often appear clumsy and unwieldy. Languages
such as LoGo and ALGoL are much better equipped
to carry out this sort of task. In Basic we have two
main tasks to carry out. Firstly we must derive our
tree from the maze data, as presented to the
program. And for each square of the maze we
must have four pointers showing which square lies
in each of the four directions. The best way to
store this pointer system is in a two-dimensional
array, TR(N,D), where N is the square number and D
is the direction 1 to 4. Thus in our simple maze,
TR(9.1) would be 5— the square lying to the north
of square 9. When the square in a particular
direction is not free, or there is a boundary to the
maze then this can be marked by a special value,
for example -1.

As the tree is negotiated the route taken is
stored in a pseudo-stack, implemented using a
one-dimensional array and a variable, D, to point
to the next available space on the stack. The
shortest route encountered at any time is also
stored in a one-dimensional array, with the
number of steps for the route stored in the first
element of the array.

When the program has worked its way
through the tree, a record of the best route will be
held as a series of square numbers. On the
assumption that the vehicle originally faces north
in the start square, it can be directed using the
simple mathematical relationships between the

direction to be travelled and the difference
between two consecutive square numbers in the
route array. For example, in our simple maze, a
difference of +4 would indicate north, -4 indicate
south, and so on. We must then calculate the angle
to be turned through to change direction, before
proceeding one square forwards. As the vehicle
uses simple DC electric motors, turning angles
and distances travelled are governed by the length
of time that a particular combination of motors is
on for. To make practical use of the program some
initial experiments need to be done to determine
the time intervals required to turn through 90° and
to advance one square. This information should
be entered in the variables AF and FF, respectively.
The BBC version requires units of 1/100th of a
second, the Commodore 64 version requires 1/
60th of a second units.

AN McKINNELL

For The BBC
Make the following
changes:

8288 TDATREG=3

8308 TIMEs=@
B310 REPEAT UNTIL TIME)s=AF
8328 7DATREG=R

B3EB TDATREG=S

B3TO TIME =B

B3B8 REPEAT UNTIL TIME »=FF
B398 TDATREG=8




