-of Henry-Snr

But it is not an exact match because by giving x this value
micro-PROLOG must replace both occurrences of x in the
sentence pattern by the name “Henry-Snr”. This creates a
mismatch between the names of the children. The same thing
happens in the attempt to match all the other sentences of the
data base. So the query is answered, "NO”.

Now consider the query

is(x father-of y)

In answering this query, micro-PROLOG does not encounter the
same problem because it can give the different variables x and vy
different values. In fact, there is an immediate match with
x=Henry-Snr and y=Henry.

In answering a query micro-PROLOG can give different
variables different values, but it may also give them with the same
value. Thus, if we had a data base that contained just the single
“likes” sentence

Tom likes Tom
then both
is(x likes x)
and
is(x likes y)
would be answered affirmatively. In the second query we are

asking whether the data base knows anything about some x liking
some y. It does, when x and y are the same person Tom. This

48 1. Facts and queries

convention that different variables can stand for the same
unknown person micro-PROLOG inherits from symbolic logic. To
insist that different variables name different individuals we must
add an extra condition that says just that. We shall see how we
can do this in Chapter 3.

Evaluation of which queries with one condition

The single condition which query is of the form

which(P : C) where P is an answer pattern and C is a
simple sentence pattern

micro-PROLOG takes the sentence pattern C and compares it
with each of the sentences for its relation in the data base. A
match of C with a sentence in the data base results in each
variable of C being given a value. For each match of C with a
data base sentence the answer pattern P is displayed with its
variables replaced by the values for that match.

Example 4

which(x : Henry father-of x)

The sentences of the data base are compared with the query
pattern in the listing order given above. There is no match with
the first sentence

Henry-Snr father-of Henry

because the fathers “Henry”, “Henry-Snr” do not match. There is a
match with the second sentence,

Henry father-of Mary
providing x=Mary. Because it has found a sentence that matches
the query pattern micto-PROLOG has found one answer to the
query. It therefore displays the answer pattern, x, with x replaced
by its value "Mary”. We get the first answer:

Mary

The evaluation continues with the attempt to match the

1.4 Evaluation of queries 49
query pattern “Henry father-of x” with the remaining sentences:

Henry father-of Elizabeth2
Henry father-of Edward

There is a match with the first of these providing x=Elizabeth2.
So we get the second answer:

Elizabeth2

There is also a match with the last sentence, providing
x=Edward. This gives us the last answer

Edward
No (more) answers
Evaluation of conjunctive which queries

We illustrate the method of evaluation by two examples.
We shall describe the method more formally in the next chapter.

Example 5

which(x : Henry father-of x & x male)
This query is a restriction on the query of example 4 to find only
the male children of Henry. What micro-PROLOG has to do is
to find all the names that can replace x such that both

Henry father-of x
and

x male
are sentences of the data base.

It finds all these x's by initially ignoring the second
condition of the query. It starts by looking for all the x's that
satisfy

Henry father-of x

We know that there are three sentences of this form, the first

50 1. Facts and queries

one being
Henry father-of Mary

micto-PROLOG matches the query condition with this sentence
and finds a possible answer, x=Mary, for the conjunctive query.
At this point micto-PROLOG interrupts the search for solutions
to the first condition in order to see whether this value for x is
compatible with the second condition of the query, the condition
“x male”. It sees whether it can find a successful match for this
condition if x has the value "Mary”. This is equivalent to finding
a successful match for the query condition

Mary male

It tries to confirm this condition by searching the list of
sentences about the “male” relation. Since it does not find the
sentence "Mary male”, it cannot confirm the extra condition on x
for the value x=Mary. It therefore returns to its interrupted
search for all the solutions to

Henty father-of x

It finds the next solution to this with the match against the
sentence

Henry father-of Elizabeth2

This gives the value x=Elizabeth2. Again, micro-PROLOG
interrupts the search for other solutions to the “father-of”
condition to check if “x male” can be confirmed when
x=Elizabeth2. That is, it checks to see if the condition

Elizabeth2 male
can be confirmed. This attempt also fails. So micro-PROLOG
again returns to its interrupted search for all the x values that
satisfy the first condition

Henry father-of x

It finds the next possible value for x with the match against

Henry father-of Edward

1.4 Evaluation of queries 51

which makes x=Edward. Interrupting the search once more,
micro-PROLOG tries to confirm the second condition “x male”
with x=Edward which is the condition

Edward male

This time it succeeds, for the sentence “Edward male” is in the
data base. micro-PROLOG has at last found an answer to the
compound query, which it immediately displays.

Since the query requires all solutions, micro-PROLOG once
more returns to its interrupted search for x’s that satisfy “Henry
father-of x”. There are no more because micro-PROLOG has
already looked at all the sentences that match this pattern. It
therefore displays the message “No (more) answers”.

The method of evaluation of the query

which(x : Henry father-of x & x male)
can be captured in the control reading

for all the x that satisfy the condition Henry father-of x
if x is male, display x

Example 6
which(x z : x father-of y & y father-of z)

This is a request for all the pairs of people in the paternal
grandfather relation. The answers to this query are the names
assigned to x and z for each solution to the conjunctive condition
of the query. A solution is an assignmen: of values to variables in
this query pattern such that each of its sentences become facts in
the data base. In this case, it is an assignment to x, y, z such
that

x father-of y and y father-of z
are both sentences of the data base.

Again, micro-PROLOG searches for all the solutions to both
conditions by initially ignoring the second condition. It starts by
looking for all solutions to the first condition

x father-of y.

52 1. Facts and queries

It finds the first solution with the match against the sentence

Henry-Snr father-of Henry
which makes x=Henry-Snr, y=Henry. At this point micro-
PROLOG interrupts its search for all the solutions to the first
condition. It now looks for «// the solutions to the rest of the
query which are compatible with this solution (x=Henry-Snr,
y=Henry) to the first condition. In other words, it looks for a//
solutions to the condition

y father-of z (with x=Henry-Snr, y=Henry)
This is the condition

Henry father-of =

There are three solutions to this:

z=Mary, z=Elizabeth2, z=Edward.
These three solutions for z give three solutions:

x=Henry-Snr, y=Henry, z=Mary

x=Henry-Snr, y=Henry, z=Elizabeth2

x=Henry-Snr, y=Henry, z=Edward
to the conjunctive condition

x father-of y & y father-of z.
As micro-PROLOG finds each z solution it displays the answer
pattern “x z” with the variables replaced by their solution values.
Hence micro-PROLOG gives us:

Henry-Snr Mary

Henry-Snr Elizabeth2

Henry-Snr Edward
as its first three answers to the query.

When micro-PROLOG has found all the answers to the

second condition “y father-of z” for y=Henry it can only find
more answers to the query by returning to its interrupted search

1.4 Evaluation of queries 53

for all solutions to first condition “x father-of y”. The next
solution it finds is

x=Henry, y=Mary
produced by the match with the sentence
Henry father-of Mary.

micro-PROLOG again interrupts the search for all the solutions to
"x father-of y”, to find all the solutions to the remaining
condition

y father-of z (with x=Henry, y=Mary)
This is the condition
Mary father-of z

There are no solutions to this condition for there are no
matching sentences in the data base. So the x=Henry,y=Mary
solution to the first condition is not compatible with the second
condition and does not lead to any solutions to the conjunctive
query. Once more micro-PROLOG returns to its search for the
solutions to “x father-of y”. The last two solutions it finds are:

x=Henry, y=Elizabeth2
x=Henry, y=Edward

On finding each solution micro-PROLOG again interrupts its
search to look for all solutions of the second condition “y father-
of 2" with the found value of y. The first solution of these two
solutions causes it to look for all solutions to

Elizabeth2 father-of z,
and the second causes it to look for all solutions to

Edward father-of z
In each case, there are no solutions; there are no values for z that
make them sentences of the data base. So micro-PROLOG finds

no more answers to the original query.
The method of evaluation of

54 1. Facts and queries

which(x z : x father-of y & y father-of z)
can be expressed in the control reading

for all the x and y that satisfy x father-of y
find each z that satisfies y father-of z
and display x and z

Evaluation of conjunctive is queries

The evaluation of an is query with a conjunctive condition
proceeds in exactly the same way as that of a conjunctive which
query. micro-PROLOG starts off as though it were trying to find
all the solutions for the conjunction of conditions given in the
query. It stops as soon as it finds one solution to the query,
giving the answer “YES". If it cannot find any solution, we get
the answer “NO".

System note - iracing queries using the SIMTRACE program - if you are
using a computer to follow the examples and the exercises you can use
a special program called SIMTRACE to follow through the evaluation
of both which and is queries. This program will be on the distribution
tape along with the SIMPLE front-end program. To use the trace
program do a

load SIMTRACE

command. Now, instead of using all or which use all-trace and instead
of is use is-trace.
As an example, if you pose the query

all-trace(x : Henry-Snr father-of x & x male)

you will be taken step by step through the evaluation of the query. The
first thing you will see is the message

(1) Henry-Snr father-of X trace?

and the evaluation will suspend waiting for your response. The “(1)" tells
you it is the first condition of the query. Notice that the “x” of the
query has become “X°. This is the variable renaming that micro-
PROLOG does which we have already mentioned. When a condition is
displayed by the trace program the first variable in the condition will
always be named “X”, the second “Y", the third “Z” and so on in the

1.4 Evaluation of queries 55

sequence X, Y, Z, x, y, z, X1, Y1, ..

For tracing you should respond by entering y (that is, type y and
then hit the RETURN or ENTER key). If you do not want tracing of
this condition enter n. With the y response micro-PROLOG will take
you through its scan of sentence for “father-of” telling you whether
there is a successful match or not. With the n response it will just tell
you when it has solved the condition. When the condition is solved
you will get the message

(1) solved : Henry father-of Mary

with the variable replaced by the value found by the successful match
with a sentence. The trace will then move on to the next condition,
replacing the x variable of that condition with the value it has found.
You will then get the prompt:

(2) Mary male trace?

If you respond by entering y you will be taken through the attempts to
match the condition with each sentence about "male”. When it has
unsuccessfully tried the last sentence you will get the message

failing (2)

and the trace will return to find the next solution to the first condition
and so on. You always get the “failing” message for a condition when
micro-PROLOG has reached the end of the list of sentences for its
relation even if a match with an earlier sentence had been successful.
So, just before the end of the evaluation of the query you will get the
message

failing (1)

to indicate that all the sentences for “father-of” have been scanned. You
will then get the finish message

No (more) answers.

Tty all-trace and is-trace with several queries until you understand
the evaluation method.

For more information on the use of the trace program consult the
chapter on SIMPLE in your Reference Manual. There are other
responses that you can make when prompted with “trace?”. In particular,
g will quit the evaluation of the traced query.

To get rid of the trace program when you have finished using it
you can do a

&. kill simtrace-mod

56 1. Facts and queries

command. “simtrace-mod” (all lower case) is the name of the single
module contained in the SIMTRACE program. This is another use of
kill. It can be used to get rid of a whole set of relation definitions
wrapped up as a module just by giving the name of the module. All
the modules supplied with the micro-PROLOG system have names of
the form “<name>-mod”.

Exercises 1-4

1. We will add further sentences to our geographical data base, giving
information about the latitude and longitude of each city, using the
form

city location (latitude longitude)

with figures given in degrees. Figures North and East are given as
positive integers, figures South and West as negative integers.

Washington-DC location (38 -77)
Ottawa location (45 -76)

London location (51 0)

Paris location (48 2)

Rome location (41 12)

Lagos location (6 -3)

Give the micro-PROLOG queries that correspond to the following
English questions:

a. Which cities are North of London?

. Which cities are West of Rome?

¢. Is there a European country whose capital is North of Rome and
South of London?

. Which countries in Europe have capitals that are East of London?

e. In which country and continent is there a city that is South and
West of Rome?

2. I have been sent on a shopping expedition, with a data base
describing the financial situation.

Wallet contains 98
Cheese costs 84
Bread costs 40
Apple costs 12

Obtgin answers to the following questions, using micro-PROLOG
queries:

1.4 Evaluation of queries 57

»

How many apples can I afford to buy?

Can 1 afford to buy the bread and the cheese?

How much is left in my wallet after I have bought the cheese and
one apple?

d. How much more money will 1 need in order to buy five apples
and three loaves of bread?

oo

3. Add information about the year of publication to the books data
base using sentences such as:

Oliver-Twist published 1849
Great-Expectations published 1853
Macbeth published 1623

Guess the dates if need be.

Pose the following as micro-PROLOG queries:

Was Oliver-Twist published in 1850?

What was published in 16237

When was Tom-Sawyer published?

Were Oliver-Twist and Great-Expectations published in the same
year?

Was Macbeth published before Romeo-And-Juliet

What was published before For-Whom-The-Bell-Tolls

Was anything published before 1600?

an o

o moe

1.5 Efficient queries

Now that we know how micro-PROLOG evaluates queries,
particularly conjunctive queries, we can see that the way in which
we pose a query can effect the efficiency with which micro-
PROLOG finds the answers. Thus,

which(x : Henry father-of x and x male) and
which(x : x male and Henry father-of x)

are equivalent queries and will produce exactly the same set of
answers. However, in answering the first query, micro-PROLOG
will use the condition, "Henry father-of x” to find values for x
that it checks with the “x male” condition. In answering the
second, it uses the condition “x male” to find the different values
for x which it then checks with the “Henry father-of x” condition.
So the queries ate not control equivalent. Their respective control
readings are

58 1. Facts and queries

For all the x that satisfy Henry father-of x
if x satisfies x male, display x

For all the x that satisfy x male
if x satisfies Henry father of x, display x

In a much larger data base than our FAMILY data base,
where there will be far fewer children of Henry than males, the
fist query will be answered more efficiently. For each child of
Henry it will do a search through all the sentences for the “male”
relation. In evaluating the second query, for each male recorded in
the data base it will search through all the sentences for the
“father-of” relation. As a general rule, when a query has two or
more conditions on a variable we should put first the condition
which will have the fewest number of solutions.

2. Rules

Often we want to ask the same conjunctive query many
times, in which case it becomes tedious to be have to repeat the
same conjunction of conditions. It would be convenient if we
could in some way abbreviate the query condition. Also it would
be useful to be able to draw conclusions from the facts in the
data base. For example, that Henry-Snr is the father of Henry
implies that he is a parent of Henry. We would like to be able
to conclude "Henry-Snr parent-of Henry” without having to have
this as an explicit fact in the data base. To be able to draw
conclusions and to abbreviate queries we need to use rules.

2.1 Turning queries into rules

If we look at Exercise 1-2(1).f we see that we are really
asking for all instances of the paternal grandfather relation defined
by the conjunctive condition of the query:

which(x y : x father-of z and z father-of y) (A)

The pairs x y which are produced as answers to the query
are all the pairs in the “paternal-grandfather-of” relation that the
data base knows about.

If we often wanted to find instances of this relation it
would be more convenient if the data base recorded all the
instances

Henry-Snr Mary
Henry-Snr Elizabeth2
Henry-Snr Edward

that are given as answers to the query. A straightforward way to
do this, 1s to explicitly record them by adding facts about the
“paternal-grandfather-of” relation:

Henry-Snr paternal-grandfather-of Mary
Henty-Snr paternal-grandfather-of Elizabeth2 (1)
Henry-Snr paternal-grandfather-of Edward

60 2. Rules
We could now get the effect of query (A) with the simpler query
which(x y : x paternal-grandfather-of y) (B)

There is an alternative to this explicit recording of the
instances of the new relation defined by a query. We can add
just one sentence that links the new relation to the conjunctive
query condition that defines it. This new sentence is a rzle that
gives an implicit definition of the new relation. The rule is
expressed using a new form of sentence, the conditional sentence.
The which query:

which(x z : x father-of y and y father-of z)
becomes the rule:

x paternal-grandfather-of y if x father-of z ©)
and z father-of y

A conditional sentence is added to the program in just the same
way that simple sentence facts are added:

add(x paternal-grandfather-of y if x father-of z
and z father-of vy)

Rule (2) is equivalent to the set of facts (1). When used to
answer query (B), it has the effect of transforming it into our
original query (A).

The logical (or descriptive) reading of the rule is:

x is a paternal grandfather of y if
x is the father of z and
z is the father of y, for some z.

The control (or imperative) reading reflects the way it is
used to solve query conditions for the “paternal-grandfather-of”
relation. We should read it as:

To solve: x paternal-grandfather-of y,
solve the conjunction : x father-of z and z father-of y

For different specific uses we can elaborate this control reading.
For example, for the finding grandchildren use it can be read:

62 2. Rules

of the “parent-of” relation provided by these two rules is just as
good as a set of simple sentences giving all the facts about the
relation. Indeed, they are better. By having “parent-of” defined by
rules we automatically augment the instances of this relation that
we can retrieve whenever we add new “father-of” or new “mother-
of” facts. If the relation was described by facts we should also
have to explicitly add new “parent-of” facts. The way they are
used is indicated by the following control reading of the two
sentences:

To solve a condition of the form : x parent-of y,
solve the condition : x father-of y.
or
solve the condition : x mother-of y.

Here, the or is a non-deterministic branch giving an alternative
way of solving the condition to be used after the first method
has been tried.

The two rules give micro-PROLOG two different ways of
solving conditions about the new relation “parent-of”. They are a
complete program, because logically they together cover all the
instances of the relation implicitly given by the “father-of”,
“mother-of” facts of the data base.

To answer the query:

which(x : x parent-of Elizabeth2)

micco-PROLOG ~ will use both rules. Using the first rule
transforms the condition of the query into:

x father-of Elizabeth2

and the second rule transforms it into:
x mother-of Elizabeth2

We therefore get the two answers:

Henry
Mary

They come in this order, because rule (3) comes before rule (4)
and so will be used first.

2.1 Turning queries into rules 63

Variables in rules
If we list the rules for the relation we get:

& list parent-of
X parent-of Y if

X father-of Y
X parent-of Y if

X mother-of Y
&.

Again the rules are listed in the order that they were added.
But notice that micro-PROLOG has changed our lower case “x”
and "y" to upper case “X" and “Y”. It can do this because the
actual variable names used in a rule are not important. It can
replace a variable, without affecting the meaning of the rule,
providing the replacement appears in exactly the same position as
the variable it replaces. micro-PROLOG changes variable names
but never violates this constraint. It actually 'torgets’ the original
variable names and remembers only the positions that they
occupied in the rule.

Conditional Sentences

The rules we have used so far are examples of conditional
sentences. A conditional sentence is a sentence of the form

<simple sentence> if <condition> [and ... and <condition>]

where each condition is a simple sentence.

A conditional sentence is technically termed an implication.
The conclusion (technically the consequent) is the simple sentence on
the left of the “if". The condition of the sentence (technically the
antecedent) is the single condition or the conjunctive condition on
the right of the "if”.

Any sentence that contains variables is a rule. So far we
have only used simple sentences without variables and conditional
sentences with variables. The former we have called faczs. We can
also have conditional sentences without variables, e.g.

Bill likes Jim if Jim likes Bill,

64 2. Rules
and we can have simple sentences with variables, e.g.
Bill likes x (Bill likes everyone).

In the next chapter we shall have frequent need of these
simple sentence rules. For the time being we shall continue to use
only facts (simple sentences without variables) and conditional
rules (conditional sentences with variables).

The set of all the facts in a micro-PROLOG program is its
data base. The conditional rules enable us to abbreviate queries by
defining new relations in terms of the relations of the data base.
When queried about these new relations micro-PROLOG uses
these rules to interrogate the data base.

Logical reading of a conditional rule
Suppose we have a conditional rule of the form
Sif C

Let y1,..yk be the variables of the sentence that only appear
in the antecedent C. We can read the rule as the implication:

S if C, for some yl,..yk.

It is understood that each variable x1,.,xn in the consequent S
represents an arbitrary individual. The rule says that for any
x1,...xn the conclusion S is true whenever the condition C is for
some y1,...,yk.

We can now see why the rule:

x paternal-grandfather-of y if
x father-of z &
z father-of y

is read as:

x is the paternal grandfather of y if x is the father of 2
z is the father of y, for some z.

The “for some z" is tagged on because z only appears in the
condition of the rule.

2.1 Turning queries into rules 65

Control reading of: § if C
The general purpose control reading is:

to answer a condition of the form: S,
answer the condition: C.

For particular uses of the rule, that is for cases where we can
assume that certain arguments of the relation of S are given
whilst the others are to be found, we can often refine this general
purpose control reading.

Exercises 2-1

1. Using the FAMILY data base, add rules to define the following
relations:

a. x maternal-grandmother-of y
b. x father-of-son y
c. x mother-of-daughter y

2. Using the geographical example developed in Exercise 1-1(2),
complete these rules:

a. x city-in Europe if ...
b. x North-of London if ...
¢ x West-of y if ...

Use these rule defined relations to pose the following queries:

d. What cities are there in Europe?
e. Is anywhere north of London?
f. Which places are north of London and west of Rome?

3. Using the books data base developed in Exercise 1-1(3), express the
following information as rules added to the program:

a. A book is classified as fiction if it is a novel or a play. Give two
rules of the form: x fiction if ...

b. Anything written by William-Shakespeare or Charles-Dickens is a
classic.

Give rules of the form: x classic if...

66 2. Rules

c. Any book published after 1900 is contemporary literature. Give a
rule of the form: x cont-literature if ...

Use these relations to pose the following:

. Which books are classics?
e. Who wrote books published before 1900?
f. Which books of fiction are also contemporary literature.

Rules can use rule-defined relations

The relations that we have defined using rules can
themselves be used in rules to define further relations. We can
build up a hierarchy of such relations with the data base relations
at the bottom. We can, for instance, define the relationship
“grandparent-of” in terms of “parent-of”. In semi-English we would
say:

Somebody x is a grandparent of somebody y
if x is the parent of z and z is a parent of y, for
some z.

We can add a conditional sentence to our program expressing this
rule:

x grandparent-of y if
x parent-of z and
z parent-of y

The general purpose control reading of the rule is:

To answer a condition of the form x grandparent-of y,
answer the conjunctive condition:
x parent-of z and z parent-of y

We leave the reader to give the refinements of this control
reading for the special cases of finding a grandchild and finding a
grandparent. The control reading for the checking use is:

To check that x grandparent-of y for given x and y
find a z such that x parent-of z
such that z parent-of y can be confirmed

The “grandparent-of” rule makes use of the “parent-of’

2.1 Turning queries into rules 67

relation which is itself defined by rules. This does not matter.
micro-PROLOG can use this rule defining the grandparent relation
independently of whether the parent relation is defined explicitly
by facts in the data base, or implicitly by rules. It discovers
which is the case, and behaves accordingly, when it reduces a
condition about “grandparent-of” to the conjunctive condition
about “parent-of”.

The program so far

Our program, from simple beginnings, has now grown
somewhat. To conclude its development at present, let us list it in
its current state, to see what our changes have produced.

& list all
Henry-Snr father-of Henry
Henry father-of Mary
Henry father-of Elizabeth2
Henry father-of Edward
Elizabethl mother-of Henry
Katherine mother-of Mary
Jane mother-of Edward
Anne mother-of Elizabeth2 facts
Henry-Snr male
Henry male
Edward male
Elizabethl female
Katherine female
Mary female
Elizabeth? female
Anne female
Jane female
x paternal-grandfather-of y if 3\
x father-of z and
z father-of y
x parent-of y if
x father-of y
x parent-of y if
x mother-of y
x grandparent-of y if
x parent-of z and
z parent-of y

rules

&.

68 2. Rules

System note - Suspending the screen display - This program is sufficiently
large to not fit onto a single screen. micro-PROLOG allows you to
suspend the display on the screen temporarily so that you can read the
information at your leisure. The display is stopped by using the STOP
key (SYMBOL SHIFT together with A) and restarted bagain by typing
any key.

Exercises 2-2

. Give micro-PROLOG rules that define
a. x grandfather-of y

b. x grandmother-of y

c. x child-of y

d. x grandchild-of y

2. Answer the following micro-PROLOG queries about the FAMILY
data base:

a. which(x : x parent-of y)

b. one(x : Henry-Snr grandfather-of x)

c. is(Henry parent-of x and y grandfather-of x)

3. Give the micro-PROLOG queries for the following English questions:
a. Who was Edward’s paternal grandmother?

b. Who are the mothers of Henry-Snr’s grandchildren?

c. Did Katherine have a male child?

d. Who was the mother of a male child of Henry?

More on answer patterns

So far answers to queries have just been values for variables
given in the answer pattern of the query. We can also have text
displayed with each answer. We simply insert the text in the
answer pattern of the query. As an example, consider the query:

What are the names of mothers and their children?
which(x y : x mother-of y)

Elizabethl Henry

Katherine Mary

Jane Edward

Anne Elizabeth2

No (more) answers

We just get the pairs of names, which is not very informative.
We can also get the answers in the form:

2.1 Turning queries into rules 69

Elizabethl is the mother of Henry
Katherine is the mother of Mary
etc.

in which the inserted text “is the mother of” helps us to interpret
the answer. Each of these answers are instances of the answer
pattern

x is the mother of y

To get the message, we use this pattern instead of the answer
pattern “x y” of the original query:

&. which{x is the mother of y : x mother-of y)
Elizabethl is the mother of Henry

Katherine is the mother of Mary

Jane is the mother of Edward

Anne is the mother of Elizabeth2

No (more) answers

We have simply added text to the an