
 1

Laser Genius by Ocean

Introduction.. 5
Assembler Loading Instructions.. 5
Loading the Assembler ... 5

1. The Screen Editor.. 7
1.1 Key Usage ... 7

a) Amstrad .. 7
b) Spectrum .. 7

1.2 Key Usage in Brief... 8
Editor Key Usage Summary... 8

1.3 Syntax Checking and Error Messages ... 9
1.3.1 Legal Assembly Language Statements.. 9
1.3.2 Expressions in Assembly Language Statements...10

1.4 The Screen Buffer and Text Scrolling ...11
1.5 Text Entry and Multiple Statement Lines...11

2. Editor Immediate Commands.. 14
2.0 The Available Commands..14
2.1 Screen Commands..14
2.2 Text Editing Commands ..15
2.3 The Search and Replace Facility ...15
2.4 The Calculator ...16
2.5 Printer Commands..16
2.6 Tape. Disc and Microdrive Commands ..17
2.7 Assembly Commands...19

2.7.1 Selective Assembly ..19
2.8 Symbol Table Commands..20
2.9 Miscellaneous Commands ...22
2.10 The Housekeeping Facility ..23

3. The Symbol Table.. 25
3.1 Saving and Loading Symbol Tables...25
4.1 Using the Assembler...27

4.1.1 Assembler Errors ..27
4.1.2 A Note on Assembler Strings...28

4.2 Assembler Directives..28
4.2.1 Output Directing...28
4.2.2 Listing ...28
4.2.2 The Tape/Disc/Microdrive Facility ...30
4.2.4 Miscellaneous ...31
4.2.2 Looping ..32

4.3 Assembler Pseudo-Ops ...32
4.3.1 Initialising Memory ..32
4.3.2 Allocating Space ...33
4.3.3 Assigning Values to Symbols ...33
4.3.4 Conditional Assembly...33
4.3.5 The Location Counter and Storing Object Code ..34
4.3.5 Macro Definition and Use..35

5. The Hash Extensions ... 37
Glossary of Terms ...37

 2

5.1 Phoenix Expressions...37
5.1.1 Assignment..38
5.1.2 Arrays ..38
5.1.3 Functions ...38
5.1.4 Pointers ...39

5.2 The Hash Extension Pseudo-Ops ..40
5.2.1 Declaring Variables..40
5.2.2 Compiling Expressions ...40
5.2.3 Defining Functions...41

An Example of a Function Definition..42
5.2.4 Conditional Statements..42

5.2.5 Loop Constructs ..43
5.2.6 Setting the Execution Stack...43
5.2.7 The #LIB pseudo-op ...44

6. Example Programs .. 45
6.1 Example 1 - The Sieve of Eratosthenes ..45
6.2 Example 2 - Drawing Ellipses..47

7. Spectrum File Transfer Utility ... 59

Appendix A - Z80 Instruction Codes ... 60

Appendix B - Immmiediate Error Messages And Their Meanings....................... 71

Appendix C - Assembler Error Messages and Their Meanings............................. 73
a) Warnings...73
b) Errors ..74
c) Fatal Errors...74

Appendix D - Arithmetic Expressions and Operator Precedence 76
a) The Difference Between Signed and Unsigned Arithmetic ..76
b) Note on Expression Evaluation..76
c) Operator Precedence ..76

The Meaning Of Operator Precedence..76
d) Operator Descriptions ..77

Unary operators: ...77
Binary Operators:..77

Addition and Multiplication...77
Shifts and Rotates..78
Relational Operators..78
Logical Operators ...78
Bitwise Logical Operators...78
Suffix Operators:...79

e) Parenthesis, Arrays and Functions...79

Appendix E - The Memory Map ... 80

Appendix F - Assembler Command Summary .. 81

Appendix G - Spectrum 128K Assembler: Differences and Additions................. 84
Introduction ..84
Tape Map ...84
1. Operating Instructions ...84
2. Differences..84
3. Additional Commands..85

 3

4. Assembly ...85

Z80 Monitor And Analyser ... 86
Introduction ..86
Tape Map ...86

1. Operating Instructions .. 87
1.1 Relocating ...87
1.2 Low and High Monitor/Analysers..88

1.2.1 The ‘Low’ Version...88
1.2.2 The ‘High’ Version ..88

1.3 Extension ROMs (Amstrad Only)..88
1.4 Tape and Disc Buffer (Amstrad only) ...89

2. Screen Layout... 91
2.1 Spectrum and Amstrad 40 Column Mode...91

2.1.1 Amstrad...91
2.1.2 Spectrum ...92
2.1.3. 80 Column Mode - Amstrad only...93

3. The Editor... 94

4. Entering Commands.. 95
4.1 Command Syntax ..95

5. Monitor Commands .. 96
5.1 Amstrad Specific Commands..98
5.2 Spectrum Specific Commands ..99
5.3 Virtual Screens...100

5.3.1 AMSTRAD only ...101

6. Disassembler Commands ... 103

7. Debug Commands ... 106
7.1 Single Stepping ...106

7.1.1 Single Stepping and in line parameters..106
7.1.2 Using Single Stepping with the Amstrad...106
7.1.3 Using Single Stepping with the Spectrum ...107
7.1.4 The Alternate Registers and Single Stepping ...107

7.2 Slow Running..107
7.3 Slow Running Commands..107
7.4 Trace..108
7.5 Breakpoints...108

7.5.1 Fast Execution ..108
7.5.2 Slow Running..109
7.5.3 Breakpoint Types...109
7.5.4 Encountering Breakpoints..109

7.6 Breakpoint Commands ..110

8. Monitor Error Messages.. 111

9. The Analyser .. 113
9.0.1 Introducing Analyser Forth..113
9.0.2 Using Analyser Forth...113
9.0.3 Defining Words..115
9.1 Analyser Commands ..118

 4

9.2 Analyser Errors ...119
9.3 Analyser Forth Reserved Words...120

9.3.1 Defined Words ..120
Register Values ..120
Memory Addressing ...120
Arithmetic Operations...121
Logic Operators ..121
Relational Operators..122
Other Operators ..122
Stack Operations...123
Other Words...124

9.4 Useful Definitions..125

10. Examples... 128
Example 1 - demonstrates SlOW and fast execution ..128
Example 2 - Using the Analyser to update the screen...129
Example 3 - Debugging ...130
Example 4 - Stack Checker..132
Example 5 - Virtual Screen Usage ..135

Appendix A – Key Summary... 137

Appendix B – Monitor Command Summary .. 138

Appendix C – Spectrum 128K Extensions... 144
Introduction ..144
Tape Map ...144
1. Opertating Instructions..144
2. Screen Layout...144
3. 128K Monitor Command Syntax ...144
4. 128K Analyser – Additional Words ..146

 5

Introduction
Z80 Assemblers and Monitors have been available, not surprisingly, since the introduction of the Z80
microprocessor itself. Looking back to the original software available from ZILOG it is clear that the nature
of these programs has changed very little. There is no doubt that the software currently available for home
micros has come a long way but there have been no radical departures from the standard format and the
ZILOG programs are still ‘state of the art’.

What we have tried to do with the Genius system is to incorporate as much as possible from previous
designs and go a few steps further. The assembler now supports a small high level language called
Phoenix which we hope will speed up program development and add clarity to listings without incurring
the speed and size penalties associated with some high level compiled languages. The traditional text and
line number based editors have also come under scrutiny and we believe that the hybrid utilised by Genius
makes the best use of both worlds. As well as conditional assembly, a mode of assembly has been added
which allows selective assembly of a source library based on the current symbol table.

Perhaps the best opportunity for innovation, however, lies in machine code debugging. The title ‘Monitor’
suggests that the program being debugged is continuously ‘Monitored’ by the controlling software. In
practice it is the user who does all the work and most of us have spent many a midnight hour single
stepping a program by hand to find when and how a particular bit is set in a particular location. Often the
instruction being single stepped will take microseconds to execute whilst the operator takes a million times
longer to acquaint themselves with the outcome. The Analyser part of Genius takes care of these problems
with a speed and vigilance that human intervention cannot match.

When you first open this manual and look at the number of commands and options available, you may be
tempted to think that it’s going to be a system for very advanced users only. In fact you will find that it
does all the things that conventional assemblers and monitors do in more or less the same way and so if
you’ve already used one, you should have no difficulty with the conventional parts. There are a lot of extra
facilities to become acquainted with and so you won’t know the system backwards in one week, but you
should find that none of the extended features of the system are any more difficult to master than the
basic features of any other assembler or monitor. You don’t have to be a Genius to use it. In fact the
‘Genius’ system was not named with the programmers who wrote it in mind, nor with the program itself in
mind, but with the user in mind. It’s our belief that by automating all the drudgery that’s been put up with
for years, users will have time to use just a little bit more of their own creative Genius. Those of us who
have had an opportunity to use this system have developed a reluctance to return to conventional means.
We hope you will share our view.

Assembler Loading Instructions
TAPE: On Tape 1 of the Genius package you will find the following files:

Side A:

GENASM A BASIC loader/relocator program.
REL A binary file used by the BASIC loader/relocator.
ASM Three binary files comprising the assembler itself.
HASH
TOOLS

Side B:

TRANS Transfer loader (Spectrum only).
TRANSBIN Transfer utility (Spectrum only).
SIEVE.ASM Sieve of Eratosthenes example program in assembly language.
SIEVE.PHX Sieve of Eratosthenes example program in Phoenix.
ELLIPSE.ASM Ellipse drawing program in assembly language.
ELLIPSE.PHX Ellipse drawing program in Phoenix.
MPAFNCS.PHX Multiple precision arithmetic routines in Phoenix.

For AMSTRAD disc users all the above files are on Side A of the disc.

Loading the Assembler
Before loading on the AMSTRAD, reset your machine by pressing CTRL-SHIFT-ESC together.

 6

To load the assembler just type RUN “GENASM” (on the AMSTRAD) or LOAD “GENASM” (on the
Spectrum, the loader program will auto-run).

GENASM is a BASIC loader/relocator and will give you a menu of options to choose from. You can load the
assembler with, optionally, the assembler tool-kit (see 2. “Editor Immediate Commands”), and the Hash
Extensions (see 6. “The Hash Extensions”). There is also a facility for Spectrum users to produce a
microdrive version of the assembler.

The loader program also allows you to set the ink and paper colours to the values you want to use within
the assembler, and alter the value of the line-feed character sent to the printer during listing (setting this to
zero can cure problems of double line spacing encountered with some printers).

 7

1. The Screen Editor
The editor divides the screen into blocks of text which will be referred to as sentences. Any text typed onto
the screen will be entered into the current sentence. When the screen is clear, each screen line represents
a single (blank) sentence. Sentences may, however, be longer than one screen line - if you type text over
the end of a screen line you will see that a new line is inserted beneath the current line, a ‘hyphen’
character is printed at the end of the current line showing you that this sentence is continued on the next
line, and the character you have just typed actually appears at the start of the newly inserted line.

1.1 Key Usage

a) Amstrad
The cursor may be positioned at any location on the screen by using the cursor keys. Text already on the
screen may be altered by moving the cursor to the required position and editing the characters there.

It is possible to move the cursor to the start (end) of the current screen line by holding the control (CTRL)
key down and then pressing the left (right) arrow key. Similarly, the cursor may be moved to the start
(end) of the current sentence by pressing the control and up (down) arrow keys simultaneously.

The editor can function in either overwrite (the default) or insert modes. These are switched (or toggled)
from one to the other by pressing CTRL and TAB together. Notice that in insert mode the current cursor
character and all those to its right in the current sentence are shifted right one position to make room for
the new one. Similarly, the CLR and DEL keys, which delete respectively the current cursor character and
the one to its left, shift all the text to the right of the deleted character (in the current sentence) to fill the
space left by this character.

The current sentence may be deleted by pressing SHIFT and DEL together. The part of the screen below
the current sentence will be scrolled up to fill the gap left by the deleted sentence. It is also possible to
delete to the end of the current sentence from the current cursor position by typing CTRL and DEL
together. Any screen lines made blank by doing this will be filled by the screen scrolling up as for deleting
a whole sentence. A new (blank) sentence can be inserted above the current sentence by typing SHIFT
and TAB together. The part of the screen consisting of the current sentence and everything below it will be
scrolled down to make room for the new sentence.

Pressing the TAB key moves the cursor to the next tab stop. These are set at every eighth character
position. Typing SHIFT right arrow also performs a TAB. Typing SHIFT left arrow performs a “back tab”,
moving the cursor to the previous tab stop.

The screen can be scrolled up or down by half the screen height automatically by typing SHIFT down
arrow (to scroll down) of SHIFT up arrow (to scroll up). In both cases the cursor will be left in the same,
relative, screen position.

Typing CTRL “L” will clear the screen and CAPS LOCK will toggle the upper lower case mode as in
Amstrad BASIC.

b) Spectrum
The cursor may be positioned at any position on the screen by using the usual cursor keys (CAPS SHIFT
and one of the numeric keys 5,6,7,8). Text already on the screen may be altered by moving the cursor to
the required position and typing over the text already there.

The editor can function in either overwrite (the default) or insert modes. These are switched (or toggled)
from one to the other by pressing CAPS SHIFT and “1” together. Notice that in insert mode the current
cursor character and all those to its right in the current sentence are shifted right one position to make
room for the new character. CAPS SHIFT “0” deletes the character to the left of the cursor and SYMBOL
SHIFT “0” deletes the character under the cursor. Both of these actions will shift all the text to the right of
the deleted character (in the current sentence) to fill the space left by the deleted character.

Note that typing SYMBOL SHIFT “W” will insert a single space at the current cursor position (leaving the
cursor at this position) even when you are in overwrite mode. This can be useful for occasional insertions
in overwrite mode.

The current sentence may be deleted by pressing CAPS SHIFT and “3” together. The part of the screen
below the current sentence will be scrolled up to fill the gap left by the deleted sentence. It is also possible

 8

to delete to the end of the current sentence from the cursor position by typing SYMBOL SHIFT “F”. Any
screen lines made blank by doing this will be filled by the screen scrolling up as for deleting a whole
sentence. A new (blank) sentence can be inserted above the current sentence by typing SYMBOL SHIFT
“I”. The part of the screen consisting of the current sentence and everything below it will be scrolled down
to make room for the new sentence.

Pressing SYMBOL SHIFT “E” moves the cursor to the next tab stop. These are set at every eighth character
position. Typing SYMBOL SHIFT “Q” performs a “back tab”, moving the cursor to the previous tab stop.

Typing SYMBOL SHIFT “G” will clear the screen.

Typing CAPS SHIFT “2” will toggle the upper/lower case mode.

On the Spectrum some keys have been programmed to give characters which they normally give only in
extended mode. These are given below.

SYMBOL SHIFT “Y” gives “[”
SYMBOL SHIFT “U” gives “]”
SYMBOL SHIFT “S” gives “|”
SYMBOL SHIFT “D” gives “\”

Also, the combination SYMBOL SHIFT “A” is used as an escape key. To stop any operation you can press
this combination of keys. The mnemonic “ESC” or the term “escape key” will be used throughout to refer
to these keys.

1.2 Key Usage in Brief

Editor Key Usage Summary
Note:

AMSTRAD: In the following, “up”, “right”, “down” and “left” denote the cursor or arrow keys. SHIFT and
CTRL stand for the shift and control keys respectively; these keys should be held down with the other key
indicated to give the required effect.

SPECTRUM: In the following CS and SS represent the CAPS SHIFT and SYMBOL SHIFT keys respectively;
these keys should be held down with the other key indicated to give the required effect. “Up”, “Right”,
“Down” and “Left” denote the usual Spectrum cursor keys (CAPS SHIFT 5 to 8).

AMSTRAD SPECTRUM EFFECT

Up CS “7” Move the cursor to the previous line.
Down CS “6” Move the cursor to the next line.
Left CS “5” Move the cursor left one character.
Right CS “8” Move the cursor right one character.

SHIFT Up Scroll the screen up by half the screen height, leaving the cursor in the

same screen position.
SHIFT Down Scroll the screen down by half the screen height, leaving the cursor in the

same screen position.
SHIFT Left CS “4” Move the cursor to the first tab stop before the current position.
SHIFT
Right

SS “E” Move the cursor to the next tab stop. The stops are set at every eighth
character position.

CTRL Up Move the cursor to the start of the current sentence.
CTRL Down Move the cursor to the end of the current sentence.
CTRL Left Move the cursor to the start of the current line.
CTRL Right Move the cursor to the end of the current line.

CLR SS “0” Delete the current cursor character.

DEL CS “0” Delete the character to the left of the cursor.
SHIFT DEL CS “3” Delete the current sentence.
CTRL DEL SS “F” Delete to the end of the current sentence

TAB SS “E” Move the cursor to the next tab stop. Tab stops are set at every eighth

 9

character position.
SHIFT TAB SS “I” Insert a new (blank) sentence at the current cursor line.

COPY SS “W” Insert a single space at the current cursor position, leaving the cursor at

this position.

CTRL “L” SS “G” Clear the screen.
CTRL TAB CS “1” Toggles the insert/overwrite mode.
CAPS LOCK CS “2” Toggles the caps lock.
CTRL CAPS
LOCK

 Toggles the shift lock.

 SS “Y” Gives”[”
 SS “U” Gives”]”
 SS “S” Gives “|”
 SS “D” Gives “\”
 SS “A” Escape key.

1.3 Syntax Checking and Error Messages
The editor expects each sentence to contain either a legal Z80 assembly language instruction or an editor
immediate command (see 2. Editor Immediate Commands). It checks to see if this is so whenever the
cursor is moved off a sentence. That is, the editor syntax-checks a sentence whenever the cursor is moved
off that sentence. If the sentence contains a legal instruction no action is taken. If, however, the line
contains a syntactical error, an error message will be inserted, as a new sentence, above the illegal one.
The cursor will be placed at the position in the sentence where the syntax-checker detected the error.

You will find that you cannot type on or delete characters from the error message. You can delete the error
message by using SHIFT up arrow, but if you do so the sentence referred to by the message will also go.
Similarly, if you delete the bad-syntax line, the error message will be removed. It is not possible to insert a
new sentence between the error message and the illegal sentence.

An example error message:

** illegal second operand **
ld a,de

The cursor would be placed just after the “e” in the line “ld a,de”. See Appendix B: “Immediate Error
Messages” for a list of possible messages and their meanings.

Once an error message has been given for a sentence (and the sentence not altered since) the cursor may
be moved on and off that sentence without hindrance (i.e. it will not be placed at the error position again).
Once the sentence is altered, however, it again becomes liable to syntax-checking. If the error is corrected,
the error message will be removed when the sentence is next checked.

1.3.1 Legal Assembly Language Statements
A legal Z80 assembly language statement has the following form:

 [<label> :] [<Z80 instruction>] [; <comment text>]

All of the three fields making up the instruction are optional. The content of each field is described below.

<label> This may contain upper and lower case alphabetic characters, the digits 0
to 9, and the characters “$”, “.”, “_”. It may not begin with a digit. Labels
may be up to 240 characters long.

The assembler distinguishes between upper and lower case in labels. So
“SYNCH1”, “Synch1”, “synch1” would all represent different names.

A label must be followed by a colon. (Spaces are allowed between the
end of the label and the colon).

<Z80 instruction> This can be a standard Z80 opcode, all of which are listed in Appendix A;
a standard pseudo-op, which are described in 4.3; a Genius assembler
directive, as given in 4.2.

 10

<comment text>

This is any string of characters. It must be separated from the rest of the
line by a semicolon.

1.3.2 Expressions in Assembly Language Statements
Arithmetic expressions can be used anywhere, in an assembly language statement, that a number is
required. An expression may contain any of the following:

<decimal number> A string of decimal digits (0 to 9) e.g. 175.

<binary number> A string of binary digits (0, 1) immediately preceded by a “%” character,
e.g. %11010.

<octal number> A string of octal digits (0 to 7) immediately preceded be an “@”
character, e.g. @7041.

<hexadecimal
number>

A string of hexadecimal digits (0 to 9, and A to F in upper or lower case)
immediately preceded by a “#” character.

OR A string of hexadecimal digits, starting with a (decimal) digit and
terminated by an “H” (upper case). For a number such as #FF = 255
you would need to write 0FFH to satisfy the requirement that the number
start with a decimal digit.

e. g. #FFFF=65535=-1=OFFFFH
 #3412=3412H

NOTE: Number constants must be in the range O to 65535 or the syntax checker will not accept them.
You can use the unary minus operator to enter negative integers, i.e. you can write -1 instead of
65535 or #FFFF.

<labels and names> Strings of up to 240 characters in length. They may contain any
alphabetic characters (upper or lower case), decimal digits, the characters
“$”, “_”. A name should not begin with a digit.

<character constant> A single character enclosed in double quotes, e.g. “A”. This will be treated
as the ASCII code of the character given. Character constants can also be
used to generate control codes, e.g. “\13” will represent the number 13 (a
carriage return). This can be used to emphasise the fact that this is
intended as a character. (See also “4.1.2 A Note on Assembler Strings”).

<location counter, $> The character “$” represents the current location (program counter). This
will be equal to the start address of the instruction being assembled, e.g.

 ORG #1000
 LD HL,$

would produce

 LD HL,#1000

in object code.

<storage counter, . > The character “.” represents the current storage location of the object
code being produced, i.e. where it is being put in memory.

<arithmetic
operators>

One of the symbols below.

Binary operators:

 * multiply
 / divide
 % mod
 + add
 - subtract
 > greater than
 < less than
 >= greater than or equal to
 <= less than or equal to
 ?= equal to
 != not equal to

 11

 << shift left
 >> shift right
 @< rotate left
 @> rotate right
 & bit wise AND
 | bit wise OR
 ^ bit wise exclusive OR
 && logical AND
 || logical OR

Unary operators:

 - unary minus
 ! logical NOT
 ^ bit wise complement
 * “contents of”

Parenthesis:

 [
] square brackets are used to indicate parenthesis

NOTE: An operator precedence technique is used for evaluating expressions. For a description of this and
of all the available operators, see Appendix D.

1.4 The Screen Buffer and Text Scrolling
The editor keeps a copy in memory of the text on the screen. In fact, the physical (monitor) screen may be
considered as a window on this screen buffer. Thus if a line of text is scrolled off the top of the screen by
the cursor moving off the bottom, if the screen is made to scroll down (by moving the cursor off the top of
the screen) this line will be re-printed on the top line. Similarly, lines scrolled off the bottom of the screen
may be recovered by scrolling the screen up. (When the top of the screen buffer is reached the cursor will
move to the left hand side of the screen, if it is not already there, and the screen will scroll down no
further. When the bottom of the buffer is reached, the cursor will move to the left hand side of the screen
but the editor will then extend the buffer by one (blank) sentence).

Of course, the screen buffer is not of unlimited size and some text which is not on the physical screen may
be deleted to make room for other operations (for instance, new text being added to the screen by typing).
Only as much room as is required for the operation will be generated in this way, so only as much text as
will release sufficient space will be deleted. The text at the top of the buffer will be the first to go; and if
this will not generate sufficient room, the text at the bottom of the screen copy will be removed. If it is not
possible to generate enough space by this method, a message to this effect will be displayed. There are
two possible such messages:

(i) message: ** no space **
** (press ESC) **

This message will appear if there is no more space in the screen buffer for the text being typed in from the
keyboard. After it has appeared and you have pressed the escape key, you will find that you can no longer
type on the screen. You can only use keys which delete screen text and thus release some space for the
screen buffer (including CTRL “L” which clears the screen and its buffer). After doing this you can use the
“SET SPACE” command to give yourself more room for the screen buffer and tokenised text (see 2. Editor
Immediate Commands).

(ii) message: ** clear screen? (Y/N) **

This message implies that insufficient space is available for the current operation to be performed.
Answering Y (for “yes”) will cause the screen to be cleared, releasing some space and the operation will be
attempted again. Answering N (for “no”) will abort the operation. You can give yourself more space to
work with by using the “SET SPACE” command (see 2. Editor Immediate Commands).

1.5 Text Entry and Multiple Statement Lines
The source text of assembly language programs is stored by the editor/assembler in tokenised form, i.e.
the key words recognised by the assembler are stored in memory as single byte integers. This is done to
reduce the size of the source file and to speed the assembly process.

 12

The contents of the source file are ordered by line number. That is, the source text is stored in blocks
(called “paragraphs”), each of which starts with a (decimal) integer in the range 0 to 65534. Each block
or paragraph may, however, contain more than one assembly language statement.

To enter a paragraph containing just one assembly language statement just type the number of the
paragraph and the instruction in one sentence and press ENTER. For example:

10 ld a,”p” <ENTER>

Note that the cursor is moved to the start of the next screen line.

To continue this paragraph just type the next instruction and press ENTER again. So now you will have
typed something like:

10 ld a,”p” <ENTER>
call #BB5A <ENTER>

When the ENTER key is pressed the current sentence is first syntax-checked. If the sentence is found to be
illegal then an error message is produced (see 1.3 Syntax Checking and Error Messages). If the sentence is
alright then it is either an editor immediate command, in which case it is obeyed (see 2. “Editor
Immediate Commands”), or it is a Z80 assembly language instruction. In this latter case the statement will
be tokenised and the editor will try to enter it into the current source file. Now starting at the current
sentence and moving

up the screen copy, the editor searches for a sentence that holds a legal assembly language statement and
has a line number. This search is terminated if the editor comes across a sentence which does not hold a
legal assembly language statement before it finds a line-numbered sentence. In this case the message:

** no line number **
** (press ESC) **

will be issued, and the current sentence will not be inserted into the source file.

If the editor finds a line-numbered sentence then it searches down the screen copy from this sentence
(tokenising the text as it goes) until it finds a sentence which is not a legal Z80 assembly language
instruction. This it treats as a delimiter and inserts all the sentences from the line-numbered one to this
one into the source file under the line number that it found. These sentences will include the current
sentence. For example, typing the following on a blank screen:

call #BB5A

will give the “ ** no line number **” message. While if the line above the current one has:

10 ld a,”p”

now typing

call #BB5A

gives a single paragraph containing both the statements

10 ld a,”P”

and

call #BB5A

A paragraph may be continued in this way until its tokenised version becomes more than 1K in length. If
this happens, the message:

** line too long **
** (press ESC) **

will be displayed and the line will not be entered into the source file. It is, however, intended that each
paragraph contain a fairly small number of statements, say up to 20. This allows each paragraph to be
visible in its entirety on the monitor screen and keeps the amount of workspace required by the LIST
command (see 2. Editor Immediate Commands) down.

To see the paragraph which you have entered, type (on a blank sentence):

list 10

You will see the two statements above listed as:

10 LD A,”p”
CALL #BB5A

 13

See “2. Editor Immediate Commands” for further description of the “LIST” command.

Note also that if a paragraph of statements is half on the physical screen and half off, the editor will not
remove those statements which are off the screen when it needs to generate space. (see “1.4 The Screen
Buffer and Screen Scrolling”). The off-screen statements can always be scrolled back onto the screen for
editing. If the ENTER key is pressed when the cursor is on one of the on-screen sentences the editor will
still be able to find the line number for that sentence, even though it is “off-screen “.

 14

2. Editor Immediate Commands
As described in “1.1 Text Entry and Multiple Statement Lines”, the syntax checker expects each sentence
to contain either a legal Z80 assembly language statement or an editor immediate command. In the latter
case the command will be obeyed and the sentence will not be stored in the text filer The commands
available are given below.

Glossary of Terms

[...] Items within square brackets are optional.

<line range> A range of line numbers in the form nl-n2 (n1 must be less than n2).

e.g. 10-20 means line numbers from 10 to 20 inclusive.
 -30 means all lines from the start of the file to line 30
inclusive.
 50- means all lines from line 50 to the end of the file
inclusive.

A line range is always optional and defaults to 0-65534, i.e. the whole of
the source text.

<string> A string of characters. This will always be enclosed in quotes.

<expression> An arithmetic expression consisting of:
 integer constants
 symbol names
 allowable operators

See Appendix D: “Arithmetic Expressions and Operator Precedence”.

<parameter list> A list of strings (enclosed in quotes) and expressions separated by
commas.

<base> One of the integers: 2 (for binary)
 8 (for octal)
 10 (for decimal)
 16 (for hexadecimal)

<decimal integer> Usually this should be in the range 0 to 65535.

<microdrive number> An integer in the range 1 to 8.

2.0 The Available Commands

2.1 Screen Commands
CLS Clear the visible screen and the editor’s copy in memory.

Amstrad only:

MODE <0, 1 or 2>

Change screen mode (as in Amstrad BASIC).

SET SPACE

<decimal integer>

The editor has a fixed amount of (memory) space in which to store both
the screen buffer and the tokenised source text. The command SET
SPACE is used to set the size of the editor’s space. It may be used at any
time. The integer parameter is the amount of space you want to give the
editor; it must be at least 10241 bytes. When the editor is first entered it
will have 10K of space available to it.

If you reduce the amount of space available to the editor it may be
necessary for the editor to delete the current source file; before doing this
it will ask:

 ** delete the whole file? (Y/N) **

Answering N will cause the command to be abandoned. Similarly, if you
wish to increase the amount of space available, it may be necessary to
delete the current symbol table. The editor will ask your permission before

 15

so doing.

See also Appendix E : “The Memory Map”.

2.2 Text Editing Commands
LIST [<line range>] List the given line (paragraph) range of the source to the screen. Listing

can be temporarily halted by pressing any key. Pressing ESC while listing
is halted will terminate the command, pressing any other key will restart
it.

Note that the listing can only be halted after a whole paragraph has been
displayed on the screen. This prevents you from listing a portion of a
paragraph re-entering it and thus losing some text inadvertently.

LLIST [<line range>] As LIST but output is sent to the printer. LLIST can be halted at any time
during printing, not just at paragraph boundaries.

DELETE [<line
range>]

Remove those paragraphs with numbers within the given range from the
source text. If the line range given represents the whole of the source text
the message “** delete the whole file? (Y/N) **” will be displayed.
Answering Y (for “yes”) will cause the source text to be deleted, answering
N (for “no”) will abandon the command.

Note that single paragraphs can be deleted from the source file by typing
the line number on a blank sentence and pressing ENTER, e.g. Line 10
may be deleted by typing:

 10 <ENTER>

COPY <line range 1>,
<line range 2>

Replace line range 2 with line range 1, retaining line range 1. The source
text will be renumbered from one in steps of one.

MOVE <line range 1>,
<line range 2>

Replace line range 2 with line range 1, removing line range 1. The source
will be renumbered from 1 in steps of 1.

RENUM [<new start>
[,<step> [,<old
start>]]]

Renumber the source text paragraphs from <old start>, in steps of size
<step>, starting at <new start>. If this is not possible, i.e. the step size
is so large that the new last line number will be greater than 65534, or
<new start> is less than <old start>, the source line numbers will be
unaltered.

All the parameters of RENUM are optional. Both <new start> and
<step> default to 10. <old start> defaults to 0, so that the whole file
will be renumbered e.g. RENUM <ENTER> is equivalent to RENUM
10,10,0 <ENTER>.

2.3 The Search and Replace Facility
FIND “<string>”
[,<line range>]

Searches for occurrences of <string> in the source text within the
specified line range. When FIND reaches an occurrence of the search
string it lists the whole of the paragraph which contains it to the screen,
and places the cursor at the start of the found string. Pressing any key will
cause FIND to look through the rest of the listed paragraph for further
occurrences, again placing the cursor at the start of the string if it finds
one, and waiting for a key press.

When the end of the paragraph is reached (i.e. there are no more
instances of the search string in the line) FIND again waits for a key to be
pressed. This time pressing escape will terminate the search, while
pressing any other key makes FIND continue its search with the next
paragraph.

A single space in the search string can be used to represent any number
of spaces in the source file. The search routine differentiates between
upper and lower case. Opcode mnemonics and Z80 operands should be
entered in upper case. The search string cannot contain the double quote

 16

character.

REPLACE “<string
l>”, “<string 2>”
[,<line range>]

Searches for occurrences of <string l> in the source text (within the
specified line range) and gives you the opportunity to replace each
instance found with <string 2>. REPLACE does this by first finding an
occurrence of <string 1> and listing the paragraph containing it to the
screen (just as in FIND). Then the message

 ** replace? (Y/N) **

will be inserted above the statement in which <string l> has been found
and the cursor placed at the start of the string. Answering “Y” (for “yes”)
will cause the string to be exchanged for <string 2>. Answering “N” (for
“no”) will make REPLACE search the rest of the listed paragraph for
further occurrences of <string 1>.

Replacement as described above can create syntax errors in the altered
statement. Should this occur, the usual syntax error message for the error
will be inserted above the bad statement, REPLACE will move onto the
next statement, and the new version of the line will NOT be inserted into
the source text. (The old version will remain).

REPLACE can be halted at the end of a paragraph by pressing escape (as
for FIND).

NEXT This command may be used to continue a FIND or REPLACE which has
been halted by pressing the ESC key. The search is continued from the
paragraph after the last one listed. NEXT will continue in FIND or
REPLACE mode according to which was the last executed. The search
and replace strings will be the last ones specified. and the line range
bounding the search will be that given in the last FIND or REPLACE
command.

2.4 The Calculator
PRINT <expression>
[,<base>]

The PR INT command gives you a calculator facility from within the
editor. It prints the value of the expression given in the base specified (if
no base is specified then the default value set by the BASE command is
used). PRINT uses twos complement signed arithmetic to evaluate the
expression. The result is given in the range -32768 to 32767.

NOTE: Expressions are evaluated using an operator precedence
technique, for instance:

 2+3*4

is evaluated as:

 2+(3*4)

For a full description of the available operators and their precedences see
Appendix D.

UPRINT <expression>
[,<base>]

As for PRINT but uses unsigned arithmetic and gives the result in the
range 0 to 65535.

NOTE: Both the commands PRINT and UPRINT have access to the assembler symbol table (see 3. The
Symbol Table and 4. The Assembler) and can be used to find the values of any of these symbols
or expressions involving them.

BASE <2, 8, 10 or
16>

Set the default base used by PRINT and UPRINT. This will be 16,
hexadecimal, if the BASE command has not been used. Only the integers
2, 8. 10 and 16 will be accepted as legal bases.

2.5 Printer Commands
FORM Issue a form feed to the printer.

WIDTH [<decimal Set the width of the printer page in characters. This defaults to 65536.

 17

integer>]

LENGTH [<decimal
integer>]

Set the length, in lines, of the printer page. This defaults to 65536. A
form feed is issued after the given number of lines have been printed.

MARGIN I<decimal
integer>]

This sets a left hand margin so that when a line reaches the width of the
page it is continued on the next line but starting at the margin position
given.

2.6 Tape. Disc and Microdrive Commands
All the commands in this section require a filename as one of the parameters. This is represented in the
text by “<string>”. The commands refer to tape, disc and microdrive. Input and output devices are
selected by the commands given at the end of this section or by filename specifiers included in the
filename string. These take the following form:

a) Amstrad Users

“A:filename” Use drive A
“B:filename” Use drive B

b) Spectrum Users

“1:filename” Use microdrive number 1
“2:filename” Use microdrive number 2
 …
 …
“8:filename” Use microdrive number 8

NOTE: Using the above file specifiers overrides the default input/output selections but does not affect
them. There should be no space between the drive specifying letter/number and the colon.

For Spectrum users: Should an error occur during tape or microdrive operations, control will return
to BASIC. To re-enter the assembler, type:

RANDOMIZE USR 65533

All tape/microdrive commands can be halted by pressing the SPACE key.

The following commands refer to tape, disc and microdrive.

SAVE [“<string>”
[,<line range>]]

Saves the given range of source text to a file named <string> on tape,
disc or microdrive.

If no file name is given then the name used will be that specified in the
last LOAD command executed.

If the LOAD command has not been used then the message:

 ** no file loaded **
 ** (press ESC) **

will be issued.

For Amstrad users: Should an error occur during saving an error message
of the form:

 ** tape/disc message **
 drive A: discfull
 ** (press ESC) **

will be issued. The message will be deleted when you press the escape
key.

LOAD “<string>”
[,<line range>]

Attempts to load a file named <string> from tape/disc or microdrive and
replaces the text in <line range> with the contents of this file. If there is
insufficient space for this an error message will be issued. You can allot
more space for source text using the SET SPACE command if necessary.

If the line range is not given then it defaults (as usual) to 0-65534, thus
causing the whole of the current text file to be replaced.

If the line range given does not represent the whole of the current source

 18

text, then after loading the source will be renumbered from 1 in steps of 1
to prevent inconsistencies in the line numbering.

VERIFY “<string>”
[,<line range>]

Attempts to verify a source file named <string> or a section of a source
file named <string> against the source file in memory or part of the
source file in memory. If verification fails then an error message is
displayed:

 ** verification failed **
 ** (press esc) **

CODE “<string>”,
<expression l>,
<expression2>

Saves a block of memory to tape/disc or microdrive as a binary file named
<string>. Expression 1 is the start address of the block, expression 2 is
the end address. These expressions may contain label references from the
last piece of code assembled. Thus if you have a label “start” at the start
of your code, and a label “finish” at the end, you can write:

 CODE “file”, start, finish

to save it. However, please note that if you have used the PUT assembler
directive (see 4. The Assembler) then you will have to adjust the label
values to point to the position of the generated code in memory, rather
than the execution position of the code.

LOAD ASCII
“<string>”
[,<options>
[,<decimal integer>lj

NOTE: This is a tool-kit command: it is only available if you loaded the
tool-kit with the assembler/editor.

This command is provided to allow you to load source files which are not
in the editor’s tokenised form. In particular it allows you to convert source
files written for other assemblers to Genius files.

The command attempts to open a file named <string> for input from
tape, disc or microdrive. The <options> parameter is a decimal integer
telling LOAD ASCII the format of the file to be loaded. This integer is
constructed as follows: Add together the values describing your source file
from those below:

1 File is “pure ASCII”, i.e. do not add 1 into your options if your file
contains line numbers in hex/ binary. Note that if you select this
option LOAD ASCII will treat #1A, the CP/M end of file marker,
as the end of file.

2. Add 2 to your options if the lines in your file are terminated by a
carriage return (ASCII 13) and a line feed. Otherwise LOAD ASCII
assumes that each line is terminated by a carriage return alone.

4 Add 4 to your option integer if your file does not have colons after
its labels. This will allow-the syntax checker to accept such
statements.

8 Add 8 to your options to make LOAD ASCII skip the first four
bytes of the input file.

Example option integers:

7 will load pure ASCII files with lines terminated by both a carriage
return and line feed, such as those produced by ARNOR’s
MAXAM for the Amstrad.

8 will load files with hex line numbers and lines terminated by just
a carriage return such as those produced by HI-SOFT’s DEVPAC
for the Amstrad.

4 will load files with hex line numbers and lines terminated by first
a carriage return. Colons will not be expected after labels. This
option will cover files produced by the Picturesque assembler for
the Spectrum. The file being loaded is listed to the screen as it
loads. If any of the statements found in the file is illegal then the
usual message for the error will be issued and loading will be
halted. Pressing ESC will terminate LOAD ASCII. Pressing any

 19

other key will cause a semicolon and the message “** bad line
**” to be printed at the start of the incorrect statement and it will
then be entered as a comment. Loading will then continue. The
“** bad line **” message allows you to find such lines later using
the FIND command.

CAT Display the current tape/disc/microdrive directory in alphabetical order
(not Spectrum tape).

The following commands are available only to disc/microdrive users. For more information AMSTRAD
users should refer to the disc operating manual.

ERA “<string>” Erase files whose names match <string> (Amstrad users may incorporate
wildcards. see your AMSTRAD disc operating manual).

TAPE.IN Direct the firmware to take input from tape.

TAPE.OUT Direct the firmware to write to tape.

TAPE Direct the firmware to read from, and write to, tape.

The following commands apply to Amstrad disc only:

ERA <string l>”,
”<string 2>”

Rename a file named <string2>, <string1>. Neither string may contain
wildcards (Amstrad disc only).

DRIVE A Set the current drive to “A”.

DRIVE B Set the current drive to “B”.

DISC.IN Direct the firmware to take input from disc.

DISC.OUT Direct the firmware to write to disc.

DISC Direct the firmware to read from, and write to, disc.

The following commands refer to Spectrum microdrive only:

MDRV [<microdrive
number>]

Direct the firmware to read from, and write to, the selected microdrive. If
no microdrive number is specified, input/output defaults to drive 1.

MDRV.IN Direct the firmware to take input from microdrive only.

MDRV.OUT Direct the firmware to send output to microdrive only.

2.7 Assembly Commands
ASSEM Command to assemble the current source text. Assembly is controlled by

“assembler directives” embedded in the source text. See “4. The
Assembler” for a full description of this command.

The current symbol table is cleared (i.e. made empty) before assembly
starts.

ASSEMC This command is the same as ASSEM except that the assembler’s symbol
table is not cleared before assembly starts. This allows you to continue a
previous assembly or to “link” pre-written and assembled routines into the
current source. (See “2.8 Symbol Table Commands”, especially EXPORT,
IMPORT, REDUCE, CLEAR).

ASSEML This command assembles selected routines from a subroutine library. The
procedure for using ASSEML and the circumstances under which it should
be used are now described in detail.

NOTE: This is a tool-kit command: it is only available if you loaded the
tool-kit with the assembler/editor.

2.7.1 Selective Assembly
Most assembly language programmers find that when starting a new project there are a lot of routines
required that have been written for use with previous programs. It is quite common to build up a
subroutine library and then just pull out those routines that are required. Sometimes the subroutines are

 20

split into distinct chunks but more often than not there is a hierarchical structure to the program which
requires a painstaking and time consuming search through the code followed by an equally painful session
with the editor. This facility is provided to automate the whole process. The graphics library used by Laser
BASIC will shortly be available for use with the Genius system.

ASSEML selectively assembles the current source file according to the contents of the current symbol
table. It is probably best to illustrate its use by example. Suppose you are embarking on a project that uses
the GTBL, PTBL, INVV and MIRV Laser BASIC routines.

The procedure is as follows:

(i) Load the main program containing the references to GTBL. PTBL etc.

(ii) Assemble in the normal way using ASSEM or ASSEMC. In fact pass 2 should throw up symbol
undefined errors for each of the labels GTBL, PTBL etc. so it’s worth putting a +report off
directive at the start of your file before assembling (see Section 4.2).

(iii) Load the subroutine library source file in the normal way.

(iv) Assemble using ASSEML (assemble library). Note that the library file should contain a valid ORG
and that object code output is controlled by the usual directives. The library file may contain
+includes and any other directives required (see 4. The Assembler).

(v) When assembly is complete an object file will have been produced in the normal way but the
symbol table will contain only those labels that were passed as “missing” by the main program.
This symbol table should be saved off using the EXPORT command (see Section 2.8).

(vi) The main program (containing references to the library) can now be assembled by loading the
symbol table (which was EXPORTed after the ASSEML), unless it is already in memory, and then
assembling with the ASSEMC command. Any further assemblies of the main program will not
require steps (i) to (v) but instead, only the symbol table need be loaded.

NOTE:

(i) After assembly, the main program cannot be executed unless the object code produced by the
assembly of the library routines is resident in memory.

(ii) If you wish the two assembled files to run contiguously then you will need to know the end
address of one of the assembled files. It is easier to configure the final program so that the library
code precedes the main program code. If you wish to do this then type: PRINT $ after assembling
the library routines and ORG your main program to this value. This will mean that you can edit
and assemble the main program without re-assembling the library.

(iii) Assembling a subroutine library may take a considerable number of passes. In fact the number of
passes required depends on the nesting depth of backward references in the subroutine library.
For this reason subroutine libraries should be designed to minimise backward references. If your
subroutine library does not contain any *include directives then assembly can take place entirely
in memory which will greatly speed up the process. Tape users assembling files which contain
+include directives will need to rewind the tape after each pass so particular note should be
taken of these points. The end of each pass is indicated in the normal way.

(iv) This process can be used to check if a program contains any redundant code. Most programs
have only one entry point and so if the main program is merely a call to this entry point and the
program itself is treated as a subroutine library then the assembled code will be at variance with a
straight assembly if any redundant code were contained within it.

2.8 Symbol Table Commands
The following commands allow you to view and alter the contents of the symbol table produced by the last
assembly of source code. For more information on the symbol table and how it is produced see “4. The
Assembler” and “3. The Symbol Table”.

TABLE [<decimal
integer>]

Lists the current symbol table in ASCII order (i.e. ordered lexically by
ASCII code of the characters in the names). Each symbol has an entry of
the form:

 <symbol> 5FFE

The number on the right of the entry is the value of the symbol in

 21

hexadecimal. Only those symbols which the programmer has attempted
to define in the source code will be listed by TABLE i.e. symbols which
are referenced in the source but not defined anywhere will not appear (see
the command MISSING). Symbols which the programmer has
unsuccessfully attempted to define will appear with an asterisk before
their value. For instance, if the statement:

 name3:EQU namel / name2

appears and “name2” has value zero, then name3 will be undefined and
will be listed by TABLE as:

 name3 *0000

The integer which may be given as part of the TABLE command sets the
width of the field in which each symbol is printed. If a symbol is longer
than the field given it will be truncated to fit. The field width defaults to
16. TABLE will list as many symbols on one line as will fit with the
current field.

LTABLE [<decimal
integer>]

As for TABLE but sending it’s output to the printer.

TABLEN [<decimal
integer>]

Lists the current symbol table in numerical order (i.e. ordered by the
values of the symbols in the table).

The optional integer sets the field width in which each symbol will be
listed (see TABLE).

LTABLEN [<decimal
integer>]

As for TABLEN but sending its output to the printer.

MISSING [<decimal
integer>]

MISSING lists to the screen all those symbols which the programmer has
referenced but not defined in the last piece of source code assembled.
The optional integer sets the field width in which each symbol will be
listed (see TABLE).

LMISSING [<decimal
integer>]

As for MISSING but sending its output to the printer.

UNUSED [<decimal
integer>]

UNUSED lists to the screen all those symbols which the programmer
defined (or attempted to define) in the last piece of source code
assembled, but did not actually reference. The optional integer sets the
field width in which each symbol will be listed (see TABLE).

LUNUSED [<decimal
integer>]

As for UNUSED but sending its output to the printer.

CLEAR Clears the current symbol table, i.e. makes the current symbol table
“empty”.

NOTE: The following three commands are tool-kit commands: they will not be available unless you
loaded the tool-kit with the assembler.

EXPORT “<string>” Saves the current symbol table to a tape, disc or microdrive file named
<string>. This can be reloaded using the IMPORT command. For more
information and possible uses of this command see “3. The Symbol
Table”.

IMPORT “<string>” Merges a previously EXPORTed symbol table with the current table. If in
doing this a name is multiply defined a message of the form:

 ** multiple name definition: <name> **

will be issued and the current value of the symbol will remain in the
table. For more information on this command, see “3. The Symbol
Table”.

REDUCE This command is used in conjunction with the CARGO assembler
directive to select certain symbols in the current table for EXPORTing.

REDUCE removes all symbols which were not specified as CARGO during

 22

the last assembly. This allows you to save principal entry points (and
macro definitions) only, instead of the whole table which may contain
many labels only of use within the program and not as entry points.

For more information on this command see “3. The Symbol Table”.

2.9 Miscellaneous Commands
EXECUTE
<expression>
[,<parameter list>]

Call the code at the address to which the expression evaluates. As usual
the expression may contain label references, so that you can call a
particular routine in your code easily.

If a parameter list is given then the values of the parameters are made
available to the code being EXECUTEd. This is done in the same way as
AMSTRAD BASIC’s CALL command passes parameters.

Each parameter is passed as a 16 bit integer. For an expression
parameter this is the twos complement value of the expression. For a
string parameter it is the address of a descriptor for the string.

A string descriptor is three bytes long. The first byte contains the length of
the string. The following two give the address of the start of the string.

On entry to your code the A register will hold the number of parameters
given to the EXECUTE command. The IX index register will contain the
address of the parameters. The parameters are stored in reverse order; so
that, if n parameters are given, the ith one will be at IX+2*(n-i) (low byte)
and IX+2+(n-i)+l (high byte). (Where i runs from 1 to n).

As an example we will pass one string parameter and one number to a
piece of code.

The command typed might be

EXECUTE#1000, “Call me”, 39

Then the code at #1000 could be as below:

 CP 2 ; Make sure that two
 JP NZ,error ; parameters have been given.
 LD L,(IX+2) ; HL = address of string
 LD H,(IX+3) ; descriptor
 LD B,(HL) ; B = length of string.
 INC HL
 LD A,(HL)
 INC HL
 LD H,(HL)
 LD L,A ; HL points to start of string.
 LD E,(IX+O)
 LD D,(IX+1) ; DE = value of second parameter.

The address given is executed using a Z80 “CALL” instruction and control
should therefore be returned to the editor by a “RET” instruction. If this is
done successfully the editor will print the message “** (press ESC) **” in
the bottom left corner of the screen. When you press the escape key the
screen will be cleared and the editor will reprint the contents of the screen
as it was before EXECUTE was used.

STATS This command lists some information on Genius’ memory map to the
screen. The data given is as follows:

 ** buffer <addr>
 ** screen <addr>
 ** file <addr>
 ** table <addr>
 ** low <addr>

buffer: The address of the start of Genius’ tape/disc buffer above which
the program starts.

screen: The address of Genius’ screen buffer.
file: The address of the current source file.

 23

table: The address of the current symbol table.
low: The low limit, below which the assembler will not let you PUT

object code.

NOTE: Memory between low and table is available for assembling into
memory (see ‘PUT - Section 4.3.5’).

EXIT Returns control to the program which called Genius (usually BASIC) OR
exits from the housekeeping facility and returns to the main editor (see
2.10).

2.10 The Housekeeping Facility
HOUSEWORK Enters the housekeeping facility. Use the command EXIT to return to the

main editor.

This facility is provided to allow you to look after the contents of your discs/microdrives. When you enter
the HOUSEWORK command, the screen will be split into two windows. The bottom four lines of the
screen will now be used for command entry; the usual full-screen editor runs in this foul line window. The
top part of the screen is now used for output, initially the current disc/microdrive (or tape on the Amstrad)
is CATed into this

window.

The following commands from the main editor’s immediate mode are still available to you in the house
keeping facility. Their syntax of use is the same as in the main editor (see 2.6).

AMSTRAD: CAT SPECTRUM: CAT

 ERA ERA

 REN TAPE

 TAPE TAPE.IN

 TAPE.IN TAPE.OUT

 TAPE.OUT MDRV

 DISC MDRV.IN

 DISC.IN MDRV.OUT

 DISC.OUT

 DRIVE.A

 DRIVE.B

The following new commands are available to you in the housekeeping facility:

COPY “<filename 1>”
, “<filename2>”

Copies <filename2> to a new file named <filename1>. You will be
prompted for source and destination disc/tape or microdrive as necessary.

On the AMSTRAD: ASCII files will be copied character by character. Other
files will be loaded into memory and saved under the new name. The file
will be loaded from #40 upwards and will therefore overwrite anything in
memory from this address to the bottom of the symbol table. If there is
not enough room to load the file here you will be asked if you want to
delete the symbol table to release some space for the load. If this does
not make enough room, the file cannot be copied.

On the SPECTRUM: On tape COPY will only copy files produced by the
Genius assembler (source, object or name table).

On microdrive the file will be loaded from RAMTOP upwards and will
therefore over write anything in memory from this address to the bottom
of the symbol table. If there is not enough room to load the file here you
will be asked if you want to delete the symbol table to release some space
for the load. If this does not make enough room, the file cannot be
copied.

AMSTRAD only:

<RSX name>
[,<parameter list>]

This command gives you access to any RSXs which are currently logged
on, including tape and disc commands. See your Amstrad manuals for the
syntax of these RSXs.

 24

CPC 464 users should note that string parameters must be passed
directly as in the following example.

 |REN,“PEQUOD”, “ACUSHNET”

In BASIC this would have to be done as below:

 A$=”PEQUOD”
 B$=”ACUSHNET”
 |REN,@A$,@B$

 25

3. The Symbol Table

NOTE: In the following the terms “symbol”, “name” and “label” are used interchangeably. Names can
consist of alphabetic characters (upper and lower case); (decimal) digits; the characters “$”, “.”,
“”. A name may not start with a digit. Names may be up to 240 characters in length.

The Genius assembler makes two passes over source code which it is assembling. On the first pass it
constructs a table of all the names which you have defined or referenced in the source. As far as possible
the assembler will give each of these symbols a value. (In the case of a label on an ordinary 280
instruction this value is the current location, i.e. the address at which object code is being assembled; in
the case of an EQU pseudo-op it is whatever the expression operand of EQU evaluates to).

On the second pass the assembler will fill in the values of any symbols which it could not calculate on
pass 1 and use the final values to generate the object code.

The Genius assembler actually creates more than one symbol table in certain circumstances. Usually all
names are inserted into a “global” table; however, during macro expansion and (hash extension) function
definition a “local” table is used. A new local table is created for each use of a macro, and for each
function. This prevents different expansions of a macro in which a symbol is defined from producing
multiple definition errors. It also means that different functions can use the same names for local
variables.

Macro definitions are also stored in a special type of local table.

The symbol table remains in memory even after assembly has finished. You can access the table and the
values of symbols in it using various immediate commands. For example, you can PRINT the value of a
label or an expression involving symbols (see 2.4). You can view the whole table by use of the TABLE or
TABLEN commands (see 2.8).

These facilities are useful for debugging purposes when you may need to know the address of a particular
piece of your code for single stepping or setting a breakpoint.

3.1 Saving and Loading Symbol Tables
Suppose you have written a library of useful machine code routines which you want to use in a program
you are writing. You could do this by merging the source of the library with that of your program (using
LOAD, see 2.6); or you could use the *include directive (see 4.2.3). With both these methods the
assembler has to cope with the extra source at each assembly.

An alternative to these methods is given by the immediate commands EXPORT and IMPORT. The EXPORT
command will save the current symbol table to backing store, and IMPORT will merge a previously
EXPORTed table with the current one. So after assembling your library routines you can save the symbol
table generated using EXPORT. Then before assembling your program which uses the library you can
IMPORT the library’s symbol table. Assemble your program’s source using ASSEMC instead of ASSEM to
prevent the symbol table being cleared. Your source can refer to symbols in the library source and since
they now appear in the symbol table this will be acceptable to the assembler.

Many routines contain labels only of use within the routine itself (for instance, loop start markers). Your
library of routines may contain only a small number of labels which you want to be able to refer to in other
programs (the main entry points to the routines in the library). EXPORT, however, saves the whole symbol
table including these unwanted labels. It is possible to save just the labels you want as entry points to your
routines by using the CARGO assembler pseudo-op and the REDUCE immediate command.

For every symbol in the library that you wish to save an entry for in an EXPORTed table you should include
a statement of the form:

<label>: CARGO

in the source. (Note that this will not cause a multiple definition error when the symbol is actually defined
elsewhere).

The REDUCE command will remove from the symbol table any name that has not been declared as
CARGO during assembly. EXPORT can now be used to save off the table consisting of just CARGO labels.

 26

EXPORT also saves information recording those Phoenix library routines which have already been
referenced. Thus you can EXPORT a table generated by the assembly of some Phoenix routines and use
them in later programs without the compiler including extra copies of its run-time library routines.

(See “6. Example Programs” for an example of using CARGO, REDUCE, EXPORT and IMPORT).

(See 2.7.1 for an alternative method of dealing with a library of routines).

NOTE: This section is included for interest only. It gives a little more detail on the actual format of the
symbol table.

Each name has an entry in the table of the following form. A string of characters representing the name
itself; two bytes of flags giving the type of the name and its status (well-defined, unused etc.); two bytes
containing the value of the name. So each name requires its own length plus 4 bytes of symbol table
space.

Each table is kept in ASCII order. A name is inserted by finding the position at which it should be inserted
(this is done by the symbol table search routine). Then inserting enough room for it by block moving the
part of the table below the insertion position down in memory (see Appendix E). The new name is then
copied into the space made for it.

Since each table is kept in ASCII order it is possible to use a fast binary search technique for looking up
names in a table.

 27

4. The Assembler

4.1 Using the Assembler
The assembler is invoked using the ASSEM, ASSEMC or ASSEML commands from within the editor. It
assembles the current source in two passes, writing object code to memory, tape, or disc (microdrive for
the Spectrum versions) as specified by assembler directives embedded in the source text. Source files on
tape, disc (or microdrive) can also be assembled by use of the “*include” directive. (See “4.2 Assembler
Directives”).

Assembly can be temporarily halted at any time by pressing any key. It can then be stopped by pressing
ESC or continued by pressing any other key.

4.1.1 Assembler Errors
The assembler informs you of any errors it has found by displaying a relevant message; a line giving the
type of error, the line number and the number of the statement within that line in which the error was
detected; the statement at that line.

For example: ** multiple name definition
** error in line 20: 1

20 label:equ#1234

After the error message has been issued the assembler rings the bell (beeps). It will now either wait for
you to press a key or just continue assembly. The default behaviour being to wait for a key press. Pressing
ESC will abandon assembly, pressing any other key will make the assembler continue. The “*report”
directive can be used to stop the assembler waiting after a message has been written. (See “4.2
Assembler Directives”).

The possible error types and their meanings are given below.

warning: Indicates that the code produced may not be what was intended.
Assembly will go through to the end.

error: Indicates a more serious fault than a “warning”. The resulting code would
probably not be usable if assembly continued, so if any errors have been
detected on pass 1 assembly will be halted at the end of this pass.

fatal error: The assembler cannot continue, assembly is stopped immediately. This
can occur, for instance, if the disc becomes full whilst writing object to a
file, or the assembler runs out of space for the symbol table.

For a complete list of assembler errors and their meanings see Appendix C.

At the end of each pass the assembler issues a message telling you the pass number; how many warnings
were given during the pass; how many errors were detected during the pass; as below.

** pass <pass number>
** warnings <warning count>
** errors <error count>

A small number of errors can be issued at the very end of pass 1. In this case the error message is written
just before the end-of-pass message above. For instance:

** code in name table **
** pass 1
** warnings 0
** errors 0

The possible errors at this time are:

** code too high **
** code in name table **
** code in program **
** bad nesting **

See Appendix C for the meanings of these messages.

 28

4.1.2 A Note on Assembler Strings
Strings occurring in assembly language statements may contain characters defined by their ASCII codes
rather than the character itself. This is done by preceding the required code with a “\” character as in the
following example:

DEFB “Hello, world. \13 \10”

The string given here is terminated by a carriage return (ASCII 13) and a linefeed (ASCII 10).

Because of this use of the “\” character to include one of these it is necessary to put two in a row into the
string. For example:

DEFB “A string with a\\”

will generate

A string with a \

in object code.

Since the double quote character (") is used as a string terminator, to include one of these in a string you
must also precede it with a “\”. For example:

DEFB "A character constant is like \“A\””

will generate

A character constant is like “A”

in object code.

These comments also apply to character constants. So

“\13”

is a legal character constant. This can be preferable to just using the number 13 as it suggests to anyone
reading the code that you intended this as a character (a carriage return).

4.2 Assembler Directives
All assembler directives start with an asterisk (“*”).

Those directives which act as a switch. i.e. turn a facility on or off, have a default setting which is given in
parentheses at the end of the directive’s description.

4.2.1 Output Directing
*screen on
*screen off

Allow or disallow output of any kind to the screen (including error
messages, listing, end-of-pass messages).

(Default is “on”).

*printer on
*printer off

Allow or disallow output to the printer. Turning this facility on will direct
error messages and end-of-pass messages to the printer. This does not
affect output to the screen, i.e. you can have output to the screen and the
printer together or you can turn the screen output off.

(Default is “off”).

4.2.2 Listing
*list on
*list off

Turn listing to the screen of the source code during assembly on or off.

This option is only effective if output to the screen is enabled. This is the
default case.

(Default is “off”).

So to get a listing during assembly of your code (to the screen) you will
just need to have the following:

 *list on
 ...
 ... (your code here)

 29

 ...
 *list off

The “*list off” is not necessary if you want all the code to the end of the
source listed.

The listing produced during assembly by use of a “*list on” directive
contains more information than just your source code. Each statement is
listed in three fields. These are illustrated below.

For statements which generate code:

<current location> <code generated> <the statement>

The current location is given as a hexadecimal word and the code
generated as hex bytes.

Note: Hash extension will have the “code generated” field as many of
them can create a lot of code, e.g. the #DUE pseudo-op (see 5.
The Hash Extensions).

Example:

 0100 DD360A47 LD (IX+71),10

If the statement has a paragraph number attached to it this will be listed
between the code generated and statement fields.

For statements which generate no code:

<value of the statement> = <the statement>

Example:

 BB5A= TXT_OUTPUT :EQU #BB5A

As exceptions to this rule *list, *llist and *include will both be listed with
the current location in the left-hand field. This allows you to determine
particular addresses in your code easily.

*llist on
*llist off

Turn listing (to the printer) of the source code during assembly on or off.
This does not affect output or listing to the screen.

This option is only effective if output to the printer has been allowed by a
“*printer on”.

 (Default is “off”).

So to get a listing to the printer of some of your code, during assembly,
you will need the following:

 *printer on
 *llist on
 ...
 ... (your code here)
 ...
 *llist off
 *printer off

The “*llist off” and “*printer off” are both unnecessary if you want these
options to be “on” to the end of the assembly.

*form Sends a form feed character to the printer if the printer has been enabled
by a “*printer on”.

*title “<string>”
[,<expression>]

Sets a heading to be printed at the top of each (printer) page to be the
string given. The expression, if given, will be used to set the current page
number.

*maclist on
*maclist off

If listing is on then using “*maclist on” turns on the listing of source by
macro expansions. If this facility is off then just the statement containing
the macro use will be listed.

When macro listing is turned on the statement containing the macro use

 30

will be listed AFTER the source generated by the macro expansion.

(Default is “off”).

4.2.2 The Tape/Disc/Microdrive Facility
*include
“<filename>”

Causes the assembler to open the specified tape, disc or microdrive file
and assemble its contents at the current location. The file must be a
Genius source file. *includes may not be nested, i.e. a source file which is
*included should not contain a *include directive. The file will be loaded
from the current input device unless a specifier is provided in the filename
to direct otherwise.

Assembly is continued from the statement after the +include when the
file is exhausted.

Any errors detected during a “*include” will be reported in the usual way
but with an extra line giving the name of the file in which the error
occurred. An example error message is given below.

 ** multiple name definition
 ** error in line 50: 2
 ** in file: “phoenix2”

The state of the options already chosen by you (such as *list, *llist) is not
affected by the “*include” command. Thus it is not necessary to put a
“*list” or any other option switch in the included file itself, they can be
put in the main source file.

For example, if you are assembling the source:

 10 *include “phoenix1”
 *include “phoenix2”

and you want to list (to the screen) all the source in the two files you
could put the following:

 10 *list on
 20 *include “phoenix1”
 *include “phoenix2”

If, however, you only want to list the contents of “phoenix1” then you
should put directives in as below.

 10*list on
 20 *include “phoenix1”
 *list off
 *include “phoenix2”

Any changes to the switch states made in an included file will remain in
effect after the “*include” is complete. Thus if “phoenix1” contains a
“*list on”, the source

 10 *include “phoenix1”
 *include “phoenix2”

will give a listing of both files.

If listing to the screen or to the printer is turned on while a file is
“*included the statement containing the “*include” will be listed AFTER
the source text in the file.

Using *include with Tape

The file to be included must be read on both passes of the assembly process. Thus the tape will need to
be rewound at the start of pass two. Alternatively you can record two copies of the source file(s) on your
tape one after the other, one for each pass.

*openout
“<filename>”

Causes the assembler to open an output file and write subsequently
generated object code to that file. Output must be terminated by a
“*closeout”. Output will be sent to the correctly selected output device
unless the filename contains a specifier to direct otherwise.

 31

Care should be taken when writing object code to file storage if the source
contains more than one ORG statement (see “4.3 Assembler Pseudo-
ops”). The object code will be written to the file as a contiguous block. In
this case it may be better to write blocks of code with different ORG
addresses to different files. If you intended only to separate two blocks of
code by some space then you could use a DEFS pseudo-op instead of an
ORG, and still write all the code to one file.

A warning will be issued on pass one by the assembler if it finds a PUT
directive while sending output to a file. The PUT will be ignored.

*closeout Terminates output of object code to a tape or disc file. This directive must
be specified if an *openout has been employed.

Amstrad Tape Users:

The source file is loaded in 2K sections and between blocks you will be prompted to “press PLAY then any
key”. Filenames which are preceded by an exclamation mark will load without prompts.

If you are also outputting the assembled file to tape then the object code will also be written out in 2K
blocks. Before the assembler writes out object code you will be prompted with “press REC and PLAY then
any key”. You should now insert the tape you are saving the object code onto and press REC and PLAY
followed by any key. Once this is complete you will be prompted again for more source code (unless the
file is exhausted) i.e. “press PLAY then any key”. This cycle is repeated until assembly is complete but you
will probably find that you are prompted more frequently to load source, than save object.

Spectrum Tape Users:

The source file is loaded in 2K sections and between blocks you will be prompted to “** insert source
tape, press a key **”. You should insert the source tape, press PLAY on your tape recorder and then press
any key. If you delay too long before pressing a key, the tape may run over the start of the block. If this
happens the block will not load. You will need to rewind the tape a little and attempt to load the block
again. Once the block has loaded you will be prompted to “** stop tape **”, again you should respond as
soon as possible. After a delay, the block will be assembled and you will be prompted for the next block
with “** insert source tape, press any key **”, and so on.

If you are also outputting the assembled file to tape then the object code will also be written out in 2K
blocks. Before the assembler writes out object code you will be prompted with “** insert object tape,
press any key **”. You should now insert the tape you are storing the object code onto and press REC and
PLAY followed by any key. Once the block has been written out you will be prompted with “** stop tape
**”. You should now remove the object tape and re-insert the source tape ready for the next block of
source code (unless the source file is exhausted). This cycle is repeated until assembly is complete but you
will probably notice that you are prompted more frequently to load source, than save object.

*prompts on
*prompts off

(Spectrum only). This option can be used to enable or disable prompts for
source and object microdrives. If you want to read source from and write
object to the same microdrive(s) throughout assembly AND these
microdrive(s) both have the correct cartridges in them when you type your
assembly command: then you will not need to be prompted to insert the
source/ object microdrive(s). In this case you should put a “*prompts off”
in your source.

Otherwise whenever the assembler needs to open a file it will prompt you
to insert the correct cartridge. If you are writing to and reading from the
same microdrive then you will be prompted for the correct cartridge every
time the assembler needs to read/write a 2K block of source/object.

(Default is “on”).

4.2.4 Miscellaneous
*count on
*count off

If this option is specified and the listing is off, a continuous display of the
number of the line currently being assembled will be given. If the listing is
on, this directive is not effective.

(Default is “off”).

*report on If this option is specified the assembler will wait for a key to be pressed

 32

*report off after it has generated an error message to give you time to take note of
the content of the message. If this option is off the assembler will just
continue. The assembler always rings the bell when an error is detected.

(Note that assembly can be paused at any time by pressing a key, and
terminated by pressing the ESC key while the assembler is pausing).

(Default is “on”).

*code on
*code off

This directive causes the assembler to switch its production of object code
on and off. A “*code off” directive will halt the production of object code
when it is encountered.

This facility can be used to see if your source assembles correctly without
actually generating any object code. Doing this can speed the assembly
process when you would normally be writing the object code to tape, disc
or microdrive; as these devices will not need to be accessed for output.

(Default is “on” i.e. object code will be produced).

*print “<string>” This directive will print the string given to the screen and printer (if they
are enabled, see 4.2.1) on both pass 1 and pass 2.

You can use this directive to keep track of where you are in an assembly,
or, with the “pause directive, to allow you to change source or object
tapes, discs or microdrives at appropriate points.

*pause This directive causes the assembler to stop and wait for a key to be
pressed (on both passes).

4.2.2 Looping
*while <expression> Marks the start of an assembler “while” loop, which must be terminated

with a “*endw”. The assembler will evaluate the expression and if it is
TRUE (i.e. non-zero) the statements up to the *endw will be assembled.
Otherwise assembly will be turned off for the duration of the loop and
resumed after the endw. while loops may be nested. (Labels should not
be defined inside a loop which will be executed more than once as this
will cause a multiple definition error. See, however, the pseudo-op DL.).

See also the pseudo-ops COND, ELSE, ENDC.

*endw Causes control to be passed back to the “*while” matching this *endw.

*repeat Marks the start of an assembler repeat loop, which must be terminated by
a “*until”.

*until <expression> The assembler evaluates the expression and, if it is FALSE (i.e. zero)
control is passed back to the *repeat matching this *until. Otherwise
assembly is continued from the statement after the *until.

4.3 Assembler Pseudo-Ops

4.3.1 Initialising Memory
DB <byte definition
list>
DEFB
DEFM

These pseudo-ops are used to initialise bytes at assembly time. They are
all the same and are given to increase Genius’ compatibility with other
assemblers.

 e.g. DB 1,2,3,4

causes 4 bytes at the current location to be initialised to 1,2,3,4
respectively.

 e.g. DB “Hello, world.”

causes the string “Hello, world.” to be placed in memory at the current
location, one character per byte. (See 4.2.2 “A Note on Assembler

 33

Strings”.)

DW <word definition
list>
DEFW

These directives are used to initialise words (pairs of bytes) at assembly
time.

 e.g. DW 1,2,3,4

causes 8 bytes starting at the current location to be initialised to
1,0,2,0,3,0,4,0 respectively.

 e.g. DW #1234

causes two bytes at the current location to be initialised to #34, #12
respectively, i.e. the bytes are installed in low-byte, high-byte order as is
usual with Z80 machine code.

Strings cannot be given as operands to these pseudo-ops.

 4.3.2 Allocating Space
DS <expression>
DEFS

These pseudo-ops are used to leave a block of space in the object code
generated by the assembler. The assembler evaluates the expression
given and increments the current location counter by that amount.

 e.g. DS 4

causes the assembler to leave 4 bytes of space.

The space left is initialised to zero by the assembler.

Note that if the expression given contains symbol references they must be
well defined on pass 1 else the program counter cannot be correctly
updated by the assembler. If this is not so a fatal error results.

4.3.3 Assigning Values to Symbols
<label>: EQU
<expression>

This pseudo-op is used to define and initialise a new symbol. No code is
generated by this instruction.

 e.g. SPACE: EQU 32

defines a symbol “SPACE” whose value is 32. This can be used
extensively to make your code more readable.

An attempt to redefine a label using EQU will result in a multiple
definition error. (See also pseudo-ops DL and DEFL).

<label>: DL
<expression>
DEFL

These pseudo-ops have the same function as EQU but may be used to
redefine the value of an existing symbol without causing a multiple
definition error. In particular they may be used within an assembler 1oop.

e.g. cnt :EQU 1
 *WHILE cnt<=10
 DB cnt*cnt
 cnt *DL cnt+1
 *ENDW

will generate a table of squares of the numbers from 1 to 10 in memory.

No code is generated by these pseudo-ops.

4.3.4 Conditional Assembly
COND <expression> The assembler evaluates the expression and, if it is TRUE (i.e. non-zero)

assembly continues with the statement after the COND. If it is false
assembly is turned off until an ELSE or an ENDC matching this COND is
encountered. There must be a terminating ENDC for every COND.
Conditional assembly statements may be nested.

ELSE If assembly was turned off by the COND matching this ELSE then the
ELSE will turn it back on. Otherwise it will turn the assembly off.

 34

ENDC This pseudo-op terminates a COND statement. If the matching COND
turned assembly off then the ENDC will turn it back on.

An example of the use of COND, ELSE and ENDC is given below.

The values of assembler symbols “amstrad” and “microdrive” would need
to be set before the assembler encounters this section of source.

 COND amstrad
 *
 *
 * (AMSTRAD code here)
 *
 *
 ELSE
 COND microdrive
 *
 *
 * (SPECTRUM microdrive code here)
 *
 *
 ELSE
 *
 *
 * (SPECTRUM tape code here)
 *
 *
 ENDC
 ENDC

This piece of source code is used to assemble one of three different
versions of the same program. The possible versions are for AMSTRAD
and Spectrum micros. The Spectrum version is again split between tape
and microdrive versions (on the AMSTRAD it is possible to treat tape and
disc in exactly the same way).

If “amstrad” is non-zero (i.e. TRYE) then the AMSTRAD section of the
code would be assembled. If “amstrad” is zero then the value of
“microdrive” is used to distinguish between tape and microdrive versions
on the Spectrum. In any of these cases only one of the three pieces of
code will be assembled, and assembly will continue after the last ENDC.

Note that an ENDC is need for each COND.

 4.3.5 The Location Counter and Storing Object Code
ORG <expression> Causes the assembler to set its location counter to the value of the

expression. (The default start value of the location counter is #100 on the
Amstrad and RAMTOP on the Spectrum). So code generated after an ORG
will be assembled ready to run at the ORG address.

Note that object code assembled into memory will NOT be stored at the
ORG address unless a PUT pseudo-op is used to set the storage location.

PUT <expression> Causes the assembler to store object code generated at the address given
(the value of the expression). Thus code which would overwrite the
assembler or some other program in memory can be ORGed at the correct
position but actual stored elsewhere.

An attempt to PUT object code in an area of memory occupied by Genius
will result in an error. If object code starts off at a legal position but grows
to overwrite some part of Genius at message such as:

 ** code in name table **

will be issued at the end of pass 1 and assembly stopped. (Note that
since code is not written to memory on pass 1 no harm will have been
done). (See Appendix C for descriptions of the messages which can be
issued when this error occurs). In order to ascertain where you can PUT
object code, use the LOW value given by the STATS command. Object

 35

code can be assembled anywhere between LOW and TABLE (both given
by STATS - see Section 2.9).

The AMSTRAD jump block is protected in the same way.

4.3.5 Macro Definition and Use
<label>: MACRO
<parameter list>

Causes <label> to be defined as a macro name. The statements
following this one up to an ENDM pseudo-op will be treated as macro
definition statements and will not generate any code.

The parameter list is a list of labels separated by commas, each one
starting with a “\” character. These may be used in the statements
comprising the macro definition.

e.g. A macro to swap two sixteen bit registers could be written as:

 exg :MACRO \p1, \p2
 PUSH ip1
 PUSH ip2
 POP ip1
 POP ip2
 ENDM

To use this macro you would write something like:

 \exg BC,DE

which would generate the following code when assembled:

 PUSH BC
 PUSH DE
 POP BC
 POP DE

Macro parameters may be used to replace whole operands only. For
instance, it is alright to put:

 CP \param

and then to give, say, “Z” #1 as the replacement for this parameter; but
you may not put:

 CP \param+1

and then use “Z” as the actual parameter.

(See also the directive *maclist).

At assembly time, the occurrences of macro parameter use (\<parameter
name>) are replaced with the corresponding actual parameter in the
macro use statement. This can create syntax errors which will be reported
to you with the usual error message for that syntax fault. The statement
containing the error will not be assembled.

ENDM This marks the end of a macro definition and returns the assembler to its
code generating mode.

Some examples of the use of macros are given below.

On the AMSTRAD a RST 3 (RST #18, a FAR CALL) takes three bytes as
in-line parameters. The first two of these represent the address of a
routine to call. The third is the required ROM select when the call is
made. You could define a macro as below to aid you in using these
restarts.

 FAR CALL: MACRO \p1, \p2
 RST 018
 DEFW \p1; CALL address
 DEFB\p2; ROM select
 ENDM

This may then be used by writing the following:

 36

 \FAR CALL <address>,<ROM select>

The other restart instructions on the AMSTRAD take similar parameters
and could have macros defined for them in a like manner.

On the Spectrum, RST #8 is used to access channel handling routines.
You could define macros to help you use these like the one below:

 OPEN FILE: MACRO
 RST 08
 DB #22; Hook code for “open file”.
 PUSH IX
 POP HL
 LD (CURCHL),HL
 ENDM

This will open a file and a channel for it. (The address of the filename
needs to have been previously stored in one of the Spectrum’s system
variables). CURCHL is a Spectrum system variable which is set, in this
example, to the address of the channel variables. This allows you to use
the input and output character routines in the Spectrum ROM.

One further example, using nested macros, defines a macro “PRINT”
which takes a string as a parameter and prints it to the screen, and a
macro “ERRMES” which uses PRINT to issue a “Syntax error” message.
(“prtstr” is a subroutine taking a null-terminated string as an in-line
parameter, “PRINT CHAR” is a - machine-specific - routine to actually
send a character to the screen).

 prtstr: POP HL
 psloop: LD A (HL)
 INC HL
 OR A
 JR Z,prtdone
 CALL PRINT_CHAR
 JR psloop
 prtdone: JP (HL)

 PRINT: MACRO \p1
 CALL prtstr
 DEFB \p1
 ENDM

 ERRMES: MACRO \p1
\PRINT “Syntax error: \0”
 \PRINT \p1
 ENDM

To use ERRMES you could put something like:

 \ERRMES “mismatched parentheses. \13\10\0”

 37

5. The Hash Extensions
NOTE: The Hash Extensions are optional when loading the Genius Editor/Assembler. See the loading

instructions for details.

The Genius assembler has a set of extensions available to it. These consist of a number of extra pseudo-
ops each beginning with a “#” character (hence the name “hash extensions”). Their purpose is to provide
an integer-based compiled language, Phoenix, for you to test your ideas and algorithms before writing
them in machine code. It is also quite possible to write programs in Phoenix and leave it at that.

The compiler allows you to define integer and character variables, functions and one-dimensional arrays.
These can all be used in expressions which the compiler will turn into run-time code, i.e. executable
machine code, to evaluate these expressions.

You can also use conditional, #IF, statements; #WHILE-AENDW, and #REPEAT – #UNTIL loops to
control the flow of your programs.

Phoenix statements may be freely mixed with assembly language and the results of expressions are always
available to you in the HL register pair.

Below is a list of all the available pseudo-ops and their uses. Chapter 6 contains some examples of the use
of the compiler language, it is a good idea to study these examples to become familiar with the extensions.

Glossary of Terms
[…] Items enclosed in square brackets are optional.

< Type> One of the mnemonics INT, CHAR, PINT, PCHAR. See 5.2.1 for the
meanings of these.

<Assembler
expression>

An ordinary expression involving numbers, symbols and operators but no
compiler-only operators. See Appendix D for descriptions of the allowable
operators and those which are of restricted use.

<Assembler expression
list>

A list of <Assembler expression>’s separated by commas.

<Compiler
expression>

This is an expression which is to be translated into machine code to
evaluate it. It will not be evaluated at assembly time. These expressions
may contain the compiler-only operators (see Appendix D and “5.1
Phoenix expressions”).

<label> A label as in the assembler. See “1.3 Syntax Checking and Error
Messages” or “3. The Symbol Table”.

5.1 Phoenix Expressions
There are two pseudo-ops available for compiling expressions. One compiles an expression to be evaluated
using signed arithmetic and the other unsigned arithmetic. These are #DSE for “Define Signed Expression”
and #DUE for “Define Unsigned Expression”. They are used in the following way:

 #DSE <Compiler expression>
 #DUE <Compiler expression>

These pseudo-ops take the <Compiler expression> given as operand and translate it into machine code to
evaluate the expression at run-time.

The run-time evaluation is performed using a stack to store temporary results and operands to arithmetic
operations. An arithmetic operation is carried out by a CALL to one of a library of arithmetic routines. Only
those arithmetic routines corresponding to operations which you actually use in you: program will be
relocated into your code by the assembler (see 5.2.7 “The #LIB Pseudo-Op”).

You can use more operators and constructs in compiler expressions than you can in assembler
expressions. For details on all the operators available to Genius expressions see Appendix D. The extra
constructs allowed are described below.

 38

5.1.1 Assignment
Assignments can be made to variables in compiler expressions, so if you have defined a variable “state”,
you could write:

 #DUE state=1

This would set the value “state” to be 1 (at run-time). In Phoenix expressions, the assignment operator can
be used more than once. It can be used just like the ordinary operators “+”, “*” etc. except that the left
hand side must be a single variable name or something equivalent to it (for instance an array reference).

An assignment has a value just as “2+3” has a value (5). The value of “state=1” is 1; in general the
value of an assignment is the value of its right hand side. So we could write:

 #DSE x=y=0

 (x and y are both names of variables). This would assign the value 0 to both x and y,

A more complex example is:

 #DSE y=(z=x*x)+x-20

This would give “z” the value “x*x” (x squared) and give “y” the value “x*x#x–20” (x squared plus x minus
20).

For more on assignments see “5.1.4 Pointers”.

5.1.2 Arrays
In section 5.2.1 you will see how to define (and initialise) space for compiler variables. Once you have
created a variable you can use it as a base for indexing into memory. This gives you (one-dimensional)
arrays or vectors of compiler variables. You do not actually declare a compiler variable to be an array but
you name a block of memory space and then use that name as an array name.

For example, the statement:

 xcoord: #DS INT,10

allocates space for 10 integers at the current location (this is 20 bytes). The first integer in, this space will
have name “xcoord”. The other integers in the space can be accessed by writing (in your compiler
expressions):

 xcoord [<compiler expression>]

So writing

 xcoord [7]

would return the value of the 7th integer in the array. The value of “xcoord” itself can be accessed by
writing either just “xcoord” or “xcoord [0]”. Since array indices start at 0, in the case above the last array
element can be accessed as “xcoord [9] “. No check is made on the value given as the index. So referring
to “xcoord [10]” is legal but will return the value held in the two bytes following the space allotted to the
array; this is unlikely to be meaningful.

Assignment can be made to array elements. You might write

 #DSE xcoord [1] = 100

in an expression. Letting the array index go out of bounds can be dangerous in this case as you may write
into other variables or into program space.

5.1.3 Functions
As you will see in 5.2.3 it is possible to define “functions” in Phoenix. These can then be “called” during
expression evaluation. Each function returns a value which you can use or choose to ignore: using the
function may have other effects, i.e. you can use the function like a procedure. Some functions may be
intended to be used as procedures and may therefore return undefined values anyway.

You can pass parameters to a function. The definition of the function determines how many parameters a
function requires. The compiler does not check that you have given the correct number when you write a
function call, so care must be taken here.

Suppose you have defined a function “square” which takes one parameter and returns the square of the
parameter’s value. To use the function you would write:

 39

 #DSE y=square(x+1)

Setting the value of “y” to the square of “x+1”. Notice that round brackets are used to section off the
function’s parameter list.

If a function takes more than one parameter you should separate the individual parameter expressions by
commas. Suppose you have defined a function to print an integer to the screen in a base given by a
parameter, then this could be called as below:

 #DSE based_print(scale*xcoord [count],10)

Notice that this time we are ignoring the value returned by the function.

5.1.4 Pointers
Two of the types of variable which you can define in Phoenix are “pointers”. This means that they hold the
addresses of other variables rather than containing a piece of data. You can define pointers to integers and
pointers to characters.

You can find the address of a variable’s storage space by using the “&” (unary prefix) operator.

You can access the piece of data which a pointer points to by using the “ “ operator.

As an example suppose we have defined a (null terminated) string with the statement:

 begin: #DI CHAR, “There was no possibility of... \0”

and we want to copy this to a new location for editing. At this location we need space for the string:

 rewrite: #DS CHAR,80; One Line of characters.

To copy the string we need two pointers to characters, one pointing to the original string and one pointing
to the space.

 P_str: #DS PCHAR,1; For pointing to the string.
 P_spc: #DS PCHAR,1; For pointing to the space.

We need to initialise the pointers using the “&” (“address of”) operator.

 #DUE p_str=&begin
#DUE p_spc=&rewrite

To do the copying we use the “&” (“contents of”) operator. We could write:

 #WHILE *p_str!=0 ; Have we reached the end of the string?
 #DUE *p_spc=*p_str ; Contents of p_spc equals contents of p_str
 #DUE p_spc=p_spc+1 ; Increment p_spc
 #DUE p_str=p_str+1 ; Increment p_str
 #ENDW ; End of the Loop
 #DUE *p_spc=0 ; Null terminate the copy

You can do the job in rather less code using some of the other Phoenix operators. The special
incrementation operators can be used instead of the lines adding 1 to the pointers. That is, you could
write:

 #DUE p_spc++
 #DUE p_str++

We can now compress the three lines inside the loop into one by putting these incrementation operators
into the expression which does the copying.

 #WHILE *p_str!=0
 #DUE *p_spc++=*p_str++
 #ENDW
 #DUE *p_spc=0

Now recall that an assignment has a value; the value of the right hand side of the assignment (5.1.1). So
we can test for the end of the string having been reached in the *WHILE statement as well, since the
string is terminated by a 0 which has truth value FALSE and will therefore stop the loop. The null
terminator will also be copied into the new space so we won’t need the last line any more. So the final
version of the string copying program is:

 #WHILE *p_spc++=*p_str++
 #ENDW

 40

Note that the “++” operator will increment a pointer to character by 1 (to step over one character) but
will increment a pointer to integer by 2 (to step over one integer). Similarly, the “-“ operator decrements
pointers to characters and integers by 1 and 2 respectively.

5.2 The Hash Extension Pseudo-Ops

5.2.1 Declaring Variables
Phoenix has four types of variable. These are integer, character, pointer-to-integer and pointer-to-
character. These types are represented by the mnemonics INT, CHAR, PINT, PCHAR respectively when a
distinction is necessary in a particular pseudo-op.

The pseudo-ops for declaring any of these types are given below.

[<label>:] #DS
<Type>, <Assembler
expression>

This pseudo-op allocates enough space for the number of variables of type
<Type> given by the value of the expression. It is similar to the DEFS or
DS assembler pseudo-ops in that the space is allocated at the current
location and is initialised to zero (but see “5.2.3 Defining Functions” as
PDS performs differently inside a function). If a label is given then it will
be entered into the symbol table and marked as being a compiler variable
of type <Type>. This allows you to reference one of the variables using
an array construction or just by the use of <label>.

For example:

 var1: #DS INT,1

defines space for 1 integer called “var1”,

 string: #DS CHAR,40

defines space for 40 characters. These could be accessed using a
construction of the form:

 string [39]=0

 (This would “null terminate” the string).

<label>: #DI
<Type>, <assembler
expression list>

This pseudo-op defines and initialises variables. It will define as many
variables of type <Type> as there are expressions in the <Assembler
expression list>. Each one will have space allocated for it and this space
will be initialised to the value of the expression associated with it.

For example:

 One_int: #DI INT,#1234

will define an integer called “one_int” and give it an initial value of
#1234.

 greeting: #DI CHAR,“Good morrow. \13 \10”

will define space for 14 characters and initialise this space to the string
given. Now, for instance, a use of the construction:

 greeting [5]

would return the (character) value “m”.

You may only use strings for initialisation if you have specified type
CHAR.

NOTE: #DI may not be used inside a function. (See 5.2.3 Defining
Functions).

5.2.2 Compiling Expressions
#DSE <Compiler
expression>
#DUE <Compiler
expression>

These two pseudo-ops generate machine code to evaluate the compiler
expressions they are given as operands. For instance the statements:

 x: #DS INT 1
 y: #DS INT 1

 41

 #DUE x=y=0

would generate the code:

 LD HL,0
 LD (<address of y>),HL
 LD (<address of x>),HL

The statement:

 #DUE x+y

will generate:

 LD HL,(<address of y>)
 PUSH HL
 LD HL,(<address of x>)
 PUSH HL
 CALL <addition routine>
 POP HL
 ; Final result in HL

The #DSE pseudo-op compiles the expression to be evaluated using signed arithmetic. The #DUE
pseudo-op compiles the expression to be evaluated using unsigned arithmetic. The arithmetic routines will
detect some errors (overflow and division by zero), when this happens a bit in the byte (IX-1) is set to
signal that an error has occurred during evaluation of the expression. You can test these bits in your own
code but the compiled code will take no action itself i.e. the program will just continue. (The IX register is
used by the compiled code and you should not alter its contents while running a compiled program (see
the CSTACK pseudo-op).

The bits which are set are:

 overflow: BIT 0 (corresponding to the Z80 C flag)
 division by 0: BIT 2 (corresponding to the Z80 P/V flag)

The result of an expression is left in the HL register so that you can access it in machine code if you wish.
(See the example programs in Chapter 6, especially the multiple precision routines.)

5.2.3 Defining Functions
You can define functions for use in compiler expressions using the following pseudo-ops. Function
definitions may not be nested but a function may use another one at run-time. A function returns a value
which may be used in expressions or just ignored. (This value is left in the HL register pair for access from
pure machine code). A function is invoked or called from within a compiler expression by writing the
function name followed by list of parameter values enclosed in parentheses. This is illustrated below.

<name> (<parameter list>)
 or <name>()

Where <parameter list> is a list of compiler expressions separated by commas. The second case should
be used when the function in question takes no parameters.

#FNC <Type> Declares the start of a function definition. There must be a #BEGIN -
#END pair in the code following the #FNC.

<label>: #PRM
<Type>

This pseudo-op is used to declare <label> as a parameter to the function
being defined. A function may have up to 60 parameters. In a call to the
function the actual parameters must be given in the same order that the
dummy parameters have been defined. Parameter names are entered into
a local table associated with the function name, so you can use the same
names in different functions (or re-use global names) without multiple
definition errors.

Parameter declarations must appear after the #FNC statement and before
the #BEGIN.

#BEGIN Declares the start of the definition of the body of a function. There should
be no code generating statements between the #FNC statement and the
#BEGIN.

 42

#END Declares the end of a function definition. Parameter and variable
declarations should not appear between the #BEGIN and the #END. At
run-time the result of a function is left in the HL register pair.

#RETURN This pseudo-op generates code to perform a return from the function. It
can appear anywhere within the function (even in positions where you
have pushed some data onto the stack yourself. If you use the #RETURN
pseudo-op the Value returned by the function will be the contents of the
HL register pair before the #RETURN is executed.

It is not necessary to put a #RETURN immediately before a #END
directive (if you do the code to execute a return from a function will be
generated twice: one of them will be impossible to reach at run-time).

An Example of a Function Definition
The following piece of code defines a Phoenix function to return the (unsigned) sum of the squares of its
two parameters.

 sumsq : #FNC INT
 x : #PRM INT
 y : #PRM INT
 #BEGIN
 #DUE x*x+y*y
 #END

You would use this by writing something like:

 #DUE z=sumsq(3,4)

This would set z to the value 25.

NOTE: The #DS pseudo-op may be used between a #FNC and a #BEGIN. In this case it does not
allocate any space in the object code but causes space to be allocated on the stack when the
function is called, i.e. in this case the storage is “automatic” rather than “static”. When the
function returns the storage space will be de-allocated and returned to the stack.

#DI may not be used between a #FNC and a #BEGIN.

5.2.4 Conditional Statements
Phoenix provides a conditional statement in the form of the following pseudo-ops.

#IF <compiler
expression>

Marks the start of a section of code which is to be evaluated conditionally
depending on the value of the compiler expression given (at run-time). A
#IF statement must have matching #ENDIF or #ELSE statements. If the
compiler expression evaluates to TRUE (non-zero) then the (compiled
version of the) code following the #IF statement will be executed
otherwise control is passed to the statement following the #ENDIF
statement matching the #IF if there is one.

Note that #IF uses signed evaluation on its operand expression.

#ELSE This pseudo-op should only be used after a matching #IF statement and
must have a matching #ENDIF later in the source. The section of code
between the #ELSE and #ENDIF statements will be executed if and only
if the compiler expression operand of the matching #IF evaluated to
FALSE (zero).

#ENDIF Marks the end of a section of code which is to be conditionally executed.
A #ENDIF statement must have a matching #IF or #lF – #ELSE pair.

As an example of the use of the conditional we define a function to return the maximum of its two
parameters.

 43

 Max : #FNC INT
 x : #PRM INT
 Y : #PRM INT
 #BEGIN
 #IF x>y
 #DSE x
 #ELSE
 #DSE y
 #ENDIF
 #END

If the value of “x” is larger than that of “y” we get the value of “x” into the HL register pair, else we get the
value of “y”. Since we do nothing else in this function this value will remain until the function returns
when it will be used as the result of the function.

5.2.5 Loop Constructs

Phoenix provides two types of looping construct. The first (the “while” loop) tests the loop’s termination
condition at the start of the loop. The second (the “repeat” loop) tests the condition at the end of the loop.
In the “repeat” loop case the loop will therefore always be executed at least once: with a “while” loop the
condition may be FALSE when the start of the loop is first encountered and the body of the loop never
executed.

#WHILE <compiler
expression>

Marks the start of a #WHILE - #ENDW loop. This pseudo-op generates
code to evaluate the compiler expression given as operand and to jump to
the statement following the #ENDW matching this #WHILE if the result
of the expression is FALSE (zero). If the expression is TRUE (non-zero)
then execution continues with the statement immediately after the
#WHILE instruction.

A #WHILE statement must be used to terminate a #WHILE loop. The
#ENDW returns control to the code compiled by the #WHILE statement
causing the termination condition to be tested again.

#ENDW Marks the end of a #WHILE loop. This pseudo-op compiles a jump back
to its matching #WHILE.

#REPEAT Marks the start of a #REPEAT – #UNTIL loop. This pseudo-op does not
generate any code.

#UNTIL <compiler
expression>

Marks the end of a #REPEAT – #UNTIL loop. This pseudo-op generates
code to evaluate its compiler expression operand, test the result, and
possibly pass control back to the #REPEAT matching this #UNTIL. If the
result is false then control will be passed back to the start of the loop,
else execution continues from the statement after this #UNTIL.

5.2.6 Setting the Execution Stack
NOTE: The #STACK pseudo-op should appear somewhere in any compiler source. At the start of the

source is the best place to put it.

The code compiled to evaluate expressions uses the IX register to keep note of the stack pointer
and to index parameter values in functions. The value of IX must therefore be initialised to the
value required by the compiled code. This should be done using the following pseudo-op.

#STACK [<assembler
expression>]

This pseudo-op generates code to set IX to a value related to the stack
pointer’s value. The optional (assembler) expression given as Operand to
#STACK can be used to set the stack pointer to a new value i.e. it will
generate a “LD SP,word” instruction. For some applications of the
compiled language it may be wise to move the stack from the position set
by the AMSTRAD firmware as you have only 256 bytes of space available
in this position.

PLEASE NOTE: This pseudo-op also generates a DEC SP instruction (to make one byte of
room for use as PHOENIX flag space). So to return from a routine

 44

containing a #STACK pseudo-op you should use either:

 LD SP,IX
 RET

or

 INC SP
 RET

rather than just a RET instruction.

5.2.7 The #LIB pseudo-op

The code generated by the compiler to evaluate expressions contains CALLs to a number of arithmetic
routines to actually perform the evaluation. These routines must appear somewhere in the object code
produced by the assembly of your source. The PLIB pseudo-op is used to relocate the arithmetic routines
down into your object code. It should appear somewhere in your source after you have used all the
Phoenix operators that you are going to use in this piece of code. This is because #LIB only relocates the
routines associated with operators that you have actually referenced in your code.

#LIB This pseudo-op allows your compiled code to run independently of the
Genius assembler by relocating any arithmetic routines required for the
evaluation of your expressions down into your object code. You should
place a #LIB statement in your source after you have used all those
operators that you will need in the whole program being assembled. (The
statement containing a given operator must actually have been reached
by the assembler: a statement that is not assembled owing to conditional
assembly cannot cause any operator routines to become liable to
relocation by #LIB.)

NOTE: The tool-kit command EXPORT will save data recording those library
routines which have already been relocated. So that when you IMPORT a
symbol table into a Phoenix program the #LIB will not create extra copies
of library routines that have been included in previously assembled code.
You must include a #LIB pseudo-op in the source of the pre-compiled
routines.

 45

6. Example Programs
This chapter contains listings of some programs and routines in BASIC, the PHOENIX compiled language,
and in machine code. These are intended as examples of the use of the assembler and the compiled
language. (The BASIC versions are included for comparison and to help illustrate the algorithms used).

6.1 Example 1 - The Sieve of Eratosthenes
This example is the famous “Sieve of Eratosthenes” written in BASIC and in PHOENIX. The sieve is a
method of extracting the prime numbers from the integers. The algorithm embodied in the programs is as
follows.

List the integers in the range from which you want to extract the primes. (In the programs this is 2 to
5000). Then for each integer, n, in this range strike out the integers 2*n, 3*n, 4*n, 5*n etc., i.e. we
remove the multiples of n. (You must start with n=2, not 1, why?). When you have finished, any numbers
which you have not struck out will be prime.

This is translated into a computer program by defining an array, “primeflags”, with one entry for each of
the integers in the range we are considering. The elements of the array are all initialised to zero. Then for
each integer, n, in the range we set primeflags(2*n), primeflags(3*n), etc. to 1 to signal that each of the
multiples of n is not a prime. When we are done any entry in the array “primeflags” which is not set to 1
corresponds to a prime number, i.e. if primeflags(m) is 0 for a number m, then m is prime. The
implementation given is not the best possible. You might like to try and improve on it.

Sieve of Eratosthenes written in BASIC and PHOENIX.

10 REM
20 REM Sieve of Eratosthenes.
30 REM
40 DIM primeflags%(5000)
50 count%=2
60 WHILE count%<=500
70 IF primeflags%(count%)=1 THEN 130
80 count1%=count%+count%
90 WHILE count1%<=5000
100 primeflags%(count1%)=1
110 count1%=countl%+count%
120 WEND
130 count%=count%+1
140 WEND
150 FOR count%=2 T0 5000
160 IF primeflags%(count%)=0 THEN PRINT count%,
170 NEXT count%
180 FND

 46

10 ;
 ; Sieve of Eratosthenes.
 ;
20 ;
 ; AMSTRAD (1) or SPECTRUM (0) ?
 ;
 AMSSPEC:
 EQU 1
 ;
30 ;
 ;Function to write a character
 ; to the screen.
 ;
 ; This must be before “print.int”
 ; as it is used by “print.int”.
40 print.char:
 #FNC INT
 chr : #PRM CHAR
 #BEGIN
 #DSE chr
 COND AMSSPEC
 LD A,L
 CALL #BB5A
 ELSE
 LD A,L
 CALL #9F4
 ENDC
 #END
 ;
 ;
50 ;
 ; Inner integer print function.
 ;
 ; This must be before "print.int"
 ; as it is used by "print.int".
 ;
60 print.int1:
 #FNC INT
 pval : #PRM INT
 chr : #DS CHAR,1
 #BEGIN
 #IF pval!=0
 #DSE chr=pval!=0
 #DSE print.int1(pval/l0)
 #DSE print.char(chr+#30)
 #ENDIF
 #END
 ;
 ;
70 ;
 ; Integer print function.
 ;
80 print.int:
 #FNC INT
 pval : #PRM INT
 chr : #DS CHAR,1
 #BEBIN
 #IF pval?=0
 #DSE print.char("0")
 #ELSE
 #DSE print.int1(pval)
 #ENDIF
 ;
 #DSE print.char(" ")
 #END
 ;
 ;
90 ;
 ; Workspace.
 ;
 count: #DS INT,1
 count1:
 #DS INT,1

 47

 ;
 primeflags:
 #DS INT,5001
 ;
100 ;
 ; Main calculation loop.
 ;
 ; This loop marks non-primes
 ; in the array "primeflags".
 ;
110 ;
 ; Enter here (EXECUTE start).
 ;
 start: #STACK ; Set IX for PHOENIX use.
 ;
 ; On the SPECTRUM set the channel to the main screen.
 ;
 COND AMSSPEC
 ;
 LD A,2
 CALL #1601 ; ROM's CHAN OPEN
 ;
 ENDC
 ;
120 #DSE count=2
 ;
 #WHILE count<=2500
 ;
 #IF primeflsgs[count]?=0
 ;
 #DUE count1=count
 ;
 #WHILE [count1=count1+count]<=5000
 #DUE primeflags[count1]=1
 #ENDW
 ;
 #ENDIF
 ;
 #DSE ++count ; Increment count.
 ;
 #ENDW
 ;
130 ;
 ; Loop to print the primes found.
 ;
 #DUE count=2
 ;
 #WHILE count<=5000
 ;
 #IF primeflags[count]?=0
 #DUE print.int(count)
 #ENDIF
 ;
 #DUE ++count
 ;
 #ENDW
 ;
140 ;
 ; Done, replace strak pointer and return.
 ;
 LD SP,IX
 RET
 ;
150 ;
 ; Include library routines for arithmetic.
 ;
 #LIB
 ;

6.2 Example 2 - Drawing Ellipses

 48

This example consists of an algorithm to draw ellipses implemented in BASIC, PHOENIX and hand-crafted
machine code.

The algorithm used is an adaptation of Bresenham's incremental circle generating algorithm. Unless you
are familiar with this it will not be at all clear how it works. For a full explanation of the method you are
referred to "Fundamentals of Computer Graphics" by J.D. Foley and A. Van Dam, and "Procedural
Elements for Computer Graphics" by D.F. Rogers.

The implementation used requires numbers larger than 65535, i.e. too large to fit into the two-byte
integer variables of BASIC or PHOENIX. In BASIC this problem is solved by using floating point variables.
In PHOENIX a set of multiple precision (integer) arithmetic routines is used. These routines can be
assembled to use any length (in bytes) of integer. The precision required (i.e. the length in bytes of the
integers to be handled by the routines) is set by the value of a symbol "precision". You could use these
routines in your own programs: the method of use is illustrated in lines 50 and 60 of the PHOENIX ellipse
drawing program; the calling conventions for the multiple precision routines are given as comments in the
routines themselves.

 49

Ellipse drawing program written in BASIC, PHOENIX and machine code.

100 REM
110 REM BASIC ELLIPSE DRAWING PROGRAM.
120 REM
121 REM Although written in AMSTRAD BASIC this program can
122 REN easily be converted to run on the spectrum: the only
123 REM significant difference is the use of WHILE loops.
124 REM
130 INPUT "Axes ";a,b
140 xi=0:yi=a
150 a2=a*a:b2=b+b
1bO a2s=a2:b2s=b2*(2*yi+1)
170 DELTAi=2*(1-b)
180 WHILE yi>0
190 PLOT xi,yi:PLOT -xi,yi:PLOT xi,-yi:PLOT -xi,-yi
200 IF DELTAi>0 THEN GOSUB 250 ELSE IF DELTAi=0 THEN GOSUB 310 ELSE GOSUB
 340
210 WEND
220 END
230 REM
240 REM
250 delta=DELTAi+DELTAi-a2s
260 IF delta<=0 THEN GOSUB 310 ELSE GOSUB 400
270 RETURN
280 REM
290 REM Make a diagonal step.
300 REM
310 xi=xi+1:a2s=a2s+a2+a2:yi=yi-1:b2s=b2s-b2-b2:DELTAi=DELTAi+a2s-
 b2s:RETURN
320 REM
330 REM
340 delta=DELTAi+DELTAi+b2s
350 IF delta<=0 THEN xi=xi+1:a2s=a2s+a2+a2:DELTAi=DELTAi+a2s:RETURN ELSE
 GOSUB 310
36O RETURN
370 REM
380 REM Make a vertical step.
390 REM
400 yi=yi-1:b2s=b2s-b2-b2:DELTAi=DELTAi-b2a:RETURN

10 ;
 ; Set AMSTRAD to 0 for use on the SPECTRUM.
 ;
 AMSTRAD:
 EQU 1
 ;
20 ;
 ; PHOENIX ellipse drawing routines.
 ;
 ; On entry:
 ;
 ; major = x semi-axis of ellipse.
 ; minor = y semi-axis of ellipse.
 ; xs = x co-ordinate of centre.
 ; ys = y co-ordinate of centre.
 ;
30 minor: #DI INT,70
 major: #DI INT,100
 ;
 xs : #DS INT,1
 ys : #DS INT,1
 ;
 xi : #DS INT,1
 yi : #DS INT,1
 ;
40 ;

 50

 ; Set the precision for multiple precision routines.
 precision:
 EQU 4
 ;
50 ;
 ; Include the multiple precision source.
 *INCLUDE "MPA-FNCS.PHX"
 ;
60 ;
 ; Multiple precision workspace.
 ;
 a2 : DEFS precision
 b2 : DEFS precision
 a2s : DEFS precision
 b2s : DEFS precision
 ;
 DELTAi:
 DEFS precision
 delta: DEFS precision
 ;
 long.zero:
 DEFS precision
 ;
 long.one:
 DEFB 1
 DEFS precision-1
70 ;
 ; Ellipse work functions.
 ;
80 ;
 ; Make a vertical (downwards) step.
 ;
 vertical:
 #FNC INT
 #BEGIN
 #DSE --yi
 #DSE mpa.sub(b2s,b2s,b2) ; b2s=b2s-b2-b2
 #DSE mpa.sub(b2s,b2s,b2)
 #DSE mpa.sub(DELTAi,DELTAi,b2s) ; DELTAi=DELTAi-b2s
 #END
 ;
90 ;
 ; Make a horizontal (right) step.
 horizontal:
 #FNC INT
 #BEGIN
 #DBE ++xi
 #DSE mpa.add(a2s,a2s,a2) ; a2s=a2s+a2+a2
 #DSE mpa.add(a2s,a2s,a2)
 #DSE mpa.add(DELTAi,DELTAi,a2s) ; DELTAi=DELTAi+a2s
 #END
 ;
100 ;
 ; Make a diagonal step.
 ;
 diaqona1:
 #FNC INT
 #BEGIN
 #DSE horizontal()
 #DSE vertical()
 #END
 ;
 ;
110 ;
 ; Decision function; go diagonally or horizontally?
 ;
 test_horizontal:
 #FNC INT
 #BEGIN
 #DSE mpa.add(delta,DELTAi,DELTAi> ; delta=DELTAi+DELTAi+b2s
 #DSE mpa.add(delta,delta,b2s)
 ;
 #IF mpa.sign (delta)>0

 51

 #DSE diagonal ()
 #ELSE
 #DSE horizontal ()
 #ENDIF
 #END
 ;
120 ;
 ; ROM entries for plotting points.
 ;
 COND AMSTRAD
 ;
 GRA_PLOT_ABSOLUTE:
 EQU #BBEA
 GRA_SET_ORIGIN:
 EQU #BBC9
 ;
 ELSE
 ;
 ; Origin set at (127,100) on the SPECTRUM.
 ;
 GRA_PLOT_ABSOLUTE:
 LD A,E
 ADD A,127
 LD C,A
 LD A,L
 ADD A,100
 LD B,A
 JP #22E5 ; ROM plot routine.
 ;
 ENDC
 ;
130 ;
 ; Plot a single point.
 ;
 plot : #FNC INT
 xp : #PRM INT
 yp : #PRM INT
 #BEGIN
 #DSE xp
 PUSH HL
 #DSE yp
 POP DE
 CALL GRA_PLOT_ABSOLUTE
 #END
 ;

 52

140 ;
 ; Plot four points of the ellipse (by symmetry).
 plot4: #FNC INT
 xp : #PRM INT
 yp : #PRM INT
 #BEGIN
 #DSE plot(xp,yp)
 #DSE plot(-xp,yp)
 #DSE plot(-xp,-yp)
 #DSE plot(xp,-yp)
 #END
 ;
150 ;
 ; Initialise lonq variables.
 ;
 ;***************
 ; Entry point.
 ;***************
 start: #ST4CK ; Set PHOENIX stack and flag byte.
 ;
 COND AMSTRAD
 LD HL,200
 LD DE,200
 CALL GRA_SET_ORIGIN
 ENDC
 ;
160 ;
 #DSE xi=0
 #DSE yi=major
 ;
 #DSE mpa.extend(a2,&major) ; a2=a*a
 #DSE mpa.mul(a2,a2,a2)
 ;
 #DSE mpa.extend(b2,&minor) ; b2=b*b
 #DSE mpa.mul(b2,b2,b2)
 ;
170 ;
 #DSE mpa.add(a2s,a2,long.zero) ; a2s=a2
 #DSE mpa.extend(b2s,&yi) ; b2s=b2*(2*yi+1)
 #DSE mpa.add(b2s,b2s,b2s)
 ;
 #DSE mpa.add(b2s,b2s,long.one)
 #DSE mpa.mul(b2s,b2,b2s)
 ;
180 ;
 #DSE mpa.extend(DELTAi,&minor) ; DELTAi=2*(1-b)
 #DSE mpa.sub(DELTAi,long.one,DELTAi)
 #DSE mpa.add(DELTAi,DELTAi,DELTAi)
 ;
190 ;
 ;*************************
 ; Main loop.
 ;*************************
 ;
 #WHILE yi>0
 ;
 #DSE plot4(xi,yi)
 ;
200 ;
 #IF mpa.siqn(DELTAi)>0
 ;
 #DSE mpa.add(delta,DELTAi,DELTAi) ; delta=DELTAi+DELTAi-a2
 #DSE mpa.sub(delta,delta,a2)
 ;
210 #IF mpa.sign(delta)>0
 #DSE vertical()
 #ELSE
 #DSE diaganal()
 #ENDIF
 ;
220 #ELSE
 ;
 #IF mpa.sign(DELTAi)?=0

 53

 ;
 #DSE diagonal()
 #ELSE
 #DSE test_horizontal()
 ;
 #ENDIF
 ;
 #ENDIF
 ;
240 ; End of main loop.
 ;
 #ENDW
 ;
 ; Replace stack pointer.
 ;
 LD SP,IX
 RET
 ;
250 ;
 ; Include any PHOENIX library routines used.
 ;
 ; #LIB

10 ;
 ; Set AMSTRAD to 0 if using a spectrum.
 AMSTRAD:
 EQU 1
 ;
20 ;
 ; Machine code ellipse drawing routines.
 ;
 ; Enter at "start"
 ;
 ; (xo),(yo) = centre of ellipse.
 ;
 ; (major),(minor) = the axes of the ellipse.
 ;
30 ;
 ; Multiplication routine.
 ;
 ; Multiplies BC by HL-DE giving 32 bit result in HL-IX
 ;
 mu132: LD IX,0
 LD A,32
 mult : ADD IX,IX
 ADC HL,HL
 RL E
 RL D
 JR NC,noadd
 ADD IX,BC
 JR NC,noadd
 INC HL
 noadd: DEC A
 JR NZ,mult
 RET
 ;
 ;
40 ;
 ; Workspace.
 ;
 ; Ellipse axis.
 ;
 minor: DEFW 100
 major: DEFW 60
 ;
 ;Ellipse centre.
 ;
 xo : DEFW 127
 Yo : DEFW 100
 ;

 54

 ; current plot point.
 ;
 x1 : DEFS 2
 y1 : DEFS 2
 ;
50 COND AMSTRAD
 ;
 ; Multiplier for screen mode on the AMSTRAD.
 ;
 x_factor:
 DEFS 1
 ;
 ENDC
 ;
60 ;
 ; Work variables. (See BASIC listing).
 ;
 a2 : DEFS 4
 a2s : DEFS 4
 b2 : DEFS 4
 b2s : DEFS 4
 ;
 DELTAi:
 DEFS 4
 ;
70 ;
 ; Entry point.
 ; Type "EXECUTE start" from GENIUS editor.
 ;
80 start:
 ;
 ; Set the origin on the AMSTRAD.
 ;
 COND AMSTRAD
 LD DE,(yo) ; Note : this is in standard co-ordinates.
 LD HL,(x0)
 CALL GRA_SET_ORIGIN
 ;
90 ;
 ; Calculate the screen eode expansion factar (AMSTRAD) .
 CALL SCR_GET_MODE
 SUB 3
 NEG
 LD (x_factor),A
 ;
100 ;
 ; Adjust ellipse x-axis.
 ;
 LD B,A
 LD HL,(minpr)
 JR stexplop
 explop:
 SRL H
 RR L
 stexplop:
 DJNZ explop
 ;
 ; HL = corrected (pixel co-ordinate) axis.
 ;
 LD (minor),HL
 ;
 ENDC
 ;
110 LD HL,0
 LD (xi),HL
 ;
 LD HL,(major)
 ;
 ; Reduce the y-axis (AMSTRAD) to give pixel co-ardinates.
 ;
 COND AMSTRAD
 ;
 SRL H

 55

 RR L
 LD (major),HL
 ;
 ENDC
 ;
 LD (yi),HL
 ;
120 ;
 ; Initialise work variables.
 ;
 LD B,H ; a2=a*a
 LD C,L
 LD DE,0
 CALL mul32
 LD (a2),IX
 LD (a2+2),HL
 ;
 LD (a2s),IX ; a2s=a2
 LD (a2s+2),HL
 ;
130 LD HL,(minor) ; b2=b*b
 LD B,H
 LD C,L
 LD DE,0
 CALL mul32
 LD (b2),IX
 LD (b2s),HL
 ;
140 LD HL,(yi) ; b2s=b2*(2*yi+1)
 ADD HL,HL
 INC HL
 LD B,H
 LD C,L
 LD HL,(b2)
 LD DE,(b2+2)
 CALL mul32
 LD (b2s),IX
 LD (b2s+2),HL
 ;
150 LD HL,1 ; DELTAi=2*(1-b)
 LD DE,(minor)
 OR A
 SBC HL,DE
 ADD HL,HL
 LD (DELTAi),HL
 LD HL,#FFFF ; Sign extend to 32 bits (requires b>0)/
 LD (DELTAi+2),HL
 ;
160 ; ************************************
 ; Main calculation loop.
 ; ************************************
 ;
 ;
170 ;
 main_loop:
 LD HL,(yi) ; While yi>0
 BIT 7,H
 RET NZ
 ;
180 LD DE,(xi)
 ;
 ; HL already has (yi).
 ;
 ; Plot four points of the ellipse (by symmetry).
 ; We actually plot (xi,yi), (-xi,yi), (-xi,-yi), (xi,-yi).
 ;
 ; On the AMSTRAD expand for the particular screen made.
 ;
 COND AMSTRAD
 ;
190 ;
 ; ADD HL,HL
 ;

 56

 LD A,(x_factor)
 LD B,A
 EX DE,HL
 JR stxexp
 xexp : ADD HL,HL
 stxexp:
 DJNZ xexp
 EX DE,HL
 ;
 ENDC
 ;
200 PUSH DE
 PUSH DE
 PUSH HL
 CALL GRA_PLOT_ABSOLUTE ; (xi,yi)
210 POP HL
 POP DE
 PUSH HL
 LD A,D ; Negate xi
 CPL
 LD D,A
 LD A,E
 CPL
 LD E,A
 INC DE
 PUSH DE
 CALL GRA_PLOT_ABSOLUTE ; (-xi,yi)
220 POP DE
 POP HL
 LD A,H ; Negate yi
 CPL
 LD H,A
 LD A,L
 CPL
 LD L,A
 INC HL
 PUSH HL
 CALL GRA_PLOT_ABSOLUTE ; (-xi,-yi)
230 POP HL
 POP DE
 CALL GRA_PLOT_ABSOLUTE ; (xi,-yi)
 ;
 ;
240 ;
 LD DE,(DELTAi) ; IF DELTAi>0
 LD HL,(DELTAi+2)
 CALL testdeh1
 JR Z,godiag
 JR NC,gohoriz
250 LD HL,(DELTAi) ; delta=DELTAi+DELTAi-a2s
 ADD HL,HL
 EX DE,HL
 LD HL,(DELTAi+2)
 ADC HL,HL
 EX DE,HL
 LD BC,(a2s)
 OR A
 SBC HL,BC
 EX DE,HL
 LD BC,(a2s+2)
 SBC HL,BC
 CALL testdeh1 ; IF delta<=0
 JR Z,godiag
 JR NC,godiag
 CALL vertical
 JR main_loop
 ;
260 ;
 ;

 gohoriz:
 LD HL,(DELTAi) ; delta=DELTAi+DELTAi+b2s
 ADD HL,HL

 57

 EX DE,HL
 LD HL,(DELTAi+2)
 ADC HL,HL
 EX DE,HL
 LD BC,(b2s)
 ADD HL,BC
 EX DE,HL
 LD BC,(b2s+2)
 ADC HL,BC
 CALL testdeh1 ; IF delta<=0
 JR Z,horiz
 JR NC,horiz
270 ;
 ;
 godiag:
 CALL vertical ; Make a diagonal step. (Go up then along).
 horiz: LD HL,(xi) ; Make a horizontal step.
 INC HL
 LD (xi),HL
 ;
280 ;
 ;
 ; a2s=a2s+a2+a2
 ;
 LD B,2
 inca2s1:
 LD HL,(a2s)
 LD DE,(a2)
 ADD HL,DE
 LD (a2s),HL
 LD HL,(a2s+2)
 LD DE,(a2+2)
 ADC HL,DE
 LD (a2s+2),HL
 DJNZ inca2s1
 ;
290 ;
 ; DELTAi=DELTAi+a2s
 ;
 PUSH HL
 LD HL,(DELTAi)
 LD DE,(a2s)
 ADD HL,DE
 LD (DELTAi),HL
 LD HL,(DELTAi+2)
 POP DE
 ADC HL,DE
 LD (DELTAi+2),HL
 JP main_loop
 ;
 ;
300 ;
 ;
 vertical:
 LD HL,(yi) ; Make a vertical step.
 DEC HL
 LD (yi),HL
 ;
310 ;
 ; b2s=b2s-b2-b2
 ;
 LD B,2
 decb2s1:
 LD HL,(b2s)
 LD DE,(b2)
 OR A
 SBC HL,DE
 LD (b2s),HL
 LD HL,(b2s+2)
 LD DE,(b2+2)
 SBC HL,DE
 LD (b2s+2),HL
 DJNZ decb2s1

 58

 ;
320 ;
 ; DELTAi=DELTAi-b2s
 ;
 PUSH HL
 LD HL,(DELTAi)
 LD DE,(b2s)
 OR A
 SBC HL,DE
 LD (DELTAi),HL
 LD HL,(DELTAi+2)
 POP DE
 SBC HL,DE
 LD (DELTAi+2),HL
 RET
 ;
 ;
330 ;
 ; Test the 32-bit number in HL-DE for its sign.
 ;
 testdeh1:
 OR A
 BIT 7,H
 RET NZ ; NC, NZ means less than zero.
 LD A,D
 OR E
 SCF
 RET NZ ; C, NZ means greater then zero.
 LD A,H
 OR L
 SCF
 RET
 ;
340 ;
 ; AMSTRAD firmware routine calls.
 ;
 COND AMSTRAD
 ;
 GRA_SET_ ORIGIN:
 EQU #BBC9
 GRA_PLOT_ABSOLUTE:
 EQU #BBEA
 SCR_GET_MODE:
 EQU #BC11
 ;
 ELSE
 ;
 ; Spectrum plot routine.
 ;
 GRA_PLOT_ABSOLUTE:
 LD A,(xo)
 ADD A,E
 LD C,A
 LD A,(yo)
 ADD A,L
 LD B,A
 JP #22E5 ; ROM plot routine
 ;
 ;
 ENDC

 59

7. Spectrum File Transfer Utility
This section is only applicable to Spectrum tape users who have created object files using the *openout
assembler directive (see 4.2.3). The utility itself consists of the first two files of Tape 1 Side B. To execute
the utility, rewind the tape and type LOAD “TRANS”. The program will load and auto-run.

You will be given a menu with two choices:

1. Load for execution
2. Load for saving

Press “1” to choose option 1 and “2” for option 2.

Option 1: This option allows you to execute binary files created by the Genius
assembler. You will be prompted for a filename and a load address. The
Utility will then load the file specified at the address given and display the
address of the byte after the last byte of code loaded. It will then ask you
if you wish to load another file (you may want to load a library of routines
for use by your program). If you answer yes you will again be prompted
for a filename and a load address. This cycle repeats until you answer no
to the “load another file? (Y/N)” question, when you will be prompted for
an execution address. Your code is then executed by a JP instruction to
the address specified.

Option 2: This option allows you to convert Genius format binary files to normal
Spectrum CODE format. You will be prompted for a filename, the utility
will then load that file from tape. You will then be asked:

 Load another file? (Y/N)

Answering “Y” (for yes) will bring the filename prompt back. The new file
will be loaded at the end of the last one. This allows you to concatenate
different Genius binary files to form a single Spectrum CODE file.

This cycle repeats until you answer “N” (for no) to the “load another file”
question, when you will be prompted for a load address. This is the
default load address to go into the CODE file’s header for use by BASIC.

You will then be prompted to press play and record and a key to start the
saving of the CODE file. When this is done you will be returned to the
main menu.

NOTE: Binary files saved from the assembler by the CODE immediate command are directly executable
by BASIC. You do not need to use this utility on these files.

 60

Appendix A - Z80 Instruction Codes
Below is a list of the standard Z80 instructions in alphabetical order. The Genius assembler will accept
non-standard mnemonics for a small number of these, the alternative version being given below the
standard one in the table.

Immediate data in the instructions and object codes are represented as follows:

Object Source Meaning

llhh addr A16 bit address. “ll” represents the low (least significant) and
“hh” the high byte.

llhh word A 16 bit integer. (As “addr”)

bb byte An 8 bit integer.

dd disp An 8 bit displacement.

Note that the DJNZ and JR instructions are given as taking an 8 bit displacement as the operand. The
assembler, however, treats this operand as a 16 bit address and calculates the correct displacement to put
into the object code. (If the address given is too far away from the current instruction an error is given).

The table also gives the execution time of each instruction in T states (clock cycles). This can be used to
calculate the execution time in microseconds by the following formula:

Execution time in T states
=

Execution time in
microseconds

Clock rate in MHz

Some instructions have two times given (e.g. “JR C,disp” and “CPIR”). For conditional instructions these
are condition true/condition false times. For the automatic repeat instructions these are execution times for
one repetition, counter 0/counter <> 0.

OBJECT CODE SOURCE STATEMENT T-STATES

8E ADC A,(HL) 7
 ADC (HL)
DD8Edd ADC A,(IX+disp) 19
 ADC (IX+disp)
FD8Edd ADC A,(IY+disp) 19
 ADC (IX+disp)
8F ADC A,A 4
 ADC A
88 ADC A,B 4
 ADC B
89 ADC A,C 4
 ADC C
8A ADC A,D 4
 ADC D
8B ADC A,E 4
 ADC E
8C ADC A,H 4
 ADC H
8D ADC A,L 4
 ADC L
CEbb ADC A,byte 7
 ADC byte
ED4A ADC HL,BC 15
ED5A ADC HL,DE 15
ED6A ADC HL,HL 15
ED7A ADC HL,SP 15
86 ADD A,(HL) 7
 ADD (HL)
DD86dd ADD A,(IX+disp) 19
 ADD (IX+disp)
FD86dd ADD A,(IY+disp) 19
 ADD (IY+disp)
87 ADD A,A 4
 ADD A
80 ADD A,B 4

 61

OBJECT CODE SOURCE STATEMENT T-STATES

 ADD B
81 ADD A,C 4
 ADD C
82 ADD A,D 4
 ADD D
83 ADD A,E 4
 ADD E
84 ADD A,H 4
 ADD H
85 ADD A,L 4
 ADD L
C6bb ADD A,byte 7
 ADD byte
09 ADD HL,BC 11
19 ADD HL,DE 11
29 ADD HL,HL 11
39 ADD HL,SP 11
DD09 ADD IX,BC 15
DD19 ADD IX,DE 15
DD29 ADD IX,IX 15
DD39 ADD IX,SP 15
FD09 ADD IY,BC 15
FD19 ADD IY,DE 15
FD29 ADD IY,IY 15
FD39 ADD IY,SP 15
A6 AND (HL) 7
DDA6dd AND (IX+disp) 19
FDA6dd AND (IY+disp) 19
A7 AND A 4
A0 AND B 4
A1 AND C 4
A2 AND D 4
A3 AND E 4
A4 AND H 4
A5 AND L 4
E6bb AND byte 7
CB46 BIT 0,(HL) 12
DDCBdd46 BIT 0,(IX+disp) 20
FDCBdd46 BIT 0,(IY+disp) 20
CB47 BIT 0,A 8
CB40 BIT 0,B 8
CB41 BIT 0,C 8
CB42 BIT 0,D 8
CB43 BIT 0,E 8
CB44 BIT 0,H 8
CB45 BIT 0,L 8
CB4E BIT 1,(HL) 12
DDCBdd4E BIT 1,(IX+disp) 20
FDCBdd4E BIT 1,(IY+disp) 20
CB4F BIT 1,A 8
CB48 BIT 1,B 8
CB49 BIT 1,C 8
CB4A BIT 1,D 8
CB4B BIT 1,E 8
CB4C BIT 1,H 8
CB4D BIT 1,L 8
CB56 BIT 2,(HL) 12
DDCBdd56 BIT 2,(IX+disp) 20
FDCBdd56 BIT 2,(IY+disp) 20
CB57 BIT 2,A 8
CB50 BIT 2,B 8
CB51 BIT 2,C 8
CB52 BIT 2,D 8
Cb53 BIT 2,E 8
CB54 BIT 2,H 8
CB55 BIT 2,L 8
CB5E BIT 3,(HL) 12
DDCBDD5E BIT 3,(IX+disp) 20
FDCBDD5E BIT 3,(IY+disp) 20
CB5F BIT 3,A 8
CB58 BIT 3,B 8

 62

OBJECT CODE SOURCE STATEMENT T-STATES

CB59 BIT 3,C 8
CB5A BIT 3,D 8
CB5B BIT 3,E 8
CB5C BIT 3,H 8
CB5D BIT 3,L 8
CB66 BIT 4,(HL) 12
DDCBdd66 BIT 4,(IX+disp) 20
FDCBdd66 BIT 4,(IY+disp) 20
CB67 BIT 4,A 8
CB60 BIT 4,B 8
CB61 BIT 4,C 8
CB62 BIT 4,D 8
Cb63 BIT 4,E 8
CB64 BIT 4,H 8
CB65 BIT 4,L 8
CB6E BIT 5,(HL) 12
DDCBDD6E BIT 5,(IX+disp) 20
FDCBDD6E BIT 5,(IY+disp) 20
CB6F BIT 5,A 8
CB68 BIT 5,B 8
CB69 BIT 5,C 8
CB6A BIT 5,D 8
CB6B BIT 5,E 8
CB6C BIT 5,H 8
CB6D BIT 5,L 8
CB76 BIT 6,(HL) 12
DDCBdd76 BIT 6,(IX+disp) 20
FDCBdd76 BIT 6,(IY+disp) 20
CB77 BIT 6,A 8
CB70 BIT 6,B 8
CB71 BIT 6,C 8
CB72 BIT 6,D 8
Cb73 BIT 6,E 8
CB74 BIT 6,H 8
CB75 BIT 6,L 8
CB7E BIT 7,(HL) 12
DDCBDD7E BIT 7,(IX+disp) 20
FDCBDD7E BIT 7,(IY+disp) 20
CB7F BIT 7,A 8
CB78 BIT 7,B 8
CB79 BIT 7,C 8
CB7A BIT 7,D 8
CB7B BIT 7,E 8
CB7C BIT 7,H 8
CB7D BIT 7,L 8
DCllhh CALL C,addr 17/10
FCllhh CALL M,addr 17/10
D4llhh CALL NC,addr 17/10
C4llhh CALL NZ,addr 17/10
F4llhh CALL P,addr 17/10
ECllhh CALL PE,addr 17/10
E4llhh CALL PO,addr 17/10
CCllhh CALL Z,addr 17/10
CDllhh CALL addr 17
3F CCF 4
BE CP (HL) 7
DDBEdd CP (IX+disp) 19
FDBEdd CP (IY+disp) 19
BF CP A 4
B8 CP C 4
B9 CP B 4
BA CP D 4
BB CP E 4
BC CP H 4
BD CP L 4
FEBB CP byte 7
EDA9 CPD 16
EDB9 CPDR 16/21
EDA1 CPI 16
EDB1 CPIR 16/21
2F CPL 4

 63

OBJECT CODE SOURCE STATEMENT T-STATES

27 DAA 4
35 DEC (HL) 11
DD35dd DEC (IX+disp) 23
FD35dd DEC (IY+disp) 23
3D DEC A 4
05 DEC B 4
0B DEC BC 6
0D DEC C 4
15 DEC D 4
1B DEC DE 6
1D DEC E 4
25 DEC H 4
2B DEC HL 6
DD2B DEC IX 10
FD2B DEC IY 10
2D DEC L 4
3B DEC SP 6
F3 DI 4
10dd DJNZ disp 8/13
FB EI 4
E3 EX (SP),HL 19
DDE3 EX (SP),IX 23
FDE3 EX (SP),IY 23
08 EX AF,AF’ 4
EB EX DE.HL 4
D9 EXX 4
76 HALT 4
ED46 IM 0 8
ED56 IM 1 8
ED5E IM 2 8
ED78 IN A,(C) 12
DBbb IN A,(byte) 11
ED40 IN B,(C) 12
ED48 IN C,(C) 12
ED50 IN D,(C) 12
ED58 IN E,(C) 12
ED60 IN H,(C) 12
ED68 IN L,(C) 12
34 INC (HL) 11
DD34dd INC (IX+disp) 23
FD34dd INC (IY+disp) 23
3C INC A 4
04 INC B 4
03 INC BC 6
0C INC C 4
14 INC D 4
13 INC DE 6
1C INC E 4
24 INC H 4
23 INC HL 6
DD23 INC IX 10
FD23 INC IY 10
2C INC L 4
33 INC SP 6
EDAA IND 16
EDBA INDR 16/21
EDA2 INI 16
EDB2 INIR 16/21
E9 JP (HL) 4
DDE9 JP (IX) 8
FDE9 JP (IY) 8
DAllhh JP C,addr 10
FAllhh JP M,addr 10
D2llhh JP NC,addr 10
C2llhh JP NZ,addr 10
F2llhh JP P,addr 10
EAllhh JP PE,addr 10
E2llhh JP PO,addr 10
CAllhh JP Z,addr 10
C3llhh JP addr 10
38dd JR C,disp 12/7

 64

OBJECT CODE SOURCE STATEMENT T-STATES

30dd JR NC,disp 12/7
20dd JR NZ,disp 12/7
28dd JR Z,disp 12/7
18dd JR disp 12
02 LD (BC),A 7
12 LD (DE),A 7
77 LD (HL),A 7
70 LD (HL),B 7
71 LD (HL),C 7
72 LD (HL),D 7
73 LD (HL),E 7
74 LD (HL),H 7
75 LD (HL),L 7
36bb LD (HL),byte 10
DD77dd LD (IX+disp),A 19
DD70dd LD (IX+disp),B 19
DD71dd LD (IX+disp),C 19
DD72dd LD (IX+disp),D 19
DD73dd LD (IX+disp),E 19
DD74dd LD (IX+disp),H 19
DD75dd LD (IX+disp),L 19
DD36ddbb LD (IX+disp),byte 19
FD77dd LD (IY+disp),A 19
FD70dd LD (IY+disp),B 19
FD71dd LD (IY+disp),C 19
FD72dd LD (IY+disp),D
FD73dd LD (IY+disp),E 19
FD74dd LD (IY+disp),H 19
FD75dd LD (IY+disp),L 19
FD36ddbb LD (IY+disp),byte 19
32llhh LD (addr),A 13
ED43llhh LD (addr),BC 20
ED53llhh LD (addr),DE 20
22llhh LD (addr),HL 16
DD22llhh LD (addr),IX 20
FD22llhh LD (addr),IY 20
ED73llhh LD (addr),SP 20
0A LD A,(BC) 7
1A LD A,(DE) 7
7E LD A,(HL) 7
DD7Edd LD A,(IX+disp) 19
FD7Edd LD A,(IY+disp) 19
3Allhh LD A,(addr) 13
7F LD A,A 4
78 LD A,B 4
79 LD A,C 4
7A LD A,D 4
7B LD A,E 4
7C LD A,H 4
ED57 LD A,I 9
7D LD A,L 4
3Ebb LD A,byte 7
ED5F LD A,R 9
46 LD B,(HL) 7
DD46dd LD B,(IX+disp) 19
FD46dd LD B,(IY+disp) 19
47 LD B,A 4
40 LD B,B 4
41 LD B,C 4
42 LD B,D 4
43 LD B,E 4
44 LD B,H 4
45 LD B,L 4
06bb LD B,byte 7
ED4Bllhh LD BC,(addr) 20
01llhh LD BC,word 10
4E LD C,(HL) 7
DD4Edd LD C,(IX+disp) 19
FD4Edd LD C,(IY+disp) 19
4F LD C,A 4
48 LD C,B 4

 65

OBJECT CODE SOURCE STATEMENT T-STATES

49 LD C,C 4
4A LD C,D 4
4B LD C,E 4
4C LD C,H 4
4D LD C,L 4
0Ebb LD C,byte 7
56 LD D,(HL) 7
DD56dd LD D,(IX+disp) 19
Fd56dd LD D,(IY+disp) 19
57 LD D,A 4
50 LD D,B 4
51 LD D,C 4
52 LD D,D 4
53 LD D,E 4
54 LD D,H 4
55 LD D,L 4
16bb LD D,byte 7
ED5Bllhh LD DE,(addr) 20
11llhh LD DE,word 10
5E LD E,(HL) 7
DD5Edd LD E,(IX+disp) 19
FD5Edd LD E,(IY+disp) 19
5F LD E,A 4
58 LD E,B 4
59 LD E,C 4
5A LD E,D 4
5B LD E,E 4
5C LD E,H 4
5D LD E,L 4
1Ebb LD E,byte 7
66 LD H,(HL) 7
DD66dd LD H,(IX+byte) 19
FD66dd LD H,(IY+byte) 19
67 LD H,A 4
60 LD H,B 4
61 LD H,C 4
62 LD H,D 4
63 LD H,E 4
64 LD H,H 4
65 LD H,L 4
26bb LD H,byte 7
2Allhh LD HL,(addr) 16
21llhh LD HL,word 10
ED47 LD I,A 9
FD2Allhh LD IX,(addr) 20
FD21llhh LD IX,word 14
FD2Allhh LD IY,(addr) 20
FD21llhh LD IY,word 14
6E LD L,(HL) 7
DD6Edd LD L,(IX+disp) 19
FD6Edd LD L,(IY+disp) 19
6F LD L,A 4
68 LD L,B 4
69 LD L,C 4
6A LD L,D 4
6B LD L,E 4
6C LD L,H 4
6D LD L,L 4
2Ebb LD L,byte 7
ED4F LD R,A 9
ED7Bllhh LD SP,(addr) 20
F9 LD SP,HL 6
DDF9 LD SP,IX 10
FDF9 LD SP,IY 10
31llhh LD SP,word 10
EDA8 LDDD 16
EDB8 LDDR 16/21
EDA0 LDI 16
EDB0 LDIR 16/21
ED44 NEG 8
00 NOP 4

 66

OBJECT CODE SOURCE STATEMENT T-STATES

B6 OR (HL) 7
DDB6dd OR (IX+disp) 19
FDB6dd OR (IY+disp) 19
B7 OR A 4
B0 OR B 4
B1 OR C 4
B2 OR D 4
B3 OR E 4
B4 OR H 4
B5 OR L 4
F6bb OR byte 7
EDBB OTDR 16/21
EDB3 OTIR 16/21
ED79 OUT (C),A 12
ED51 OUT (C),B 12
ED49 OUT (C),C 12
ED51 OUT (C),D 12
ED59 OUT (C),E 12
ED61 OUT (C),H 12
ED69 OUT (C),L 12
D320 OUT (byte),A 11
EDAB OUTD 16
EDA3 OUTI 16
F1 POP AF 10
C1 POP BC 10
D1 POP DE 10
E1 POP HL 10
DDE1 POP IX 14
FDE1 POP IY 14
F5 PUSH AF 11
C5 PUSH BC 11
D5 PUSH DE 11
E5 PUSH HL 11
DDE5 PUSH IX 15
FDE5 PUSH IY 15
CB86 SET 0,(HL) 12
DDCBdd86 SET 0,(IX+disp) 20
FDCBdd86 SET 0,(IY+disp) 20
CB87 SET 0,A 8
CB80 SET 0,B 8
CB81 SET 0,C 8
CB82 SET 0,D 8
CB83 SET 0,E 8
CB84 SET 0,H 8
CB85 SET 0,L 8
CB8E SET 1,(HL) 12
DDCBdd8E SET 1,(IX+disp) 20
FDCBdd8E SET 1,(IY+disp) 20
CB8F SET 1,A 8
CB88 SET 1,B 8
CB89 SET 1,C 8
CB8A SET 1,D 8
CB8B SET 1,E 8
CB8C SET 1,H 8
CB8D SET 1,L 8
CB96 SET 2,(HL) 12
DDCBdd96 SET 2,(IX+disp) 20
FDCBdd96 SET 2,(IY+disp) 20
CB97 SET 2,A 8
CB90 SET 2,B 8
CB91 SET 2,C 8
CB92 SET 2,D 8
Cb93 SET 2,E 8
CB94 SET 2,H 8
CB95 SET 2,L 8
CB9E SET 3,(HL) 12
DDCBDD9E SET 3,(IX+disp) 20
FDCBDD9E SET 3,(IY+disp) 20
CB9F SET 3,A 8
CB98 SET 3,B 8
CB99 SET 3,C 8

 67

OBJECT CODE SOURCE STATEMENT T-STATES

CB9A SET 3,D 8
CB9B SET 3,E 8
CB9C SET 3,H 8
CB9D SET 3,L 8
CBA6 SET 4,(HL) 12
DDCBddA6 SET 4,(IX+disp) 20
FDCBddA6 SET 4,(IY+disp) 20
CBA7 SET 4,A 8
CBA0 SET 4,B 8
CBA1 SET 4,C 8
CBA2 SET 4,D 8
CbA3 SET 4,E 8
CBA4 SET 4,H 8
CBA5 SET 4,L 8
CBAE SET 5,(HL) 12
DDCBDDAE SET 5,(IX+disp) 20
FDCBDDAE SET 5,(IY+disp) 20
CBAF SET 5,A 8
CBA8 SET 5,B 8
CBA9 SET 5,C 8
CBAA SET 5,D 8
CBAB SET 5,E 8
CBAC SET 5,H 8
CBAD SET 5,L 8
CBB6 SET 6,(HL) 12
DDCBddB6 SET 6,(IX+disp) 20
FDCBddB6 SET 6,(IY+disp) 20
CBB7 SET 6,A 8
CBB0 SET 6,B 8
CBB1 SET 6,C 8
CBB2 SET 6,D 8
CbB3 SET 6,E 8
CBB4 SET 6,H 8
CBB5 SET 6,L 8
CBBE SET 7,(HL) 12
DDCBDDBE SET 7,(IX+disp) 20
FDCBDDBE SET 7,(IY+disp) 20
CBBF SET 7,A 8
CBB8 SET 7,B 8
CBB9 SET 7,C 8
CBBA SET 7,D 8
CBBB SET 7,E 8
CBBC SET 7,H 8
CBBD SET 7,L 8
C9 RET 10
D8 RET C 11/5
F8 RET M 11/5
D0 RET NC 11/5
C0 RET NZ 11/5
F0 RET P 11/5
E8 RET PE 11/5
E0 RET PO 11/5
C8 RET Z 11/5
ED4D RETI 14
ED45 RETN 14
CB16 RL (HL) 15
DDCBdd16 RL (IX+disp) 23
FDCBdd16 RL (IY+disp) 23
CB17 RL A 8
CB10 RL B 8
CB11 RL C 8
CB12 RL D 8
CB13 RL E 8
CB14 RL H 8
CB15 RL L 8
17 RLA 4
CB06 RLC (HL) 15
DDCBdd06 RLC (IX+disp) 23
FDCBdd06 RLC (IY+disp) 23
CB07 RLC A 8
CB00 RLC B 8

 68

OBJECT CODE SOURCE STATEMENT T-STATES

CB01 RLC C 8
CB02 RLC D 8
CB03 RLC E 8
CB04 RLC H 8
CB05 RLC L 8
07 RLCA 4
ED6F RLD 18
CB1E RR (HL) 15
DDCBdd1E RR (IX+disp) 23
FDCBdd1E RR (IY+disp) 23
CB1F RR A 8
CB18 RR B 8
CB19 RR C 8
CB1A RR D 8
CB1B RR E 8
CB1C RR H 8
CB1D RR L 8
1F RRA 4
CB0E RRC (HL) 15
DDCBdd0E RRC (IX+disp) 23
FDCBdd0E RRC (IY+disp) 23
CB0F RRC A 8
CB08 RRC B 8
CB09 RRC C 8
CB0A RRC D 8
CB0B RRC E 8
CB0C RRC H 8
CB0D RRC L 8
0F RRCA 4
ED67 RRD 18
C7 RST #00 11
CF RST #08 11
D7 RST #10 11
DF RST #18 11
E7 RST #20 11
EF RST #28 11
F7 RST #30 11
FF RST #38 11
9E SBC A,(HL) 7
 SBC (HL)
DD9Edd SBC A,(IX+disp) 19
 SBC (IX+disp)
FD9Edd SBC A,(IY+disp) 19
 SBC (IY+disp)
9F SBC A,A 4
 SBC A
98 SBC A,B 4
 SBC B
99 SBC A,C 4
 SBC C
9A SBC A,D 4
 SBC D
9B SBC A,E 4
 SBC E
9C SBC A,H 4
 SBC H
9D SBC A,L 4
 SBC L
DEbb SBC A,byte 7
 SBC byte
ED42 SBC HL,BC 15
ED52 SBC HL,DE 15
ED62 SBC HL,HL 15
ED72 SBC HL,SP 15
37 SCF 4
CBC6 RES 0,(HL) 12
DDCBddC6 RES 0,(IX+disp) 20
FDCBddC6 RES 0,(IY+disp) 20
CBC7 RES 0,A 8
CBC0 RES 0,B 8
CBC1 RES 0,C 8

 69

OBJECT CODE SOURCE STATEMENT T-STATES

CBC2 RES 0,D 8
CBC3 RES 0,E 8
CBC4 RES 0,H 8
CBC5 RES 0,L 8
CBCE RES 1,(HL) 12
DDCBddCE RES 1,(IX+disp) 20
FDCBddCE RES 1,(IY+disp) 20
CBCF RES 1,A 8
CBC8 RES 1,B 8
CBC9 RES 1,C 8
CBCA RES 1,D 8
CBCB RES 1,E 8
CBCC RES 1,H 8
CBCD RES 1,L 8
CBD6 RES 2,(HL) 12
DDCBddD6 RES 2,(IX+disp) 20
FDCBddD6 RES 2,(IY+disp) 20
CBD7 RES 2,A 8
CBD0 RES 2,B 8
CBD1 RES 2,C 8
CBD2 RES 2,D 8
CbD3 RES 2,E 8
CBD4 RES 2,H 8
CBD5 RES 2,L 8
CBDE RES 3,(HL) 12
DDCBDDDE RES 3,(IX+disp) 20
FDCBDDDE RES 3,(IY+disp) 20
CBDF RES 3,A 8
CBD8 RES 3,B 8
CBD9 RES 3,C 8
CBDA RES 3,D 8
CBDB RES 3,E 8
CBDC RES 3,H 8
CBDD RES 3,L 8
CBE6 RES 4,(HL) 12
DDCBddE6 RES 4,(IX+disp) 20
FDCBddE6 RES 4,(IY+disp) 20
CBE7 RES 4,A 8
CBE0 RES 4,B 8
CBE1 RES 4,C 8
CBE2 RES 4,D 8
CbE3 RES 4,E 8
CBE4 RES 4,H 8
CBE5 RES 4,L 8
CBEE RES 5,(HL) 12
DDCBDDEE RES 5,(IX+disp) 20
FDCBDDEE RES 5,(IY+disp) 20
CBEF RES 5,A 8
CBE8 RES 5,B 8
CBE9 RES 5,C 8
CBEA RES 5,D 8
CBEB RES 5,E 8
CBEC RES 5,H 8
CBED RES 5,L 8
CBF6 RES 6,(HL) 12
DDCBddF6 RES 6,(IX+disp) 20
FDCBddF6 RES 6,(IY+disp) 20
CBF7 RES 6,A 8
CBF0 RES 6,B 8
CBF1 RES 6,C 8
CBF2 RES 6,D 8
CbF3 RES 6,E 8
CBF4 RES 6,H 8
CBF5 RES 6,L 8
CBFE RES 7,(HL) 12
DDCBDDFE RES 7,(IX+disp) 20
FDCBDDFE RES 7,(IY+disp) 20
CBFF RES 7,A 8
CBF8 RES 7,B 8
CBF9 RES 7,C 8
CBFA RES 7,D 8

 70

OBJECT CODE SOURCE STATEMENT T-STATES

CBFB RES 7,E 8
CBFC RES 7,H 8
CBFD RES 7,L 8
CB26 SLA (HL) 15
DDCDdd26 SLA (IX+disp) 23
FDCDdd26 SLA (IY+disp) 23
CB27 SLA A 8
CB20 SLA B 8
CB21 SLA C 8
CB22 SLA D 8
CB23 SLA E 8
CB24 SLA H 8
CB25 SLA L 8
CB2E SRA (HL) 15
DDCDdd2E SRA (IX+disp) 23
FDCDdd2E SRA (IY+disp) 23
CB2F SRA A 8
CB28 SRA B 8
CB29 SRA C 8
CB2A SRA D 8
CB2B SRA E 8
CB2C SRA H 8
CB2D SRA L 8
CB3E SRL (HL) 15
DDCDdd3E SRL (IX+disp) 23
FDCDdd3E SRL (IY+disp) 23
CB3F SRL A 8
CB38 SRL B 8
CB39 SRL C 8
CB3A SRL D 8
CB3B SRL E 8
CB3C SRL H 8
CB3D SRL L 8
96 SUB (HL) 7
DD96dd SUB (IX+disp) 19
DD96dd SUB (IY+disp) 19
97 SUB A 4
90 SUB B 4
91 SUB C 4
92 SUB D 4
93 SUB E 4
94 SUB H 4
95 SUB L 4
D6bb SUB byte 7
AE XOR (HL) 7
DDAEdd XOR (IX+disp) 19
FDAEdd XOR (IY+disp) 19
AF XOR A 4
A8 XOR B 4
A9 XOR C 4
AA XOR D 4
AB XOR E 4
AC XOR H 4
AD XOR L 4
EEbb XOR byte 7

 71

Appendix B - Immmiediate Error Messages And Their Meanings

NOTE: The PRINT immediate command can give the following error messages after evaluating its
expression operand. These messages are described in appendix C.

** unknown name **
** undefined name **
** division by 0 **
** overflow **

** “expected **
A string has not been properly terminated with a double quote.

** bad code range **
The start address given to the CODE command is greater than the end.

** bad line range **
A line range given to an immediate command has its start line number greater than its end.

** can’t wipe **
An attempt has been made to wipe the current source file (Spectrum 128k only).

** comment or end of line expected **
There is some text following a legal statement or immediate command which is not necessary.

** digit expected **
The expression parser is expecting a number in a particular base and the first character it has
found is not a digit in this base.

** expression expected **
You have not given an expression operand to an immediate command which requires one.

** expression too complex **
An expression in the current sentence contains too great a depth of parenthesis.

** file too long **
The file you are trying to load is too big to fit into the currently allotted editor space. Use the SET
SPACE immediate command to give yourself more room.

** illegal file type **
You have attempted to LOAD/IMPORT a file which was not produced by Genius’ SAVE/EXPORT
command.

** illegal first operand **
** illegal operand **
** illegal second operand **

One of the operands given to an opcode mnemonic or assembler directive is not allowed in this
position.

** line range overlap **
The line ranges given to the COPY or MOVE immediate commands overlap. This is not allowed.

** line range too long **
There is not enough space to COPY the line range specified to a new position. Use the SET SPACE
command to give yourself more room.

** line too long **
The tokenised form of the whole line-numbered block you have just tried to enter is too big. You
should split the block into smaller ones.

** mismatched []’s **
Parentheses in the expression are not paired correctly.

** misplaced (or) **
You have not correctly enclosed a Z80 operand in parentheses e.g. (HL), or there is a mismatch in
parentheses enclosing a (hash extension) function’s argument list.

** misplaced operand **
You have used a reserved name in an expression e.g. one of the register names.

** name too long **
Names may be up to 240 characters long.

 72

** no buffer space **
The LOAD ASCII immediate command uses a 2K input buffer in symbol table space. This
message is issued if insufficient space is available. You could use SET SPACE to give the editor
less room (increasing the symbol table space), or CLEAR the symbol table.

** no line number **
The syntax checker cannot find a line number for the statement in the current sentence to be
entered under.

** number expected **
You have not given a (decimal) number as operand to an immediate command which requires
one.

** number to large **
A number in the current sentence is too big. This can mean greater than 65534 for line numbers
or 65535 for other numbers.

** opcode expected **
This error message will be issued whenever the syntax checker cannot find an opcode or an
immediate command name to match the start of the input sentence.

** operand expected **
The expression parser expects an operand (number, symbol or parenthesised expression) after an
operator. This error can be given if you have typed a symbol which cannot belong to an operand
by mistake.

** operand too many **
You have given too many separate operands to an opcode or assembler directive.

** operator expected **
The expression parser expects an operator (see appendix 0) at the position indicated.

** separator expected **
The syntax checker expects a “,” or a “;” at the position indicated.

** space expected **
The syntax checker expects a space after an opcode mnemonic.

** space too large **
The amount of space requested in a SET SPACE command is too big (even if the symbol table
was to be deleted).

** space too low **
You have requested less than 1024 bytes of space in a SET SPACE command. This is not
allowed.

 73

Appendix C - Assembler Error Messages and Their Meanings

a) Warnings

** division by 0 **
An expression in the statement contains an attempt to divide by zero.

** ENDM with no MACRO **
An ENDM pseudo-op has been found in the source without a preceding MACRO statement. It will
be ignored.

** label expected **
The instruction in the statement expects a label to precede it. Such instructions are DL (or DEFL),
EQU, CARGO. The instruction will be ignored; it has nothing to work on.

(MACRO also requires a label but omitting it generates an error.)

** misplaced CARGO **
A CARGO pseudo-op has been used while a local table is being referenced i.e. within a MACRO
expansion or #FNC definition. Only global names may be declared as CARGO.

** number out of range **
The expression given as the operand of a RST instruction does not evaluate to one of 0, #8, #10,
#18, #20, #28, #30 or #38.

** number out of range 0, 2 **
The expression given as operand to an IM instruction evaluates to something other than 0, 1 or 2.

** number out of range 0,7 **
The expression given as the bit number in a BIT, SET or RES instruction evaluates to something
other than 0, 1, 2, 3, 4, 5, 6 or 7.

** number out of range -128, 127 **
The index expression in an instruction involving the IX or IY index registers is out of range. Or a
relative jump has been specified to a location which is out of the range of the instruction. (JR,
DJNZ or a conditional JR).

** number out of range -128, 255 **
An expression in the instruction which is required to be a byte-sized piece of immediate data has
evaluated to a greater than byte-size value.

The range here is -128 to 255 to allow you to write either

LD A,255
or
LD A,-1

as you wish.

** overflow **
An overflow has occurred during evaluation of an expression in the statement.

** PUT with tape/disc output **
A PUT directive has been used while object code is being written to backing store. The PUT will
be ignored.

This message will only be issued on pass 1.

** undefined name **
An expression in the statement contains a reference to an undefined name. For example writing:

name2: equ name1+#FE

Where “name1” is unknown will cause “name2” to be known but undefined. Thus a use of
“name2” will give the “undefined name” error.

This warning will only be given on pass 2 in case of dependencies on as yet undefined names.

 74

** unknown name **
An expression in the statement contains a reference to a name which you have not attempted to
define. The name in question will be inserted in the symbol table and marked as “missing” so that
you can use the immediate command “MISSING” to find all such names.

This warning will only be given on pass 2, since on pass 1 the assembler will not know if the
name in question is to be defined further down the text.

b) Errors
NOTE: The following four errors can also be given at the end of pass 1 when the assembler detects that,

although the object code started off in a legal position it has since grown into protected memory.
Assembly will be terminated. However since the object is not written into memory on pass 1 no
harm will have been done.

** code in name table **
You have attempted to PUT the object code into the assembler’s symbol table.

** code in program **
You have attempted to PUT the object code into Genius.

** code too high **
You have attempted to PUT the object code above the assembler’s high limit i.e. into ROM
variable space or the Amstrad jump block.

** code too low **
You have attempted to PUT the object code below the assembler’s low limit (default value is #40
on the AMSTRAD and RAMTOP on the Spectrum).

** label expected **
The pseudo-op MACRO requires a label which gives the macro’s name. This error will be given on
pass 1.

** MACRO name expected **
You have attempted to use a non-existent macro (or have given the wrong name) in a “\macro
name>” construction.

** misplaced MACRO name **
You have used a macro parameter construction (\<name>) outside a macro expansion.

** multiple name definition **
The name given in the label field of the statement has already been defined. (Note that local
names, those within macros and functions, may be re-used in different local situations).

This error will be given on pass 1.

** undefined expression **
Some pseudo-ops and directives need their operand expression to be well defined even on pass 1.
They are: ORG, COND, PUT, DS, *WHILE, *UNTIL, #DS. This error is fatal in all cases except DS
and #DS.

This error will be given on pass 1.

c) Fatal Errors
** bad nesting **

The assembler has detected a mismatch in one of the following pairs of pseudo-ops/directives.

COND-ENDC COND- ELSE ELSE-ENDC
 MACRO- ENDM
 *OPENOUT- *CLOSEOUT
 *WHILE- *ENDW
 *REPEAT- *UNTIL
 #FNC-#BEGIN #BEGIN-#END

This error can also occur at the end of pass 1 when the assembler finds that its stack is not empty
as it should be.

** MACRO nesting **
You have attempted to define a macro while a local table is being referenced i.e. within a MACRO
expansion or #FNC definition.

 75

** nesting too deep **
There is no space left on the assembler’s stack. This is used by the pseudo-op COND and the
directives *OPENOUT, *WHILE, *RE PEAT, #FNC, #IF, #WHILE, #REPEAT.

** no buffer space **
There is no space left for the assembler to open an input/output buffer. Such buffers are required
by *INCLUDE, *OPENOUT.

** no table space **
The assembler has run Out of room for the name table. This error can also be generated by uses
of MACRO, *WHILE, *TITLE, #IF, #WHILE which use table space for storage.

** tape/disc WHILE too long **
A *WHILE loop being assembled from tape/disc (or microdrive) does not fit into one line-
numbered line.

** too few parameters **
You have given a macro use construction (\ <macro name>) too few parameters. (i.e. A
parameter referenced during macro expansion has been found at a position in the macro’s dummy
parameter list which would mean its replacement is “off the end” of the actual parameter list.

** unavailable command **
You have attempted to assemble source containing # extension references without the hash
command extensions loaded.

 76

Appendix D - Arithmetic Expressions and Operator Precedence

a) The Difference Between Signed and Unsigned Arithmetic
All arithmetic operations are carried out on 16 bit integers. However, it is often possible to specify whether
you want calculations to be done with signed or unsigned arithmetic e.g. “PRINT” uses signed, “UPRINT”
uses unsigned. Signed arithmetic uses the twos complement method for sign representation. That is, if n is
a positive number -n is represented internally by 65536-n. So -1, for instance, becomes 65535=#FFFF.

The difference between the two is really in the error checking performed during the operations. If we add
two numbers together unsigned then overflow occurs when we go over 65535=#FFFF, on the other hand
using signed arithmetic overflow occurs when we go over 32767=#7FFF, since we have then added two
positive numbers and got a negative result!

b) Note on Expression Evaluation
Genius’ expression evaluator detects uses of unknown or undefined names during the calculation of a
result. Thus it is possible even on pass 1 to detect overflow and out-of-range errors correctly in some cases
(those in which no names are used or where all names used are well defined). The assembler will report
these errors as early as possible (pass 1) if it is sure that the expression already evaluates to its final
result.

The evaluator cannot, however, tell the difference between large positive values and small negative ones.
So the assembler will accept an instruction such as:

LD A,#FFFF

The actual code assembled will be (the sensible):

LD A,#FF

Writing

LD A,-1

is therefore acceptable.

c) Operator Precedence
The following table gives the relative “binding power” of the arithmetic operators which may be used in
Genius expressions (including those operators only available to compiler expressions).

The table is in order of decreasing precedence, all operators on the same line having equal precedence.

 OPERATOR EVALUATION
 [...] (...)
(unaries) & ++ _ * ! ^ - right to left
(binaries) * / % left to right
 + - left to right
 << >> @< @> left to right
 > < >= <= left to right
 ?= != left to right
 & | ^ left to right
 && || left to right
 = right to left

The Meaning Of Operator Precedence
When you work out the value of, for instance:

1+2*3

(and get the result 7) you have been applying the rules of operator precedence. The multiplication must be
done before the addition because the “*” operator has higher precedence than the “+”. If you had
intended to do the addition first you would have had to write:

1+2*3

 77

From the table above you can see that parentheses “[” and “]” have the highest binding power of all. So
using them in this way causes the expression inside them to be evaluated before anything else.

This idea can be generalised to all the operators allowed in Genius’ expressions.

You will occasionally need to be careful in your use of some of these operators. Look at the following
example from a hash extension expression.

#IF c=square(x)?=100

This would be evaluated as:

c=[square(x)?=100]

Which is really setting “c” to a TRUE or FALSE flag. What may have been intended is:

[c=square(x)] ?=100

Which first assigns “square(x)” to “c” and then tests to see if this was 100.

If in doubt use parenthesis “[” and “]”.

d) Operator Descriptions

Unary operators:
- Unary minus or negation. e.g UPRINT -1 gives #FFFF, the twos

complement representation of minus one, as result.

! Logical complement or NOT. “!” will turn a true flag into a false flag and
vice versa. In general any non-zero value will be treated as “true” and only
zero as “false”.

^ Bitwise (ones) complement. e.g. !%101010 gives %010101 as result.

* This operator should be read as “contents of”. It has many uses in
compiled expressions (see 5. “The Hash Extensions”) but in assembler
expressions it acts as the “DEEK” function which may be found in many
versions of BASIC. i.e. *<value> returns the value of the word in memory
whose start address is <value>.

& This operator should be read as “address of”. It is only available to
compiled expressions and is used to find the address of a variables
storage space. (See 5. “The Hash Extensions”).

++ This operator is only available to compiled expressions. It increments its
operand and returns the new value of this operand i.e. the value after
incrementation. (See 5. “The Hash Extensions”).

-- This operator is only available to compiled expressions. It decrements its
operand and returns the new value of this operand i.e. the value after
decrementation. (See 5. “The Hash Extensions”).

Binary Operators:

Addition and Multiplication
+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus i.e. a%b returns the value of a modulo b. This will always be a
positive integer, even when signed arithmetic is used, for example [-10]
%3 will give 2 as result.

 78

Shifts and Rotates
<< Shift left, i.e. x<<n shifts x left by n bits.

>> Shift right.

@< Rotate left. i.e. x@<n rotates x left by n bits.

@> Rotate right.

Relational Operators
< Less than a<b returns a true flag (1) if a is less than b, and a false flag

(0) otherwise.

> Greater than a>b returns a true flag (1) if a is greater than band a false
flag (0) otherwise.

<= Less than or equal.

>= Greater than or equal.

Logical Operators
Note that in general “true” or “true flag” may be taken to mean any non-zero value. While “false” or “false
flag” means zero.

&& Logical AND. a&&b returns a value according to the truth table:

 a b a&&b

 true true true
 false true false
 true false false
 false false false

|| Logical OR. a||b returns a value according to the following truth table:

 a b a||b

 true true true
 false true true
 true false true
 false false false

Bitwise Logical Operators
& Bitwise AND. Operates like the logical AND (&&) on corresponding bits of

its operands where a non-zero bit is taken to be “true” and a zero bit
“false”. Note that this is not the same as logical AND, for instance:

2 && 1 gives 1 (=true)

while

2 & 1 gives 0 (=false)

since in the second case the two non-zero bits are not in corresponding
positions.

! Bitwise OR. Operates like the logical OR (||) on corresponding bits of its
operands.

^ Bitwise Exclusive OR. i.e. This operator acts according to the following
truth table on corresponding bits of its operands where a non-zero bit is
taken to be “true”, and a zero bit “false”.

 a b a&&b
 true true false
 false true true
 true false true

 79

 false false false

Suffix Operators:
++ This operator is available only to compiled expressions. It increments its

operand but returns the original value of this operand i.e. the value before
incrementation. (See 5. “The Hash Extensions”).

-- This operator is available only to compiled expressions. It decrements its
operand but returns the original value of this operand i.e. the value before
decrementation. (See 5. “The Hash Extensions”).

e) Parenthesis, Arrays and Functions
In both assembler and compiler (hash extension) expressions the square brackets are used to denote
parenthesis. These are also used to introduce array indices in compiler expressions. Round brackets are
used only for function references in compiler expressions.

A function reference in a compiler expression should be of the following form:

<function_name> ()

or

<function_name> (<parameter list>)

Where <parameter list> means a list of expressions separated by commas. (See ‘5. The Hash
Extensions’).

 80

Appendix E - The Memory Map
The Genius assembler memory map is as shown below. The actual addresses involved will depend on
which optional portions of the program you have loaded, and (on the AMSTRAD) what, if any, expansion
ROMs are fitted.

High Memory
Tool kit commands, if loaded
Main Assembler Program
Variable Storage Space
Hash extensions, if loaded
2K Tape/Disc Buffer
Screen Buffer and Workspace
Source Text File
Symbol table growing downwards in memory

Low Memory

 81

Appendix F - Assembler Command Summary
COMMAND PARAMETER ACTION

ASSEM Clear the assembler’s symbol table and assemble the current source
text.

ASSEMC Preserve the current symbol table and assemble the current source text.

ASSEML Selectively assemble a subroutine library.

BASE <2, 8, 10 or
16>

Set the default base used by PRlNT and UPRlNT.

CAT Display tape/disc/microdrive directory.

CLEAR Clear the current symbol table.

CLS Clear the visible screen and the editor’s copy in memory.

CODE “<string>”,
<expression1>
,<expression2
>

Save the block of memory between expression1 and expression2
as a binary file named <string>.

COPY <line range1>,
<line range2>

Replace line range 2 with line range 1, retaining line range l.

DELETE Delete the whole source file.

DELETE <line range> Delete the specified line range from the source file.

DISC Direct the firmware to read from, and write to, disc (Amstrad disc only).

DISC.I N Direct the firmware to take input from disc (Amstrad disc only).

DISC.OUT Direct the firmware to write to disc (Amstrad disc only).

DRIVE A Set the current drive to “A” (Amstrad disc only).

DRIVE B Set the current drive to “B” (Amstrad disc only).

ERA “<string>” Erase file/files named <string> (Disc/Microdrive only).

EXECUTE <expression> Call the code at the address to which the expression evaluates.

EXPORT “<string>” Save the current symbol table to tape/disc/microdrive.

EXIT Return to whatever CALLed the editor/assembler.

FIND “<string>”,
<Linerange>

String search.

FORM Issue a form feed to the printer.

IMPORT “<string>” Merge a previously EXPORTed table with the current table.

LENGTH Sets the length, in lines, of the printer page to 65536.

LENGTH <decimal
integer>

Set the length, in lines, of the printer page to the selected value.

LIST List the whole source file to the screen.

LIST <line range> List the specified line range of the source file to the screen.

LMISSING List to the printer, all those symbols which the program has referenced
but not defined in the last piece of source code assembled, with a field
width of 16.

LMISSING <decimal
integer>

List to the printer, all those symbols which the program has referenced
but not defined in the last piece of source code assembled, with a field
width given by the decimal integer.

LOAD “<string>” Load the file named <string>.

 82

COMMAND PARAMETER ACTION

LOAD “<string>”,
<line range>

Load the file named <string> and replace the text in line range with the
contents of the file.

LOAD ASCII “<string>” Load a pure ASCII file named <string> and produce a tokenised file
with 10 statements per line number.

LOAD ASCII “<string>”,
<options>

Load a source file named <string> of the type indicated by <options>
and produce a tokenised file, with 10 statements per line number.

LOAD ASCII “<string>”,
<options>
<decimal
integer>

Load a source file named <string> of the type indicated by <options>
and produce a tokenised file, with statements per line selected by the
decimal integer.

LLI ST List the whole source file to the printer.

LLIST <line range> List the specified line range of the source file to the printer.

LTABLE List to the printer, the current symbol table, in the order of its ASCII sort
with a field of width l6.

LTABLE <decimal
integer>

List to the printer, the current symbol table, in the order of its ASCII
sort, with a field width given by the decimal integer.

LTABLEN List to the printer, the current symbol table, in numerical order, with a
field width of l6.

LTABLEN <decimal
integer>

List to the printer, the current symbol table, in numerical order, with a
field width given by the decimal integer.

LUNUSED List to the printer, all those symbols defined but not referenced, with a
field width of 16.

LUNUSED <decimal
integer>

List to the printer, all those symbols defined but not referenced, with a
field width given by the decimal integer.

MARGIN Set the left hand margin to zero.

MARGIN <decimal
integer>

Set the left hand margin to the selected value.

MDRV Direct the assembler to read from and write to, microdrive. Default drive
is drive l (Spectrum only).

MDRV <microdrive
number>

Direct the assembler to read from and write to microdrive. Default drive
is specified by <microdrive number> (Spectrum only).

MDRV.IN Direct the assembler to take input from microdrive (Spectrum only).

MDRV.OUT Direct the assembler to send output to microdrive (Spectrum only).

MISSING List to the screen, all those symbols, which the program has referenced
but not defined in the last piece of source code assembled, with a field
width of l6.

MISSING <decimal
integer>

List to the screen, all those symbols, which the program has referenced
but not defined in the last piece of source code assembled, with a field
width given by the decimal integer.

MODE <0, l or 2> Change screen mode (Amstrad only).

MOVE <line range
1>, <line
range 2>

Replace line range2with line range l, retaining line range l.

PRINT <expression> Print the signed value of the expression in the current base.

PRINT <expression>,
<base>

Print the signed value of the expression in the selected base.

 83

COMMAND PARAMETER ACTION

REDUCE Remove all symbols which were not specified as CARGO during the last
disassembly, from the symbol table.

REN “<stringl>”,
“<string2>”

Rename a file named <string2>, <stringl> (Amstrad disc only).

RENUM <new start>,
<step>, <old
start>

Renumber source text paragraphs.

REPLACE “<string1>”,
“<stringl>”
“<string2>”
<line range>

Search and replace.

SAVE “<string>” Save the source text to a file named <string>.

SAVE “<string>”,
<line range>

Save the given line range of source to a file named <string>.

SET SPACE <decimal
integer>

Adjust editing space.

STATS List memory map information.

TABLE List to the screen, the current symbol table, in the order of its ASCII
sort, with a field width of l6.

TABLE <decimal
integer>

List to the screen, the current symbol table, in order of its ASCII sort,
with a field width given by the decimal integer.

TABLEN List to the screen, the current symbol table, in numerical order, with a
field width of l6.

TABLEN <decimal
integer>

List to the screen, the current symbol table, in numerical order, with a
field width given by the decimal integer.

TAPE Direct the firmware to read from, and write to, tape.

TAPE.IN Direct the firmware to take input from tape.

TAPE.OUT Direct the firmware to write to tape.

UNUSED List to the screen, all those symbols defined but not referenced, with a
field width of 16.

UNUSED <decimal
integer>

List to the screen, all those symbols defined but not referenced, with
field width given by the decimal integer.

UPRINT <expression> Print the unsigned value of the expression in the current base.

UPRINT <expression>,
<base>

Print the unsigned value of the expression in the selected base.

VERIFY “<string>” Attempt to verify the source file named <string> against the source file
in memory.

VERIFY “<string>”,
<line range>

Attempt to verify the line range “<string>” of the source file named
against the line range of the source file in memory.

WIDTH Set the width of the printer page to 65536.

WIDTH <decimal
integer>

Set the width of the printer to the selected value.

 84

Appendix G - Spectrum 128K Assembler: Differences and Additions

Introduction
The 128K version of the assembler has all the features of the standard version but because of the RAM
paging facility, resides in fixed memory in RAM page 3. The extra memory is utilised in such a way that a
number of files can be co-resident and large files can be assembled in RAM. This makes assembly very
fast indeed and when, in addition, the monitor is co-resident, the program development cycle is greatly
enhanced.

Tape Map
On Tape l of the Genius package you will find the following files:

Side A:

GEN128 A BASIC loader.
ASM Assembler object file.

Side B:

TRANS Transfer loader (Spectrum only).
TRANSBIN Transfer utility (Spectrum only).
SIEVE.ASM Sieve of Eratosthenes example program in assembly language.
SIEVE.PHX Sieve of Eratosthenes example program in PHOENIX.
ELLIPSE.ASM Ellipse drawing program in assembly language.
ELLIPSE.PHX Ellipse drawing program in PHOENIX.
MPAFNCS.PHX Multiple precision arithmetic routines in PHOENIX.

1. Operating Instructions
Tape: To load the assembler from tape, use the up and down arrow keys to

select the “TAPE LOADER” option and press ENTER. The assembler will
load and auto-run.

Microdrive: If you have produced, and wish to load, a microdrive version of the
assembler you should use the up and down arrow keys to select the
“128K BASIC” option and press ENTER. Having entered BASIC the
assembler can be loaded using:

LOAD *”m”;1;”GEN128”

NOTE: The Hash extensions and tools will always be loaded and
initialised in the Spectrum 128k version.

2. Differences
SET SPACE The SET SPACE command is no longer required. The screen buffer will be

fixed and source will use pages 0, 1, 6, 7 (unless protected, see Section
3 below).

PUT <expression>
[,<page>]

This pseudo-op functions in the same way as that described in Section
4.3.5 of the main text, but has an additional optional parameter. If
<page> is given, then the specified RAM page will be paged into
#C000-#FFFF before any code is generated. If the <page> is not
specified then a default value of 0 is used.

NOTE: Object code may only be written into protected RAM pages (or
free memory below #C000). On entering the assembler, RAM
page 0 is protected and can be used for the output of object
code. If an attempt is made to PUT object code into memory
containing the assembler or its workspace (source files etc.) then
an error will be issued.

The lowest byte of memory that is free for object code storage is given by
the low address displayed by the STATS command.

 85

STATS This immediate command is similar to that described in Section 2.9 of
the main text, but has been extended to give further RAM paging
information. The following will be displayed:

**low <addr>
<1st program name> <length>
<2nd program name> <length>
<Last program name> <length>
Page 0 <memory left> or ‘_’ if protected
Page l <memory left> or ‘_’ if protected
Page 6 <memory left> or ‘_’ if protected
Page 7 <memory left> or ‘_’ if protected

EXECUTE
<expression>
[,<page>]

This immediate command is similar to that described in Section 2.9 of
the main text but an additional optional parameter is included. If <page>
is given then the specified RAM page will be paged into #C000-#FFFF
before the CALL is executed. If <page> is not specified then a default
value of 0 is used.

CODE This immediate command is similar to that described in Section 2.6 of
the main text, but an additional optional parameter is included. If
<page> is specified then the specified RAM page will be paged into
#C000-#FFFF before any code is saved. If <page> is not specified then
a default value of 0 is used.

3. Additional Commands
The assembler can keep more than one source file in memory at any one time. Each file (called a
“program”) will have a name associated with it. The editor will work on the current file, which on entering
the assembler will be called “NONAME”. In effect the extra memory is used as a RAM disc to speed up
assembly and accommodate larger files. The following new commands are provided:

PROGRAM “<name>” Make the program called <name> the current file (all edits will now be
carried out on this file). If the assembler cannot find this program in
memory, a new empty file is created. This new file is then the current file.

NOTE: All editor commands including “DELETE”, “COPY” and “FIND”
will only apply to the current file.

WIPE “<name>” Deletes the specified program from memory. If an attempt is made to
WIPE the current program (the one being edited) then a “can’t wipe” error
message will be displayed.

PROTECT <page> This will prevent the assembler from using the specified RAM page for its
source files. <Page> must be one of the integers 0, 1, 6 or 7. On
entering the assembler page 0 will be protected, i.e. the assembler will
use pages 1, 6 and 7 for its source code.

USE <page> Frees a previously protected RAM page for use by assembler source files.
<Page> must be one of the integers 0, 1, 6 or 7.

4. Assembly
The only change to the assembler is in the use of the *include directive. The syntax for using the directive
is the same (see 4.2.3 of the main manual) but its effect may be different.

When the assembler finds a *include “<filename>” on pass lit first searches for a program (source file in
RAM) called <filename>. If it finds a program with this name then it includes this file in the object code.
If no program has the name specified then the assembler will search through the files in the current input
device (tape or microdrive, see “2.6 Tape, Disc and Microdrive Commands”). If a file with the correct
name is found the assembler will load the file into RAM if enough space is available and include the file
from RAM on passes l and 2. If there is insufficient room the file will be included from tape or microdrive
on both passes in the usual way.

NOTE: Files which were loaded into RAM from a *include directive will remain in RAM after assembly
has finished, as programs with the same name as the file loaded from tape or microdrive. Use the
STATS immediate command to see which files have been loaded and the WIPE command to
remove any you do not want.

 86

Z80 Monitor And Analyser
by Andrew Foord, Kevin Kambleton and Chris Smith

Introduction
The Monitor/Analyser is an essential tool in the debugging of machine code programs. It has all the
facilities of a normal monitor plus many new features. The standard commands allow memory to be
examined, searched, edited, moved or filled; programs can be run at normal speed; breakpoints set and
machine code disassembled to the screen or printer. Additional features include slow running of programs,
single stepping, disassembly to a file (so that it can be loaded into the Assembler) and the Analyser. The
Analyser allows ten highly selective “stop conditions” to be defined. While the users machine code
program is running under the control of the monitor, the Analyser will test each “stop condition”. The
monitor will stop executing the users program if any of the “stop conditions” is fulfilled. You may, for
example, want to know when your program writes to a certain area of memory or when a register takes on
a particular value. The occurrence of conditions such as these can be detected by defining the appropriate
“stop conditions”. The user is at liberty to define the ten stop conditions as he wishes and the analyser
provides a variety of functions which may be invoked in the definitions.

This manual has been written primarily for the 48k Spectrum and 64kAmstrad variants but most of the
manual is also applicable to the Spectrum 128k. However, the differences in command syntax and
functions that exist between the 48k and 128k Spectrums versions have been condensed into Appendix C.
Consequently, the 128k Spectrum user is advised to consult Appendix C at all times when using this
manual.

At first glance it may appear that the monitor was designed to cater for a minority of highly advanced
users. In fact all of the features are aimed at simplifying and speeding up the task of program
development. We believe that it’s “friendliness” makes this monitor particularly suitable for newcomers to
machine code programming.

Tape Map
On Tape 2 you will find the following files:

AMSTRAD:

Side A MON BASIC - loader and relocator for low version
 LOWVER CODE - low version of monitor
 RELOCOBJ CODE - relocator code and table for low version

Side B MON BASIC - loader and relocator for high version
 HIGHVER CODE - high version of monitor
 RELOCOBJ CODE - relocation code and table for high version

SPECTRUM:

Side A MON BASIC - loader
 LOWVER CODE - low version of monitor
 RELOCOBJ CODE - relocation code and table for low version
 RELOCATE BASIC - relocator

Side B MON BASIC - loader
 HIGHVER CODE - high version of monitor
 RELOCOBJ CODE - relocation code and table for high version
 RELOCATE BASIC - relocator

 87

1. Operating Instructions
Debugging a machine code program requires that the monitor/analyser program must reside in memory
with the program being debugged in such a way that they do not overlap or interfere with each other. In
order that the user may locate his program anywhere in memory there must be flexibility in the
monitor/analyser execution address. High and low versions of the monitor/analyser have been provided but
if neither of these is appropriate

to your needs you may wish to create a suitable version using the relocator program provided. The
analyser functions are an optional extra to those provided in the monitor so the user may decide to
maximise the available program space by deciding to do without the analyser section of the program. The
low version of the monitor/analyser is organised with the analyser code on the high end whereas the high
version has the analyser section on the low end. The user can therefore choose a monitor only version of
the program which fits into either the lowest or highest part of memory.

SPECTRUM the low version occupies memory from 25000 to 40589 inclusive
the high version occupies memory from 49946 to 65535 inclusive

AMSTRAD the low version occupies memory from 5924 to 19947 inclusive
the high version occupies memory from 28595 to 42618 inclusive

If you wish to create a relocated version you may use either side A or side B depending upon which
configuration is required.

If you wish to use the low version of the monitor/analyser insert and rewind side A of the monitor tape
(tape 2).

If you wish to use the high version of the monitor/analyser insert and rewind side B of tape 2.

SPECTRUM type LOAD “” followed by ENTER

AMSTRAD type RUN “MON” followed by ENTER

The prompt will appear “Relocate? (Y/N)”

Type “Y” or “y” followed by ENTER if you wish to create a relocated version, type “N” or “n” followed by
ENTER to load the ordinary version (first time users should type N). When the ordinary version has loaded
another prompt will appear “Using analyser (Y/N) ?”. Type “Y” or “y” followed by ENTER if you wish to use
the monitor and analyser. Type “N” or “n” followed by ENTER and the monitor alone will execute. The
monitor screen will appear.

NOTE: Spectrum users will need to respond to the prompt “Relocate ? (Y/N)” fairly quickly or stop and
start the tape manually, otherwise the tape may run too far and prevent loading.

1.1 Relocating
We suggest first time users skip this section and move onto “2. Screen Layout”.

If you are creating a relocated version the ordinary version of the monitor/analyser will be loaded followed
by the data required to perform the relocation. A prompt will appear “Relocate at?”. You must now enter
the address at which you wish to create the relocated version of the monitor/analyser. The new version will
be created. For example if you wish to create a version of the monitor/analyser occupying memory from
30000 simply type 30000 followed by ENTER, after the prompt.

NOTE: The monitor will be physically moved in memory and so any other programs currently in memory
may be corrupted. You will then be given the option to include the analyser before entering the
monitor itself.

NOTE: Spectrum If and when the Monitor is exited and control is returned to BASIC, then
BASIC will use memory from the CLEAR address downwards for its
machine stack. Therefore BASIC could overwrite part of the user program
and if this is to be avoided a further clear (to an address below the user
program) may be necessary.

NOTE: Amstrad If and when the monitor is exited and control returns to BASIC, then
BASIC will use memory from the MEMORY address downwards. Therefore
BASIC could overwrite part of the user program and if this is to be
avoided a further MEMORY (to an address below the user program) may

 88

be necessary.

1.2 Low and High Monitor/Analysers
Although relocated versions of the monitor/analyser run automatically, if you need to exit and re-enter you
may calculate the execution addresses from the following information. Amstrad users may also use the
command MON to enter the monitor alone and AMON to enter the monitor/analyser.

As previously mentioned the monitor/analyser has been provided in two distinct forms:

1.2.1 The ‘Low’ Version
This has been assembled so that the monitor section of the program is lower in memory than the optional
analyser section consequently the low version is suited to use at the low end of memory because it allows
the user the largest possible contiguous memory area above the monitor/analyser program. If the analyser
is not used the area available to the user is increased by approximately 2k (Amstrad users should study
the section “Tape and Disc Buffer”).

LowVersion Starts at Monitor ends at
Analyser ends

at
Enter Monitor

only
Enter Monitor /

Analyser

SPECTRUM 25000 37924 40589 25000 25003
AMSTRAD 5924 17142 19947 5924 5927

When relocating the low version to a new start address X, the entry points become X for monitor only and
X+3 for monitor and analyser.

1.2.2 The ‘High’ Version
In contrast to the low version the high version has been assembled so that the optional analyser section
resides lower in memory than the monitor section so this version is suited to use at the high end of
memory because it allows the user the largest possible contiguous memory area below the
monitor/analyser program. Once again not using the analyser will yield nearly 3k of memory for the user
(Amstrad users should study the section “Tape and Disc Buffer”).

High Version Starts at Monitor ends at
Analyser ends

at
Enter Monitor

only
Enter Monitor /

Analyser

SPECTRUM 49946 52610 65535 52611 52614
AMSTRAD 28595 31399 42618 31400 31403

NOTE: Spectrum When relocating the high version at address X the entry points become
(X+2665) for the monitor only and (X+2668) for the monitor and
analyser.

NOTE: Amstrad: When relocating the high version at address X the entry points become
(X+2805) for the monitor only and (X+2808) for the monitor and
analyser.

1.3 Extension ROMs (Amstrad Only)
When extension ROMs, such as the DDI disc interface or the RS232 serial interface, are fitted to an
AMSTRAD the upper limit of available memory is reduced because the ROMs reserve memory for their
own use.

For example, printing HIMEM will yield different results for different configurations of machine:

 HIMEM
 STANDARD 464 43903
 STANDARD 464 with DD1 42619
 STANDARD 464 with RS232 41539
 STANDARD 464 with DD1 and with R5232 40255

The high version of the monitor/analyser has been assembled to occupy the top of memory for a standard
464 with DD1, i.e. it fills memory to 42618.

 89

It follows that if you have extension ROMs fitted which bring HIMEM below 42619 the high version of the
monitor/analyser provided will not be compatible with your system. Therefore, you will have to relocate
below your HIMEM. Alternatively, if you have no extension ROMs fitted you may wish to relocate to fill
memory up to 43903, the value of HIMEM on a standard 464 machine. You may find out the value of
HIMEM by typing ?HIMEM followed by ENTER.

To relocate relative to HIMEM simply subtract the overall length of the monitor/analyser from your value of
HIMEM. The overall length of the monitor/analyser is 14024 bytes. So, for example, to relocate the
monitor / analyser to memory at 43903 use the address 29879 when relocating because 43903 - 14024
= 29879. For further information see the section on relocating the monitor/analyser.

1.4 Tape and Disc Buffer (Amstrad only)
When the FLIST and LOAD (for ASCII files) commands are used the monitor/analyser, in accordance with
the Amstrad firmware routines, makes use of a 2048 byte buffer for interfacing to tape/disc. Consequently,
if the user is prepared to forego the use of the FLIST command he may use the buffer area for his own
purposes. In the versions provided the buffer area has been located on the end of the code:

The “low” version The “high” version

5924 MONITOR 26547 TAPE BUFFER (OPTIONAL)
 2048 bytes used to FLIST
17143 ANALYSER (OPTIONAL) 28595 ANALYSER (OPTIONAL)
19948 TAPE BUFFER (OPTIONAL) 31400 MONITOR
 2048 bytes
21995 END 42618 END
21996 42619

From the table above we can see that the user of the low version may use memory from 19948 for his
own purposes if he/she is prepared to forego FLIST and LOAD commands. Similarly the user of the high
version may use memory up to and including 28594.

You may wish to use the monitor alone i.e. without the analyser but with the TAPE buffer moved to the
end of the monitor code. To do this enter the monitor at the “monitor only” entry point i.e. for the low
version type:

CALL 5924 followed by ENTER

for the high version type:

CALL 31400 followed by ENTER

Now move the buffer using the “BUFFER = “ command i.e. for the low version type:

BUFFER=17143

for the high version type:

BUFFER=29352 (=31400-2048)

If you are using a relocated version of the monitor/analyser then it is possible to achieve the same result
i.e. dispense with the analyser and redefine the buffer.

e.g. For a relocated LOW version at address X type CALL X followed by ENTER then type BUFFER=
X+11219 followed by ENTER. So if X = 9000 type CALL 9000 followed by ENTER then type
BUFFER=20219 followed by ENTER.

e.g. For a relocated HIGH version at address Y type CALL Y+2805 followed by ENTER then type
BUFFER=Y+757 followed by ENTER. So if Y=20000 type CALL 22805 followed by ENTER
then type BUFFER=20757 followed by ENTER

NOTE: i) The FLIST and LOAD commands will still operate at any time but
they will use the current buffer area.

ii) The BUFFER= command may be used to set up different buffer
areas to those in the table above which are simply the default
values included at assembly time.

iii) The LOADing of binary, as opposed to ASCII, files does not use
the buffer.

 90

SPECTRUM users: The Spectrum version of the monitor/analyser uses the lower third of
screen memory during FLIST so no buffer space has been allocated during
assembly The FLIST buffer is fixed so the “BUFFER =” command is not
available on the Spectrum version.

 91

2. Screen Layout

2.1 Spectrum and Amstrad 40 Column Mode
The screen is split into four windows:

2

1

3

4

Window Number 1: This window displays the current state of the Z80 registers, an example is given
below. The top two lines give the state of the flags (S-sign, Z-zero, H-half carry, P-parity/overflow, N-
add/subtract and C-carry, blanks indicate the unused flags), the state of ROM switching and the state of
the interrupt flip-flop. In the case shown, the zero flag is set and all the others are clear and interrupts are
disabled. Down the right hand side of the window the top 9 entries on the stack are displayed (as pointed
to by SP). The left hand side displays the register values and the central column shows the two bytes
pointed to by that register pair. All numbers are printed in hexadecimal. The disassembly of the instruction
pointed to by the PC is printed at the bottom of the window.

2.1.1 Amstrad

Top right hand corner - Amstrad

The states of the ROMs are shown in the top right hand corner of the screen, ‘L’ stands for lower ROM, ‘U’
for upper. A ‘D’ indicates that a ROM is disabled and an ‘E’ means it is enabled. The 0 next to the U>E in
the example indicates that upper ROM number 0 is currently selected.

I This indicates interrupt status.

 1 = enabled
 0 = disabled

SZ-H-PNC I L>D
01101000 0 U>E 0
SP BFF8 >B9A2
IR 0067 7F85
IX BFFE DE74 F293
IY 0000 8901 DE74
PC 0000 8901 0000
BC 20FF C91D 0000
DE 03E8 4DC3 0000
HL D189 0000 0000
AF 0068 0000 0000

PC: LD BC,#7F89

top 9
stack entries

parity overflow reset
half carry reset

zero flag is set
sign is reset

add/subtract rest
carry reset

interrupts disabled
lower ROM disabled

upper ROM enabled

upper ROM no.

Contents of memory
pointed to by the
registers.

Disassembly of instruction
pointed to by the Program
Counter.

registers

 92

2.1.2 Spectrum
The top right hand corner of window 1 on the Spectrum differs from the same area on the Amstrad screen.
Note Spectrum 128k users should see Appendix C.

Top right hand corner - Spectrum

This is used to display the memory configuration and interrupt status. There are five indicators which are
displayed as RMP-V-I. Each indicator has the following relevance:

R This indicates which ROM is currently paged in. There are three possibilities.

S = Standard Spectrum ROM
I = Interface 1 (Shadow) ROM
D = Spectrum 128k (Derby) ROM

NOTE: The standard 48k Spectrum obviously does not support the third option!

M This indicates the memory page currently selected for the memory pointer for Spectrum 128k
users. 48k users will find an asterisk displayed.

P This indicates the memory page currently selected for the program counter for Spectrum 128k
users. 48k users will find an asterisk displayed.

V This indicates which of the possible screen bases has been selected for 128k users. 48k users
will find an asterisk displayed.

I This indicates interrupt status.

1 = enabled
0 = disabled

WINDOW NUMBER 2: The window in the top left hand corner is used for disassembly and the printing of
results by some of the Monitor’s commands.

WINDOW NUMBER 3: Below the top two windows there is a hex and ASCII display of a section of
memory, the area displayed is indicated by the value of the Memory Pointer, whose exact location is
shown by a cursor on the middle line. The example shown here was taken from the Spectrum. Amstrad
users should not be alarmed by differences in the character set.

 MEM: DI PC: DI

 FFE8 00 00 00 00 00 00 00 00
 FFF0 00 00 00 00 00 00 00 00
 FFF8 00 00 00 00 00 00 00 00
 0000>F3<AF 11 FF FF C3 CB 11 S/.©©CK.
 0008 2A 5D 5C 22 5F 5C 18 43 *]\”_\.C
 0010 C3 F2 15 FF FF FF FF FF Cr.©©©©©
 0018 2A 5D 5C 7E CD 7D 00 00 *]\~M}.P
 0020 CD 74 00 18 F7 FF FF FF Mt..w©©©

WINDOW NUMBER 4: The bottom two lines of the display are used for printing error messages and the
inputting of commands.

SZ-H-PNC RMP-V-I
01101000 S** * 0
SP BFF8 >B9A2
IR 0067 7F85
IX BFFE DE74 F293
IY 0000 8901 DE74
PC 0000 8901 0000
BC 20FF C91D 0000
DE 03E8 4DC3 0000
HL D189 0000 0000
AF 0068 0000 0000

PC: LD BC,#7F89

top 9
stack entries

parity overflow reset
half carry reset

zero flag is set
sign is reset

add/subtract rest
carry reset

Spectrum ROM selected
Not applicable to Spectrum 48k

Interrupt disabled

Contents of memory
pointed to by the
registers.

Disassembly of instruction
pointed to by the Program
Counter.

registers

 93

Commands such as LIST use the whole screen to print disassembly, when this happens the screen is
cleared before anything is printed on the screen.

2.1.3. 80 Column Mode - Amstrad only
The 80 column mode splits the screen into two halves, the left hand side uses the same format as the 40
column mode, the right hand side is for commands which would use the whole screen in the 40 column
mode, this allows the register display and memory display to stay on the screen while disassembling,
displaying memory or listing breakpoints.

 94

3. The Editor
The Monitor’s Editor allows the input of up to 39 characters at a time on the bottom line of the display.
The following keys can be used to edit the line:

Amstrad Spectrum Operation

left and right
cursor keys

left and right
cursor keys

Move cursor along input line.

DEL caps shift 0 Delete previous character

CLR symbol shift 0 Delete current character.

COPY caps shift 1 Insert a space.

CTRL L symbol shift A Clear the editing area.

ENTER ENTER Execute the command in the editing area. If there is
an error in the command, control is passed to the
editor and the line can be corrected. Pressing ENTER
with nothing in the editing area causes the screen to
be cleared and the register and memory display to be
updated.

Often it is required to breakout of commands, on the Amstrad the ESCAPE key can be used to leave
commands, the escape key on the Spectrum is symbol-shift & A.

In the lower half of the screen there is the memory display. On the middle line of the dump a cursor is
printed which shows the current position of the memory pointer. The memory pointer can be moved
around memory using the following keys:

Amstrad Spectrum Operation

SHIFT left cursor symbol-shift 0 Decrement the memory pointer.

SHIFT right cursor symbol-shift E Increment the memory pointer.

SHIFT up cursor symbol-shift W Subtract 8 from the memory pointer.

SHIFT down symbol-shift S Add 8 to the memory pointer.

SHIFT - COPY caps-shift 9 Advance the memory pointer to the next machine
code instruction, NOT the next byte.

The memory pointer can be set to a particular value using the MEM = command.

 95

4. Entering Commands
Command names can be entered in upper or lower case, if the command name is followed by an equals
sign (e.g. “BUFFER=”) then there should be no spaces between the name and the equals sign. Note that
there is a single space between “EX” and “AF” in the “EX AF” command.

Numbers can be entered in one of four bases as shown below:

Decimal e.g. 4785
Hexadecimal #12B1 (preceded by a ‘#’)
Octal @11261 (preceded by a ‘@’)
Binary %1001010110001 (preceded by a ‘%’)

A single ASCII character can be used to represent a number by enclosing it in quotes, e.g. “A” is
equivalent to the number 65.

“ON” and “OFF” have the values 1 and 0 respectively and can be used instead of these numbers. The
word “MEM”, as a parameter, returns the current value of the memory pointer and “AF”, “BC”, “’DE”,
“HL”, “IX”, “IY”, “SP” and “PC” can also be used as parameters and will return the value of the
corresponding register pair. This makes the following commands possible:

PC= MEM (gives PC the value of the memory pointer)
LIST HL (disassembles from the address held in the register pair HL)

4.1 Command Syntax
The following notation is used for command syntax: parameters are enclosed in ‘<’and’>’ type brackets
and optional parameters are enclosed in square brackets.

For example, FRED <x> [,<y>] would mean that the command whose name is FRED can be followed by
one or two parameters, one called <x> and the other, an optional parameter called <y>. The meaning of
the parameter names used are given below:

 <byte> A number in the range 0 to 255(#FF)
 <word> A number in the range 0 to 65535 (#FFFF)
 <count> As <word>
 <addr> An address in the range 0 to 65535 (#FFFF)
 <start> As <addr>
 <finish> As <addr>
 <flag> Ether 0 or 1 (or ON or OFF)
 <db number> A DB block number in the range l to 8
 <brk number> A breakpoint number in the range l to 8
 <filename> A string of characters enclosed in quotes, e.g. “fred”. On the Amstrad this can

be up to 16 characters long and on the Spectrum this can be 10 characters.
<option number> An option in the range l to 8

Amstrad only:
 <ROM number> An upper ROM number in the range 0 to 251
Spectrum only:
 <drive> A microdrive number in the range l to 8

 96

5. Monitor Commands
NOTE: The use of square brackets indicates optional parameters. Spectrum users should also note that the
ESCAPE key should be read as symbol shift A.

<reg name>= <byte> e.g. C= %10110
Assigns a value to a single register, where <reg name> is one of A, B, C, D, E, H, L or F (the flag
register).

<reg pair>= <word> e.g. BC= 30000
Gives a value to a register pair. <reg pair> must be one of AF, BC, DE, HL, IX, IY, SP or PC.

(<reg pair>)= <byte> e.g. (HL)= #6D
Places the specified byte in memory at the location pointed to by the given register pair. The register pair
can be one of BC, DE, HL, IX, IY or PC.

EXX
Performs the equivalent of the Z80 “EXX” instruction on the Monitor’s copy of the registers. The register
display now shows an apostrophe after the register names BC, DE and HL to indicate that the alternate
register set is now the main set. Typing EXX again returns to the normal set. See also the EX AF command
below.

EX AF
Performs the equivalent of the Z80 “EX AF,AF’” instruction on the monitor’s copy of the register pair AF.
The register display will now show the alternate value of AF and an apostrophe printed after the register
name indicates this. Typing EX AF again toggles the display back to the normal value of AF. See also the
EXX command.

MEM= <addr> e.g. MEM= #4000
Sets the memory pointer to a particular value. The memory dump display is updated by this command.

DATA <byte list> e.g. DATA “hello”,13
Places the list of bytes at the memory location pointed to by the memory pointer. The memory pointer is
incremented after each byte is placed in memory. The memory dump display is updated by this
command. Strings of more than one character can be used in this command and each character in the
string is considered as a different byte value.

.<byte list> e.g. .#3E,“*”,#CD,#5A,#BB
The “.” command is just a shorthand version of the DATA command and is otherwise identical.

EXIT
Returns control to whatever called the Monitor. Note that as long as the Monitor’s workspace is not over-
written, all breakpoint definitions, data areas, analyser programs and other user defined options will be
unchanged on re-entry to the Monitor. Note also that breakpoints are recognised if the code they are in is
executed from outside the Monitor (see the section on breakpoints).

FILL <start>,<finish>,<byte> e.g. FILL #4000,#5FFF,0
The block of memory from <start> to <finish> inclusive is filled with the value of <byte>.

DUMP [<start>[,<finish>]] e.g. DUMP
or DUMP #1000
or DUMP #1000,#10FF

Gives a hex and ASCII dump of memory onto the screen. With no parameters the dump starts from the
current value of the memory pointer and continues until the ESCAPE key (symbol-shift A on the Spectrum)
is pressed. With one parameter the dump starts from the specified address and continues until the
ESCAPE key is pressed. With two parameters the dump starts from the first address and continues until
either the ESCAPE key is pressed or the second address is reached. Pressing a key during the listing will
pause printing until another key is pressed (other than the ESCAPE key).

LDUMP [<start> [,<finish>]] e.g. LDUMP
or LDUMP 30000
or LDUMP 30000,31000

This command is the same as the DUMP command except that the output is also sent to the printer.
Option number 2 selects whether or not the printer output is also sent to the screen (see the OPTION
command).

MOVE <start1>,<finish1>,<start2> e.g. MOVE #1000,#13FF,#A000
The block of memory from <start1> to <finish1> inclusive is copied into the area staring at <start2>.

 97

Note that copying is ‘intelligent’ in that the two blocks can overlap.

CHECK <start1>,<finsh1>,<start2> e.g. CHECK 1000,1010,#A0F0
This command verifies that two blocks of memory are identical. The area from <start1> to <finish1> is
compared with the area starting at <start2>. If the two blocks are the same then a “Blocks Identical”
message is given, but if they are different a “Failed at <addr>” message is printed, where <addr> is the
address of the first mismatch.

SEARCH <start>,<finish>,<bytelist> e.g. SEARCH #8000,#A7FF,#5A,#BB
The block of memory defined by <start> and <finish> inclusive is searched for the first occurrence of
the specified string of bytes. If no match is found then “String Not Found” is printed otherwise “Found at
<addr>” is printed (where <addr> is the address of the first match). If a match is found then the
memory pointer is set to the address of this match and the memory dump display is updated. To find any
further occurrences of the string the NEXT command should be used (see below).

NEXT
The search specified by the most recent SEARCH command is continued so that the next occurrence of
the string can be found. If no search command had been used before, or the last search had failed to find
any more matches, a “No Search String” error is given. On the Amstrad CTRL and N will achieve the
same effect as typing NEXT, on the Spectrum pressing symbol-shift Y will perform this operation.

JUMP [<addr>] e.g. JUMP
or JUMP #1000

The machine code at the specified address (or at the value of PC if no address is supplied) is executed at
normal Z80 speed. On entry to the code the actual Z80 registers are set to the values of the Monitor’s
copy of the registers. If one or more breakpoints have been defined then these breakpoints are loaded into
the RAM. The only way to return to the monitor from the JUMP command is via a breakpoint (see the
section on breakpoints).

NOTE: Executing a JUMP or CALL will clear the slow run workspace. This means that the table of
previous addresses used by the TRACE and LTRACE commands will be lost.

CALL [<addr>] e.g. CALL
or CALL#1000

This command is the same as the JUMP command except a return address to the monitor is placed on
the stack before the machine code is executed. On returning from the machine code the Z80 registers are
stored in the Monitor’s copy of the registers (including the alternate set) and the current ROM states are
also stored away. Breakpoints will be recognised during a CALL command.

NOTE: Executing a JUMP or CALL will clear the slow run workspace. This means that the table of
previous addresses used by the TRACE and LTRACE commands will be lost.

? <word> e.g. ? @7466
The ? command can be used for converting between number bases. The value of <word> is printed in
hex, decimal, octal and binary in the top left hand window.

PUSH <word> e.g. PUSH #ABCD
The value of <word> is placed on the stack and the stack pointer decremented by two. The register
display is updated by this command.

POP
The value of SP incremented by two, this has the effect of ‘popping’ a value off of the stack (although the
value ‘popped’ off is not remembered).

OPTION <option number>,<flag> e.g. OPTION 3,ON
The OPTION command allows various options used within the Monitor to be selected, the option number
parameter is between l and 8 representing the eight different options which are listed below. Initially all
options are off.

Option Effect

1. If this option is off, then all disassembly will be. in hexadecimal, otherwise, if on, it will be in
decimal. This option also affects some other number printing: numbers in error messages,
addresses in the listing of breakpoints or data areas and the value of the stack after an EVAL
command.

2. If off, then printer output is also sent to the screen. If on, printer output is only sent to the
printer. This option affects the LDUMP, LLIST and PDEF commands.

 98

3. If on, then on the third pass of an FLIST command, the disassembly that is being sent to the
tape/disc/microdrive file will also be sent to the screen. If this option is off only the current
address is printed during the third pass. See the FLIST command.

4. If off, then during a slow run or single stepping, if a call or jump to a ROM routine is
encountered it will be immediately executed and not single stepped. On the Amstrad these calls
are those to the firmware block from #B900 to #BF00, on the Spectrum this is a call below
#4000 (16384). If this option is turned on then ROM routines can be slow run normally. See
the section on the debugger for more details.

5. If off then the file created by the FLIST command will contain labels to allow the source code
produced to be re-assembled at a different address. Turning on the option turns off the labels so
that the file contains just absolute addresses. A source file produced with no labels will be
shorter in length than one with labels but in most cases it is advisable to use labels.

6. If off, then the screen is cleared at the start of a JUMP, CALL or SLOW command but if on the
routine to be executed is entered with the screen still displaying the Monitor’s display.

7. This option is for the Spectrum only, if off then printer output is sent to the ZX printer (if one is
connected) and if on it is sent to the Kempston Centronics Interface (if connected).

8. If off, then a line feed is sent to the printer with every carriage return, if on, then only the
carriage return is sent.

CAT
List the tape/disc/microdrive directory. This command does not work with Spectrum tape.

ERA “<string>” e.g. ERA “DEMO
e.g. ERA”4: FRED” (Spectrum only)

Erase the specified file from disc/microdrive. Wildcards can be used with Amstrad disc (see Amstrad disc
manual). Spectrum users may erase a file on any microdrive by including “n:” in the filename string where
n is the microdrive number.

DI
Disable Interrupts. This may be necessary before single stepping or slow running certain programs.

EI
Enable Interrupts.

When any user code is executed during a slow run, single step or after a JUMP or CALL, interrupts will be
either enabled or disabled according to the state of a flag which is maintained by the monitor/analyser.
The flag may be set/reset by using the DI and EI commands described above. The flag is also set/reset
when the user program returns control to the. monitor either after a single step or after a slow run is
halted or when a breakpoint or return from CALL occurs. The monitor determines whether interrupts
areenabled by executing two successive LD A,R instructions and testing the P/V flags.

An analyser word “|” has been provided to allow the state of interrupts to be evaluated from within the
analyser.

Amstrad users should remember that if interrupts are enabled the alternate register set must be valid
because. ROM and MODE information is kept in BC’. If interrupts are disabled the alternate register set
may be used. The monitor/analyser, when selecting user ROM states prior to executing user code, uses
BC’ (or BC if a single. EXX has been executed) to determine which ROMs should be enabled.

5.1 Amstrad Specific Commands
ROM <flag1>,<flag2> [,<rom number>]
This command enables or disables the ROMs on the Amstrad. <Flag1> selects the state of the lower
ROM, if “0” then it is disabled, if “1” it is enabled. <FIag2> sets the state of the currently selected upper
ROM. If <rom number> is given then a particular upper ROM can be selected. The ROM command
affects all of the Monitor’s commands that read from memory, these include.: DUMP, LIST, MOVE,
SEARCH and CHECK. When machine code is executed or single stepped, the selected ROM states are set
on entry and the Monitor’s copy of the ROM states updated on exit from the code. Here are some
examples of the ROM command :

 ROM 0,1 lower disabled, upper enabled,
 ROM ON,OFF lower enabled, upper disabled,
 ROM ON,ON,13 lower enabled, upper ROM number 13 selected and enabled.

 99

BUFFER= <address> e.g. BUFFER=#A000
Sets where in memory the tape or disc buffer will lie., this buffer is 2k long and is used during the FLIST
command and during the LOAD command if an ASCII file is loaded.

MODE <mode number>
Selects either 40 or 80 column screen mode:

 MODE 1 gives 40 column
 MODE 2 gives 80 column

MAP
The current memory usage is listed in the disassembly window. The complete list will appear as follows:

 START END
 Line 1 GMON #1724 #4DEB Monitor/analyser code
 Line 2 WORK #0000 #0000 Workspace
 Line 3 PROG #9000 #9FFF Analyser program space
 Line 4 VSCR #8000 #84FF Virtual screen storage.
 Line 5 BUFF #4DEC #55EB Buffer
 Line 6 OPTION 00010010
 Line 7 VS OFF Virtual screen on/off
 Line 8 ANAL ON Analyser on/off

If the virtual screen memory has not been defined then lines 4 and 7 will be omitted.

If the analyser code is not included or the program space is undefined then line 3 will be omitted.

The numbers declared in the END column of the list are inclusive, in other words the monitor occupies
memory from #1724 up to and including #4DEB.

DISC
Direct the firmware to make disc the current input/output device.

TAPE
Direct the firmware to make tape the current input/output device.

LOAD <filename>,<addr> e.g. LOAD “fred.wow”,#8000
The LOAD command tries to load the specified file in from tape or disc and place it in memory at the
given address. The monitor’s PC register is made equal to the execution address of the file (if it has one.).

SAVE <filename>,<start>,
 <finish>[,<exec>]

e.g. SAVE “fred.yuk”,#8000,#8FFF
or SAVE “fred.yuk”,#8000,#8FFF,#809D

The block of memory from <start> to <finish> is saved to tape or disc as a binary file. An execution
address may by specified but if not the execution address is made equal to the start address. Once saved
the file can be loaded into memory either straight from BASIC or by using the LOAD command from the.
Monitor.

DRIVE <letter> e.g. DRIVE A
Direct the firmware to make the disc drive <letter> the current input/output drive.

|<command>

This command gives access to any RSX’s which are currently logged on including disc and tape
commands. See your Amstrad manuals for syntax.

464 users should notice that string parameters are passed directly so the construction @a$ is neither
necessary nor valid e.g. to erase. a file called FRED type:

 |ERA “FRED” or ERA,“FRED”

Spaces and commas are treated as separators.

5.2 Spectrum Specific Commands
ROM <flag> e.g. ROM ON
Pages in or out the shadow ROM of the interface l (if fitted). When the shadow ROM is on, listing and
dumping of memory will read the shadow ROM and not the main ROM, with the shadow ROM enabled
routines in the shadow ROM can be single stepped, slow run and fast executed. Executing the instructions
at #8 and #1708 will page in the shadow ROM and executing the instruction at #700 will cause the
shadow ROM to be paged out.

 100

MAP
The current memory usage is listed in the disassembly window. The complete list will appear as follows:

 START END
 Line 1 GMON #61A8 #9E8D Monitor/analyser code
 Line 2 WORK #A000 #A2FF Workspace
 Line 3 PROG #A300 #A900 Analyser program space
 Line 4 VSCR #B000 #CAFF Virtual screen storage.
 Line 5 OPTION 00010010
 Line 6 VS OFF Virtual screen on/off
 Line 7 ANAL ON Analyser on/off

If the virtual screen memory has not been defined then lines 4 and 7 will be omitted.

If the analyser code is not included or the program space is undefined then line 3 will be omitted.

The number declared in the END column of the list is inclusive, in other words the work space occupies
the memory from #A000 up to and including #A2FF.

MDRV [<drive>]
Direct the firmware to make the specified microdrive the current input/output device. If <drive> is not
specified input/output defaults to drive 1.

TAPE
Direct the. firmware to make. tape the current input/output device.

LOAD <filename>[,<addr>] e.g. LOAD “fred”
 LOAD “fred”3,30000

The LOAD command tries to load the specified file in from tape/microdrive and place it in memory starting
at the address <addr>. If <addr> is not supplied then a code file will be loaded in at the place in
memory it was saved from, but other file types will be loaded to the address pointed to by MEM.

SAVE <filename>,<start>,<finish> e.g. SAVE “notagain”,30000,30199
This command saves to tape/microdrive the block of memory defined by <start> and <finish>. A
“start>finish” error will be produced if <start> address is greater than the <finish> address.

Note 1: All Spectrum tape/microdrive commands will be. halted by pressing the SPACE key.

Note 2: If microdrive is selected input/output may be directed to any of the 8 possible microdrives
irrespective of which one is presently selected. This is achieved by preceding the filename with n:
where n is the number of the drive which is required. In other words when drive l is selected, for
example, a file FRED may be loaded from drive 4 by typing:

 LOAD “4:FRED”,#8000

 and similarly a file may be saved on drive. 6 by typing:

 SAVE “6:TOM”,#9000,#A000

Note 3: The monitor uses ROM routines for SAVEing so the contents of the shadow ROM cannot be
SAVEd directly. If you wish to save the. contents of the shadow ROM move the area required to
free RAM then save it from there. Although the contents of the shadow ROM cannot be saved
directly they can be disassembled to tape or microdrive using the FLIST command.

5.3 Virtual Screens
One of the most useful additions offered by the monitor is the virtual screen facility. It is provided with
graphics applications in mind but will be found to have uses in almost every sphere of program
development. The commands for controlling the virtual screen are described here and their use is
demonstrated in example 5 (see section 10).

When the user’s program is RUN using the SLOW, CALL or JUMP command, the user’s screen is restored
before execution. When the monitor is re-entered via a breakpoint, STOP or RETurn (from a CALL) the
user’s screen is stored in memory before the monitor’s front panel is displayed. When this facility is
enabled, single stepping will cause the user’s screen to be temporarily displayed so that it can be updated
by the program.

NOTE: Under normal circumstances this facility will only be used with CALLs, JUMPs and SLOW 0.
SLOW 1, 2 and 3 cause the screen to update after each instruction and this may interfere with
the user screen. Bear in mind that screen updates do not affect the top left hand corner of the

 101

screen (the area used for disassembly) and so it is possible to combine front panel displays with
graphical operations. Occasionally this mode of use will be invaluable.

SCRN
Display the virtual screen until a key is pressed.

SCRN <flag> e.g. SCRN 1
or SCRN ON

Enable or disable the virtual screen facility. If <flag> = l the virtual screen is enabled, if <flag> = 0 it is
disabled. If the virtual screen is off then slow running will be faster.

SCRN= <addr> e.g. SCRN=#D000
Set the base address for the virtual screen storage.

SPECTRUM users:

Note 1: If this command is to be executed the user must find 6912 free bytes at which to store
the virtual screen whilst the monitor front panel is being displayed. The SCRN=
command is used to indicate where to store the data.

Note 2: This command produces a user screen in memory which will be cleared with all
attributes set to the current value in the system variable ATTR-T.

Note 3: Use this facility with great care!

AMSTRAD users:

On your machine the effect of this command is simply to define the start address of screen
storage.

5.3.1 AMSTRAD only
Although the AMSTRAD screen occupies memory from #C000 to #FFFF (16k) only 16000 bytes are
needed to duplicate the screen data. However, 16000 bytes is a lot so, to prevent memory problems, the
user may define a window in the screen which will then become the subject of all virtual screen
operations. Therefore the amount of memory required for using the virtual screen facility will depend on

the size of the window.

The window has four parameters all of which are measured in AMSTRAD characters i.e. they are MODE
dependent. The four parameters are COL, ROW, LEN and HGT and they may be assigned values either by
the commands detailed below or from within the analyser (see later).

The amount of memory required is a function of LEN and HGT i.e. the area of the window.

The values of COL and ROW do not effect the amount of memory required.

COL= <number of characters> e.g. COL=20
Define the left hand edge of the virtual screen window. The initial value is 15.

LEN= <number of characters> e.g. LEN=8
Define the width of the virtual screen window. The initial value is 10.

ROW= <number of character lines> e.g. ROW=2
Define the top edge of the virtual screen window. The initial value is 8.

HGT

ROW

LENCOL

 102

HGT= <number of character lines> e.g. HGT= 16
Define the height of the virtual screen window. The initial value is 8.

The validity of the COL, ROW, LEN and HGT parameters is related to the current MODE of the AMSTRAD
because they are measured in characters rather than bytes. In MODE 0 for example the maximum number
of characters is 20 so COL + ROW must be less than 21.

Whenever the screen is about to be moved, i.e. when the screen is on and a SCRN, SLOW, JUMP, CALL
or single step is executed, the parameters defining the window are checked. If the parameters are invalid,
an error message will be displayed. If parameters are to be valid then they must obey the following
relationships:

COL + LEN <= 20 in MODE 0
 40 in MODE l
 80 in MODE 2

ROW + HGT <= 25 (the maximum number of rows is always 25 whichever MODE)

SCRCLR
This command has the effect of clearing the virtual screen memory. The amount of memory cleared will
depend upon the current value of HGT and LEN. If HGT or LEN are changed after performing an SCRCLR
then a further SCRCLR may be necessary.

CTRL & V
The location of the current window will be highlighted until any other key is pressed.

 103

6. Disassembler Commands
DISS [<start>[,<finish>]] e.g. DISS

or DISS #A000
or DISS #A000,#A0FF

Disassembles to the window in the top left hand corner of the screen. With no parameters, the
disassembly starts at the current value of the memory pointer (MEM) and continues until the ESCAPE key
is pressed. With one parameter, disassembly starts at the specified address and continues until the
ESCAPE key is pressed. With two parameters, disassembly starts at the first address and continues until
either the second address is reached or the ESCAPE key is pressed. Pressing any key (including the
ESCAPE key) pauses the printing until another key is pressed (other than the ESCAPE key, which will
return control back to the editor). The ESCAPE key on the Spectrum is symbol-shift and A pressed
together.

LIST [<start>[,<finish>]] e.g. LIST
or LIST 1000
or LIST 1000,2000

This command is the same as the DISS command except the disassembly is printed using the whole
screen (in 40 column mode) or to the right hand half of the screen (in 80 column mode).

LLIST[<start>[,<finish>]] e.g. LLIST
or LLIST #8000
or LLIST #8000,#80A7

This command is the same as the LIST command except that the disassembly is sent to the printer in
addition to the screen. If option bit l is set, the output is only sent to the printer (see the OPTION
command).

DB [<db number>[,<start>,<finish>]] e.g. DB
or DB 3
or DB 7,#8000,#83FF

The DB command allows sections of memory to be defined as areas of data instead of machine code.
During disassembly any data areas are listed using defined bytes (DBs). Up to 8 areas of memory can be
defined as data areas and are numbered from l to 8. This command affects the LIST, LLIST and FLIST
commands.

With no parameters the DB command lists the current selection of data areas already defined by the user.
With one parameter, a number from l to 8, the specified data area is removed from the list of data areas.
With three parameters, a number from l to 8, a start address and finish address, a data area can be
defined.

FLIST <filename>,<start>,<finish> e.g. FLIST “fred”,#100,#1FF
The FLIST command sends disassembly to either an Amstrad tape or disc file, Spectrum tape or Spectrum
microdrive. The file produced can then be loaded into the Assembler, altered and re-assembled. The file
produced will contain labels instead of addresses so that the code can be re-assembled at a different
address. Addresses within the range of the code disassembled will be converted to labels and those out of
this range will be kept as absolute addresses. For example, suppose the following piece of code were
placed at address #7000:

 #7000 LD B,#10
 #7002 PUSH BC
 #7003 CALL #ABCD
 #7006 POP BC
 #7007 DJNZ #7002
 #7009 CALL #7040
 #700C JP Z,#7000
 #700F RET

If it were then FLISTed the resulting listing would appear if the file was then loaded into the Assembler:

 L7000 : LD B,#10
 L7002 : PUSH BC
 CALL #ABCD
 POP BC
 DJNZ L7002
 CALL #7040
 JP Z,L7000
 RET

 104

The insertion of labels is optional; setting option 5 ON, will turn off the labels and absolute addresses will
always be inserted. If the labels are used then workspace must be set aside so that the addresses of
labels can be stored during the operation of the command. This is done by using the WORK= command
and is explained later. If no workspace has been set aside then a “Workspace Undefined” error will be
given and if there are more labels than can be fitted in the given amount of workspace an “Insufficient
Workspace” error will be given.

To FLIST an area of memory the Monitor will disassemble it three times: the first pass sets up the labels,
the second pass calculates the length of the file including the labels and the third pass saves the file. If
option number 3 is on then during the third pass, the file being saved is also printed on the screen.
During all passes the address of the current instruction is printed on the screen so you have an idea of
how far the command has reached in producing the file. After the second pass has been completed the
length of the source code that is about to be produced is printed. The ESCAPE key will abandon the
command at any time (but if you are in pass three only part of the file will have been saved).

There are three points to note when using this command:

Note 1. Not only are CALL and JUMP operands given labels but so are instructions such as LD
BC,#1234 (if the value of the operand were to fall in the range of the code being disassembled).
This will only be a problem if the code is re-assembled at a different address because the value of
the label L1234 will change and if the number #1234 was intended and not the address then
the register pair will now be loaded with the wrong value. To solve this problem change any value
like this to absolute addresses before reassembling.

Note 2. If a label address falls in the middle of an instruction it will not be defined. The example below
demonstrates this. On the left is the code disassembled and on the right the source code
produced:

 #8000 LD HL,#8007 L8000: LD HL,L8007
 #8003 LD (HL),E LD (HL),E
 #8004 INC HL INC HL
 #8005 LD (HL),D LD (HL),D
 #8006 CALL #4321 CALL #4321
 #8009 JR #8000 JR L8000

The label L8007 has not been defined since it falls in the middle of the CALL #4321 instruction.
To solve this either define the label elsewhere or remove the label and put in an absolute address,
the solution will depend on whether #8007 was intended as a number or an address (an address
in this case).

Note 3. If a program contains a table of addresses and you attempt to relocate the program by using
FLIST and then re-assemble, the addresses in the table will, of course, not be relocated
(assuming the table had been defined as an area of data). Tables of addresses such as this will
have to be altered by hand from the assembler by replacing the DBs with DWs and inserting
either labels or absolute addresses. For example, the following program looks up an address in a
table and jumps to it (the source code produced is shown on the right).

The C register contains 0,1 or 2 on entry and the corresponding routine at #8020,#8030 or
#8040 is jumped to, the area from #800C to #8011 has been defined as a data area:

 #8000 LD B,0 LD B,#0
 #8002 LD HL,#800C LD HL,L800C
 #8005 ADD HL,BC ADD HL,BC
 #8006 ADD HL,BC ADD HL,BC
 #8007 LD A,(HL) LD A,(HL)
 #8008 INC HL INC HL
 #8009 LD H,(HL) LD H,(HL)
 #800A LD L,A LD L,A
 #800B JP (HL) JP (HL)
 #800C DW #8020 L8OOC: DB #20,#80,#30,#80
 #800E DW #8030 DB #40,#80
 #8010 DW #8040

The source code would then have to be altered if the code was to be re-assembled at a different
address, the two lines of DBs could be changed to:

L8OOC: DW L8020,L8030,L8040

(Assuming L8020, L8030 and L8040 were defined elsewhere).

SPECTRUM only: The flexibility allowed for saving to any of the microdrives by typing “n:filename”

 105

previously described in the section on LOAD and SAVE also applies when FLISTing.

WORK= <start>,<finish> e.g. WORK=40000,40100
The WORK= command sets aside an area of memory as workspace for use by the FLIST command and
the SLOW/TRACE commands (see debugger section).

WIDTH= <word> e.g. WIDTH=50
Set the width of the printer page in characters. On entry to the monitor this has a default value of 65535.

LENGTH= <word> e.g. LENGTH=80
Sets the length of the print page in characters. On entry to the monitor this has a default value of 65535.

 106

7. Debug Commands

7.1 Single Stepping
From the Monitor’s editor the following keys can be used to perform single stepping operations:

 KEY Operation performed

 Amstrad/Spectrum

 CTRL I/caps & down arrow Increment the value of PC

 CTRL D/caps & up arrow Decrement the value of PC

 CTRL K/symbol-shift G Skip the next instruction, make PC point to the address of the
next instruction.

 CTRL S/symbol-shift D Single step the instruction pointed to by PC and make PC point
to the next instruction.

 CTRL E/symbol-shift F Single step the instruction pointed to by PC unless the
instruction is a CALL or RST, in which case the subroutine
pointed to by the instruction will be executed at normal Z80
speed. Control will return back to the Monitor on exit from the
subroutine and PC made to point to the instruction after the
CALL or RST.

7.1.1 Single Stepping and in line parameters
Before a single step is performed the instruction to be executed is copied into a special location in the
monitor code. The fast execution of CALLs and RSTs when single stepping is not suited to the passing of
in line parameters because in line parameters are not copied into the special locations mentioned
previously e.g.

 CALL OUT-PARS
 DB 4,8,12,16,20

If this code is executed using the CTRL E/SS&F type of single step the code “CALL OUT-PARS” will be
copied into the monitor area for single stepping but the DB data will not. OUT-PARS is expecting to find
operands at the return address but they will be missing and monitor code will be used as in line data
instead. This means that routines which expect in line data (e.g. Spectrum RST 8) cannot be fast executed
using CTRL E/SS&F and consequently slow modes 4 to 7 and 12 to 15 which perform fast execution of
CALLs and RSTs cannot be used for code containing CALLs or RST followed by in line data.

If the user is single stepping or slow running code which makes CALLs or RSTs into the ROM areas of
memory then Option Bit 4 should be switched ON to avoid the automatic fast execution of ROM routines
which might expect in line parameters. A case in point is the RST 8 error routine in the Spectrum. As the
RST 8 is in the ROM, unless option 4 is switched ON, the monitor will endeavour to fast execute it.
However, the RST 8 is always accompanied by an in line parameter so a crash will occur but if option 4 is
switched ON RST 8’s can be single stepped.

Each time an instruction is executed the register values are loaded into the actual Z80 register values, the
instruction executed and then the new register values saved away.

7.1.2 Using Single Stepping with the Amstrad
If while single stepping the instruction to be stepped is a CALL or JUMP to a firmware routine then the
routine will be executed at normal speed and not single stepped. This is like using CTRL E, but the
difference is that JUMPs are also executed (PC is set to the address on top of the stack and the stack
pointer is incremented by 2 after the routine has finished). The execution of firmware calls in this way is
an option and is set by option number 4, if clear, they are executed and if set, no special action is taken
(see the OPTION command).

 107

7.1.3 Using Single Stepping with the Spectrum
If a routine which calls or jumps to the ROM is single stepped, the call or jump will be executed at normal
speed and not single stepped. This is like using the symbol-shift F type of stepping but the difference is
that jumps are also executed (PC is set to the address on top of the stack and the stack pointer is
incremented by 2 after the routine has finished). This execution of ROM routines is an option and can be
turned off by turning on option number 4. If option number 4 is on then ROM routines are single stepped.

7.1.4 The Alternate Registers and Single Stepping
If an EXX or EX AF,AF’ instruction is single stepped, the Monitor commands EXX and EX AF are used
instead of the Z80 instruction so that the register display indicates that the alternate registers are now the
main set (by printing an apostrophe). The monitor can only keep track of the register sets during single
stepping and slow running. If a single (or odd number of) EXX (or EX AF,AF’) is executed (by a JUMP or
CALL) at normal Z80 speed then the monitor will be ignorant of it. This is particularly relevant to
AMSTRAD users because BC’ normally holds the ROM state.

7.2 Slow Running
A slow run is a continuous single stepping. There are four different modes of screen update when slow
running:

0. No screen update after each instruction is executed
1. Only the memory dump display is updated after each instruction
2. Only the register display is updated after each instruction
3. Both register display and memory dump are updated after each instruction

Mode 0 may seem pointless since you could use the Monitor’s JUMP or CALL commands and execute it at
normal speed but slow running has several advantages:

1. The ESCAPE key can be pressed at any time and control will return back to the monitor
(the ESCAPE key on the Spectrum is symbol shift A).

2. When debugging programs it is useful to see what is happening in ‘slow motion’,
especially graphic routines.

3. Special breakpoints can be used while slow running which do things other than just
halting the program (see the section on breakpoints).

4. When slow running, the Monitor can be made to remember the addresses of every
instruction it executed in the order that they were executed, this is via the TRACE
command and is useful for back tracking from a breakpoint.

There are eight modes of slow running, numbered 0 to 7. Modes 0 to 3 use the CTRL S/ symbol shift D
type of single stepping and modes 4 to 7 use the CTRL E/symbol shift F type. The execution of ROM
routines applies exactly the same as it does for single stepping, remember the. limitations regarding in line
parameters. The table below shows what each mode does:

Mode Screen Update After Each Instruction Stepping Type
 Amstrad/Spectrum
0 none CTRL S/symbol-shift D
1 just memory display CTRL S/symbol-shift D
2 just register display CTRL S/symbol-shift D
3 both memory display and register display CTRL S/symbol-shift D
4 none CTRL E/symbol-shift F
5 just memory display CTRL E/symbol-shift F
6 just register display CTRL E/symbol-shift F
7 both memory display and register display CTRL E/symbol-shift F

7.3 Slow Running Commands
SLOW <slow mode number> e.g. SLOW 0
Starts a program slow running from the address held in PC. Execution stops when either the ESCAPE key
is pressed or a breakpoint is met (not all breakpoints cause programs to halt, seethe section on
breakpoints). The value of <slow mode number> must be from 0 to 7. If a breakpoint has been set at
the current PC value then any attempt to, slow run will stop instantly without executing any instructions.

 108

Therefore if you have used fast execution to reach the current PC value and want to continue in a slow
mode you must first single step over the breakpoint or switch the breakpoint off before continuing.

NOTE: Memory screen flags are reset at the start of a slow run (see Analyser – section 9.3).

7.4 Trace
TRACE [<number of instructions>] e.g. TRACE 1000
During a slow run the value of PC for each instruction is stored in memory, the TRACE command prints
out these addresses and the instructions stored at each address. The number of PC addresses
remembered is dependent on how much workspace has been defined (using the WORK= command), two
bytes of workspace are required for each address. If no workspace has been defined then during a slow
run no addresses will be saved away and the TRACE command cannot be used (a “Workspace
Undefined” error will be given). Each time that a SLOW command is executed the workspace is cleared so
only one slow run can be remembered at a time.

The TRACE command lists from the oldest PC address it can remember and works forward to the point at
which it halted. If no parameter is given then all the addresses stored are used, otherwise the specified
number of most recent addresses is used. The listing can be paused by pressing a key and restarted again
by pressing another (other than the ESCAPE key, which will return control back to the editor). If you have
defined a large amount of workspace and the last slow run went on for a long time, the TRACE command
might take a while to list all the PC addresses and get to the point at which the slow run had halted.

If you have used an FLIST command (which also uses the workspace), since the last slow run, the
workspace will be unprintable and a “Workspace Undefined” error will be given.

LTRACE <number of instructions> e.g. LTRACE 50
LTRACE works in exactly the same way as TRACE but output is to the printer.

7.5 Breakpoints
Breakpoints are special controls inserted into a program to make it change its mode of execution, it could
cause the program to stop and return to the monitor (a normal breakpoint) or it could change the mode of
execution to one of the slow modes (a special breakpoint). Up to eight breakpoints can be defined at any
one time.

Breakpoints are implemented differently depending on what mode of execution you are using at the time,
there are two modes: slow running and fast execution (JUMP or CALL commands).

7.5.1 Fast Execution
When testing machine code at normal Z80 speed using either the CALL or JUMP commands, breakpoints
are implemented by placing a Z80 CALL instruction at the address where the breakpoint is required, this
means that these breakpoints will only work in RAM. The address of the CALL instruction points to the
Monitor’s breakpoint handling routine. The CALL instructions are only placed in RAM at the start of a
CALL or JUMP command and are removed on exit, this makes the CALLs ‘invisible’ to disassembly and
memory dumps. Breakpoints are also loaded into RAM when the Monitor is exited so that programs can
be executed from outside the Monitor but breakpoints still recognised.

Since a Z80 CALL instruction takes up three bytes of memory a problem may occur. Consider the section
of program below:

 #8000 CP 175
 #8002 JR NC,#8006
 #8004 XOR A
 #8005 RET
 #8006 LD A,1
 #8008 RET

This will set A=0 if A was initially less than 175, otherwise it sets A=1. Suppose you wanted to put a
breakpoint at #8005 to halt when A was less than 175. You might run your program using the CALL
command. If so a Z80 CALL instruction is put in your routine at #8005, but a CALL is 3 bytes long, so
the routine at #8006 becomes corrupted and will no longer work correctly. To solve this problem either
use slow running (breakpoints while slow running do not corrupt RAM) or just be extra careful in the
placing of breakpoints when fast executing.

 109

7.5.2 Slow Running
Breakpoints can be in ROM or RAM when slow running since nothing is placed in the code being run.
Each time an instruction is single stepped the value of PC is compared with all the breakpoint addresses,
a match indicates that one has been encountered.

7.5.3 Breakpoint Types
There are 18 different types of breakpoint; ALL TYPES ARE RECOGNISED IN BOTH SLOW AND FAST
MODES. One type is the normal breakpoint which stops execution when it is encountered. The other 17
have special functions and are numbered 0 to 16. Types 0 to 7, when encountered, change the mode of
execution to the slow mode corresponding to the breakpoint number. Types 8 to 15 are breakpoints with
counters, each time the breakpoint is encountered the count is decremented, when the count reaches zero
execution is halted. Type 16, the slow-fast breakpoint allows the user to switch the mode of operation of
the monitor from slow to normal Z80 speed. Note that although 18 different types of breakpoint can be
defined the total number of breakpoints permitted is 8. The table below shows the differences between the
17 special breakpoints:

Type Effect
0 Continue in slow mode 0
1 Continue in slow mode l
2 Continue in slow mode 2
3 Continue in slow mode 3
4 Continue in slow mode 4
5 Continue in slow mode 5
6 Continue in slow mode 6
7 Continue in slow mode 7
8 Decrement count, halt if zero else slow mode 0
9 Decrement count, halt if zero else slow mode 1

10 Decrement count, halt if zero else slow mode 2
11 Decrement count, halt if zero else slow mode 3
12 Decrement count, halt if zero else slow mode 4
13 Decrement count, halt if zero else slow mode S
14 Decrement count, halt if zero else slow mode 6
15 Decrement count, halt if zero else slow mode 7
16 Continue in fast execution mode.

Breakpoints, once defined, can be turned off and on; a breakpoint in the off state is ignored if encountered
during the execution of a program.

NOTE: When a slow to fast breakpoint (type 16) is encountered the slow run workspace is NOT cleared.
Executing CALL or JUMP does however clear the slow run workspace.

7.5.4 Encountering Breakpoints
When a breakpoint is encountered the program is stopped and the message “Press a key” is displayed at
the foot of the screen. If the user is slow to respond the monitor will ‘BEEP’. So if you are debugging sound
programs on the Amstrad you must respond before the first ‘BEEP’, because CHR$ (7) which causes the
‘BEEP’ also flushes the sound queue. After a key is pressed, the message “Breakpoint <number>” is
printed (where <number> is the number of the breakpoint that caused execution to halt). PC is made
equal to the address at which the breakpoint occurred. To continue from a breakpoint either turn the
breakpoint off and continue with JUMP, CALL or SLOW, or if you require the breakpoint to stay active then
single step past the breakpoint and then continue execution (remember if you are fast executing, a
breakpoint is three bytes long and so at least the next three bytes will need to be single stepped before
execution can continue). When using the type 16 breakpoint remember that once it has been encountered
control will only return to the monitor if another breakpoint is encountered. Type 16 breakpoints have no
effect while fast running.

Note that if any key (or the Amstrad joystick) is being pressed continuously when a breakpoint occurs the
message “Release key/joystick” will be displayed. This is to prevent the monitor from responding to any
backlog of user key presses.

 110

7.6 Breakpoint Commands
BREAK <brknumber>,<flag>,<addr> e.g. BREAK2,ON,#1005
Defines a breakpoint, with the given number, as a normal breakpoint with the specified address. The
breakpoint number must be in the range 1 to 8 and if it was previously defined the old definition will be
lost. The flag indicates the state the breakpoint will be left in after it has been executed. If <flag> = 0
then the breakpoint will be turned off after it has been encountered (and must be turned back on by the
user using the BRK command). If <flag> = 1 then the breakpoint stays active after it has been executed.
Whatever the value of <flag>, initially, the breakpoint will be on.

DEFBRK <brk number>,<type>,
 <addr> [,<count>]

e.g. DEFBRK 4,0,#A000
or DEFBRK 4,8,#A000,10

Defines a special function breakpoint, <brk number> is a breakpoint number from 1 to 8 and <type> is
the breakpoint type from 0 to 16. If the given breakpoint is already defined the old definition is lost.
<Addr> is the address of the breakpoint. A <count> parameter is required if the breakpoint is of type 8
to 15, this is the initial value of the breakpoint’s counter. The breakpoint will be initially ‘on’ but can be
turned off using the BRK command.

Breakpoint types 0 to 7 always stay on after they have been executed, so do types 8 to 15 as long as the
count has not reached zero but, when it does the breakpoint will be turned off.

BRK <brknumber>,<flag> e.g. BRK 1 ,OFF
Sets the state of a given breakpoint. If <flag> = 0 then the breakpoint is turned off (but its definition is
still remembered), if <flag>=1 then the breakpoint is turned on. If the breakpoint has not yet been
defined then “Breakpoint Undefined” is printed. Turning on a counting type breakpoint will reset its count
to the starting value it had when it was first defined.

DELETE <brknumber> e.g. DELETE 8
Removes a breakpoint definition from the list of the breakpoints. The breakpoint is then considered
undefined.

LBRK
Lists the eight breakpoint definitions giving their type (either BRK for normal breakpoints or the. type.
number for special breakpoints), the address, current state and, if the breakpoint is a special function type
8 to 15, its initial and current count values are also printed.

 111

8. Monitor Error Messages
ENTER COMMAND

The last command was completed successfully and the monitor is waiting for a new command to
be entered.

COMMAND NOT KNOWN
The Monitor cannot find the command name you have entered in its list of commands (you may
be trying to use an Analyser command without the Analyser being present).

NUMBER TOO BIG
A number entered is out of the range 0 to 65535 (0 to #FFFF).

OUTOF RANGE
A number entered is out of range for a particular parameter, for example when a <flag>
parameter is required a number either 0 or 1 (or ON or OFF) is required, entering any other value
will produce this error.

BAD NUMBER
The Monitor is trying to read a parameter in as a number but cannot understand what has been
entered.

BAD STRING
This error occurs when either the Monitor is expecting a string but a number has been entered
instead, or if a string has no closing quote, or if a string of more than one character has been
entered (unless in the DATA or SEARCH commands which allow strings to be more than one
character in length).

STRING TOO LONG
Filenames cannot be longer than 16 characters on the Amstrad and 10 characters on the
Spectrum. Byte lists for the SEARCH command cannot be longer than 20 bytes long.

START > FINISH
When <start> and <finish> parameters are required to define a block of memory the <finish>
parameter must always be greater than or equal to the <start> parameter.

TOO MANY OPERANDS
The command entered expects fewer operands than have been supplied.

TOO FEW OPERANDS
The command entered expects more operands than have been supplied.

FAILED AT <ADDR>
This error is given by the CHECK command and gives the address of the first difference in the two
blocks.

FOUND AT <ADDR>
Given by the SEARCH and NEXT commands, this message gives the address of the match.

STRING NOT FOUND
The SEARCH or NEXT command could not find any more matches of the search string.

NO SEARCH STRING
A NEXT command has been used either without a SEARCH command being used beforehand or
after a search which had failed to find any more matches.

COMMAND ABANDONED
Amstrad - The LOAD, SAVE and FLIST commands produce this error if a tape or disc error occurs,
the actual reason for the error will be printed by the firmware. Some other commands produce
this error to indicate the ESCAPE key was used to terminate the command.
Spectrum - During a LOAD, SAVE or FLIST command this error will occur if break is pressed (shift
& space), it is also used by other commands to indicate that ESCAPE (symbol-shift A) has been
pressed and the command has been abandoned.

BAD FILE
Spectrum only, this indicates that the file being loaded from tape is corrupted in some way,
equivalent to Basic’s tape loading error.

 112

FILE ALREADY OPEN
Amstrad only - If a file is left open and a LOAD, SAVE or FLIST command is used, this error is
produced, the open file will be closed and so next time the LOAD, SAVE or FLlST command is
entered the error should not be produced.

WORKSPACE UNDEFINED
No workspace has been defined before using an FLIST or TRACE command or the workspace is
unprintable for the TRACE command.

INSUFFICIENT WORKSPACE
If during an FLI ST command there becomes too many labels to fit in the current allocation of
workspace, this error will be produced.
This error message is also produced if an attempt to use the virtual screen is made before the
memory has been defined.

FILE NOT FOUND
Spectrum only, this error occurs only during LOAD if the named file cannot be found on the
selected drive.

BAD OPCODE
You have tried to single step or slow run an instruction that the Monitor could not disassemble,
i.e. an instruction that is printed as DB <n>; BAD, where <n> is the byte it could not
disassemble.

BREAKPOINT UNDEFINED
Using a BRK or DELETE command with a breakpoint that has not yet been defined will produce
this error.

BREAKPOINT <n>
Breakpoint number <n> has been encountered and has caused execution to stop.

 113

9. The Analyser
The Analyser allows the definition of intelligent breakpoints which cause a program that is slow running to
stop when a particular condition occurs. The conditions that can be monitored are: the state of the flags,
values of registers, the contents of memory and if memory has been written to or read from.

Conditions are set up using a subset of the language called FORTH (for those who already know FORTH,
the words already defined for the Analyser Forth are listed at the end of this section).

The following discussion on the monitor/analyser includes examples with references to absolute numbers
which are only suitable for the low version. Any version, high, low or relocated, of the. monitor/analyser
may be used in the same fashion if the numbers are altered accordingly.

Before anything can be done with the Analyser some space for user defined definitions must be reserved,
this is done using the PROG=<start>,<finish> command (where <start> and <finish> define a block
of memory to be used as program space). To start with about 250 bytes of program space will be
sufficient. As the low version of the. monitor/ analyser is being used define the required memory area as
follows:

SPECTRUM: PROG=42000,42249
AMSTRAD: PROG=25000,25249

9.0.1 Introducing Analyser Forth
The analyser uses a dialect of Forth as the breakpoint controlling language for three reasons. Firstly, a
Forth compiler is easy to implement and does not require a lot of memory to run in. Secondly, the code
generated is very compact. Thirdly, and most importantly, Forth programs execute very rapidly. This latter
quality is essential if the analyser is to be of any practical use.

Those users who are familiar with Forth should have no problems with this dialect but should still read
this section carefully. We do not recommend newcomers to the language purchasing a text on Forth
because the analyser uses only a very small subset of the words and the examples in this section are
aimed to provide sufficient tutorial.

9.0.2 Using Analyser Forth
When processing a forth definition the analyser works along the definition from left to right dealing with
each number or operator in turn. Numbers are simply placed on the “stack”. Operators are interpreted and
the required function performed. “Stack” in the context of this discussion is the analyser stack, not the
Z80 stack. How would the analyser evaluate the following string?

6 2 3 4 + * +

As each term is encountered, working from left to right it is processed.

 Stack

 6 is a number so it is placed on the stack 6
 2 is a number so it is placed on the stack 6 2
 3 is a number so it is placed on the stack 6 2 3
 4 is a number so it is placed on the stack 6 2 3 4

+ is an operator so it is interpreted. The. effect of the + operator is to take the last two stack entries, add
them and put the result on the stack:

 4 is removed from stack 6 2 3
 3 is removed from stack 6 2
 the sum 7 is placed on the stack 6 2 7

* is an operator so it is interpreted. The effect of the * operator is to take the last two stack entries,
multiply them and put the product on the stack:

 7 is removed from stack 6 2
 2 is removed from stack 6
 the product l4 is placed on the stack 6 14

+ is an operator so it is interpreted. The last two stack entries are removed, added and the result is placed
on the stack:

 114

 14 is removed from stack 6
 6 is removed from stack
 the sum 20 is placed on the stack 20

The EVAL command allows a line of Analyser Forth to be executed immediately and shall be used to
introduce the language to you. To verify that the analysis above is correct type.:

EVAL 6 2 3 4 + * + followed by ENTER

The following will appear (#14 = 20):

STATE OF STACK:
#14
ENTER COMMAND

Forth uses a stack to store all its data. The EVAL command will clear the stack before it evaluates any
string. To get Forth to do anything for you, you must put data on the stack first, for example you might
want to add the numbers 2 and 3 together using the EVAL command. First you must place the two
numbers on the stack, to do this type:

EVAL 2 3 (and press ENTER)

The following will appear (as long as program space has been defined):

STATE OF STACK:
#3 #2
ENTER COMMAND

This shows you that the Analyser can place numbers on the stack. The stack is known as a first-in-last-out
structure because you can keep adding items but if you want to get at something that was placed on the
stack earlier on you must remove everything above it first. For example, say you place the numbers 1, 2
and 3 on the stack in that order. 1 is on the bottom of the stack and 3 is on the top; to get at 1 again you
must first remove the 3 and then the 2. So numbers placed on the stack are read off in the opposite order
to which they went on.

Now to add the two numbers together, Forth has a word called ‘+’ which it understands to mean addition.
It takes the top two stack entries and adds them together, placing the result on the top of the stack, so
now type:

EVAL 2 3 +

and, hey presto, you get the answer »5 (note the Analyser is printing the stack in hexadecimal - type
OPTION 1,ON to select the decimal printing mode).

To demonstrate how the stack works, try:

EVAL 1 2 3 +

This leaves 5 and 1 on the stack, showing that the two most recent entries are added together. Now try:

EVAL 3 2 1 - +

The answer should be 4, to see why, look at the diagram below (the ‘state of stack’ diagram shows the
bottom of the stack to the left):

 Word State of Stack Explanation

 EVAL empty clears the stack
 3 3 puts 3 on the top of the stack
 2 32 adds 2 to the top of the stack
 1 32 1 adds 1 to the top of the stack
 - 31 2 minus l equals l
 + 4 3 plus l equals4

Note that ‘-’ is another Forth word, this time meaning subtraction (you can find all the defined words listed
at the end of this section).

Instead of putting numbers on the stack you could use the values of the Z80 registers. For example, EVAL
HL BC + will place the values of HL and BC on the stack, add them together and put the answer back on
the stack. Try the following:

 115

HL=100
BC=200
EVAL HL BC +

The answer should be 300 (decimal). Executing a word that requires items on the stack when none are
there will cause a “Stack Empty” error to be printed. For example, EVAL + will give such an error.

While numbers are on the stack we can move them around. For example SWAP swaps the top two stack
items over, so the following:

EVAL 1 2 3 SWAP

will leave the numbers on the stack in the order 1 3 2 (working from the bottom of the stack going up).
ROT rotates the top three items so

EVAL 1 2 3 4 ROT

produces 1 3 4 2 (working from the bottom up again), this has taken the third item to the top of the
stack.

9.0.3 Defining Words
So far we have been using words such as +, -, HL and SWAP. These are all predefined words but you can
define your own using the WORD command, for example:

WORD FRED: DUP *

This defines a word called FRED which gives the square of the number held on top of the stack. DUP is a
defined word which makes a copy of the top stack item onto the stack and ‘*’ is multiply. Note that when
you enter this line nothing is executed, the definition is just stored away in the program space. To list any
definitions you have made and to see how much space you have left use the LDEF (list definitions)
command. Now try:

EVAL 4 FRED 5 FRED

You should get the answers 16 and 25 (since 4 squared is 16 and 5 squared is 25), the diagram below
shows what happens:

 Word State of Stack Explanation

 EVAL empty stack cleared
 4 4 4 placed on stack
 FRED » DUP 4 4 another copy placed on stack
 * 16 multiply top two items
 5 « 16 5 5 placed on stack
 FRED » DUP 16 5 5 another copy placed on stack
 * 16 25 multiply top two entries
 <end> «

The definition FRED can only be used after it has been defined, otherwise. a “Word Not Known” error is
given. A word may be redefined by using the WORD command but there are things to note.

1. If an error is made during the redefinition of a word the old definition will be retained.

2. If a correct redefinition is made the warning “Word Redefined” will appear after the
redefinition has been made. The old definition will have been lost by the time the warning
appears.

3. During the redefinition of a word, other definitions which had not been made at the time of
the original definition, may be incorporated into the new definition.

User word names must be made up of alpha-numeric characters only. Since word names could consist of
numeric characters only it is possible (but not advised) to redefine numbers, for example try this:

WORD 10: 11
EVAL 10 10 +

The answer printed will be 22 since you have redefined the number l0 to give the value 11.

We still have FRED defined, we can now use it in a new definition, say SUMS, which will square the top
two stack items and add them together:

 116

WORD SUMS: FRED SWAP FRED +
EVAL 4 5 SUMS

and will give the answer 41 (since 4*4+5*5=41). We can use FRED again to square the result of SUMS
to give us a new word which we can call SQUARES:

WORD SQUARES: SUMS FRED
EVAL 2 3 SQUARES

giving the answer 169 (2*2+3*3=13 and 13*13=169).

How the result 169 has been calculated may be clarified. The string typed in originally is:

EVAL 2 3 SQUARES

Inside the analyser SQUARES is replaced by its definition. In effect the string becomes:

EVAL 2 3 SUMS FRED

Now the word SUMS can be replaced by its definition. The string becomes:

EVAL 2 3 FRED SWAP FRED + FRED

Finally the word FRED may be replaced so the string becomes:

EVAL 2 3 DUP * SWAP DUP * + DUP *

Working from left to right through this string:

EVAL is a command to clear the stack and evaluate the subsequent string.

EVAL Stack

2 a number so it is placed on stack 2
3 a number so it is placed on stack 2 3
DUP an operator. Duplicate the last stack entry 2 3 3
* an operator. Remove last two entries and multiply them, put result on stack 2 9
SWAP an operator. Remove last two entries then put them on stack in reverse order9 2
DUP an operator. Duplicate the last stack entry 9 2 2
* an operator. Remove last two entries, multiply them, put result on stack 9 4
+ an operator. Add last two entries, result on stack 13
DUP an operator. Duplicate the last entry 13 13
* an operator. Multiply 169

Our collection of definitions now looks like this:

FRED: DUP*
 10: 11

SUMS: FRED SWAP FRED +
SQUARES: SUMS FRED

We can see that words can be defined in terms of both predefined words and other, user defined, words
and each definition can be used more than once.

To remove any old definitions from the program space use the CLEAR command, this removes all user
definitions, so use it with care.

To get the Analyser to test for conditions while a program is running, a STOP must be defined. This is a
word with the name STOP followed by a single digit from 0 to 9, e.g. STOP 1 or STOP 7. STOPs can be
used like any other word definitions but during SLOW running the STOPs are evaluated after every
instruction has been executed. AFTER EVALUATING A STOP DEFINITION THERE SHOULD BE ONE
NUMBER LEFT ON THE STACK, if not an error will occur. lf this value is non-zero the program will stop
and the number of the STOP (0 to 9) in which the halt was caused will be printed.

NOTE: When a STOP definition is actually processed the PC is pointing at the next instruction to be
executed but the. flags and registers are all set to the values that they held at the. end of the last
instructions executed. This is clarified by example 4-‘STACK CHECKER’.

To explain the use of STOPs we require a demonstration program. Type in the following list of commands

Amstrad Spectrum

MEM= #6978 MEM=#ABE0
DATA #21,0,#C0,#75,#23,#7C DATA #21,0,#40,#75,#23,#7C
DATA #FE,0,#20,#F9,#C9 DATA #FE,#58,#20,#F9,#C9

 117

This will load a short machine code program into the. memory at #6978/ABE0 (at #6978 for the
Amstrad, at #ABE0 for Spectrum). The disassembly of the code is given below:

 #6978 LD HL,#C000 #ABE0 LD HL,#4000
 #697B LD (HL),L #ABE3 LD (HL),L
 #697C INC HL #ABE4 INC HL
 #697D LD A,H #ABE5 LD A,H
 #697E CP #0 #ABE6 CP#58
 #6980 JR NZ,#697B #ABE8 JR NZ,#ABE3
 #6982 RET #ABEA RET

The program fills the screen with a pattern. HL is used as a pointer into the screen memory. On the
Amstrad when H=0 address #0000 has been reached and so the routine finishes. On the Spectrum the
end of the screen memory is at #5800 and so H is compared with #58 to see if the screen end has been
reached. To test the routine use the command:

 Spectrum: CALL #ABE0
 Amstrad: CALL #6978

Say we wanted the routine to stop when HL was equal to #C010 (#4010 on the Spectrum). To do this
we need to define a STOP using the Analyser. First remove any old definitions that are no longer needed:

 Amstrad Spectrum

 CLEAR CLEAR
 WORD STOP 0: HL #C010= WORD STOP 0 : HL #4010=

STOP0 has now been set up to detect when HL=#C010 (Amstrad) or #4010 (Spectrum).

The Forth word ‘=’ compares the top two stack items, if they are equal 1 is put on the stack otherwise a 0
is placed on the stack.

The Analyser can only be used while slow running not fast executing, so to run the program type:

Spectrum: PC = #ABE0
 Amstrad: PC = #6978

 and then: SLOW 0

Part of the screen will be filled, then the Monitor will print “Press any key”, pressing a key updates the
display and at the bottom of the screen the message “Stop number 0” will be displayed, the current
instruction will be an INC HL instruction. This is the point where HL was made equal to the required
address. Note that PC still points to the instruction that was executed, to continue, use the CTRL K
(symbol-shift G) operation to skip past this instruction before using SLOW again. In this case trying to
continue will cause the Analyser to stop the program again since the condition set by STOP 0 is still true.
To continueeither CLEAR thedefinitions or type ANALYSER OFF which will stop the Analyser checking
conditions but will keep any definitions defined. Typing ANALYSER ON or CLEAR switches the Analyser
back on.

ADDR, RD, WR and ACF are Analyser words that allow the detection of reading or writing of memory (see
the list of definitions for an explanation). Using the same program as above type in the following definition:

 Amstrad Spectrum

 CLEAR CLEAR
 WORD SCREEN: ADDR #C010= WORD SCREEN: ADDR #4010=
 WORD STOP 0: SCREEN WR& WORD STOP 0: SCREEN WR&

The definition SCREEN returns 1 if the last instruction accessed the required memory location otherwise it
returns 0. The word & is used to ensure that the STOP occurs if SCREEN is true and the memory was
written to. Run the program now using:

Spectrum: PC = #ABE0
 Amstrad: PC = #6978

 and then: SLOW 0

The Analyser will now stop at the LD (HL),L instruction when HL=#C010 (or HL=&4010). The Analyser
can be used to check that a particular value is written to memory:

CLEAR
WORD VALUE: ADDR C@175=

 118

WORD STOP 0: VALUE WR&

The Analyser will check if the value written to memory is 175 and if so it will halt. There are several things
to note about the Analyser:

1. The logical operator ‘&’ and the bitwise operator OR can be used to chain conditions together, for
example “condition1 AND (condition2 OR condition3)” would be converted to Forth as:

condition2 condition3 OR condition1 &

2. Words in FORTH definitions need to be separated, in the examples above a spacehas been used but
commas and colons could be used instead. The WORD command can have any of the three
separators after the word being defined, but in the examples above a colon has been used to make the
definitions clearer.

3. The. WORD command can be. abbreviated to $<word name> <definition>, for example:

$FRED 1 1 +

4. More than one STOP can be defined at a time, since STOP 0 to STOP 9 are valid STOPs, then up to
10 STOPs can be defined at any one time. But remember the more STOPs there are the slower SLOW
running will be!

9.1 Analyser Commands
PROG= <start>,<finish> e.g. PROG=#0000,#1000
Defines the position in memory of the Analyser’s PROGram space. The command will erase all previous
definitions and enable the Analyser (see the ANALYSER command). Take care to ensure that PROG space
is not in user code or monitor code.

CLEAR
Resets the program space and erases all previous commands. A “Workspace Undefined” error will be
given if a PROG= has not been used before hand. The Analyser will be enabled by the use of this
command (see the ANALYSER command).

ANALYSER <flag> e.g. ANALYSEROFF
Enables or disables the Analyser from working during a slow run. If <flag> = 0 then no checking occurs
during a slow run.

WORD <wordname> <definition>
or $ <wordname> <definition>

e.g. WORD FRED HL C@10=
or $FRED HL C@10=

Defines an Analyser word, <word name> must be made of alpha-numeric characters only and should not
have been defined before. <Definition> is a list of at least one number or Analyser Forth word.

EVAL <definition> e.g. EVAL FRED
Evaluates the given definition and then prints the state of the stack.

LDEF
Lists the current user defined definitions and prints how much free memory is left in the program space.
Note that the space left in the program space is used for the stack during execution time. If there is
insufficient space left an “out of Stack Space” error will be given.

PDEF
As LDEF but output is to the printer.

DEFSAVE “<string>”
Save the current analyser definitions to a tape, disc or microdrive file named <string>. Amstrad users
will require a 2k buffer and this will require the use of the BUFFER= command. It is often a good idea to
set BUFFER to the second half of PROG SPACE (see FLIST).

DEFLOAD “<string>”
Load a previously saved file of analyser definitions named <string> from tape, disc or microdrive. Note
that Amstrad users require a 2k buffer (see DEFSAVE).

NOTE: Amstrad

When the definitions are saved, they are first disassembled back to their ASCII form (hence the 2k buffer).
When they are re-loaded, they are re-compiled back into PROG SPACE. This means that a PROG= will
need to be executed before a DEFLOAD or a PROG SPACE UNDEFINED error will occur. It is also possible
that a DEFLOAD may be terminated with an INSUFFICIENT SPACE error if the current PROG SPACE is

 119

not large enough to accommodate the previously saved definitions. If these errors occur reset PROG
SPACE and try again.

NOTE: Spectrum

The Spectrum version does not DEFSAVE ASCII files in the same way as the Amstrad and so the
DEFSAVE, DEFLOAD sequence has to be treated in a different way. The Monitor/Analyser must be
relocated to the same address when DEFLOADing a particular file, as it was when DEFSAVing the
particular file. DEFLOAD also resets PROG SPACE automatically to the size and position that it had at the
time of the DEFSAVing. This means that the Spectrum user must be extra cautious when setting PROG
SPACE prior to typing definitions because it is not possible to increase PROG SPACE without losing the
definitions. As mentioned previously in SAVE and LOAD, a microdrive number may be included in the
filename string to direct the monitor to access that drive rather than the current microdrive..

EDIT <wordname>
Edit a previously defined analyser/stop definition.

The $ is automatically inserted at the start of the word definition which is displayed on the edit line with
the cursor pointing to the first character of the word definition. The line is then edited in the normal way.
Pressing ENTER will cause the new definition to be processed. There are several points to note:

i) If the word name itself is not edited then the previous definition is replaced by the new definition.
The ‘Word Redefined’ message is issued to indicate a successful redefinition.

ii) If the word name itself is edited then the new word is created and the previous definition is
preserved.

iii) Spaces will automatically be inserted between each word in a definition when it is displayed to
the editor line and a colon is automatically inserted at the end of the word name. This means
that a word that was originally entered as

 $FRED #1 #2 #3

 would be displayed on the edit line as

 $FRED: #1 #2 #3

Occasionally this will cause a definition to exceed the 40 characters allowed. If this is the case,
then the definition will be automatically truncated at 40 characters (including carriage returns).
For this reason, care should be exercised when compacting definitions.

iv) It is also possible, although unlikely, that a ‘No space’ error will be given when the edited line is
ENTERed. If this does occur then Amstrad users should save the definitions, increase PROG
SPACE, reload the definitions and try again. Spectrum users cannot surmount this problem and it
is therefore advisable to ensure ample PROG SPACE before beginning a session. As an indication,
the STACK CHECKER example used in this manual would require about 500 bytes of program
space to ensure sufficient editing space. 1k of PROG SPACE should cover almost any eventuality.

9.2 Analyser Errors
PROGRAM SPACE UNDEFINED
 An analyser command has been used without setting up program space with the PROG=
command.

OUT OF PROGRAM SPACE
This error can occur in a WORD command because insufficient program space has been defined
and the current definition will not fit in the space that is left. This error can also occur with the
EVAL command since the definition is compiled into the program space before it is executed.

WORD NOT KNOWN
You are trying to use a word in a definition which has not yet been defined.

NO DEFINITION
You are trying to define a word without any definition.

STACK EMPTY
The current word requires at least one operand on the stack but there are insufficient left on the
stack for it to use.

 120

STACK NOT EMPTY
This error can occur when a STOP has been executed and more than one number is left on the
stack at the end of the definition.

DIVISION BY ZERO
The word ‘/’ has been used with a divisor of 0.

INSUFFICIENT STACK SPACE
The stack is too big to fit in the spare space left in the program space.

NO SPACE
An attempt has been made to use the EDIT command with insufficient PROC SPACE defined - see
EDIT.

WORD REDEFINED
A pre-defined analyser definition has been successfully re-defined - see EDIT.

9.3 Analyser Forth Reserved Words
In the following list of definitions a stack diagram is given for each word, this represents how the word
effects the stack. In these diagrams the ‘>’ sign splits the ‘before’ and ‘after’ parts. Numbers on the stack
are represented by nl, n2 and n3, these are 16 bit integers and so have the range 0 to 65535. Sometimes
words use flags and fl, f2 and f3 represent these, a flag uses zero to represent false and a non-zero value
(usually 1) to represent true. Here is an example:

n1 n2 > f1

This would mean that the definition would expect at least two numbers on the stack, where n2 is the top
stack item and n1 is the next stack item. After the word had been executed n1 and n2 would have been
removed leaving a flag (which has the value 0 or 1) on the top of the stack. A “Stack Empty” error is given
if there are insufficient items on the stack when the command is executed.

9.3.1 Defined Words

Register Values
AF, BC, DE, HL, IX, IY, SP, PC > n1
These eight words place the current value of the corresponding register pair on the stack.

A, B, C, D, E, H, L, F > n1
Place the value of the indicated register on the stack.

CF, PVF, NF, ZF, SF, HF > f1
Place a flag on the stack which reflects the value of one of the Z80 flags as shown below:

CF Carry flag
PVF Parity/Overflow flag
NF Add/Subtract flag
HF Half carry flag
ZF Zero flag
SF Sign flag

The flag value placed on the stack will be 0 if the flag was clear or 1 if it was set.

I > n1
Interrupts enabled/disabled. The flag value placed on the stack will be 0 if interrupts are disabled but 1 if
they are enabled.

Memory Addressing
ADDR > n1
ADDR places the address of the last memory location accessed on the stack. If the most recent instruction
did not write to or read from memory then ADDR will return the value 0. Not all memory accessed by an
instruction is recorded, the following do not effect ADDR:

Block moves (LDI, LDD, LDIR and LDDR)
Block compares (CPI, CPD, CPIR and CPDR)
Block inputs and outputs (INI, IND, INIR, OUTI, OUTD, OTIR and OTDR)

 121

Stack operations (PUSH, POP, CALL, RST and RET)

The following are recognised and effect ADDR:

Absolute addressing e.g. LD (#4321),HL
 LD SP, (#ABCD)

Register indirect addressing e.g. LD (BC),A
 ADD A, (HL)
 BIT 4, (IX-3)
 RLD and RRD

ADDR can be used from the EVAL command and it will reflect the actions of the instruction PC is pointing
to at that moment.

RD, WR, ACF > f1
All three instructions leave a flag on the stack. RD leaves a true flag (1) if the last instruction read from
memory otherwise it leaves false (0). WR leaves a true flag if the last instruction wrote to memory. ACF
leaves a true flag if the last instruction accessed memory (i.e. either read or write).

Some instructions read and write to the same location, they are listed below:

Increments or decrements of a memory location e.g. INC (IX+ 12)
Rotations of memory locations e.g. SLA (HL)
Bit set/resets of memory locations e.g. SET 4, (IY-1)

NOTE: Memory access flags RD,WR and ACF are reset at the start of a slow run.

Arithmetic Operations
+ addition
- subtraction
* multiplication
/ division

n1 n2>n3 (n3=n1+n2)
n1 n2>n3 (n3=n1-n2)
n1 n2>n3 (n3=n1*n2)
n1 n2>n3 (n3=n1/n2)

These four mathematical operators use the top two stack items as their operands, if there are less than
two numbers on the stack at the beginning of the word a “Stack Empty” error is given. The operands are
removed before the answer is placed on the stack.

Note that the Analyser stores its numbers as 16 bit integers, i.e. a number from 0 to 65535 and so
negative numbers, decimals and numbers greater than 65535 cannot be entered. The Analyser has no
overflow error and so only the least significant 16 bits of any answer is ever remembered, the following
examples demonstrate this:

EVAL 65535 1 + gives the answer 0
EVAL 0 1 - gives the answer 65535
EVAL 500 500 * gives the answer 53392 (i.e. the 16 LSB’s of 250000)

Since numbers are stored as integers, the result of division will be rounded down to a whole number, e.g.
10 4 / will give the answer 2 instead of 2.5.

Logic Operators
AND bitwise AND
OR bitwise OR
XOR bitwise exclusive-OR
NOT bitwise complement

n1 n2 > n3
n1 n2 > n3
n1 n2 > n3
n1 > n2

These four operators perform the given bitwise logic operations on the top two stack items (only one for
NOT) and after removing the operands the answer is placed back on the stack. The logic operations are
performed on the full 16 bits of a number and the tables below show the effect on the individual bits for
the four operations:

0 AND 0 = 0 0 OR 0 = 0 0 XOR 0 = 0 NOT 0 = 1
0 AND 1 = 0 0 OR 1 = 1 0 XOR 1 = 1 NOT 1 = 0
1 AND 0 = 0 1 OR 0 = 1 1 XOR 0 = 1
1 AND 1 = 1 1 OR 1 = 1 1 XOR 1 = 0

 122

Relational Operators
“ n1 equal to n2?
> n1 greater than n2?
< n1 less than n2?
>= n1 greater than or equal to n2?
<= n1 less than or equal to n2?
<> n1 not equal to n2?
0= n1 equal to 0?
0> n1 not equal to 0?

n1 n2 > f1
n1 n2 > f1
n1 n2 > f1
n1 n2 > f1
n1 n2 > f1
n1 n2 > f1
n1 > f1
n1 > f1

These operators compare either the top two numbers on the stack, or the top stack item with 0. Fl is
either 1 or 0 to represent true or false. A “Stack Empty” error is given if there are insufficient items on the
stack. As with the other operators the operands are removed from the stack before the answer is placed
on the stack.

& Logical AND f1 f2 > f3
If the top two stack systems are both non-zero, a true flag (1) is put in their place, otherwise they are
replaced by a false flag (0). The & operator can be used to chain conditions together, where any non-zero
value on the stack represents a true condition and a zero value represents false. This word acts differently
to the word AND since 1 2 AND would produce the answer 0, even though 1 and 2 both represent true
conditions. The bitwise OR word can be used for chaining conditions together and 0 = can be used to
perform the logical NOT. For example you may want to convert the following to Analyser Forth:

“Stop if condition 1 is false and either condition 2 or condition 3 are true”

this is translated to:

(NOT condition 1) AND (condition 2 OR condition 3) and can be written in Analyser Forth as:

 STOP1: condition 1 0 = condition2 condition3 OR &

Other Operators
?SCR1 f1 >
If the flag on the top of the stack is true then the memory dump display will be updated immediately, if
the flag is false no action is taken.

e.g. to update the stack when HL = #0100 we would use the following structure. Note, the zero
on the end is to prevent a “stop0” occuring:

 $STOP0: HL#100=?SCR10

?SCR2 f1 >
This word may be used in the same fashion as ?SCR1 but the register display will be updated rather than
the memory dump.

! store word n1 n2 >
This command can be used to deposit a value in memory. The word value n1 is stored at the address n2.
Both numbers are dropped from the stack.

e.g. to store the value #1234 at the address #6000 we would use the following structure:

#1234 #6000 !

The effect would be that: address data
 #6000 #34
 #6001 #12
C! storebyte n1 n2 >
This command is similar to ! but only stores one byte. The least significant byte of n1 is stored at the
address n2. Both numbers are dropped from the stack. Use capital C only.

MEM > n1
The address held in the monitor system variable MEM is put onto the stack.

This command allows the memory pointer to be incremented and decremented whilst slow-running.

MEM! n1 >
This will set the memory pointer to the last value on the stack.

?PAUSE f1 >
If the flag on the stack is true the analyser stops and waits for a key-press. Pressing ESC/SS&A will cause

 123

the slow run to be aborted. Pressing any other key will allow the slow run to continue. The flag is removed
from the stack.

e.g. to pause the analyser if the IX register becomes equal the the PC value we would use the
following definition:

 #STOP0: PC IX =?PAUSE

Note, however, that the evaluation of STOP words must leave a flag on the stack. If there is no flag a
“stack empty” error will occur. The above definition would leave the stack empty; so to prevent the error
occuring we must alter it to leave a flag for the stop condition.

To stop the analyser immediately after key-press, whether ESC/SS&A or not, use the definition:

 $STOP0: PC IX =?PAUSE 1

but to continue after the key-press, unless ESC/SS&A is pressed, use the definition:

 $STOP0: PC IX “ ?PAUSE 0

By adding a 1 after the ?PAUSE the whole point of the pause is negated, the analyser stops irrespective of
which key is pressed and irrespective of whether a pause occurs or not, i.e. only one instruction will be
executed. However, by adding 0 after the pause the required pause function is obtained, only when
ESC/SS&A is pressed in response to the pause will the analyser stop the slow run.

IF f1 >
If the flag on the stack is false the word currently being evaluated will be prematurely terminated. This
permits the definition of words which will be executed conditionally, see the later examples. The IF
command removes one flag from the stack.

e.g. $STOP3: HL #4000 = IF HL MEM!

When evaluating this definition IF HL is not equal to #4000, the functions after the IF will not be
considered but IF HL= #4000 the value of HL will be assigned to the MEMory pointer.

Again, remember that a flag must be left on the stack by the evaluation of the STOP, so it is necessary to
insert another function. As the IF may cause a premature termination of the evaluation of STOP3 we must
insert the function before the IF so the definition becomes:

 $STOP3: 0 HL#4000 = IF HL MEM!

By inserting 0 the evaluation of STOP3 will yield a result 0. Therefore, STOP3: will never cause the
analyser to stop but when HL = #4000 the MEMory dump pointer will be set to #4000.

C@ byte fetch n1 > n2
The address n1 is replaced on the stack by the byte stored at n1. e.g. to find what HL is pointing to use
HL C@ or to find what (IX+10) is pointing to use IX 10 + C@.

@ word fetch n1 > n2
This word is like the C@ word except that a 16-bit word is fetched instead of an 8-bit byte. The word is
formed from the two consecutive locations pointed to by the address held on the stack. For example, to
fetch the address held at locations 23100 (low byte) and 23101 (high byte) use: 23100 @. Note that a
16-bit word is placed on the stack and not two separate bytes.

BIT bit test n1 n2 > f1
This word expects two numbers on the stack, n1 and n2. The result, f1, is a copy of the n2th bit of n1. n2
should be in the range 0 to 15 (since numbers are stored in 16 bits) and is taken modulus 16 if greater
than 15 (i.e. 31 represents bit 15 etc.).

Stack Operations
DUP n1 > n1 n1
Duplicates the top item on the stack.

SWAP n1 n2 > n2 n1
Swaps the top two stack items over.

OVER n1 n2 > n1 n2 n1
The second from top stack item is copied onto the top of the stack without removing it from its original
position.

 124

ROT n1 n2 n3 > n2 n3 n1
Rotates the top three stack items around as shown in the diagram.

Other Words
ON has the value1 >1
Places 1 on the stack.

OFF has the value 0 >0
Places 0 on the stack.

DROP n1 >
Remove the top number from stack.

NOP >
This is a dummy command that does nothing. It is equivalent to a Z80 NOP.

KEY > n1
Stack the value of the last key pressed. This facility is included to allow the analyser to be externally
controlled. This is particularly useful if you are using a complex definition that slows program execution.
This facility can be used to switch the definition on and off as required. If no key is being pressed the
value ‘0’ will be stacked.

For example, suppose we wished the analyser to execute a word called CHECK1 before the “A” key were
pressed, and then to execute a word called CHECK2 after the “A” key were pressed. We could use the
following definition:

 TESTA KEY DUP “A” = SWAP “a” = OR DUP

This would leave 2 true flags on the stack if the “A” key were pressed or 2 false flags otherwise.

 TEST1 TESTA IF CHECK2

This will use the first flag which, if true, (“A” has been pressed), would cause CHECK2 to execute.

 CHECK TEST1 NOT IF CHECK1

This is the complete definition which will execute CHECK1 if “A” has not been pressed and CHECK2 if
“A” has been pressed.

CALL
The word CALL allows extra functions to be added to the Analyser which cannot be made up from other,
already defined words. CALL calls the machine code routine whose address is held on top of the stack. On
entry to the routine the following registers are set up:

HL: Address of a routine that will pop the top item off the analyser’s stack and place it in the
register pair BC, this routine is called DROPBC.

DE: Address of a routine that places the value of BC onto the Analyser’s stack, this routine is
called STKBC.

IX: Address of a table containing the values of the registers in the program currently being
slow run, the table is set out as follows:

 IX+0,1 SP
 IX+2,3 IX
 IX+4,5 IY
 IX+6,7 PC
 IX+8,9 BC
 IX+10,11 DE
 IX+12,13 HL
 IX+14 flag byte
 IX+15 A
 IX+16,17 BC’
 IX+18,19 DE’
 IX+20,21 HL’
 IX+22 F’
 IX+23 A’

The routines STKBC and DROPBC can be used to pass parameters into and out of the machine code
using the Analyser’s stack, the layout of any code used within the CALL word should be as follows:

 1. Read required parameters off the stack using DROPBC.

 125

 2. Perform required operation.
 3. Put any return parameters back on the stack using STKBC.

For example, to write a routine which will ‘beep’ if the top stack item is a true flag (i.e. nonzero) the
following will be required:

Amstrad: BEEP: CALL DROPBC ; Fetch parameter from stack
 LD A,C ;
 OR B ; If BC = 0 then just return
 RET Z ;
 LD A,7 ; Otherwise use firmware to print a chr$(7)
 JP #BB5A ;
 DROPBC: JP (HL) ; This routine jumps to the routine whose
 ; address is held in HL (i.e. DROPBC)

Spectrum: BEEP: CALL DROPBC ; Fetch parameter from stack
 LD A,C ;
 OR B ; If BC = 0 then just return
 RET Z ;
 LD HL,#100; Otherwise use ROM routine to make a beep
 LD DE#80 ;
 JP #3B5 ;
 DROPBC: JP (HL) ; This routine jumps to the routine whose
 ; address is held in HL (i.e. DROPBC)

If the appropriate routine from above was assembled in a free area of memory e.g. #ABE0 on the
Spectrum or #6978 on the Amstrad an Analyser word BEEP could be defined which would perform
‘conditional beeps’:

 Spectrum: $BEEP #ABE0 CALL
 Amstrad: $BEEP #6978 CALL

and could be used thus:

 $STOP1 PC #AOOO = BEEP 0

This would cause a beep sound to be made each time the location at #A000 was slow run. Note that the
zero on the end is required because the STOP word expects a value on the stack at the end of the
definition and 0 tells the Analyser not to stop.

AMSTRAD only

The virtual screen window may be defined from within the analyser using the following set of commands.
Each of these commands removes one entry from the stack.

 COL! n1 >
 ROW! n1 >
 LEN! n1 >
 HGT! n1 >

The appropriate window parameter is set to the value on the stack e.g.

 EVAL 1 COL! will set the window column to 1.

 EVALl 2 3 4 COL! ROW! HGT! LEN!

 will set the window column to 4
 will set the window row to 3
 will set the window height to 2
 will set the window length to 1

9.4 Useful Definitions
Given below are a list of useful words that can be defined and then used to make up more powerful
definitions (none of the definitions already exist in the Analyser and so must be defined by you when you
require them):

RANGE range checking n1 n2 n3 > f1
$RANGE: ROT SWAP OVER >= ROT ROT <= &

 126

Checks if the value n1 is in the range of n2 to n3 inclusive, for example HL #8000 #80FF. RANGE
checks if HL lies in the range #8000 to #8OFF inclusive.

 Word State of Stack

 RANGE n1 n2 n3
 ROT n2 n3 n1
 SWAP n2 n1 n3
 OVER n2 n1 n3 n1
 >= n2 n1 f1
 ROT n1 f1 n2
 ROT f1 n2 n1
 <= f1 f2
 & f3

MEMWR Memory Protection n1 n2 > f1
=$MEMWR: ADDR >= SWAP ADDR <= & WR &

This word can be used to protect areas of memory from being written to by the machine code being slow
run. n1 and n2 represent the start and finish addresses of an area of memory that should not be written
to. For example:

 $STOP9: #8000 #8FFF MEM WR #0 #1FF MEM WR OR

This stop definition would cause the program to stop if it starts to write to the area from #8000 to #8FFF
inclusive and #0 to #1FF inclusive.

LXOR Logical exclusive-or f1 f2 > f3
$LXOR: 0 > SWAP 0 > XOR

The word LXOR is different to XOR since it treats the two numbers on top of the stack as flags (0=false,
0<>TRUE). The logical XOR can be used to chain conditions, for example you might want a program to
stop if either condition1 or condition2 were true but not if both are true, this would be written:

$STOP0: condition1 condition2 LXOR

PRINT prints the value on top ofihe stack n1 >
The following definition, with the associated piece of machine code, will print, in hexadecimal, the value
on top of the stack in the top left hand corner of the screen. Assume the code is at either #ABE0 for
Spectrum or #6978 for the Amstrad (it could be any piece of free RAM). The new definition will be called
PRINT.

The machine code part:

Amstrad:

#6978 #CD #99 #69 CALL #6999 ; Call the DR0PBC routine
#697B #3E #1E LD A,30
#697D #CD #5A #BB CALL #BB5A ; send a character 30 to the vDU
#6980 #78 LD A,B
#6981 #85 #85 #69 CALL #6985 ; print most significant byte
#6984 #79 LD A,C ; print least significant byte
#6985 #F5 PUSH AF ; Routine which prints the
#6986 #07 RLCA ; contents of A in hexadecimal
#6987 #07 RLCA
#6988 #07 RLCA
#6989 #07 RLCA
#698A #CD #8E #69 CALL #698E
#698D #F1 POP AF
#698E #E6 #0F AND #0F
#6990 #C6 #90 ADD A,#90
#6992 #27 DAA
#6993 #CE #40 ADC A,#40
#6995 #27 DAA
#6996 #C3 #5A #BB JP #BB5A ; firmware’s print routine
#6999 #E9 JP (HL) ; HL holds the address of DROPBC

Spectrum:

#ABE0 #CD #01 #AC CALL #AC01 ; Call the DR0PBC routine
#ABE3 #3E #16 LD A,22
#ABE5 #D7 RST #10 ; print an AT control character
#ABE6 #AF XOR A

 127

#ABE7 #D7 RST #10 ; followed by two 0’s, puts print
#ABE8 #D7 RST #10 ; position at 0,0
#ABE9 #78 LD A,B
#ABEA #CD #EE #AB CALL #ABEE ; print most significant byte
#ABED #79 LD A,C ; print least significant byte
#ABEE #F5 PUSH AF ; print the value of A
#ABEF #07 RLCA ; in hexadecimal
#ABF0 #07 RLCA
#ABF1 #07 RLCA
#ABF2 #07 RLCA
#ABF3 #CD #F7 #AB CALL #ABF7
#ABF6 #F1 POP AF
#ABF7 #E6 #0F AND #F
#ABF9 #C6 #90 ADD A,#90
#ABFB #27 DAA
#ABFC #CE #40 ADC A,#40
#ABFE #27 DAA
#ABFF #D7 RST #10 ; print character using ROM routine
#AC00 #C9 RET
#AC01 #E9 JP (HL) ; HL contains address of DROPBC

(Spectrum - ensure before running the above program that IY has the value #5C3A or it will not work!)

The Analyser definition for the new word is:

 Spectrum: $PRINT #ABE0 CALL
 Amstrad: $PRINT #6978 CALL

The word PRINT will now print the number on top of the stack in hexadecimal in the top left hand corner
of the screen. For example to monitor the contents of a particular memory location while slow running the
following definition could be used:

 $STOP1 address @ PRINT 0

Where ‘address’ is the address to be monitored and the 0 on the end ensures that the stop condition is
never met and so the Analyser does not halt.

ALTBC get the value of BC’ > n1
There are no words in the Analyser to read the values of any of the alternate registers, CALL can be used
to get around this. ALTBC fetches the value of BC’. CALL can be used since on entry to the CALL’s
machine code, IX points to a table of register values which includes the alternate registers (see definition
of the CALL word for a layout of this table).

The code to perform the ALTBC is given below:

Amstrad:

#6978 #DD #4E #10 LD C,(IX+16) ; fetch the value of BC’ from the table
#697B #DD #46 #11 LD B,(IX+17)
#697E #D5 PUSH DE ; DE holds the address of STKBC
#697F #C9 RET ; exit via STKBC

Spectrum:

#ABEO #DD #4E #10 LD C,(IX+16)
#ABE3 #DD #46 #11 LD B,(IX+17)
#ABE6 #D5 PUSH DE
#ABE7 #C9 RET

The Analyser definition for the above will be:

Spectrum: $ALTBC #ABE0 CALL
Amstrad: $ALTBC #6978 CALL

The ALTBC word will now place the value of BC’ on the stack and can be used just as though it were one
of the other register words. To define words that get the value of other registers just read different parts of
the register table.

 128

10. Examples
For most real time applications it is not practical to slow run the entire program so a breakpoint structure
has been provided that allows discrete sections of the code to be analysed while the remainder runs at full
Z80 speed.

By no means do the examples here exhaust all of the facilities contained within the monitor/analyser but
they do exhibit the workings of the system to some degree. The programs used on the following examples
are simple because the examples are included to demonstrate the monitor/analyser in action as clearly as
possible.

Example 1 - demonstrates SlOW and fast execution
Load the low version of the monitor/analyser provided and enter it by typing:

 Amstrad: CALL 5927
 Spectrum: RANDOMIZE USR 25003

Now set the MEMory pointer so that the example program can be entered using the DATA command

 Spectrum: MEM=#ABE0
 Amstrad: MEM=#6978

Now enter the example program using the DATA command.

 Source Amstrad Spectrum

 LOOP LD B,5 #06,#05 #06,#05
 LD IX,WORD1 #DD,#21,#93,#69 #DD,#21,#FB,#AB
 CALL SEARCH #CD,#83,#69 #CD,#EB,#AB
 JR LOOP #18,#F5 #18,#F5
 SEARCH PUSH IX #DD,#E5 #DD,#E5
 POP HL #E1 #E1
 LOOP1 BIT 7,(HL) #CB,#7E #CB,#7E
 INC HL #23 #23
 JR Z,LOOP1 #28,#FB #28,#FB
 LOOP2 PUSH HL #E5 #E5
 POP IX #DD,#E1 #DD,#E1
 DJNZ LOOP1 #10,#F6 #10,#F6
 RET #C9 #C9
 DEFS 2 #00,#00 #00,#00
 WORDI DEFB “ONE”,#80 “ONE”,#80 “ONE”,#80
 DEFB “TWO”,#80 “TWO”,#80 “TWO”,#80
 DEFB “THREE”,#80 “THREE”,#80 “THREE”,#80
 DEFB “FOUR”,#80 “FOUR”,#80 “FOUR”,#80
 DEFB “FIVE”,#80 “FIVE”,#80 “FIVE” ,#80
 DEFB “SIX”,#80 “SIX”,#80 “SIX”,#80

Review the program using the LIST or DISS command to check that it is correct. As this program will be
used again you may wish to save this code in case you have any mishaps, if so type:

 Amstrad: SAVE “EXAMP”,#6978,#69B8
Spectrum: SAVE “EXAMP”,#ABE0,#AC20

Now set the program counter:

Spectrum: PC=#ABE0
Amstrad: PC=#6978

Now define two breakpoints:

Spectrum: DEFBRK 1,16,#ABEE – slow to fast type
DEFBRK 2,3,#ABF3 – slow mode 3

Amstrad: DEFBRK 1,16,#6986 – slow to fast type
DEFBRK 2,3,#698B – slow mode 3

Now type SLOW3 or JUMP.

The program will run under control of the monitor. The program contains a continuous loop. The program
will run in slow mode 3 from LOOP 2 to LOOP 1, and at full speed from LOOP 1 to LOOP 2. Therefore,
the display will only exhibit register values etc., for the section of code after LOOP 2 and before LOOP 1.

 129

If left, this program would continue to run forever. Therefore, we must intervene. While the monitor is
running in any slow mode it may be halted by typing:

 Amstrad: ESC
 Spectrum: SS & A

Example 2 - Using the Analyser to update the screen
It is unusual to require the front panel to be updated on every instruction. The program typed in for
example 1 will now be used to demonstrate how MEMory display may be updated less often under the
control of the analyser. The analyser will be programmed so that the MEMory display will be updated only
when the IX register changes value and the MEMory pointer will follow the value in IX whenever an update
occurs.

To use the analyser a program space must be defined.

 Spectrum: PROG= 42000,42499
 Amstrad: PROG= 25000,25499

To use the TRACE facility we must also define a workspace for the trace.

 Spectrum: WORK= 42500,43000
 Amstrad: WORK= 25500,26000

Now reset the program counter to the start of the example program byt yping:

 Spectrum: PC=#ABE0
 Amstrad: PC=#6978

Bearing in mind that the faster execution is obtained in slow mode 0 define two breakpoints as follows:

Spectrum: DEFBRK 1,16,#ABEE - slow to fast
DEFBRK 2,0,#ABF3 - continue in slow mode 0

Amstrad: DEFBRK 1,16,#6986 - slow to fast
DEFBRK 2,0,#698B - continue in slow mode 0

Type ANALYSER ON.

Define two analyser STOP words as follows:

Spectrum: $STOP0: IX MEM! 0
$STOP1: #ABF9 @ IX <> ? SCR1 IX #ABF9 ! 0

Amstrad: $STOP0: IX MEM! 0
$STOP1: #6991 @ IX <> ? SCR1 IX #6991 ! 0

Both the STOP definitions above are terminated with a zero for the same reason. The analyser expects to
find a single flag on the stack when a definition has been evaluated. If the zero’s are omitted from the
above definitions they will leave the stack empty. The value zero has been chosen so that the value left on
the stack, i.e. zero is false, therefore, the analyser will not stop the program.

Now set the monitor into action by typing either SLOW 0 or JUMP. Observe the following effects:

a) The program runs fast (full Z80 speed) from LOOP1 to LOOP2.

b) The program runs under the control of the monitor in slow mode 0 from LOOP2 to LOOP1

c) Whenever IX is assigned a new value the MEMory display is updated.

d) Despite the definition of two analyser STOP words, the analyser does not stop because both STOP
words evaluate to ‘0’ (see above).

e) Each time STOP0 is evaluated (after every instruction during the SLOW 0 phase) the value of IX is
copied into the MEMory pointer.

f) Each time STOP1 is evaluated the old value of IX, stored at either #AB99 on the SPECTRUM or at
#6991 on the Amstrad, is compared with the program value and if they differ the memory display is
updated then the program value of IX is stored so it becomes the old value of IX for the next time that
STOP1 is evaluated.

 130

Example 3 - Debugging
The following section shows how the Analyser can be used to track down bugs, it assumes that the area of
memory around

 #ABE0 on the Spectrum
or #6978 on the Amstrad

is free. To demonstrate the Analyser we need a piece of machine code with an error in it.

Specification: The program given below SHOULD add up the ten numbers held in the bytes from #ABE0
to #ABE9 on the Spectrum (#6978 to #6981 on the Amstrad) and place the total in the last element of
the table:

Spectrum

#ABEA LD B,10 ; Length of table is 10 bytes
#ABEC LD HL,#ABE0 ; HL points to the start of the table
#ABEF XOR A ; Keep the total in A
#ABF0 ADD A, (HL) ; Start of the loop which adds up the ten values
#ABF1 INC HL ; Go on to next element in the table
#ABF2 DJNZ #ABF0 ; Repeat loop ten times
#ABF4 LD (HL),A ; Store result in last element
#ABF5 RET

Amstrad

 #6982 LD B,1O ; Length of table is 10 bytes
 #6984 LD HL,#6978 ; HL points to the start of the table
 #6987 XOR A ; Keep the total in A
 #6988 ADD A, (HL) ; Start of the loop which adds up the ten values
 #6989 INC HL ; Go on to next element in the table
 #698A DJNZ #6988 ; Repeat loop ten times
 #698C LD (HL),A ; Store result in last element
 #698D RET

To enter this program in memory type the following:

Spectrum Amstrad

MEM=#ABEA MEM=#6982
DATA 6,#A,#21,#E0,#AB,#AF DATA 6,#A,#21,#78,#69,#AF
DATA #86,#23,#10,#FC,#77,#C9 DATA #86,#23,#10,#FC,#77,#C9

The program requires ten numbers in the ten locations from #ABE0 on the Spectrum (from #6978 on the
Amstrad). Place some data there by typing:

Spectrum Amstrad

MEM=#ABE0 MEM=#6978
DATA 1,2,3,4,5 DATA 1,2,3,4,5
DATA 6,7,8,9,0 DATA 6,7,8,9,0

To make sure that we have the program and data in the memory we can check it by listing it, but first
define the memory used as a data area using the command:

Spectrum Amstrad

DB 1 #ABE0 #ABE9 DB 1 #6978 #6981

and use the following to list it:

Spectrum Amstrad

LIST #ABE0,#ABF5 LIST #6978,#698D

The program can now be run using:

Spectrum: CALL #ABEA
Amstrad: CALL #6982

The answer 45 (#2D) should have been placed in the last location of the table, either #ABE9 or #6981
(the location originally containing 0). Examining the location shows that it still holds the value 0, a bug! If
we list the program using LIST we also notice that the program has become corrupted, the first byte has
changed from #6 to #2D. Assuming we don’t know immediately why the program isn’t working we can

 131

use the Analyser to find out why the total is not being placed in the correct place in the data area and why
the first byte of the program is being corrupted.

First define some program space:

Spectrum Amstrad

PROG=42000,42200 PROG=25000,25200

We could start out by trying to find out why the byte at #ABE9/#6981 (Spectrum/Amstrad) was
corrupted.

In this case there is only one instruction which writes to memory, the instruction at #ABF4/#698C. Using
the Analyser here illustrates how a similar bug in a much longer program could be found, in a longer
program memory would be written to in many places and only one would be causing the bug.

The following definition will set up the Analyser to detect when this byte is being written to:

Spectrum Amstrad

$STOP1 ADDR #ABEA = WR & $STOP1 ADDR #6982 = WR &

Before we can run the program again the first byte of the program should be returned to its original value
and the PC should be reset.

Spectrum Amstrad

MEM=#ABEA MEM=#6982
DATA 6 DATA 6
PC=#ABEA PC=#6982

Now run the program again,

SLOW 0 (remember that the Analyser can only be used when slow running)

The program will stop with “Press any key” as usual but in addition gives the error message “Stop number
#1” indicating that STOP 1 has been fulfilled. The instruction executed will be the LD (HL),A instruction
located at the end of the addition program. This will tell us that the answer is being placed in the wrong
place, i.e. #ABEA instead of #ABE9 on the Spectrum, #6982 instead of #6981 on the Amstrad

To see exactly what is happening we can single step the program but since the program loops around
several times this will waste time, especially since we can assume that the addition part of the program is
working. Suppose we want to single step from when the last byte of the table is read, up to there we can
slow run the program.

The following definition sets up STOP1 to detect when the last byte in the table is read (#ABE9/#6981)

Spectrum Amstrad

CLEAR CLEAR
$STOP1 ADDR #ABE9 = RD & $STOP1 ADDR #6981 = RD &

Now run the program again (remember to correct the program first):

Spectrum Amstrad

MEM=#ABEA MEM=#6982
DATA6 DATA6
PC=#ABEA PC=#6982
SLOW 0 SLOW 0

The program will now stop at the ADD A,(HL) instruction at #ABF0/#6988 with HL=#ABE9/ #6981.
We can now use single stepping to investigate what happens from here, what should happen is that the
total (held in A) should be loaded into #ABE9/#6981 (the current value of HL). The next instruction is an
INC HL, single step this (use CTRL S or symbol shift D). Single step the DJNZ instruction and you will
reach the LD (HL),A. Note that HL now has the value #ABEA/#6982 and not #ABE9/#6981, this is
because of the INC HL just executed, the error has been found! We cannot remove the INC HL because it
is needed in the loop, instead a DEC HL is needed between the DJNZ instruction and the LD (HL),A. To
insert this extra instruction use:

Spectrum Amstrad

MEM=#ABF4 MEM=#698C
DATA #2B,#77,#C9 DATA #2B,#77,#C9

Now run the program:

 132

Spectrum Amstrad

CALL #ABEA CALL #6982

afterwards, examine the byte at #ABE9/#6981, it should now contain the value 45 (#2D), the sum of 1,
2, 3, 4, 5, 6, 7, 8, 9 and 0. Type:

Spectrum Amstrad

LIST #ABE0,#ABF6 LIST#6978,#698E

and you will see that the program has not been corrupted. Running the program again will give the result
90 (#5A) since the sum is now that of 1, 2, 3, 4, 5, 6, 7, 8, 9, 45.

Example 4 - Stack Checker
The following example is included firstly because it makes fairly comprehensive use of the analyser’s
predefined words, and secondly because it performs a test that some programmers may find useful at
some stage.

Under normal circumstances a subroutine is exited with the stack in the same state as it was when the
routine was entered. A common source of error (and one which is often difficult to trace) occurs when
routines are CALLed recursively with conditional RETurns. The definition in this example will cause a
screen update and pause, if a RETurn (conditional or otherwise) is encountered, with the stack in a
different state to that which was produced by the most recent successful CALL. The definition
accommodates nested CALLs and checks to see whether a conditional CALL was actually executed. All
this amounts to is a definition to check that a subroutine contains matching sets of PUSHes and POPs.

This example assumes that the low version of the monitor is in use and consists of the following word
definitions.

Definition Description

$ILAST #AC40 (Spectrum)
$ILAST #6A00 (Amstrad)

ILAST is a constant which evaluates to the address
of the temporary storage of the last opcode
executed. ILAST is therefore treated as a variable of
sorts.

$SP1 #AC41 (Spectrum)
$SP1 #6A01 (Amstrad)

SP1 is a constant which evaluates to the address of
the temporary storage of the stack pointer when the
last opcode was executed. SP1 can also be thought
of as a variable.

$SPOINTER #AC43 (Spectrum)
$SPOINTER #6A03 (Amstrad)

SPOINTER is a constant which evaluates to the
address of the pointer into the table of stack pointer
values stored. Each time a CALL is successfully
executed the SP (after the call) is added to the
table and the value in SPOINTER is incremented by
2. SPOINTER can also be thought of as a variable.
Each time a RETurn is encountered the value in
SPOINTER is decremented by 2 to point to the
previous SP value and thus accommodates nesting.

$UPDATE IF 1 ? SCR1 1 ? SCR2 1
?PAUSE

UPDATE will test the flag on the top of the stack
and if a true flag is found, will update the register
display and memory display, then wail to a key
before continuing.

$QC ILAST C@ # CD =

Leave a true flag if the last instruction was a
 CALL, or a false flag if otherwise.

$QCC ILAST C@ #C7 AND #C4 = Leave a true flag is the last instruction was a
conditional CALL, or a false flag if otherwise. The
opcode is bitwise ANDed with #C7 (%11000111)
and if the result is #C4 (%11000100) then it was
one of the 8 conditional CALLs.

$QRST ILAST C@ #C7 AND #C7 = Leave a true flag if the last instruction was a
 restart (RST), or false flag if otherwise. The

 133

opcode is bitwise ANDed with #C7 (%11000111)
and if the result is #C7 (%11000111) then it was
one of the B restarts.

$QCALL QC QCC QRST OR OR SP1 @ SP <>
&

Test to see whether: a CALL, OR a conditional
CALL, OR a restart, has been executed, AND the
stack has been changed (i.e. a conditional CALL
was successfully executed). This will therefore leave
a true flag if the last instruction was a successful
CALL or a false flag if it was not.

$QRET PC C@ #C9 = Leave a true flag if the current instruction (about to
be executed) is a RETurn, or a false flag if
otherwise.

$QRETC PC C@ #C7 AND #C0 = Leave a true flag if the current instruction (about to
be executed) is a conditional RETurn or a false flag
if otherwise. The opcode is bitwise ANDed with
#C7 (%11000111) and if the result is #C0 then it
is one of the 8 conditional RETurns.

$QRETURN QRET QRETC OR Test to see whether the current instruction is a
RETurn or a conditional RETurn and leave a true
flag if it is either or a false flag if it is neither.

$SPS1 SPOINTER @DUP SP SWAP ! The first half of the definition for SPS. The contents
of SPOINTER are placed on the stack (pointer into
the stack pointer table), this value is copied onto
the top of the stack and SP is placed in the table at
the specified position. The other copy of the
contents of SPOINTER is left on the stack for use in
the second half of SPS.

$SPS SPS1 2 + SPOINTER ! The value left on the stack by SPS1 (pointer into
the table) is incremented by two (to point to the
next vacant space in the table) and the new pointer
is put back into SPOINTER.

$SPF SPOINTER @ 2 – DUP SPOINTER ! @ Fetch the pointer into the table on to the stack,
decrement it by two (points to the previous value in
the table), copy it onto the top of the stack, store
one of them back into SPOINTER and fetch the SP
value from the address pointed to by the other.

$ISP PC C@ ILAST C ! SP SP1 ! Put the current opcode into the last instruction
location and the current SP into the last SP
location. Before executing the next instruction,
these will be used as the ‘last instruction’ and ‘last
stack pointer’ values.

$CHECK QCALL ISP IF SPS Tests to see if a successful CALL has been made
and stacks a flag, updates ILAST and SP1 and
then, if a successful CALL was made, update the
table.

$RUN CHECK QRETURN IF SPF SP <>
UPDATE

This is a full definition which checks to see if a
CALL/RETURN sequence is interrupted by a net
stack change.

$STOP0 RUN 0 Defines the STOP condition. The 0 after the RUN
ensures that the STOP condition is never actually
met.

 134

Using the Example Definition
To begin with, a sample program is needed. The following program has no practical significance but
illustrates the use of the stack checker quite clearly. Since we are using the low version of the monitor we
will use memory from #ABE0 on the Spectrum or from #6978 on the Amstrad.

Spectrum:

 #ABE0 #3E #20 LD A,#20
 #ABE2 #CD #E7 #AB LINE 2: CALL #ABE7
 #ABE5 #18 #08 JR #ABEF
 #ABE7 #E5 LINE 4: PUSH HL
 #ABE8 #3D DEC A
 #ABE9 #C4 #E2 #AB LINE 6: CALL NZ,#ABE2
 #ABEC #C8 LINE 7: RET Z
 #ABED #E1 POP HL
 #ABEE #C9 RET
 #ABEF #0 NOP

Amstrad:

 #6978 #3E #20 LD A,#20
 #697A #CD #7F #69 LINE 2: CALL #697F
 #697D #18 #08 JR #6987
 #697F #E5 LINE 4: PUSH HL
 #6980 #3D DEC A
 #6981 #C4#7A#69 LINE 6: CALL NZ,#697A
 #6984 #C8 LINE 7: RET Z
 #6985 #E1 POP HL
 #6986 #C9 RET
 #6987 #0 NOP

The program begins by setting A to hold a counter with a value of 32. The CALL at LINE 2, CALLs LINE 4
which stacks HL, decrements the counter, and if non-zero, CALLs LINE 2 to loop round again. This cycle
continues until A holds zero. At this point the CALL at LINE 6 is not executed and control drops to the RET
Z at LINE 7. At this point the analyser checks the stack to see what position it was in when the last CALL
(from LINE 2) was executed. In this example a PUSH HL has occurred and so the stack has been changed
and the analyser updates the screen and waits for a key. Note that even if the zero flag were not set at the
RET Z instruction, the analyser will STOP because it knows that if the zero flag had been set an error was
likely and this may therefore be a potential error which needs to be drawn to the user’s attention. The
STOP condition could be redefined as an exercise, so that a STOP only occurs if the RET is successfully
executed.

To run the example itself:

(i) Spectrum: PROG=42000,42200
Amstrad: PROG=25000,25200

to reserve program space for the definitions.

(ii) Type in each of the definitions previously listed.

(iii) Use the “.” command to enter the sample program in the same manner as the previous examples.

(iv) Type: EVAL 0 ILAST C! <ENTER>

to initialise ILAST.

(v) Type: EVAL SP SP1 ! <ENTER>

to initialise SP1.

(vi) Spectrum: EVAL #AC45 SPOINTER ! <ENTER>
Amstrad: EVAL #6A05 SPOINTER ! <ENTER>

to initialise SPOINTER.

(vii) Spectrum: PC=#ABE0 <ENTER>
Amstrad: PC=#6978 <ENTER>

to set the PC to the start of the sample program.

(viii) Type: ANALYSER ON <ENTER>

to ensure the analyser is activated.

 135

(ix) Type: SLOW 0 <ENTER>

to set the program running under the scrutiny of the analyser.

Example 5 - Virtual Screen Usage
Spectrum:

Type MEM=#ABE0 and enter the following program data:

 DATA #21,0,#40 LD HL,#4000
 DATA #36,#66 LOOP: LD (HL),#66
 DATA #23 INC HL
 DATA #7C LD A,H
 DATA #FE,#58 CP #58
 DATA #20,#F8 JR NZ,LOOP
 DATA #C9 RET

We will now define the memory area for the virtual screen by typing:

SCRN= #E000 <ENTER> (There must be 6912 free bytes from #E000 onwards)

and then type

SCRN ON <ENTER>

To verify that a virtual screen has been set up type:

SCRN <ENTER>

The whole screen should go blank; press any key to continue. Now type:

PC=#ABE0 <ENTER>
CALL <ENTER>

The screen should go blank, then fill up with a candy stripe pattern. Finally the message “press a key” will
appear at the foot of the screen. Press any key and the monitor screen will be recreated. Now type

SCRN <ENTER>

The screen will now display the contents of the virtual screen memory. Press any key to continue.

Amstrad:

Type MEM=#6978 and enter the following program data:

 DATA #21,0,#C0 LD HL,#C000
 DATA #36,#55 LOOP: LD(HL),#55
 DATA #23 INC HL
 DATA #AF XOR A
 DATA #B4 OR H
 DATA #20,#F9 JR NZ,LOOP
 DATA #C9 RET

We will now define the memory area for the virtual screen by typing:

SCRN=#7000 <ENTER>

and then:

SCRN ON <ENTER>

We will define a screen window 6 characters wide and 8 characters high, in the top left corner of the
screen by typing:

COL=0 <ENTER>
ROW=0 <ENTER>
HGT=8 <ENTER>
LEN=6 <ENTER>

Press CTRL and V together to invert the window to verify that it is correct. Now type:

SCRCLR <ENTER>

This command clears the memory from #7000 to #72FF, the amount required for saving the current
window. Type

DISS #6978 <ENTER>

to check the program. Now type

 136

SCRN <ENTER>

The window will go blank. Press any key and the window will be restored. Now type

PC=#6978 <ENTER>
CALL <ENTER>

The screen should go blank then fill up with a candy stripe pattern. The message “press a key” will appear
at the bottom of the screen. Press any key and the monitor screen will be recreated. Now type

SCRN <ENTER>

The contents of the virtual screen memory will be displayed in the window until any other key is pressed
then the monitor screen will be replaced.

 137

Appendix A – Key Summary
Abbreviations:

S = Shift
CS = Caps shift
SS = Symbol shift

Amstrad Spectrum

 CS & 5 Command line cursor left.

 CS & 8 Command line cursor right.

DEL CS & 0 Delete character left of cursor.

CLR SS & 0 Delete character at cursor.

COPY CS & 1 Insert a space, move characters from cursor to the right.

CTRL&L SS & A Clear the command input line.

ESC SS & A (STOP) Used to exit from SLOW running, LISTIng,
DISSassembling and DUMPing.

ENTER ENTER Execute the command in the command input line,
irrespective of cursor position.

S & SS & Q Decrement the MEMory pointer.

S & SS & E Increment the MEMory pointer.

S & SS & W Subtract 8 from MEMory pointer (up 1 line of MEMory
dump).

S & SS & S Add 8 to MEMory pointer (down 1 line of MEMory
dump).

S & COPY CS & 9 Advance MEMory pointer to next instruction.

CTRL & N SS & Y Equivalent to “NEXT” when searching.

CTRL & I CS & 6 Increment the PC register.

CTRL & D CS & 7 Decrement the PC register.

CTRL & K SS & G Advance PC to the next instruction.

CTRL & S SS & D Single step, i.e. execute the instruction pointed to by
PC, advance PC to the next instruction.

CTRL & E SS & F Single step the instruction pointed to by PC except
CALL’s or RST’s which are executed at normal speed,
advance PC to the next instruction.

CTRL & V - Highlight the virtual screen window (AMSTRAD only)

 138

Appendix B – Monitor Command Summary
Command Parameter Action

A= <byte> Assigns value in <byte> to the A register.

AF= <word> Assigns value in <word> to the AF
 register pair.

ANALYSER <flag> Switch the analyser on or off according to
<flag>. <flag> = 0 turns analyser off.

B= <byte> Assigns value in <byte> to the B register.

BC= <word> Assigns value in <word> to the BC
 register pair.

(BC) <byte> Places the value <byte> in memory at the
address in BC.

BREAK <brk number>, <flag>, <addr> Define breakpoint number <brk number>. If
the address <addr> is met, the monitor will
resume control. The breakpoint may be on or
off, set by <flag>.

BRK <brk number>, <flag> The breakpoint <brk number> is switched on
or off according to the value of <flag>.

BUFFER= <address> The 2048 bytes of memory starting at
<address> will be used as a buffer during
FLlST or during the load of ASCII files
(Amstrad only).

C= <byte> Assigns value in <byte> to the C register.

CALL A call to the address in PC is made. Code
executes at normal Z80 speed but a return
address, to the monitor, is placed on the
stack.

CALL <addr> As CALL but control is passed to the machine
code at <addr> rather than PC.

CAT List the tape/disc/microdrive directory to the
screen.

CHECK <start1>, <finish1 >, <start2> Compares byte for byte, the contents of
memory, lying between <start1> and
<finish1> inclusive, with the area starting at
address <start2>.

CLEAR Resets program space and switches analyser
on.

CTRL & N
SS &Y

 Shorthand for NEXT.

D= <byte> Assigns value in <byte> to the D register.

DATA <byte list> The byte list is placed into memory.

DB Lists the current selection of data areas.

DB <db number> Deletes the specified data area <db
number>.

DB <db number>, <start>, <finish> Defines a data area.

DE= <word> Assigns value in <word> to the DE register
pair.

(DE)= <byte> Places the value <byte> in memory at the

 139

Command Parameter Action

address in DE.

DEFBRK <brk number>, <type>, <addr> Define SPECIAL breakpoint number <brk
number>. If the address <addr> is met, the
monitor will act according to the value of
<type>.

DEFBRK <brk number>, <type>, <addr>,
<count>

Define SPECIAL breakpoint number <brk
number>. If the address <addr> is
encountered then <count> is decremented.
When <count> reaches zero the monitor will
act according to the value of <type>.

DEFLOAD “<string>” Load the analyser definitions from the file
named “<string>”.

DEFSAVE “<string>” Save the current analyser definitions to a file
named “<string>”.

DELETE <brk number> Removes the breakpoint <brk number>
definition.

DI Disable interrupts.

DISC Select disc as the current input/output device.

DISS Disassemble the contents of memory, starting
at address MEM, to the top left hand window
of the screen until ESC/SS & A is pressed.

DISS <start> As “DISS” but starting at the address <start>
rather than MEM until ESC/SS &A is pressed.

DISS <start>, <finish> As “DlSS <start>” until either the address
<finish> is reached or until ESC/SS&A is
pressed.

DRIVE <letter> Direct firmware to required drive (Amstrad
only).

DUMP Output contents of memory, starting at
address MEM, to the SCREEN, until ESC/SS
&A is pressed.

DUMP <start> Output contents of memory, starting at
address <start>, to the SCREEN, until
ESC/SS & A is pressed.

DUMP <start>, <finish> Output contents of memory, starting at
address <start>, to the SCREEN, until either
address <finish> is reached, or until ESC/SS
& A is pressed.

E= <byte> Assigns value in <byte> to the E register.

EDIT <word name> Edit the specified analyser definition.

EI Enable interrupts.

ERA “<string>” Delete from disc/microdrive, the file named
“<string>” (not tape versions).

EVAL <definition> Evaluate the <definition> and print state of
analyser stack.

EX AF The alternative “AF” register is displayed.
Swap AF for AF’ or vice versa.

EXIT Return from the monitor to the calling routine.

 140

Command Parameter Action

EXX The alternative register set is displayed. Swap
BC, DE & HL for BC’, DE’ and HL’ or vice
versa.

F= <byte> Assigns value in <byte> to the F register.

FILL <start>, <finish>, <byte> The value <byte> is placed in the memory
area ranging from <start> to <finish>
inclusive.

FLIST <filename>, <start>, <finish> Disassembles the contents of memory lying
between <start> and <finish> inclusive to
tape, disc or microdrive.

H= <byte> Assigns value in <byte> to the H register.

HL= <word> Assigns value in <word> to the HL register
pair.

(HL)= <byte> Places the value <byte> in memory at the
address in HL.

IX= <word> Assigns value in <word> to the IX register
pair.

(IX)= <byte> Places the value <byte> in memory at the
address in IX.

IY= <word> Assigns value in <word> to the IY register
pair.

(IY)= <byte> Places the value <byte> in memory at the
address in IY.

JUMP Monitor passes control to the machine code
starting at the address in PC. Code will
execute at normal Z80 speed. Unless
“breakpoints” are encountered the monitor
will not be re-entered.

JUMP <addr> As JUMP, but control is passed to the
machine code at <addr> rather than PC.

L= <byte> Assigns value in <byte> to the L register.

LBRK Lists the 8 breakpoint definitions.

LDEF List the user’s analyser definitions.

LDUMP As “DUMP” but output to printer (duplicate to
screen is controlled by OPTION 2).

LDUMP <start> As “DUMP <start>” but output to printer.
(Duplicate to screen is controlled by OPTION
2).

LDUMP <start>, <finish> As “DUMP <start>,<finish>” but output to
printer. (Duplicate to screen is control led by
OPTION 2).

LIST As “DISS” but uses the whole screen.

LIST <start> As “DlSS <start>” but uses the whole screen.

LIST <start>, <finish> As “DlSS <start>, <finish>” but uses the
whole screen.

LLIST As “LIST” but output to the printer.

LLIST <start> As “LIST <start> “ but outputto the printer.

 141

Command Parameter Action

LLIST <start>,<finish> As “LIST <start>, <finish>” but output to
the printer.

LOAD <filename> Load the specified file from tape or microdrive
to the address found in the header block
(Spectrum only).

LOAD <filename>, <addr> Load the specified file from tape or microdrive
to the address <addr> (Spectrum only).

LOAD <filename>, <addr> The specified file is loaded into memory
starting at address <addr>. PC may be set to
the execution address (Amstrad only).

LTRACE The contents of the Trace memory will be
listed to the printer.

LTRACE <number> The specified number of instructions are listed
to the printer. The most recent values are
used.

MAP Display the current memory usage.

MDRV Select microdrive number 1 as the current
input/output device.

MDRV <drive> Select the indicated microdrive as the current
input/output device.

MEM= <addr> The memory pointer is set to the value
<addr> and updates MEMory dump
accordingly.

MODE <mode number>, Selects screen mode according to <mode
number>, 1=40 column, 2=80 column
(Amstrad only).

MOVE <start1>, <finish1>, <start2> Copy the contents of memory area lying
between <start1> and <finish1> inclusive,
to the area starting at address <start2>.

NEXT After a match is found the SEARCH is
continued.

OPTION <option number>, <flag> The various options <option number> may
be switched on or off, depending on the value
in <flag>.

 1, <flag> ON = decimal
OFF = hexadecimal

 2, <flag> ON = printer only
OFF = printer and screen

 3, <flag> ON = FLIST to file and screen
OFF = FLIST to file only

 4, <flag> ON = slow run ROM calls and jumps
OFF = fast execute ROM calls and jumps

 5, <flag> ON = FLIST without labels
OFF = FLIST with labels

 6, <flag> ON = maintain screen during JUMP, CALL or
SLOW

OFF = clear screen before JUMP, CALL or
SLOW

 7, <flag> ON = printer output to KEMPSTON
Centronics Interface (Spectrum only)

 142

Command Parameter Action

OFF = printer output to ZX printer

 8, <flag> ON = carriage returns only
OFF = carriage returns are followed by line

feeds

(PC)= <byte> Place the value <byte> in memory at the
address in PC.

PDEF List the user’s analyser definitions to the
printer.

POP The SP register (stack pointer) is incremented
twice.

PROG= <addrl >, <addr2> Define the memory between <addr1> and
<addr2> as the analyser program space.

PUSH <word> The value <word> is placed on the stack and
the stack pointer is decremented twice.

ROM <flag> Switches either the main ROM or the shadow
ROM on depending on the state of <flag>
(Spectrum only).

ROM <flag1>, <flag2> Switch the lower ROM either on or off,
according to the state of <flag 1>. Switch the
currently selected upper ROM either on or off,
according to the state of <flag2> (Amstrad
only).

ROM <flag1>, <flag2>, <rom number> As “ROM<flagl>,<flag2>” but alter the
currently selected upper ROM to <rom
number> (Amstrad only).

SAVE <filename>, <start>, <finish> The contents of memory lying between
<start> and <finish> inclusive is saved, to
tape, disc or microdrive with the specified
<filename>.

SAVE <filename>, <start>, <finish>,
<exec>

As “SAVE <filename>, <start>, <finish>”
but an execution address <exec> is saved
also, see LOAD above (Amstrad only).

SCRCLR Clear the virtual screen memory (Amstrad
only).

SCRN View the contents of the virtual screen.

SCRN <flag> Switch the virtual screen on or off according
to <flag>.

SCRN= <addr> define the memory starting at <addr> to be
virtual screen.

SEARCH <start>, <finish>, <byte list> The memory area defined by the address
<start> and <finish> inclusive, is searched
for the <byte list>.

SLOW <slow mode number> Start a program slow running with update of
monitor display according to <slow mode
number> until ESC/SS & A is pressed or a
breakpoint is reached.

SP= <word> Assigns value in <word> to the SP register
pair.

TAPE Select tape as the current input/output device.

 143

Command Parameter Action

TRACE The contents of the TRACE memory will be
displayed using the whole screen.

TRACE <number> The specified number of instructions are
listed. The most recent values are used.

WORD <word name>, <definition> Define an analyser word.

WORK= <start>, <finish> Sets a side a workspace for FLIST.

. <byte list> A shorthand version of DATA.

? <word> Convert and display the value <word> in the
4 bases, binary, octal, decimal and
hexadecimal.

S <word name>, <definition> Define an analyser word.

 144

Appendix C – Spectrum 128K Extensions

Introduction
The 128k version of the monitor maintains all the features of the standard Spectrum monitor, although the
syntax of some of the commands is extended to accommodate the RAM paging facilities.

The extended monitor may reside in any fixed RAM page and this means that to all intents and purposes,
once loaded, it can be treated as a ROM, i.e. the full Z80 address space can be utilised. The assembler
also sits in a fixed RAM page and so it is possible to have the assembler and monitor co-resident for quick
and easy program development.

Tape Map
On Tape 2 you will Genius package you will find the following files:

AMSTRAD:

Side A MON A BASIC loader.
 MON OBJ Monitor object file.

Side B BACKUP of Side A.

1. Opertating Instructions
Tape: To load the monitor from tape, use the up and down arrow keys to select the ‘TAPE LOADER’

option, and press ENTER. The monitor will load, then the question “Which Page?” will
appear. Enter a page number 0-7. The monitor will execute.

Microdrive: If you have produced, and wish to load, a microdrive version of the monitor you should use
the up and down arrow keys to select the ‘128k BASIC’ option and press ENTER. Having
entered BASIC the monitor can be loaded using:

LOAD *”m”;1;”MON128”

NOTE: Although the monitor can run in any RAM page, some pages have specific uses e.g. 5 and 7
which are screen contended. Realistically the users choice is restricted to 0, 1, 2, 3, 4, 6 and
possibly 7 if one screen is sufficient.

2. Screen Layout
The screen layout is basically the same as that employed by the standard Spectrum version but the second
set of system flags, displayed to the right of the Z80 flags, are all used. There are five flags displayed,
each with its status displayed directly beneath it. The flags have the following options and significance.

R: This is the ROM status and indicates which of the 3 ROMs is currently paged in. The ROMs are
indicated by D (128k ROM), S (Spectrum ROM) and I (interface 1 ROM).

M: This indicates the RAM page that the MEM pointer is assuming to be paged into the Z80’s
address space at C000 hex. Values are in the range 0 to 7.

P: This indicates the RAM page that the PC is assuming to be paged into the Z80’s address space at
C000 hex. Values are in the range 0 to 7. NOTE: This means that MEM and PC may point to the
same physical address, but display different instructions.

V: This indicates which screen the Spectrum is using for its video memory. Screen 0 or 1 is indicated
by a ‘0’ or ‘1’ respectively.

I: This indicates the interrupt status of the user’s program. ‘0’ indicates that the user’s program has
interrupts disabled and a ‘1’ indicates interrupts enabled.

3. 128K Monitor Command Syntax
The following commands require revised syntax:

ROM <letter> e.g. ROM D
Page in the selected ROM D = 128k ROM

 145

 S = Spectrum ROM
 I = Interface 1 ROM (shadow ROM)

RAM <number> e.g. RAM 7
Page in the selected RAM page. There are 8 RAM pages in physical memory and each of these can be
paged into the Z80 address space of address C000-FFFF hex. In fact RAM pages 2 and 5 always occupy
Z80 address space anyway and so there is little point in executing RAM 2 or RAM 5. The following is a
summary:

Physical Memory Z80 Memory

Page 7 (screen 1) Page 0-7 C000-FFFF
Page 6 - Page 2 8000-BFFF
Page 5 (screen 0) Page 5 4000-7FFF
Page 4 -
Page 3 -
Page 2 -
Page 1 -
Page 0 -

BREAK <brknumber>,<flag>,<addr>,<page> e.g. BREAK,2,ON,#C070,7
Carries out the same function as the BREAK command described in Section 7.6 of the main text but sets
the break point in the appropriate RAM page. Note that <page> will be irrelevant if <addr> is not in the
range C000-FFFF hex, but should still be specified.

DEFBRK <brk number>,<flag>,<addr>,
 <page>[,<coumt>]

e.g. DEFBRK 4,0,#D000,6
or DEFBRK 4,0,#D000,6,10

Carries out the same function as the DEFBRK command described in Section 7.6 of the main text but sets
the break point in the appropriate RAM page. Note that <page> will be irrelevant if <addr> is not in the
range C000-FFFF hex, but should still be specified.

CALL <addr>[,<page>] e.g. CALL #D000 or CALL #D000,7
Carries out the same functions as the CALL command described in Section 5 of the main text. The second
parameter is optional and, if provided, will select the indicated RAM page before executing the CALL.

CHECK <start1>,<finish1>,<start2>
 [,<page>]

e.g. CHECK #B000,#B7FF,#9000
or CHECK #C000,#D000,#C000,6

This command verifies that two blocks of memory are identical. One of the two blocks is defined by
<start1>, <finish1> and will lie in the MEMory page. The second block will be defined by <start2>. If
the optional page parameter is entered the second block will lie in that <page>, otherwise the second
block will also lie in the MEMory page.

JUMP <addr>[,<page>] e.g. JUMP #D000
or JUMP #D000,7

Carries out the same function as the JUMP command described in Section 5 of the main text. The second
parameter is optional and, if provided, will select the indicated RAM page before executing the JUMP.

MEM=<addr>[,<page>] e.g. MEM=#D000
or MEM=#D000,7

Carries out the same function as the MEM= command described in Section 5 of the main text. The
second parameter is optional and, if provided, will select the indicated RAM page before updating the
display.

MEMP=<page> e.g. MEMP=7
Select the indicated RAM page without changing the memory pointer address.

SCRN=<addr>[,<page>] e.g. SCRN=#D000,0
Carries out the same function as the SCRN= command described in Section 5 of the main text. The
second parameter is optional and, if provided, will tell the system to select the indicated RAM page during
virtual screen operations.

DB <db number>,<start>,<finish>,<page>
A data area may be defined in any page.

MAP
This command, like the standard Spectrum, allows the. user to view the current state of memory usage
within the monitor. The data is displayed in the top left area of the screen and has the following
appearance:

 146

 START END P
 Line 1 GMON #61A8 #6728 1 Monitor/analyser code
 Line 2 & #C000 #FC36 1
 Line 3 WORK #FE1C #FFFF 1 Workspace
 Line 4 PROG #FC4D #FE1B 1 Analyser program space
 Line 5 VSCR #C000 #DAFF 6 Virtual screen storage.
 Line 6 OPTION 00000000
 Line 7 VS OFF Virtual screen on/off
 Line 8 ANAL OFF Analyser on/off

These values are typical but they may vary from version to version.

TRACE
Like the standard Spectrum but this trace also shows the program page from which each instruction was
executed.

WORK=<start>,<fiNish>,<page>
At start up WORK will lie in the same page as the monitor. If this workspace is insufficient it may be
moved to another page in which case the memory available for PROG= will be larger accordingly.

User Notes

(i) ‘Prog’ space must always be. in the same page as the monitor.

(ii) The monitor uses the 128k system variable at #5B5C to keep track of page switching operations.
The user is warned therefore that any page switching must be duplicated in this variable otherwise
the monitor will not keep track. The 128K itself expects to find the current page data in this
system variable so any failure to conform may result in a bug.

4. 128K Analyser – Additional Words
MPAGE! n1 >
Sets the memory page used by the memory pointer to the last value on the stack. n1 should be in the
range 0 to 7. If n1 is greater than 7 then ni mode 8 is used.

MPAGE > n1
Puts the currently selected memory page onto the stack.

PPAGE > n1
Puts a value on the stack which gives the currently selected program page (used by user programs), the
screen select, the ROM select and the Spectrum 48k/Spectrum 128k lock switch. These are contained in
the following bits.

Bits

0, 1, 2 Use RAM Page 0, 1, 2, 3, 4, 5, 6 or 7

3 Screen Select 0 = page 5, 1 = page 7

4 ROM Select 0 = 128K ROM, 1 = Spectrum ROM

5 Spectrum Lock 0 = l28K machine, 1 = 48K Spectrum

