
Games devised by
Fred Harris

Programming Consultant
Richard Freeman

THE BASIC LISTINGS
for the Acorn Electron and

Sinclair Spectrum computers

Project supported by Acorn Computers V
Yorkshire Television

Special Offer

Me & My Micro

Available on video cassette as well!

Complete series of all five programmes for only £29.95
This includes VAT, P + P — VHS or Betamax

Write to:
Geoff Foster

Yorkshire Television Ltd
Leeds LS3 1JS

Please enclose a cheque payable to:
Yorkshire Television Enterprises Ltd

Don't forget to state VHS or Betamax

Allow 28 days for delivery

Software based on games featured in "Me Ft My Micro" is available
for Electron/BBC and Spectrum micros, £9.95 each from all good

stockists

ADDRESSES

Commodore Business Machines UK Ltd
(Commodore Information Centre)
675 Ajax Avenue
Slough
Berks
Tel: (0753) 79292

Dragon Data Ltd
The Kenfig Industrial Estate
Margam
Port Talbot
West Glam.
Tel: (0656) 744700

Apple Computers UK Ltd
	

Acorn Computers Ltd
Eastman	 Fulbourn Road
Hemel Hempstead
	

Cherry Hinton
Herts	 Cambridge
Tel: (0442) 60244
	

CB1 4JN
Tel: (0223) 245200

Oric Products International Ltd
Coworth Park Mansion	 Sinclair Research Ltd
Coworth Park
	

28 Stanhope Road
London Road
	

Camberley
Sunninghill
	

Surrey
Ascot	 Tel: (0276) 686161
Berks
Tel: (0990) 27686

Oric Assembly
Unit 11
Hampton Farm Industrial Estate
Hampton Road West
Hanworth
Middx.
Tel: (01) 755 1133

BOOKS
The programs in this leaflet are developed in more detail in:
Paul Shreeve, Me & My Micro (National Extension College).

A simple approach to structured programming (the methods used here and in the
TV series) can be found in:
Richard Freeman, Step by Step BASIC(BBC/Electron edition) (Lifelong Learning

Ltd)
Richard Freeman, Step by Step BASIC(ZX Spectrum edition) (Lifelong Learning

Ltd)

A more advanced course on structured programming can be found in:
Richard Freeman, Structured BASIC (BBC/NEC)

Dear Microphile

Computing is frustrating, time-consuming, irritating, bewildering, and great fun.
There's more satisfaction to be had from developing your own twenty-line BASIC
program than from adding a few more megazaps to your latest arcade game score.

Me & My Micro is aimed at the relative (or absolute!) newcomer to programming.
It's one way of getting to grips with the micro, by writing simple games. Not that I
think games-writing is the ultimate goal of every aspiring programmer— it just happens
to be the way I went about tackling BASIC.

Once you can tackle BASIC on your own, you can do your own tax returns,
solve second-order differential equations, anything you like. But first, you need to
get to grips with your micro to find out how to think to make it work.

What you won't find in this booklet are the most exciting and fast-moving games
around. In fact, they are all relatively slow and simple. But what you will find is the
detail of how each one is put together. Not only have we used simple games; we
have also chosen to use 'structured programs' to make them easier to understand
— that is, each program consists of a sequence of self-contained blocks, located away
from the main body of the program. The idea of this is to keep everything as clutter-
free and readable as possible—unlike 'spaghetti' programs, they should also be easier
to 'de-bug'. It's by no means the only way of doing things, and structure is no
guarantee of elegance — or indeed a working program! But it might help.

Whatever style of programming you adopt, don't be afraid to experiment.
The games in the series were deliberately chosen to be easy to alter, improve,

extend and transform. There are suggestions in these listings and on the TV show.
But try out ideas of your own. Whatever happens, you can't damage the micro from
the keyboard!

Happy creative computing

FRED HARRIS

P.S. Alternative versions of these listings are available for the Commodore 64, Vic
20, Dragon, Oric, Atari, Sharp 700, and MTX.
If you wish to obtain the above listings please send £1 — including P & P— to:

Computer Training College
Norvic House
1-7 Hilton Street
Manchester M4 1 LP

P.P.S.The Electron programs will also run on the BBC micro.

32
	

1

REPEAT
BBC BASIC, along with other advanced programming languages provides a
REPEAT. . . UNTIL facility. Spectrum BASIC does not provide REPEAT, but it
can be simulated.

First, look at how REPEAT... UNTIL works. It is used to make a program repeat
a section of code until an exit condition is met. A common application is to ensure
that only valid information is entered at the keyboard.

REPEAT
INPUT "Enter a number from 1 to 3" num
UNTIL num>=1 AND num<=3

This will ensure that the program will not exit from the loop until you enter
an appropriate number.

To simulate this in Spectrum BASIC, you can use a FOR... NEXT... loop and
then interfere with the loop counter. The following loop

FOR i=0TO1
LET i = 0	 reset the loop counter to

force the loop to be repeated.
INPUT "Enter a number from 1 to 3" num
If num> =1 AND num <=3 THEN LET i=1

NEXT i

If the exit condition is met,
set the loop counter to its
exit value.

behaves in exactly the same way as the genuine REPEAT loop above.

Electron Programs
MONSTERZAP CORE

10
12
20
25
28

REM	 MONSTERZAP
REM	 CORE	 LISTING
REM	 Copyright	 Fred	 Harris
REM	 Electron	 edition:	 Richard	 Freeman

30 MODE	 6
35
40 REM	 Initialise
50 GOSUB	 1000
60

100 REM	 Draw	 scene
110 GOSUB	 3000
120
150 REM	 Main	 movement	 loop
155 REPEAT

FOR	 c=0	 TO	 39 O160 	 Main
170 PRINT	 TAB(c,r)	 " program"; 4	 9
180 FOR	 t=0	 TO	 delay :	 NEXT	 t

<185 LET	 key$=INKEY$(0)
="F"	 THEN GOSUB190 IF	 key$ = "f"	 OR	 key 5000

200 PRINT	 TAB(c,r)	 " "; <	 O9
210 NEXT	 c
220 UNTIL	 FALSE t
230
235 *FX12,0
240 STOP
250
990 REM	 Initialise

1000 LET	 -5rt
LET	 f=01010

1020 0 	 	 InitialiseLET	 delay=25 <
REM	 Turn	 off	 keyboard1060 auto	 repeat subroutine

1070 *FX11,0 <	 0
RETURN1080

1090
2990 REM	 Draw	 scene
3000 PRINT	 TAB(0,10)	 "	 HH	 HH HH HH HH	 HH
3010 PRINT	 TAB(0,11)	 "	 HH	 \	 /	 HH	 \	 / HH	 \	 / HH \	 /	 HH	 \	 /	 HH
3020 PRINT	 TAB(0,12)	 "	 HH	 0*0	 HH	 0*0 HH	 0*0 HH 0*0	 HH	 0*0	 HH
3030 PRINT	 TAB(0,13)	 "	 HH	 =&=	 HH	 =&= HH	 =&= HH =&=	 HH	 =&=	 HH
3410 PRINT	 TAB(0,18)	 "0	 SHOTS	 USED"
3420 RETURN
3430
4990
5000

REM	 Zap
FOR	 L=10	 TO	 13	 Opy Draw scene

5040 PRINT	 TAB(c,l) subroutine
5050
5080

NEXT	 l Zap subroutine
LET	 f=f+1 <	 0

5090 PRINT	 TAB(0,18);f
6000 IF	 f=40	 THEN	 STOP
6010 RETURN

Variables Used
c	 column
r	 row
t	 time
f	 fire
delay
I	 line

Controls the column in which the zapper is printed.
The row in which the zapper appears.
Counter for the delay loop.
The number of zaps used.
Controls the length of the delay.
Counter for the zap loop.

3990
4000
4010
:	 PAUSE
4020
4030
4040
4050
4060
4990
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5900
6000
6010
6020
6030
6040

REM	 Enter	 guess
INPUT	 g$

IF	 LEN	 g$<>4	 THEN	 PRINT AT 0,0
40:	 PRINT	 AT	 0,0;"

LET	 guess=guess+1
PRINT	 AT	 2+guess,6;g$
PRINT	 AT	 2+guess,15;
RETURN

REM	 Mark
FOR	 n=1	 TO	 4

IF	 g$(n)=m$(n)	 THEN	 PRINT	 "+";
NEXT	 n

PRINT	 AT	 2+guess,19;

"A	 FOUR	 DIGIT	 NUMBER"
GO	 TO	 4000

^

^

FOR	 n=1	 TO	 4
FOR	 m=1	 TO	 4

IF	 g$(n)=m$(m)	 AND
NEXT	 m

NEXT	 n

n<>m THEN PRINT

IF	 g$=m$	 THEN	 LET	 ok=1
RETURN

REM	 Result
FOR	 n=1	 TO	 15

BEEP	 .03,n
NEXT	 n

PRINT	 AT	 20,0;"GOT	 IT
RETURN

IN	 "; guess

Find the Numbers (Notes)
1. 'ok' is a flag. As long as ok is 0, the enter guess/mark guess loop is repeated.

But if the player gets the right answer, the mark routine sets ok to 1 (line
5090). This then allows exit from the loop at line 230.

2-4 The marking routine is a bit tricky.

First (2) we have to print a '+' for each correct digit in the correct place in
the guess.

Then (3) we have to search for correct digits in incorrect places and print a
'*' each time we find one. Notice 'ANDn <>m' (4) which makes sure that we
don't print a '*' where a correct digit is in its correct place.

SPECTRUM STRINGS
An odd feature of the Spectrum computer is that it does not distinguish between
string variables in upper case and lower case. So, to the Spectrum, B$ is the same
variable as b$. As a result, the Spectrum only has 26 string variables, A$, B$,
C$, Z$ (or, if you like, a$, b$, c$, z$).This restriction prevents you
from using meaningful string names (e.g. name$) as you can on the Electron. (There
is no apparent reason for this, except that the Spectrum developed out of the ZX81
computer which also had very limited string store facilities.)

Monsterzap Core (Notes)
1. LET r = 5 makes the zapper run across row 5 of your screen (i.e. six lines

down). Change this to position the zapper higher or lower than as written in
our listing.

2. LET delay = 25 controls the pause between zaps. To slow the program down,
set 'delay' to a larger value. To speed it up, try a smaller value. (The Electron
computer runs at a slower speed than the BBC Micro so you will need a smaller
value for 'delay' on the Electron than on the BBC.)

3. *F X11,0 controls one of the BBC and Electron micro's special effects. It
turns off the keyboard 'auto-repeat'. i.e. it re-sets the keyboard so that, on
pressing a key, only one character per key press appears on the screen even
when the key is held down. To cancel *FX11,0, use *FX12,0.

4. 'c' stands for column. In this loop, varying c moves the zapper across the
screen in row 5.

5. FOR t = 0 TO delay : NEXT t is the simplest way of producing a pause but
the length of delay cannot be predicted in advance. If you want to produce a
delay of exactly n seconds, you should use

TIME = 0
REPEAT
UNTIL TIME = n*100

6. INKEY$ (0) takes a keystroke from the keyboard — if there happens to be
one. Unlike 'INPUT', INKEY$ (0) does not wait for input. If no key is pressed,
INKEY$ (0) allows the program to move on to the next statement. The number
in brackets relates to the length of time the computer waits for a key press.

7. This line ensures that the zap routine (lines 5000 to 6010) is only used when
the F key is pressed.

8. See page 31 for the note on REPEAT loops.

9. This innocent semi-colon is very important on the BBC/Electron. Without it,
the print cursor jumps to the next line when the print line is finished. This
will either make your display scroll up the screen or leave an ugly flashing
cursor somewhere on your screen.

10. This prints a space, so acting as an electronic rubber. Any object overprinted
with this is wiped out and replaced by the background colour.

11. f counts the number of zaps that you have used. After each zap, the value of
f is increased by 1.

30
	

3

Suggestions for extending the program 60

See 'Monsterzap improved'. 70 REM Shuffle number
80 GO	 SUB	 2000
90

MONSTERZAP IMPROVED 100 LET	 m$ =j$(TO	 4)
110

10	 REM	 MONSTERZAP	 IMPROVED 120 REM	 Instructions
20	 REM	 Copyright	 Fred	 Harris 130 GO	 SUB	 3000
25	 REM	 Electron	 edition:	 Richard	 Freeman 140
30	 MODE	 1 150 REM	 Repeat	 until	 correct
35 160
40	 REM	 Initialise 165 4	 OLET	 ok = 0

REM	 Enter	 guess50	 GOSUB	 1000 170
60 180 GO	 SUB	 4000
70	 REM	 Instructions 190
80	 GOSUB	 2000 200 REM	 Mark	 guess
90 210 GO	 SUB	 5000

100	 REM	 Draw	 scene 220
110	 GOSUB	 3000 230 If	 ok=0	 THEN	 GO	 TO	 180
120 240
150	 REM	 Main	 movement	 loop 250 REM	 Result
155	 REPEAT 260 GO	 SUB	 6000
157	 COLOUR	 131 270
160	 FOR	 c = 0	 TO	 39 280 STOP

290170	 225;PRINT	 TAB(c,r)	 CHR$	 4	 s
180	 FOR	 t = 0	 TO	 100	 :	 NEXT	 t 300 REM	 ********	 END	 *********
185	 LET	 key$=INKEY$(0) 310
187	 *FX15,0 320 REM	 *****	 SUBROUTINES	 ***
190	 IF	 key$="f"	 OR	 key$ = "F"	 THEN	 GOSUB	 5000 330
200	 PRINT	 TAB(c,r)	 "	 "; 990 REM	 Initialise
210	 NEXT	 c 1000 LET	 guess=0
220	 UNTIL	 FALSE 1010 LET	 a$="1234567890"
230 1020 LET	 c$=a$
235	 *FX12,0 1030 CLS
240	 STOP 1040 RETURN
250 1050
990	 REM	 Initialise 1990 REM	 Shuffle

1000	 LET	 r=3 2000 LET	 j$=""
1010	 VDU	 23,224,255,231,231,231,255,231,255,255 : 2010 FOR	 k=1	 TO	 LEN	 c$
REM	 Part of	 monster- 4	 0 2020 LET	 l=LEN	 a$
1020	 VDU	 23,225,129,219,165,153,153,165,219,129 : 2030 LET	 n = INT	 (RND*L)+1

2040 LET	 j$=j$ +a$(n)REM	 Zapper 4 ^2

1030	 VDU	 23,226,36,0,36,255,0,0,0,0	 : 2050 LET	 a$ = a$	 (TO	 n-1)+a$(n+1TO)
REM	 Part	 of	 building <	 O 2060 NEXT	 k
1035	 VDU	 23,227,0,0,0,0,0,133,137,255	 : 2070 RETURN
REM	 Dead	 fragmentmonster 2080
1036	 VDU	 23,1,0;0;0;0; 2990 REM	 Instructions
1040	 COLOUR	 128 3000 PRINT	 "YOU	 MUST	 GUESS	 THE	 CODE	 BY"
1055	 REM	 Turn	 off	 keyboard	 auto	 repeat 3010 PRINT	 "ENTERING	 A	 FOUR	 DIGIT	 NUMBER"
1060	 *FX11,0 3020 PRINT	 "(0	 TO	 9)"
1070	 LET	 f=0 3030 PRINT	 :	 PRINT	 "I	 WILL	 MARK	 AS	 FOLLOWS:"
1080	 RETURN 3040 PRINT	 "*	 MEANS	 A	 NUMBER	 IN	 WRONG	 PLACE"
1090 3050 PRINT	 "+	 MEANS	 A	 NUMBER	 IN	 RIGHT	 PLACE"
1990	 REM	 Instructions 3060 PRINT	 AT	 15,0;"PRESS	 A	 KEY	 WHEN	 YOU	 ARE
2000	 PRINT	 TAB(15,3)	 "MONSTERZAP" 3070 PAUSE	 500
2010	 PRINT	 TAB(12,5)	 "PRESS	 F	 TO	 FIRE" 3080 CLS
2015	 PRINT	 TAB(13,7)	 "ONLY	 40	 SHOTS!" 3090 RETURN
2020	 PRINT	 TAB(4,30)	 "PRESS	 RETURN	 WHEN	 YOU	 ARE READY" 3100

READY."

2030 INPUT "" d ^<	 O
2060 CLS
2070 RETURN
2080
2990 REM Draw scene
3000 REM Sky
3005 COLOUR 131
3010 FOR n=0 TO 18
3020	 PRINT TAB(0,n) "
3030 NEXT n
3035
3050 REM Ground
3055 COLOUR 130
3060 FOR n=1 TO 3
3070	 PRINT TAB(0,n+18) "
3080	 NEXT n
3090
3095 REM Stars
3100 GCOL 0,1
3105 FOR n=1 TO 50
3110	 PLOT 69,RND(1200),550+RND(300)- 4	 0
3120 NEXT n
3125 COLOUR 1
3140
3160 REM Skyscrapers
3162 COLOUR 128
3164 COLOUR 2
3170 FOR n=0 TO 5
3180	 FOR L=14 TO 18
3190	 PRINT TAB(7*n+1,1) CHR$226 CHR$22

 NEXT l
3320	 NEXT n
3322
3325 REM Monsters
3327 COLOUR 131
3329 COLOUR 1
3340 FOR n=0 TO 4
3360	 PRINT TAB(7*n+3,16) " \ / "
3370	 PRINT TAB(7*n+3,17) " 0" CHR$224 "0"
3380	 PRINT TAB(7*n+3,18) " " CHR$224 " " CHR$224 " "
3390	 NEXT n
3400 COLOUR 0
3410 PRINT TAB(0,22) "0 SHOTS USED"
3420 RETURN
3430
4990 REM Fire
5000 FOR L=14 TO 18
5010	 SOUND 1,-10,53,1 <	
5020	 PRINT TAB(c,l) "*"
5030	 PRINT TAB(c,L) "X"
5040	 PRINT TAB(c,l) " "
5050	 NEXT L
5060 PRINT TAB(c,18) CHR$ 227
5080 LET f=f+1
5090 PRINT TAB(0,22); f
5100 IF f=40 THEN STOP
5110 RETURN

2a. Ensure that the entered number is a whole number. INT cuts any decimal
number down to the whole number below it. e.g. INT 2.3 is 2.

2b. Make sure that the whole number is between 1 and 20.
2c. Make sure that the card chosen has not already been paned-up.

	

3.	 Notice that lines 140 and 150 are also checking the input since we have to
ensure that the second card choice is not the same as the first.

4-7 Flags are used for sending information from one part of a program to another.
Here the flag 'match' is set to 0 before we check for a match. If a match is
found, 'match' is set to 1. 'match' is then used to direct the program to the
right choice of subroutine.

	

8.	 This is the line where the program checks for a match. Remember that the
computer doesn't care about the pictures.

The maths of this program may look rather complex but it's all designed to keep
the programming simple. The cards are in five rows and four columns:

COLUMN
0 1 2 3

1 2
	

4

5 6 7 8

9 1 11 12

13 14 15 16

17 18 19 20

Row

O

1
2

3

4

The rows are numbered 0 to 4 and use the variable 'm' in the program. The
columns are numbered 0 to 3 and use the variable 'n' in the program.

When the player picks a card (line 2000), lines 2040 and 2050 work out the
values of m and n.

Later, lines 3100 and 3110 work out where to print the card on the screen. (At
(3*m+5, 3*n+8) for the top half and at (3*m+6, 3*n+8) for the bottom half.)

And finally, if a pair of cards have to be wiped out and replaced with their
numbers, then this is done by lines 6040 and 6060 (replace the numbers) and by
lines 6050 and 6070 (wipe out the lower parts of the cards).

Suggestions for improvement
See Electron list.

FIND THE NUMBERS

10 REM FIND THE NUMBERS
20 REM © Fred Harris
30
40 REM Initialise
50 GO SUB 1000

•

Monsterzap Improved (Notes)
1-4 These lines create special characters (called User Defined Graphics *) using

the VDU 23 statement. Any character with an ASCII code between 224 and
255 can be re-programmed in this way. Here, we've chosen to use:

224 as	 ®	 (Part of a monster)

225 as	 4=E1	 (The zapper)

(Part of a building)

227 as	 (A dead monster fragment)

As an example, here is how we created the zapper:

(a)	 Draw it as blobs on an 8 x 8 grid.

Column numbers

128 64 32 16 8 4 2 1

•
(b) For each row, add up the column numbers of the blocked in columns.

128 + 32 +	 4 + 1	 =	 165
e.g. row 3

(c) Put all your row numbers into a VDU 23 statement:

Your row totals

VDU 23, 225, 129, 219, 165, 153, 153, 165, 219, 129

The character number which is to be
your new character.

5. Once you have defined a special character, you use it by preceding it with
CHR$. e.g. to print the zapper, write PRINT CHR$225;. (Note the semi-colon
again at the end of the line.)

* For more information on these, see BBC Microcomputer System User Guide pp 170-176 or
(Electron ref.)

1170	 NEXT n
1180 RETURN
1185
1190 REM Choose a card
2000 INPUT i
2010 LET i=INT i_®
2020 IF i <1 OR i>20 THEN BEEP 1,-10:GO TO 2000—N
2030 IF j$(i) = "—" THEN BEEP .1,-20: GO TO 2000--4
2040 LET m=INT ((i-1)/5)
2050 LET n=i-5*m-1

THEN LET x$ = "i": LET y$="oo": LET
THEN LET x$=" nL": LET y$="T": LET
THEN LET x$=" L": LET y$="Ml.": LET
THEN LET x$="/\": LET y$="\/": LET
THEN LET x$="..': LET y$="%.": LET
THEN LET x$ = "11111": LET y$ = "11M": LET
THEN LET x$="**": LET y$="**": LET
THEN LET x$="1:3110": LET y$="1011": LET
THEN LET x$="r7": LET y$="1611": LET
THEN LET x$="LIO": LET y$ = "rA": LET

3100 PRINT INK coLour;AT 3*m+5,3*n+8;x$
3110 PRINT INK coLour;AT 3*m+6,3*n+8;y$
3120 RETURN
3130
3990 REM Check for match
4000 LET match=0 	 ^5
4010 IF j$(firstguess) = j$(i) THEN LET match-1
4020 RETURN
4030
4990 REM Match action
5000 LET j$(firstguess)="—"
5010 LET j$(i)="—"
5020 LET score=score+1
5030 FOR z=12 TO 24
5040	 BEEP .03,z
5050	 NEXT z
5060 RETURN
5070
5990 REM No match action
6000 FOR z = 12 TO 0 STEP -1
6010	 BEEP .03,z
6020	 NEXT z
6030 BEEP 1,-20
6040 PRINT AT 3*m1+5,3*n1+8;firstguess;" "
6050 PRINT AT 3*m1+6,3*n1+8;"	 "
6060 PRINT AT 3*m+5,3*n+8;i;" "
6070 PRINT AT 3*m+6,3*n+8;"	 "
6080 RETURN

Match (One Player) — Notes
1. These are the labels for the cards before they are shuffled.

2. The input routine has to be fairly complex because it has to do three things:

226 as

Row 3 ►

2070 RETURN 	
2080
2990 REM Showcard
3000 IF j$(i)="A"
3010 IF j$(i)="B"
3020 IF j$(i)="C"
3030 IF j$(i)="D"
3040 IF j$(i)="E"
3050 IF j$(i)="F"
3060 IF j$(i) = "G"
3070 IF j$(i)="H"
3080 IF j$(1) = "I"
3090 IF j$(i)="J"

colour=l
colour=2
colour=4
colour=0
colour=3
colour=4
colour=1
colour=2
colour=0
colour=4

6 27

30 REM ONE PLAYER VERSION
40
45 REM Initialise
50 GO SUB 1000

100
105 REM Choose first card
110 GO SUB 2000
120 LET firstguess=i : LET n1=n : LET m1=m
124 REM Show card
125 GO SUB 3000
130
135 REM Choose second card
140 GO SUB 2000
150 IF i=firstguess THEN GO TO 140
154 REM Show card
155 GO SUB 3000
160
170 LET guess=guess+1
180
182 PAUSE 50
185 REM Check for match
190 GO SUB 4000
195 REM Match action 	
200 IF match=l THEN GO SUB 5000 	 ©
205 REM No match action
210 IF match = 0 THEN GO SUB 6000
220
230 PRINT AT 19,8;"TRIES:";guess
240 PRINT AT 20,8;"SCORE:";score
250 IF score<10 THEN GO TO 110
260 BEEP .5,0: BEEP .5,4: BEEP .5,7: BEEP 1,12
265
270 STOP
275 REM ******** END *********
276 REM **********************
277
278 REM ****** SUBROUTINES ****
290
990 REM Initialise routine

1000 BORDER 5
1010 LET guess =0
1015 LET score =0
1020 LET a$="AABBCCDDEEFFGGHHIIJJ"
1030 LET J$=""
1040
1050 REM Shuffle
1055 FOR k=1 TO 20
1060	 LET I=LEN a$
1080	 LET n=INT (RND*L)+1
1090	 LET j$=j$ +a$(n)
1100	 LET a$ = a$(TO n-1)+a$(n+1 TO)
1105	 NEXT k
1110
1120 REM Display backs
1130 FOR n =0 TO 4
1140	 FOR m =0 TO 3
1150	 PRINT AT 3*m+5,3*n+8;n+5*m+1
1160	 NEXT m

6. This is a gap of 40 spaces. A neater way of doing this is STRING$ (40, " ").

7. Lines 3105 to 3120 scatter 50 stars about the heavens.
PLOT 69 produces a dot on the screen when you are using a graphics mode.
The full statement must include the position of the dot on the screen in graphics
coordinates e.g. PLOT 69, 600, 500 prints a dot near the centre of the screen.

8a & The loop at lines 3180 to 3200 draws six skyscrapers, evenly spaced across
8b	 the screen; the loop at 3340 to 3390 then draws five monsters between the

buildings. This saves an awful lot of typing.

9. INPUT " " d halts the program until the player presses a key. Here 'd' is a
dummy variable i.e. the program doesn't use whatever value d has, but we
must have a variable in the INPUT statement. CLS (line 2060) clears the screen
after a key is pressed, removing the instructions before the skyscraper scene
is drawn.

10. This SOUND statement produces a firing noise each time the zap button is
pressed.

11. These three characters whiz down the screen from the zapper, giving the
appearance of a bomb dropping. Note that the last character to be printed is
a space. This makes the bomb appear to drop down the screen.

Forwards and backwards
The Monsterzap (Spectrum version) which you will have seen on television has a

zapper which moves left/right then right/left across the screen. This is harder to
implement in BBC BASIC but you can do it by changing lines 160 and 210 to

160 FOR I=-39TO39
210 NEXT I

and adding a new line

165 c = ABS I

(ABS gives the positive value of a number i.e. ABS 3 is 3 and ABS —3 is also 3.)

Colour
We have introduced colour into this game. In mode 1, we have four colours for
foreground (buildings, bombs, etc.) and four for background (sky, earth, water,
etc.). These are controlled by colour statements:

Foreground
	

background
Colour	 Graphics	 Text

	
Graphics	 Text

Black	 GCOL0,0	 COLOUR 0
	

GCOL0,128	 COLOUR 128
Red	 GCOL0,1	 COLOUR 1

	
GCOL0,129	 COLOUR 129

Yellow	 GCOL0,2	 COLOUR 2
	

GCOL0,130	 COLOUR 130
White	 GCOL0,3	 COLOUR 3

	
GCOL0,131	 COLOUR 131

26
	

7

So, you can see that in the program, we have used: Suggestions for improvement

1040 COLOUR 128 Black background (text) See Electron suggestions.

3005 COLOUR 131	 (Sky) White background (text)
3055 COLOUR 130	 (Ground) Yellow background (text) ANAGRAMS CORE
3100 GCOL0,1	 (Stars) Red foreground (graphics)
3162 COLOUR 128 Black background (text) 10	 REM	 ANAGRAMS

3164 COLOUR 2	 ^	 (Skyscrapers) Yellow foreground (text) 20	 REM	 ©	 Fred	 Harris
30

3327 COLOUR 130 Yellow background (text) 40	 INPUT	 a$
3329 COLOUR 1	 j	 (Monsters) Red foreground (text) 65

3400 COLOUR 0	 (Message) Black foreground (text) 80	 GO	 SUB	 2000	 :	 REM	 Shuffle	 word
100	 PRINT	 j$

g.

Suggestions for improvement
a. Arrange for a bomb to drop from the zapper towards the monsters.
b. Build in a time limit.
c. At the end of the game, arrange for the whole cycle to start again at a higher

speed.
d. Build in a penalty for hitting the buildings.
e. Or change line 190 to prevent firing when the zapper's over a building.
f. Allow the player to reverse the direction of the zapper. (e.g. Press RETURN

to reverse the direction of movement.) Then make the monsters fire back!
As the game progresses, lower the zapper's flight row. If the player doesn't
zap all the monsters by the time the zapper hits the buildings, he loses.

h. Make an explosion appear on the screen when a monster is hit.
i. Add a deep beep for hitting a wall.

QUACMAN
10 REM QUACMAN
20 REM Copyright Fred Harris
25 REM Electron version: Richard Freeman
30
35 MODE 5
36
40 REM Initialise and draw maze
50 GOSUB 1000
60
70 REM Make first hole
80 GOSUB 2000
90

100 REM Repeat until Quacman through maze
110
120	 REM Move Quacman
130	 GOSUB 3000
140	 IF c<18 THEN GOTO 130
150
155 PRINT TAB(18,r) "Q"
160 PRINT TAB(0,29) "Time taken=";timecount t	 O
170
180 END

8

130
190 STOP
200

1990 REM Shuffle word
2000 LET j$=""
2010 FOR k=1 TO LEN a$

	

2020	 LET I=LEN a$
2030 LET n=INT (RND*0+1

	

2040	 LET j$=j$+a$(n)

	

2050	 LET a$=a$(TO n-1)+a$(n+1 TO)
2060 NEXT k
2070 RETURN

ANAGRAMS 100

10 REM ANAGRAMS 100
20 REM © Fred Harris
30
40 INPUT a$
50 LET c$=a$
65
70 FOR m=1 TO 100

	

80	 GO SUB 2000 : REM Shuffle word

	

100	 PRINT j$

	

110	 LET a$=c$

	

120	 NEXT m
130
190 STOP
200

1990 REM Shuffle word
2000 LET j$=""
2010 FOR k = 1 to LEN c$

	

2020	 LET I=LEN a$

	

2030	 LET n=INT (RND*l)+1

	

2040	 LET j$=j$+a$(n)

	

2050	 LET a$=a$(TO n-1)+a$(n+1 TO)
2060 NEXT k
2070 RETURN

MATCH (ONE PLAYER)

10 REM MATCH
20 REM © Fred Harris

25

•	 11

Main
program

100 REM Repeat until done
110
120 REM Move racer
130 GO SUB 3000
140
	

IF c<31 THEN GOTO 130
150
155 PRINT AT h,31;"Q"
160 PRINT AT 21,0; FLASH 1;"TIME TAKEN=";timecount
170
180 STOP
190
200 REM ********* END *********
210
220 REM ***** SUBROUTINES
990 REM Initialise

1000 LET timecount=0
1010 LET r=0
1020 LET c=0
1030 FOR n=1 TO 20
1040 PRINT " 	
1050 NEXT n
1060 RETURN
1070
1990 REM Make a hole
2000 IF c>31 THEN RETURN
2010 LET h=INT (RND*20)
2020 PRINT AT h,c+1;" "
2030 RETURN
2040
2990 REM Move
3000 PRINT AT r,c;"Q"
3010 BEEP .02,20—ABS (r—h)
3020 LET timecount=timecount+1
3030 PRINT AT r,c; PAPER 6;" "
3040 IF INKEY$="8" AND r=h THEN LET c=c+2	 : GO SUB 2000
3050 IF INKEY$="7" THEN LET r=r-1
3060 IF INKEY$="6" THEN LET r=r+1
3070 IF r<0 THEN LET r=0
3080 IF r>20 THEN LET r=20
3090 RETURN

Quacman Improved (Notes)
1-3 These three lines provide a crude timecounter. Each time that the 'move

racer' subroutine is executed, 'timecount' is increased by 1. The final value
of 'timecount' is displayed when you get through the maze.

(Providing an accurate clock on the ZX Spectrum is very difficult and uses
advanced programming techniques.)

4. These two lines make sure that the Quacman doesn't jump out of the top or
bottom of the maze. The technique used here is a common trick in program-
ming:

IF <variable exceeds limit> THEN <variable = limit>

24

190
200
210
220
230
990

1000
1010
1020
1030
1040
1050
1055
1060
1070
1990
2000
2010
2020
2030
2040
2990
3000
3005
3010
3020
3030
3035
3040
3050
3060
3070
3080
3090

REM	 *********	 END	 *********

REM	 *****	 SUBROUTINES	 *****

Initialise

Hole
subroutine

subroutine

punching

REM	 Initialise
OLET	 timecount=0 4

LET	 r=0
LET	 c=0
FOR	 n=1	 TO	 20

"PRINT	 I	 I	 I	 I	 I	 I	 .I	 I	 I	 t
NEXT	 n

COLOUR	 129
RETURN

REM	 Make	 a	 hole
IF	 c>16	 THEN	 RETURN
LET	 h=RND(20)-1
PRINT	 TAB(c+1,h)	 ;

RETURN

REM	 Move
PRINT	 TAB(c,r)	 "Q"

:

Movement
subroutine

GOSUB	 2000
^

SOUND	 1,-10,70,1 4	 O
OFOR	 t=1	 TO	 25	 :	 NEXTt	 4

LET	 timecount = timecount+1	 t	 O
PRINT	 TAB(c,r)	 "	 "
LET	 key$ = INKEY$(5)-4	 O
IF	 key$="X"	 AND	 r=h	 THEN	 LET	 c=c+2
IF	 key$ = "/"	 THEN	 LET	 r=r+1
IF	 key$=":"	 THEN	 LET	 r=r-1
IF	 r<0	 THEN	 LET	 r=0	 14 0
IF	 r>20	 THEN	 LET	 r=20
RETURN

Quacman (Notes)
1-3 These three lines provide a crude timecounter for the program. Each time the

program repeats GOSUB 3000, one is added to timecount. The count at the
end of the run provides an estimate of your speed, but not a measure of real
time. If you would like a real timecounter in the program, you can use TIME:

(a) Change 1000 to 1000 TIME = 0. This sets the computer's timer to zero.
(Immediately after TIME = 0 is executed, TIME starts to increase again

at 100 units per second.)

(b) Remove line 3020.

(c) Replace line 160 with 160 PRINT TAB (0,29) "Time taken ="; TIME/
100"seconds". Note that TIME has to be divided by 100 to give the
time in seconds. (TIME is what is called a 'pseudo-variable' — see your
User Guide for more details.)

4. We've used a simple maze wall made from the ; character. If you would like a
more solid wall, you can create the special character • using the method
described in 'Monsterzap improved'. To make, say, CHR$224 into U, add

9

^

1025 VDU 23, 224, 255,255,255,255,255,255,255,255

and change line 1040 to

1040 PRINT TAB(0,n I " "CHR$224" "CHR$224" "
CHR$224" "CHR$224" "CHR$224" "CHR$224" "
CHR$224" "CHR$224" "CHR$224" "

5. This repeats GOSUB 3000 (the move routine) until the Quacman has got
through the maze. A more elegant method of writing these lines, if you know
how to use REPEAT, is

REPEAT
GOSUB 3000
UNTIL c>= 18

6. Make a beep. If you don't like the sound, experiment a bit until you find one
that you like. (The last two numbers in the SOUND statement are the ones
to alter.)

7. Another delay loop.

8. This makes the program wait for five hundredths of a second to see whether
a key is pressed.

9. Line 3040 moves our 'Q' two columns to the right (i.e. into the next empty
column), but only if the 'X' key is being pressed and the 'Q' is opposite the
hole.
We've used key 'X' for 'move right', key '/' for move down or ':' for move up.
You may prefer to use others.

10. These two lines make sure that the Quacman doesn't jump out of the top
or bottom of the maze. The technique used here is a common trick in pro-
gramming:

IF <variable exceeds limit> THEN <variable = limit>

11. Here we have used END to halt the program. STOP and END are almost
identical in that they both halt a program. Additionally STOP displays the
message 'STOP at line...' whereas END does not display a message.

Suggestions for improvement
a. Build in a time limit for getting through.
b. Delete line 3030 and see what happens. How could he leave (webbed) foot-

prints?
c. Make two holes appear in each wall.
d. Then randomly introduce obstacles that delay Quacman's progress.
e. Change the '0' to a user defined figure.
f. Give the Quacman an energy quota at the start of the game. Then make the

energy run down with passing time. Scatter energy capsules which, if eaten,
replace the energy. (If you don't know anything about arrays, you may find

40 NEXT i
45 PRINT "—"
50 STOP
60 DATA 255,0,255,0,255,0,255,0

would set up graphics 'a' as the special character.

To place the character into line 45, type as follows:

45 PRINT"	 (as usual)

Hold down SHIFT and press GRAPHICS. You should now get the
G cursor.
Press the letter a.

• Hold down SHIFT and press GRAPHICS. This will cancel graphics.
• Hold down SYMBOL SHIFT and press ".

3. These are strings of 32 spaces. They are used to print a strip right across the
screen of the current colour e.g. a strip of sky.

4. This loop plots 50 dots (stars) at random locations.

Suggestions for improvement
a. Arrange for a bomb to fire from the zapper towards the monsters.
b. Build in a time limit.
c. At the end of the game, arrange for the whole cycle to start again at a higher

speed.
d. Build in a penalty for hitting the buildings. Make an explosion appear on the

screen when a monster is hit. Add a deep beep for hitting a wall.
e. Allow the player to reverse the direction of the zapper. (e.g. Press ENTER to

reverse the direction of movement.) Then make the monsters fire back!

QUACMAN IMPROVED
(This program is an extension of the Quacman program shown in the television
series. It is basically the same program but with sound and colour added.)

10 QUACMAN IMPROVED
20 REM © Fred Harris
30
40 REM Initialise
50 GOSUB 1000
60
70 REM Make first hole
80 GO SUB 2000
90

10
	

23

g •
h.

These are:

Graphics 'a' as 0
Graphics 'b' as

Graphics 'c' as

Graphics 'd' as

As an example, here is how we created the zapper:

(a)	 Draw it as blobs on an 8 x 8 grid:

Column numbers

128 64 32 16 8 4 2	 1

(b) Number the columns, working right to left, as 1, 2, 4, 8, 16, 32, 64 and
128 as in the figure above.

(c) For each row, add up the column numbers of the blocks done in columns.

it difficult to scatter energy capsules. In that case put them all at a known
place e.g. at the tops and bottoms of the columns.)
Make something chase the Quacman.
Put in a monster or two.

ANAGRAMS 100

10 REM ANAGRAMS 100
20 REM Copyright Fred Harris
25 REM Electron version: Richard Freeman
30
40 INPUT a$
50 LET c$=a$
65
70 FOR m=1 TO 100

	

80	 GOSUB 2000 : REM Shuffle

	

100	 PRINT j$

	

110	 LET a$=c$

	

120	 NEXT m
130
140 STOP
150

1900 REM Shuffle
1980 REM ***** SUBROUTINE *****
2000 LET j$=""
2010 FOR k = 1 TO LEN c$

	

2020	 LET L=LEN a$

	

2030	 LET n=RND(L)

	

2040	 LET j$=j$+MID$(a$,n,1)

	

2050	 LET a$=LEFT$(a$,n-1)+RIGHT$(a$,l—n)

	

2060	 NEXT k
2070 RETURN

Row 3>

e.g. row 3	 128 + 32 +
	

4 + 1 = 165

(d) Put these row numbers into data statements in your program. (i.e. 8
numbers per special character.)

(e) Then make your program read the characters and poke them into a
graphics letter location. 'Poke' is to put a number into a memory location
of a computer. In this case we want to place the eight numbers 129,
219, 165, 153, 153, 165, 219 and 129 into the area of memory where
the computer stores user defined graphics. We don't need to know where
this is, the user statement (followed by the letter we have chosen for
our character) automatically uses the right area of memory. Here we
make graphics 'b' into the zapper:

e.g.
1 REM How to create a special character

10 FOR i=0TO7
20 READ A
30 POKE USR "a"+i,n

Anagrams 100 (Notes)

Anagrams
The single anagram program can be produced from ANAGRAMS 100 by omitting
lines 70, 110 and 120.

How the shuffle routine works
The routine takes letters out of a word and builds a new, shuffled, word out of
them. We use

a$	 Word to be shuffled
Length of a$

j$	 New, shuffled word (= "" at start)
n	 Position of letter to be picked out of a$.

N.B. Each time we pick ä letter out of a$, a$ becomes one letter shorter.

22
	 11

MID$ (a$,n,1)
LEFT$ (a$,n-1)
	

RIGHT$ (a$,1—n)
1

R A N O M

The routine is best understood by an example:

RANDOM
e.g. letter 4 (i.e. "D")

MID$ (a$,n,1)
picks out "D"

i.e. j$ = 'D'
LEFT$ (a$,n-1) (i.e. "RAN")

RIGHT$ (a$,l —n) (i.e. "OM")

a$ _ "RAN" + "OM"

Suggestions for improvement
a. Try turning this program into a two player version, in which the first player

chooses a word and the second has to guess it one letter at a time.
b. When solving crosswords, you usually know where some of the letters are.

How could this be incorporated into the program?
c. Usually you are told that your anagram solution will have, say, 3 words and

the number of letters in each word. Allow the user to enter both the original
anagram and the number of words in the solution and the number of letters
in each word. Then adjust the program so that all solutions have the correct
format for the solution.
(Hint: the shuffle routine will need to remove all 'spaces' from the shuffled

word.)
d. Improve the screen layout to present 10 anagrams at a time neatly placed on

the screen with a 'Press SPACE BAR for more' displayed at the bottom.

MATCH

10 REM MATCH
15 REM Electron version: Richard Freeman
20 REM Copyright Fred Harris
30 REM One player version
40

3000 REM Ground
3010 FOR n=0 TO 14
3020	 PRINT PAPER 5;"4	 ©3	 •"
3030	 NEXT n
3040
3050 REM Sky and stars
3060 FOR n=1 TO 3
3070	 PRINT PAPER 4;"•	 ©	 •"
3080	 NEXT n
3090
3100 FOR n=1 TO 50
3110	 PLOT INK 7;RND*250,RND*70+80 	
3120	 NEXT n
3130
3150
3160 REM Skyscraper
3170 FOR n=0 TO 4
3180	 FOR 1=10 TO 14
3190	 PRINT AT l,7*n+1; INK1;"ME"
3200	 NEXT l
3310
3320	 IF n=4 THEN GO TO 3410
3330
3340	 REM Monsters
3350	 INK 0: PAPER 8
3360	 PRINT AT 12,7*n+3;" \ / "
3370	 PRINT AT 13,7*n+3;"*"; INVERSE 1;"0"; INVERSE 0;
" • "; INVERSE 1; "0"; INVERSE 0; "*"
3380	 PRINT AT 14,7*n+3;"
3390	 NEXT n
3400 INK 2
3410 PRINT AT 18,0;"0 SHOTS USED"
3420 RETURN
3990 REM Fire
4990 REM Hit
5000 FOR 1=10 TO 13
5010	 BEEP .02,2*l
5020	 PRINT AT l,n;"*"
5030	 PRINT AT l,n;"	 "
5040	 PRINT AT l,n;" "
5050	 NEXT l
5060 PRINT AT 14,n; INK 8;" 7 "
5070 BEEP .04+.4*(ATTR (l,n)=41),0-20*(ATTR (l,n)=41)
5080 LET f=f+1
5090 PRINT AT 18,0;f
6000 IF f=40 THEN STOP
6010 RETURN
6020
9000 DATA 255,231,231,231,255,231,255,255
9010 DATA 129,219,165,153,153,165,129,36
9020 DATA 36,0,36,255,0,0,0,0
9210 DATA 0,0,0,0,0,133,137,255

Monsterzap Improved (Notes)
1 &2 These lines are used to set up the special characters used by this program.

Word to be shuffled

Select a letter at random

Pick the letter out with
MID$

Add the picked letter to j$

Take the left part of the old word

Take the right part of the
old word

Join the left and right parts

Repeat if a$ is not yet empty.

12
	

21

3.	 INKEY$ takes a single keystroke from the keyboard — if there happens to be	 42 MODE 1

one. Unlike 'INPUT', INKEY$ does not wait for input. If no key is pressed,	
43
45 REM Initialise

INKEY$ allows the program to move on to the next line. The total effect of	 50 GOSUB 1000
this line is to ensure that the fire routine (line 5000) is only brought into	 100

action when 'F' or 'f' is pressed. 	 105 REM Choose first card
107 REPEAT
110	 GOSUB 2000

Suggestions for extending the program	 120	 LET firstguess = i : LET n1=n : LET m1=m

See 'Monsterzap improved'.	 1 23
124	 REM Show card
125 GOSUB 3000
130

MONSTERZAP IMPROVED	 135 REM Choose second card
137 REPEAT	 4

10 REM MONSTERZAP IMPROVED	 140	 GOSUB 2000
12 REM VERSION 2	 150	 UNTIL i<>firstguess
20 REM © Fred Harris	 152
30	 154	 REM Show card
40 REM Initialise	 155	 GOSUB 3000
50 GO SUB 1000	 160
60	 170	 LET guess=guess+1
70 REM Instructions	 180
80 GO SUB 2000	 182	 FOR t=1 TO delay : NEXT t
90	 183

100 REM Draw scene	 185	 REM Check for match
110 GO SUB 3000	 190	 GOSUB 4000
120	 192	 I	
150 REM Main movement loop 	 200	 IF match = l THEN GOSUB 5000
160 FOR n=31 TO —31 STEP -1 	 202
170	 PRINT AT 0,n; "Z"	 205	 REM If cards do not match
180	 FOR t = 0 TO 5: NEXT t	 210	 IF match=0 THEN GOSUB 6000
190	 IF INKEY$ = "f" OR INKEY$="F" THEN GO SUB 5000	 220
200	 PRINT AT 0,n;" "	 225	 COLOUR 2
210	 NEXT n	 230	 PRINT TAB(14,19) "TRIES: "; guess
220 GO TO 160: REM repeat main loop	 240	 PRINT TAB(14,20) "SCORE: "; score
230	 245
240 STOP	 250	 UNTIL score=l0
250	 255
990 REM Initialise	 260 FOR z=1 TO 25

1000 FOR n=0 TO 31	 262	 SOUND 1,-10,7*z,3
1010	 READ g	 0	 264	 NEXT z
1020	 POKE USR "a"+n,g	 265
1030	 NEXT n	 270 END
1040 INK 0	 275 REM ********** END *********
1050 BORDER 5: PAPER 5	 276
1060	 278 REM ***** SUBROUTINES *****
1070 LET f=0	 290
1080 RETURN	 990 REM Initialise routine
1090	 1000 REM
1990 REM Instructions	 1010 LET guess=0
2000 PRINT AT 3,7;"	 MONSTERZAP"	 1015 LET score=0
2010 PRINT AT 5,7;"PRESS F TO FIRE";AT 6,7;"—ONLY 40 SHOTS!" 	 1020 LET a$="AABBCCDDEEFFGGHHIIJJ"'4 	
2050 PAUSE 100	 1030 LET j$=""
2060 CLS	 1035 LET delay=2500 	
2070 RETURN	 1040
2080	 1050 REM Shuffle
2990 REM Draw scene	 1055 FOR k=1 TO 20 E	 -o
20
	

13

Spectrum Programs
MONSTERZAP CORE

10 REMMONSTERZAP
12 REM CORE LISTING
20 REMO Fred Harri s
30
40 REMInitiaLise
50 GO SUB 1000
60

3

:	 COLOUR
:	 COLOUR
:	 COLOUR
:	 COLOUR
:	 COLOUR
:	 COLOUR
•	 COLOUR
:	 COLOUR
:	 COLOUR
:	 COLOUR

1
2
3
1
2
3
1
2
3
1

100 REM Draw scene
110 GO SUB 3000
120
1 50 REM Mai n movement loop

-31	 14 0
THEN GO SUB 5000

160 FOR c = 31 TO	 STEP
170	 PRINTATr,c;"*"
180	 FOR t=0 TO 5: NEXT t 4	 10
190	 I F INKEY$ = "f" OR INKEY$ = " F"
200	 PRINT AT	 ""	 "r,c;
210	 NEXTc
220 GO TO 160: REM repeat main loop
230
240 STOP

03

250
990REMInitialise

1000 LET r=0
1070 LETf=0
1080 RETURN
1090
2990 REM Draw scene
3000 PRINT AT 10,0;" HH	 HH
3010 PRINT AT 11,0;" HH \ 	 / HH \
3020 PRINT AT 12,0;" HH 0 n 0 HH 0 n
3030 PRINT AT 13,0;" HH	 -n-	 HH	 ---
3410 PRINT AT 18,0; "0 SHOTS USED"
3420 RETURN

HH
/ HH \
0 HH 0

HH
n

HH
/ HH \
0 HH 0

HH

HH"
/ HH "

n 0 HH "
-r--	 HH"

4990 REM Fire

Main
program

Initialise
subroutine

_ Draw scene
subroutine

5000 FOR 1=10 70 13
5040	 PRINT AT l,c;" "
5050	 NEXT
5080 LET f=f+1
5090 PRINT AT 18,0;f
6000 I F f=40 THEN STOP
6010 RETURN 	
6020

Zap
subroutine

Monsterzap Core (notes)
1. FOR t = 0 TO 5 : NEXT t is the simplest way of inserting a delay into a

program. For a longer delay, increase 5; for a shorter delay, decrease it.

2. 'c' stands for column. In this loop, varying c moves the zapper back and forth
across the top line of the screen.

1060	 LET I=LEN a$
1080	 LET n=RND(l)
1090	 LET j$=j$+MID$(a$,n,1)
1100	 LET a$=LEFT$(a$,n-1)+RIGHT$(a$,L-n)
1105	 NEXT k
1110
1120 REM Display backs
1130 FOR n=0 TO 4
1140	 FOR m=0 TO 3
1150	 PRINT TAB(3*n+11,3*m+5); n+5*m+1
1160	 NEXT m
1170	 NEXT n
1180 RETURN
1185
1990 REM Choose a card
2000 COLOUR 3
2002 REPEAT
2005	 REPEAT
2007	 PRINT TAB(0,22)
2010	 INPUT TAB(0,22) i t	 ^0
2015	 i=INT i •	 30
2020	 UNTIL i>=1 AND i<=20 — l

2022	 c$=MID$(j$,i,1) : REM Find chosen card
2023	 UNTIL c$<>"-"-4	
2025 PRINT TAB(0,22) "
2040 LET m=INT((i-1)/5)
2050 LET n=i-5*m-1
2070 RETURN
2080
2990 REM Showcard
3000 IF c$ = "A" THEN LET X$=" 	 " : LET y$="--"
3010 IF c$="B" THEN LET X$ = "/\" : LET y$="\/"
3020 IF c$="C" THEN LET X$="E1" : LET y$ = "E7"
3030 IF c$="D" THEN LET X$="ii" : LET y$ = "ii"
3040 IF c$="E" THEN LET X$ = "BB" : LET y$ = "BB"
3050 IF c$="F" THEN LET X$ = "XX" : LET y$="XX"
3060 IF c$="G" THEN LET X$="**" : LET y$="**"
3070 IF c$="H" THEN LET X$ = ")(" : LET y$ = ")("
3080 IF c$ = "I" THEN LET X$="==" : LET y$="=="
3090 IF c$="J" THEN LET X$="00" : LET y$="00"
3095 PRINT TAB(3*n+11,3*m+5) x$
3100 PRINT TAB(3*n+11,3*m+6) y$
3110 RETURN
3120	 0
3990 REM Check for match
4000 LET match = 0 <	 0
4010 IF MID$(j$,firstguess,1)=MID$(j$,i,1) THEN LET match =1
4020 RETURN
4030
4990 REM If cards do match
5000 LET j$ = LEFT$(j$,firstguess-1)+"_"+RIGHT$(j$,LEN j$-
firstguess)
5010 LET j$=LEFT$(j$,i-1)+"_2'+RIGHT$(j$,LEN j$-i)
5020 LET score=score+1
5030 FOR z = 53 TO 63
5040	 SOUND 1,-10,z*5,1
5050	 NEXT z
5060 RETURN

•

3-5 The marking routine is a bit tricky.

First (3) we have to print a '+' for each correct digit in the correct place in
the guess.

Then (4) we have to search for correct digits in incorrect places and print a
'*' each time we find one. Notice 'ANDn <>m' (5) which makes sure that we
don't print a '*' where a correct digit is in its correct place.

Suggested improvements
a. Make it possible to vary the difficulty of the game by making the number of

digits in the number to be guessed a variable.
b. Produce a simple version for children with four coloured objects instead of

digits.

c. Add a timer.
d. Improve the screen layout to include instructions at the bottom of the screen,

a heading and a more interesting display of the guesses and responses.

5070
5990 REM If cards do not match
6000 FOR z=15 TO 1 STEP-1
6010 SOUND 1,-10,75,1
6020
	

NEXT
6025 COLOUR 2
6040 PRINT TAB(3*n1+11,3*m1+5); ftrstguess
6050 PRINT TAB(3*n1+11,3*m1+6) " "
6060 PRINT TAB(3*n+11,3*m+5); i " "
6070 PRINT TAB(3*n+11,3*m+6) " "
6080 RETURN

Match (Notes)
(For a note on the maths of this program, see the notes on the Spectrum version.)

	

1.	 'delay' controls how long the cards are displayed for after an incorrect guess.
Increase 'delay' if you want them displayed for a longer period of time.

	

2.	 These are the labels for the cards before they are shuffled.

	

3.	 The input routine has to be fairly complex because it has to do four things:

3a. Wipe out any previous input display.

3b. Ensure that only whole numbers are entered. There are many ways of
doing this. The one that we have used here is

INPUT i	 Take in a number

i = I NT i	 Change it to a whole number

3c. Make sure that the whole number is between 1 and 20.
3d. c$ is the name we give to the letter that stands for the chosen card —

that is letter number i in j$. Lines 5000 to 5010 replace each paired
letter with '_". This stops you choosing a card that is already matched.

	

4.	 Notice also, that the loop at lines 137-150 (4) is also checking the input since
we have to check that the second card chosen is not the same as the first card.

5-7 Flags are used for sending information from one part of a program to another.
Here the flag 'match' is set to 0 before we check for a match. If a match is
found, 'match' is set to 1. 'match' is then used to direct the program to the
right choice of subroutine.

8. This is the line where the program checks for a match by comparing the two
letters which correspond to the two MID$. Remember that the computer
doesn't care about the pictures.

9. Lines 1050-1105 are the shuffle routine from ANAGRAMS 100.

10. The player enters the number of the card that he wants to turn over (1 to 20).
Line 2022 finds which letter that card is by selecting it from j$.

Suggestions for improvement
a. Develop user defined characters for the cards.
b. How could this be changed to a two player version, or even to a version for

younger children (remember you will have to simplify the INPUT routine).

18
	

15

FIND THE NUMBERS

10 REM FIND THE NUMBERS
20 REM Copyright Fred Harris
25 REM Electron version: Richard Freeman
30
35 MODE 6
40 REM Initialise
50 GOSUB 1000
60
70 REM Shuffle number
80 GOSUB 2000
90

100 LET m$=LEFT$(j$,4)
110
120 REM Instructions
130 GOSUB 3000
140

	

150	 REPEAT 	
160

	

165	 LET ok -0 0	 O
	170	 REM Enter guess

	

180	 GOSUB 4000
	190	 <	 O

	

200	 REM Mark guess

	

210	 GOSUB 5000
220

	

230	 UNTIL ok<>0 	
240
250 REM Result
260 GOSUB 6000
270
280 END
290
300 REM ********** END *********
310
320 REM ***** SUBROUTINES *****
330
990 REM Initialise

1000 LET guess =0
1010 LET a$="1234567890"
1020 LET c$=a$
1030 CLS
1040 RETURN
1050
1990 REM Shuffle
2000 LET j$=""
2010 FOR k=1 TO LEN c$

	

2020	 LET l=LEN a$

	

2030	 LET n=RND(l)

	

2040	 LET j$=j$ +MID$(a$,n,1)

	

2050	 LET a$=LEFT$(a$,n-1)+RIGHT$(a$,l-n-1)

	

2060	 NEXT k
2070 RETURN
2080
2990 REM Instructions
3000 PRINT "YOU MUST GUESS THE CODE BY"
3010 PRINT "ENTERING A FOUR DIGIT NUMBER"

3020 PRINT "(0 TO 9)"
3030 PRINT:PRINT "I WILL MARK AS FOLLOWS:"
3040 PRINT "* MEANS A NUMBER IN WRONG PLACE"
3050 PRINT "+ MEANS A NUMBER IN RIGHT PLACE"
3060 PRINT TAB(0,15) "PRESS A KEY WHEN YOU ARE READY."
3070 d$= INKEY$(1000)
3080 CLS
3090 RETURN
3100
3990 REM Enter guess
4000 REPEAT
4005	 INPUT TAB(6,3+guess) g$
4010	 IF LEN g$<>4 THEN PRINT TAB(6,3+guess) "A FOUR DIGIT
NUMBER":FOR t=1 TO 1000:NEXT t
4012	 PRINT TAB(0,3+guess) "
4015	 UNTIL LEN g$=4
4020 LET guess=guess+1
4030 PRINT TAB(6,2+guess) g$
4040 PRINT TAB(15,2+guess);
4050 RETURN
4060	 4
4990 REM Mark
5000 FOR n=1 TO 4	 1/
5010	 IF MID$(g$,n,1)=MID$(m$,n,1) THEN PRINT "+";
5020	 NEXT n
5030 PRINT TAB(19, 2+guess);
5040 FOR n=1 TO 4
5050	 FOR m=1 TO 4
5060	 IF MID$(g$,n,1)=MID$(m$,m,1) AND n<>m THEN PRINT "*";
5070	 NEXT m
5080	 NEXT n 	
5090 IF g$=m$ THEN LET ok=1
5100 RETURN
5110
5900 REM Result
6000 FOR n=1 TO 15
6010	 SOUND 1,-10,5*n,1
6020	 NEXT n
6030 PRINT TAB(0,20) "GOT IT IN ";guess
6040 RETURN

Find the Numbers (Notes)
1. Here 'ok' is a flag. As long as ok is 0, the GUESS and MARK GUESS loop

(lines 150 to 230) is repeated. But, if the player gets the right answer, the
mark routine sets ok to 1 (line 5090). This then allows exit from the repeat
loop at line 230 so bringing the result into action (line 260).

2. This repeat loop is designed to ensure that the player enters a four character
guess. You can't escape from it until your input has the right length. It is an
example of a very common input method of the form:

REPEAT
Input
UNTIL <input satisfies program criteria>

	Page 1
	Page 2

