your ZX Spectrum

4 Turbocharge #

John Lettice

lurbocharge

your ZX Spectrum
John Lettice

lL.ongrnan &=

‘X SPECTREUM 15 a Trade Mark of
SINCLAIR RESEARCH LIMITED.

vonaman Group Limited
songman House, Burnt Mill, Harlow,
ssex CM20 21E, England
and Associated Companies throughout the
wvorid

€ Longman Group Limited 15984

Ll riahts reserved. No part of this
suphcation may be reproduced, stored in
i retneval svstem or transmitted in any
arm or by any means, electraonic,
necnanical, photocopying, recording or
stherwise, without the prior permission of
‘he Cooyright owner.

First published 1984
ISBN 0O 587 91L04 b

Printed 1n UK by Parikkway lllustrated Press,
yhingdon

Desianed, illustrated and edited by
Contract Books, London

''he programs histed in this book have been
carefully tested, but the puklishers cannot
be heid responsible for problems that
mignt ccour in running thern.

Contents

CHAPTER 1

Advanced infroduction to the workinag Spectrum 1
CHAPTER 2

hult-in functions 17
CHAPTER 3

nteractive programiming %
SHAPTER 4

nformation handling 31
~“HAPTER &

Hlandling arrays 41
CHAPTER 6

ntracuction to araphics 4G
CHAPTER 7

Advanced colour 57
CHAPTER B

'"he system vanables 67
SHAPTER 9

Jser-defined graphics 9
"HAPTER 10

sprites and ammation BY
CHAPTER 11

VMemory in detail 95
CHAPTER 142

ound 107
ZHAPTER 13

nferface 1 and interfacing 117
APPENDIX |27

'NDEX 155

Many of the programs and routines in
his book have been developed,
SAVEd and used on Sinclair
Microdnives. 'This means that such
programs will need adapting for use
on cassetle. In general, this is
mentioned in the text introducing such
programs and routines. However, such
Jrograms and routines may easily be
dentified by a LOAD cr SAVE
mstruction of the following type:

LOAD * “M’;1; “name”

F

SAVE * "M’';1; “name”

"o change these into a form suitable
ior cassette, use the following:

LOAD “name”
SAVE “name” etc.

However, the order of SAVEIng and
L OADIna data blocks and programs in
some ol the programs will need to be

chanaged to the order in which they are
stored cn cassette,

et e

S e e
E_ & 1 H
3 i k]
t T
% S
: g4
S
] :

Advanced introduction
i0 the working Spectrum

Jnee vou've got to grips with the
nasics of programming your Spectrum
roull probably be wondering about
he direction vou should take next.
Zhould vou start learning about
nachine code, should you buy an
issembler, or should you try to make
FOUT programs more structured?

Jf these three courses structure is

probably the easiest ‘o learn about,
but 1t's often the hardest to stick to,
egpeclally on a machine like the
Spectrum, which 1s much more geared
to producing good results than it 1s to
writing elegant programs. But for all
that, there are benefits to knowing a
little about principles of structure,
even If vou don't always use them.

‘Nhy structure!?

o what 1s structhure”? As far as effective
JIOQraImnng 1s concerned, structure
s about writing your programs in small
rasily understood sections. Because
‘hese can be slotted in and out of the
orogram with the aid of GOSUB your
yrograms can pe allered easily, and
ilter you've been writing this way for
ome ume vou'll find you have an
xtensive hbrarv of subroutines that
7o\ can siot Into programs you write in
the future.
LS your programming improves,
ind as vou add printers, Microdnives
inda so on, you'll also want to improve
ir modify your previous efforts, so if
7Ou nave your programs sectioned off
ieatly it'll be that much easier to
inaerstand what thev're doing when
you go back to them.
s far as unstructured programnrung

1s concerned the main cffender 1s the
ommand GO TO. Let's say you start
NTIUNG & program, and as you amble
hrough it you suddenly have a brilliant
dea about araphics or sound that

could be added to the main program.

00 you add a GO TO, write the
brilliant reuting, then add another GO
TO putting the program on course.
One routine uses two umps, and what
If you nave more good ideas of the
same sort? Your program scon iiums
inio a spagheti-kke thicket that's hard
encough to follow when vou've just
wntten it. What happens when vou go
back to it in a few days (never mind six
months) or when you give a copy of the
program o one of your friends?

Using subroutines whenevear you
can stops this happenng, and makes
everyone's life a lot easier. And think
about what youre doing with
subroutines. You're breaking a
program up into small easily
undersicod sections, and what does
this imply? You've geot to think about
what you're going te do with a program
before you start writing it — so structure
18 as much about planning as it 1s about
using GOSUB.

\dvancec introduction to the working hpectrurn

Writing a program

IDEA

-w
RCUGH OUTLINE

v

SECTION OFF OQUTLINE INTO SMALLER CUTLINES

R 2B A 4 4
a) (b © & (&
FURTHER SECTIONING IF NEEDED)

A 4

|, FLOWCHART THE WHOLE PROGRAM TQO SHOW HOW THE SECTIONS
{ELATE TO CNE ANOTHER

w
i 5. FLOWCHART EACH SECTICN

v

-

6. REPEAT 4 AND 5 UNTIL YOU HAVE PRACTICALLY A BASIC PRCGEREAM

A 4

7. TYPEIN AND TEST EACH SECTION CNE AT A TIME

A 4

8 TYPE IN THE PRCGRAM LINES WHICH LINK ALL THE SECTIONS

3
vdvanced introduction to the workana Spectrum

"he table here should give vou a goed
dea of how structure and subroutines
e iinked Once you've had an idea
Of a program you can just start
1acking it in, but that really 1s asking
o1 trouble, and you're ruch better off
retting as much of it down on paper as
yossiple before you go anywhere near
i compuier

et's gay you decide to write a
rogram invelving data handling. As
rou'll probably be putting data inte it in
inv old crder you'll need some form of
‘01 rourine to organise it. Onee you've
vritten such a routine all you have to
10 18 save 1t to tape or Micrednive and
7ou can use 1t in future programs in the
‘orm

198 GOSUB 100@:REM SORT
ROUTINE

799 REM SORT ROUTINE GOES
HERE

‘@dee ...

1@1@ RETURN

{vou spend a lot of time on little
ounnes like this, mayvbe 1n en vears
ime veu'll find you never have to write
inother one — all vou need do 18 go 1o
rout library! Note that putting the REM
11999 instead of 1000 allows you o
:nop 1t out to save space later on.

Yy working cut your program
Tructures on paper first youre
hinking in terms of programs
‘onsisting of control structures. By
issuming that the subroutines that
wctually do the work can be added
ater you're operating at a much hgher
evel than the Basic language can do,
nd purists would even say that vou
-nonld write virtually all the program
M paper nrst

(START)
h 4
p
PROGRAM Ll
CONTROL —ta
-
w
(SIOP)
h 4
i Sl
| SUBROQUTINES
: DATA INPUT —
I
I
I
| SORT ROUTINE jea—
I
I
I
: DATA ANALYSIS |e—
I
I
1 PRINT CUT -
I
I
I
| CET KEY -+—
I
I
R e s s

SANTLOOYE 1S

— — — — — — — T — — — — — — — — —— —

0

vdvanced introduction to the worlang Spectrum

jut this 1s reallv a hang-over from be useful, as you can't have more than

he davs when programmers used 24 lines of program on the screen af
nainirames, and computer ime was once, and you'll ie yourself in knots
wcarce. If vou work out the structure on handling more than one subroutine 1n
naper, then perfect your subroufines memory at a time, but you can get by
n screen. that will be perfectly without.

idegquate. [n this case a printer would

\S A RULE

)ne important thing akbout subroutines By writing a program like this you'd be

s that thev flow evenly and logically — negating the point of subroutines,
'OU go 1nto them: at the beginning, and because you're putting In a jump out of
:ome out of them at the end. Look at it at line 120. If your subroutine was
what's happening here: very long you might want to put ina
: G0 TO 1o speed the program up
g GOSUB 100 stopplng the Spectrum checking
I<.E1 i through a ot of lines 11 doesn't need to)
S g out this is a reason for breaking your
’B; REN. SUBROUTINE STARTS subroutine up into more, smaller
110 e roufines, and anyway you can still
. iy e e » speoed the action by jumping to the
20 I-E A$="EXIT" THEN GO TO ~FTURN line.
138 L
140 RETURN
RY THIS
"here's a good reason besides 10 1n what 1s effectively a list called the
namtaining logical program flow for COSUB stack. The first RETURN it gets
ilways exiting a subroutine through o sends it back to 10, so what we've
the RETURN line. Tvpe 1n this short just written 1s a program that keeps
orogram and rn it telling the computer to remember one
: JIne without telling it it's allowed to
g gggga 100 lorget it
2@ GO TO 10 f you think about 1t you'll see how
‘he stack onerates - if you have
Now why did that happen? What nesing subroutmes it has to RETURN
rouve done 1s exhaust the part of the to the second GOSUE Iine first before it
bectrum's memory known as the RETURNSs to the first. So the principle

tack’. When vou say GOBUE 100 1n 15 last in first out.'
ine 10 the computer remembers line

1
vdvanced introduction to the working Spectrum

o B GOSUB

SO8UB stores the line
pumper on the stack

1

0 Jea—] rETURN |

RETURN takes 1t off

150

200C

1500

'000

RETUERN

I

10

"ULL

dvanced introduction to the workane Spectrum

2

‘he next thing you need to considerin true, and if it 1s. taking a specified
yrograr structure 1s branching, which — action. This generally takes the form [F

's basicallv about how the computer condition THEN action.
nakes decisions. You can think of this Along with I[F. . THEN you use the
quite simply as a way of making the symbols =, <, > and < >, which are

oraputer check to see if somethingi1s known as logical operators, and mean

Values
for A
and B

b
A 4

PRINT
YES b ' A=’

NO

4 ¢

VES ’ ’ PRINT
‘A<B’

3

vdvanced intraduction to the working Spectrum

2ual to, less than, greater than and
10t equal to respectively. AND, OR
ind NOT are also operators.

14
-
-4

@

LET A=10: LET B=5

IF A=B THEN PRINT “A=B"
IF A<B THEN PRINT “A IS
LESS THAN B~

IF A>B THEN PRINT “A IS
GREATER THAN B~

IF A<>B THEN PRINT “A
J0ES NOT EQUAL B”

You can also combine condhitions using
the operators AND and OR:

5@ IF A=10 OR B=10 THEN
PRINT “ONE CONDITION IS
TRUE"

/@ 1F A=1@ AND A=B THEN
PRINT “BOTH CONDITIONS
ARE TRUE”

14
Advanced inlroduction to the working Soectrum

Loops

' he final design structure we'll be 20 BEEP 1,1
1ealing with in this chapter is the 38 NEXT I
'OR. . NEXT loop, which helps vou
oIt having to type 1n repetitive lines.
Uhink: of this

1@ FOR I=1 TO 20

Here you're using a simple
TOR. . NEXT loop to do somelhing thal
sould otherwise take you 20 lines

FOR
SET START TO
AND END
A 4
DO ACTION
A 4
NO
NEXT
N 4

' RY THIS

t's guite easy, and useiul, to produce 5@ NEXT J

iesung FOR. . NEXT loops, or loops 6@ NEXT I

nside one another: s will print out the multiphcation
‘@ FOR I=1 TO 12 tables up to 12x 12. Note that you have
7@ PRINT “Table for ”:1I to finish the last loop first (the | loop n
3@ FOR J=1 TO 12 this case) otherwise you'll confuse
&0 PRINT I:"%":J29=":;1%) yourself Try swopping reund lines 50

sna 60 to see what happens.

8
\dvanced introduction to the working Spectrum

NO

SET RANGE
LOOP |

v

SET RANGE
LOOP]

h 4

ACTION

h 4

YES

- AS A RULE

ust as with GOSUBs you shouldn's
ump cutof a FOR. . NEXT loop before
1s finished. For example:

i@ FOR I=1 TO 5@

2@ IF I=25 THEN GO TO 4@
2@ NEXT I

‘@continue program

‘ou’ll nave just the same sort of
sroblems here as you would jurmping
ot of a subroutine. so you should use
F =25 THEN LET 1=51:GOTO 30 to
ake vou to the end of it.

Checklist e————

n this chapter you ve learned:

| Whyv you should try to write
tructured programs.

| How and why to use subroutines
and how not to use them).

1 How to use branches, and how to
amulate the features of more
atructured Basics in Spectrum

jasic.

| How to use [F. . ' THEN.

™ How and why to use loops for
epeuhve tasks.

Ydvanced introcuction to the workina Spectrum

"EE RT3

8l et ’ 20 B B
- i § | iy :
| il 8 [-'.I 7] N ;
. . 5 ' - 1
- 2 " a ol T
L e i . » '
., ! .
; = et |
- 3 o
s

Al computers spend thelr tume
-alculating with numbers and most
srograms need ¢ be able to
naripulale numbers 1n various ways.
"hese methods of mampulation fall into
WO Imain categories, funcions and
perators. Operators are such things

iS5 + — ¥/ and need a nunber either

number as thelr argument and do
something to it, such as SIN which
converts its argument into a sine. They
always produce a result, so when using
them you must always make sure that
the result 1s used, 12

LET A=INT(10.2)

a
1de of them, 1e PRINT 2+ 2. PRINT SINCPI)
unctions, on the other hand, take a
| RND
The RND function 1s one of the most INT{RND*R)+1

15eful built-in functions on the
somputer, although it 1s not strictly a
unction since it does not work directly
i an argument. [l can be used fora
wmper of things, from selecting
-anaoc answers to a guestion hke this:

1@ INPUT"How are vyou
feeling today”;A%

15 PRINT“That's aood ‘cause

1 feel ”;
/@ LET B=INT(RND*&)+1
25 GOSUB (4@ AND B=1)4(50

AND B=2)+(6@ AND
8=3)+(7@ AND B=4)
STOP
PRINT“Great.”:RETURN
PRINT“Fine.”:RETURN
PRINT“OK.”:RETURN
PRINT“Ugh!”:RETURN

-0
4@
il
68
7@
Jr, even simpler, you can print stars
mio the screen with this;

i@ FOR T=0 10 100

2@ PLOT INT(RND*255)+1,INT
(RND*176)+1

2@ NEXT T

Normally you will want the resultof a
:all 1o RND to be a whole number
integer) and as above, the form:

‘8

can be used. where R 15 the range
from | to K. This can be a little tedious
to type 1n If there are a lot of RND
selections 1o be made. A neater
alternalive is lo define a funcucn o
produce the desired result, 1e;

DEF FN R(R)=INT(RND*R}+1

Once defined within a program, this
can be used to produce integer
random numbers as follows;

PRINT FN R(6)

giving a number from | to 6 at random,
the throw of a dice for example, or LE''
CARD=FN R(13).

A thing o note about RND is that it
sn't truly random since the computer
swiiches on with everything setto a
aredefined value. Switching off and on
and printing KND gives the same
number every time.

AND produces what ls known asa
pseudo random number which 1s
created by taking a seed number and
pericrming a senes of operations on 11
wth a set formula producing ancther
mimber. This result 1s then civen as the
result of RND; it 15 also made the new
seed with which the next random

iwlt-1n functions

numbper 1s produced. This can be
iemonstrated with the following
orogram which produces pseudo
andom numbers between 0 and 6.
rom a simple forrmula;

'@ INPUT”Seed=":A
20 LET A=(A*75)+19200
40 LET A=A—INT

CAf256)—INT(A/256)
43 LET A=A—(INT

(A/65536)%65536)
5@ PRINT INT(A/10000)
60 GOTO 20

"he RND function within the Spectrum
s a lot more efficient and complex than
his and hence produces a longer
senies. 1t will. however, eventually
epear 1sell.

'he seed can be set on the
Spectrum with RANDOMIZE and if you
TV

'@ RANDOMIZE 1
2@ PRINT RND
5@ RANDOMIZE 1
4@ PRINT RND

9

you'll see that the randormze statement
causes the RND functicn to start at a
speclilc place It the senes of random
numbers. This can be both an
advantage and a disadvantage
aepending on the stage of prograrm
development. If you are testing a
program that uses random numbers it
s useful to have RND start at the same
piace so that the results can be
verified. However, once the program
works, having END start in the same
place every ime causes the program
‘0 be predictable in which case there
1s no point in using RND at all. The way
out of this is to reset RANDOMIZE at
the beagming of the program. This 1s
actlually easier than it spunds since
there are a number of locations within
the Spectrum tha: change too quickly
to be predicted and hence are
effectively random. One of these 1s
23872, the number of TV frames, which
changes every 20 mS. If the first line of
e program includes RANDOMIZE
PEEK 23672 the chances of it picking
the same number every time the
JTOQIAIm 1S run 1S L in 258, a lot more
-anaom than many other methods.

iuilt-1n functions

INT

In the section on END we used INT to
121 whole numbers from decimals
WIth:

PRINT INT(RND*1@3>+1

"he INT function is used to chanae the
ormat of the number and spht it into
wo halves, each side of the decimal
»oin!, and then feed back the left hand
10e as the result, ie INTeger it, so;

PRINT INT(123.456)

onnts 123, One thing to note about this
unction 1s that 1t rounds the number
1own so INT(23.999) gives 23 and not

24 as one might expect. It may be
necessary to round the number in the
accented way, 1e round the decimal
partup i it 1s .5 or more and round

iown 4999939 and less. This 1s easily
done by adding 0.5 to the number
before INTIng it. Try this;

1@ INPUT“Price=";A

2@ PRINT“Rounds to:”:
INT(A+.5)

3@ GO 7O 10

This 1s quite useful when dealing with
financial amounts since 55.65 pence 1s
normally taken to be 56 pence.

ABS and SGN

Another function that chanaes the
ormat of a number 15 ABS. This 1s used
o strip off the sign from the front of the
wmper and make it positive no matter
wvhat it was before, So ABS(—2) will
nve 2 and so will ABS(2). This function
s useful for & numpeer of thinas, such as
naking sure that when printing or
siotting onto the screen, no values are
illowed that go negative and hence
nve an error. Even more useful is
making a toggle allowing one kevy to
se used to turn something cn or off.
nlke this:

18 LET T=1

@ IF T=1 THEN PRINT “PUSH
OFF”

2@ IF T=0@ THEN PRINT “PUSH
ON”

4@ LET AB=INKEY$:IF A$=""
THEN GO TO 4@

45 PAUSE @

5@ LET T=ABS(T-1)

5@ GOTO 20

0

A lunction very close to ABS 15 SGN.
This returns plus one for any positive
number and minus one for negative
numbers. The odd one out is zero for
which SCN gives 0 since it is
debaable whether 0 is positive or
negative. As a demonstraton try.

1@ INPUT A
2@ PRINT A;” 1s ";
2@ IF SGN{A)=-1 THEN PRINT

“megative.”:G0 TO 6@

4@ IF SGNC(A)=1 THEN PRINT
“positive.”:G0 TO 6@

5@ PRINT “zero.”

60 GOTO 1@

A much neater way of doing
this is to replace Lines
3@, 4@ and 5@ with one
line:

PRINT (“negative.” AND
SGN(A)=-1) (“positive.” AND
SGNC(A)=1); {(“zero.” AND
SGNC(A)=Q)

walt-in furctions

SIN, COS, TAN, ASN, ACS, ATN

'hese are the trigonometric functions
ind are used for messing around with
ingies. They fall into two sections
ance ASN does the opposite of SIN, 1e;

18 LET A=SIN(2.5)

2@ LET B=ASN(A)

3@ PRINT A:” is the SIN of
.5

50
ASN is antiSIN or arc SIN
ACS 1s antiC0S or arc COS
ATN 1s antiTAN or arc TAN

Most neople are uzed to working
with angles between (0 and 360
degrees, but the Spectrum (and most
other computers) uses the

nathermnatician's form of splittimg a
qrcle into 2* Pl radians.

¢ P1 Rads

1 Radian

4]
hlt-in functions

The Spectrum 1s better at this than
many computers as it includes Plas a
predefined number and so
conversions can be handled a lot more
easily.

SIN, CCS and TAN are defined
using a night-angle triangle and are
useiul for araphics handling. For
mstance, suppose you draw a square
on the screen with

18 LET X=20:LET Y=28
@@ PLOT X,Y
11@ DRAW 28,0

rllz
Huilt m functions

120 DRAW 0,—20@
130 DRAW -—20.0
40 DRAW 0,20

ind you want to turn 1t through 45
legrees to get a diamond. SIN and
>OS can ke used to calculate the new
sositens for the lines. Alter the square
program 1o this:

'@ LET X=40:LET Y=40

15 INPUT “Angle=";A

16 LET A=FN r(A)

20 GOSUB 100:REM DRAW
SQUARE

STOP

DEF FN r(A)=A*P1/180
PLOT X,Y

DRAW 2@+*SINCA),
2B*COS(A)

DRAW 2@*SINCA+(PI1/2)),
20%COS (A+(P1/2))
DRAW 20*SIN(A+PI),
2@%COS (A+P1)

DRAW 2@*SIN(A+(3*PI/
2)),

2@%COS (A+(3%P1/2))
RETURN

50
49
00
110
120
138

140

150

idding and altering the following lines

vil give a nice patlern.

'S5 FOR T=8 TO 36@ STEP 10
16 LET A=FN r(T)

25 NEXT T

@ STOP

I'ne results of all these functions can
se nicely illustrated using graphs of
svhich SIN is the easiest. Trv this:

'@ FOR T=0 TO 2%PI STEP
2.1

PLOT T*1@,SINCT)*10+5@
NEXT T

2@
0

'his disclays the shape of a sine

vave and If you replace 5IN by COS or

wen END vou will get a better 1dea of

13

what these functions do. The following
program can be used to display the
various funchons, and even mixtures of
them, such as SIN(1 —SIN(3*T}).

<118

S GOSUB 108 :
AXES
INPUT“Enter function:”;
AS

FOR T=0 TO Z2*PI

STEP .1

PLOT T*23,VAL(AS)*
50450

NEXT T

GOTO 10

REM DRAW AXES

PLOT 0,0

DRAW 0,100

PLOT @,50

DRAW 150,00

RETURN

REM DRAW

1@

4@
50
29
190

120
138
140

Note that when entering functiions you
should use the single key entry
systenmn.

Checklist e e e

In this chapter you've learned:

-

How REND works and how to define
4 user functon to give a specific
range of values.

How the INT function works and
anen to use i,

0]

How ABS and SGN work and what
they are useiul for.

[1]

How SIN, COS, TAN, ASN, ACSard
A'l'N work and how they are useful
for graphics.

How to set up some user-defined
functions to convert degrees to
radhans and radians to degrees.

jullt-in functions

Projects

i Use the last araph pletting program
sth a mixture of funchons including
e things as ABS and SGN to see
10w they work. See if you can
mprove the axes by labelling them.

| 'Trv writing your own pseudo
-andom number generator that can
1enerate a long sequence of
randoem numbers.

o
luilt-in functions

Nhen we sav 'Interactive
SIOQIAmIMING We mean somathing
1uite simple — how you and your
Spectrum act together. You could
1esian a program that was nardly
nieractive at all. for example a
rapnics demonstration program that
1mply cyeled through a series of
Jictures without you having to do
nvihing, but In most cases you will
onysically have o press keys and give
he computer some information at
Jancus noints in the program.

S0 Interactive programming deals
r1th how vou give information to the
omeuter, and how the ccmputer
nves you 1is Information back, on the
:CTeen or on a printer. Naturally, if you

"YPE ANSWER AND ENTER

want your programs to be as useful as
possible, yvou will also want to be able
o present the computer's information
In as clear a way as possible, and you'll
want the mformation you give the
computer to be easy to type In, and
difficult for either you or the Spectrum
to make a mess of Thig chapter is
iIntended to help you do this.

Why do you do this? Naturally youre
not an idiot, bui as one day youmay
want to sell your programs, ycu'll want
to make them as 1diot-proof as
possible! For example, let's say you
use the following lines:

1@ INPUT “Enter a number ;A
20 GO TO 10

"OUR GO, .

NHAT NOW?

S LT E e E €1

G 4 D e
I ol e

| 3] o

30 T BT

L] L

B

nteractlve programiting

fou've told the user to type ina
mumbper. soif you type 1.2,3 and so on
that's fine. But what vouthink is a
wmper and what the computer thinks
S a number mav be two separate
hings. Type 'one Enter, and you'll
see one case of the computer
nisunderstanding you. And remember
that while you think 1 000 1s a number,

'he Spectrum has two main ways of
qetting information from the user,
‘NPUT and INKEYE. Some other
somputers have a command GET, or
SETS. which is used in the form GET A
or GET AS, and this tells the computer
o wait for the user to pressa key. It is
similar to INKEYS, but INKEY$ doesn't
valt for a kev 1o be pressed, so you're
it a disadvantage.
Or are vou? You can simulate 1t hike

‘his:

@ IF INKEY$="" THEN GO TO
19

The Spectrum will now wait at this line
unul vou press a key, and when you do
this it will skip to the next line.

Hut what about our little INPUT
proplem? First ask yourself what's
makKindg the Spectrum return an errcr
when vou type in 'one’. What you're
A101nd 1s typing In a string when 1t
cxpects a number, whereupon it tells
vou where to get off. So you need to
prepare for the worst possible case,
ind this means writing the program so
‘hat 1t will handle strings without
=tODPING.

7

Try this:

the one the computer expects is 1000.
In this case we've only messed up a
two line program, but imagine that
those two lines are part of an address
book program, that you've just typed in
100 addresses, and then you absent-
mindedly press the wrong key - nasty
thought, 13n't 1it?

1@ INPUT “Enter a number

Trom @-97; A%

20 IF CODE A$<48 OR CODE
A$>57 THEN BEEP .5,1:
GO TO 10

30 LET A=VAL AS

What this httle program does is
accept whatever string the user types
1n, checks its CODE value, then only
goes on to ine. 30 if this value s
oetween 48 and 57. The CCDEs from
48 to 57 are of course the CODEs of the
mimbers (-9,

Now you could try this for larger
numbers, but the problem 1s that
CQODE ¢nly returns the value of the first
character of a strina. So if you typed 1n
something hike 232 1t would read the
CODE of 2 only, and you'd still be
messed up. But never fear, all you've
got to do 1s get the Spectrum to check
the characters in AJ individually.

One way of doing this 1s to loop
through the characters one at a ime:

20 FOR N=1 TO LEN A$

20 IF CODE AS(N TO N)<48
OR CODE AS(N TO N)>57
THEN BEEP .5,1: GO TO

10 i}ﬁ)

interactive DI'DgIﬁITlIHng

‘@ NEXT N
@ LET A=VAL A%

"ou now have a routine that checks
avervihing vou type in letter, or rather
‘naracter by character, and gives a
cetulant BEEPif you've made a
nistake. The exopression AN TO N) is
he Spectrum's long-winded way of
pecitying an individual character in a
nna, so if N i1s 5 you're actually saving
WS TO 5, which specifies the fifth
“haracter in the string. A$5 TO 8)
specifnes the fifth and s1xth, and so on.
"ou could start off wiath DIM AS0),

vnich would have the added
avantage ctallowing you to control
he size of the number (cr what will

eventually become a number) by
hmiting it to whatever you cheose as X,
Jou could make your program even
more bomb-proof In this case by also
Yrapping errors by comparing the
length of the string typed i with N,
and 1if 1t was too great, again going
hack to line 10

What you're doing here 1s thinking
of ways (o trap errors. Obviously you
can't trap them all when you're writing
the program, but if you think about
what yvoure doing, and update your
wrograms when you rmun into another
nroblem, you'll eventually have a much
more professional fimshed product

A rule

Nhen voure writing a program 1y not
o rmux INPUT and INKEYS loe much.
Jbviously if the program 18 asking for a
wrnper or a filename (both greater
han one character) then INPUT 1s

usefl, but in the main using a mixture
of the two 18 confusing, as the user will
tend to press Enter while the
program's executing.

CRY THIS

t's possible to trap errors in inputs by
naking any number of characters you
ike illagal. To do this, you should look
1o the character codes in Appendix A
I the Spectrum manual. All yvou have
0 do then 15 to trap any characters
wth codes outside vour chosen range:

‘000 PAUSE @

1828 1F CODE(INKEY$)<é65 OR
(CODE(INKEY$)=>9@ AND
CODECINKEY$)<97) OR
CODECINKEY$)>122 THEN
GO TO 1080

183@ PRINT INKEY$;

1848 GC TO 1000

If vou RUN this program you'll see

'@1@ IF INKEY$=CHR$(13) OR
NKEY$=CHR$(32) THEN
30 TO 1038@

that it operates like a typewriter.
You've made all characters except for
letters of the alphabel fupper ard

3
‘nteractive programming

ower case) llegal. Not much of a

vpewriter though, 1s it, because you _
‘an't use any punctuation, In this chapter you should have
Check up the codes in the manual learned.

ana you'll ind CHR$(13) is Enter (new

ine) and CHR$(32) is Space. Soinline U What interactive programming

010 vou're checking to see if the key Imeans.
dressed is one of these two, and if so M The differences between INPUT
K1oping the next line, which would and INKEY$

itherwise rule them illegal. Delete line

010 to see this.

LI How to use CODE to check that the

)ther points of interest are the user of a program is hitting the right
YAUSE statement in line 1000, which keys, thus avoiding errors.

we're using to stop the keys we press

neing repeated, and the semicolon in
e 1030, which makes sure the next
‘naracter 1s nrinted adjacent to the

‘ast

PRESS SPACE TO GO ON

9
nteractive programming

rojects

I Write a short rcutine that allows vou
o INPUT names and addresses,
=xcluding numeric input for the first
ow (where the name should go).
"ou could also insist on the first part
o the next row being a number, but
roud have to allow for a symbol 1n
:ase the house didn't have a
UInper, say # . Keep tidying this
ne up unti it's bomb-procf.

| Rewrite our poor man s word
Drocessor so that it wiil also accept
punctuation and numbers.

0
nteractive programirning

- ..
A A A
| T r ¥
I L I
r Tt
- T

‘nformation handling

nformation handling may not sound
7ery excinng, but if you think about it
roull ind i!'s crucial to you being able
¢ write programs that are exciting on
rour spectrum. After all, what doesa
:omputer do? It stores information in
he form of numbers, so that when you
ell 1t o0 do =omething it consults the
niormation it's storing and acts

accordingly.

And it doesn't matter whether the
information yvou're dealing withis a
space invader or the size of your bank
balance - as far as the Spectrumn 1s
concerned it's all the same. What does
matter is how efficient the way you tell
the Spectrum to deal with that
informanon is.

Note pads

“omputers using the Basic language
1ave several forms of information
Torage avallable to them, the most
cpvious beinag in the form of DATA
tatements. A DA'L'A statement 15
:ssennallv just a list of numbers or
efters that vou tuck at the end of a
OTOCIANL

‘@ FOR A=1 TO 10

2@ READ B

“® PRINT A:” times two is
s

49 NEXT A

‘@ DATA 2,4,6,8,10,12,14,
'6,18,20

Now this mav look like a silly
orogram o you, particularly as you
ow the two times table, and you also
mow that:

'@ FOR A=1 TO 10

@ PRINT A;” times two 1S
‘T AxZ

“@ NEXT A

s shorter and does exactly the same
hing. But think about it — as we've said,
rou already know the twe times table,
1o wnv go to the trouble of werking it
e over and over again? DATA
Tatements you see, are lists of
niormation that vou already have and

P

there are times when if's a lot faster for
a program to just lock up the list rather
than reinvent the wheel over and over
again.

What1s happening in our DATA
statement version of the program 1s
that hne 10 1s counting through ten
aifferent values for A, and for sach
aifferent value it reads B once. By
READ B we mean go down to the Ath
(e first, second, third etc) DATA
statemen: vou find and set a new value

DATA

Pointer

10

nformation ha ndling

or B each time. It's then just a matter of
he program doing what you've told it
o dowith B,

ne thina to remember about DATA
slatements 1s that vou can only READ
hem once unless you use the
{ESTORE command. In the case
ibove vou'd say RESTORE 50 (1e
eactivate the DATA in line 50) and
hen vou could READ 1t for a second
e, from another line if yvou wished.
Mhat vou're domng with RESTORE 15
resetting something called the DATA
Jointer, which i1s used to keep track of
rvhere vou are in the DATA statement,
ind stores the value cf the last piece of

DATA you READ. You can have as
much or as hittle DATA 1in a line az ycu
wish - trv changing it to:

>@ DATA 2,4,6,8,10
5@ DATA 12,14,16,18,20

and voull find it doesn't make a scrap
of difference.

We know that READ arnd DATA are
useful for storing information we
already know, such as user-defined
graphics or the notes for tunes, but
what if we want to store information
that varies? In that case we have 1o
lock elsewhere.

Ways with arrays

Ne've looked at the note pad, and
@en 1S limitations, but fortunately the
pectrum also has a filing cabinet
wvallable! The easiest way to think of
i array isasa gnd of boxes, ora

table, where you decide how many
boxesare in the grid

You set these boxes with the DIM
command, and if you look at the
iHustration below vou'll see how 1it's

e V1) ALZ)
AMA(10) =| A 'ﬁ :
e ———————— g —
A S L S S S Y S A
T S S S I — — i - 1
e e — e —
- _ A A T AT T T A A A
DIM A T N i S S S i R S
N M T T AT R AT R y
B ¥ g g
5 AT A L S Y A N A 4
= et ¢ &
i
f"l 4 : /]
W11 L2 A(l.3
13

nformaticn handling

A(30)

A(T)

A(6)

A(S) |

A(3)

A(2)

1one. Bv saying DIM A(10) you're
elfing up storage space for ten pleces
I Information which vou can refer io as
(1) 10 A(10). By saying DIM A(10, 10}
roure sethng up space for 10x10 1e
O0meces of information from A(L 1) to
W10,10). You can imagine an array
0> 10x 10, which would be DIM
YW 10,10, 10), and you can produce four
it more aimensioned arravs - the only
dnit s the amount of memory i the
Spectrurn,

Think of it like this — DIM A{30)
instructs the Spectrum to set up a large
box containing 30 smaller boxes called
A{0), A(D), A(Z2)and soon. L'nese
smaller boxes are called subscripts —
this should give you ar idea cf what the
Spectrum meoans when 1t gives you an
error message that says 'subscript
wrong'.

oo far we've onlv dealt wath arrays
1wlding numbers, i@ numericarrays,
out vou can store string data in arrays
Including user-cehined graphics) ir.
saning arrayvs. These differ simply by
sendg DIMensioned DIM AR(X).
uppose you warnt to keep a record
;I a set of Informaticn, such as
iadresses. or detaills akbout your

4

record collection. The information can
be broken down into a number of
different sections ‘hat you can deal
with easily, and each of which slores a
different piece of information. These
sections are called fields, and the
collection of fields on one subjec: is
called a record. A set of reccrds can
then be said to make up a database.

niormation handling

'he requirements of a program needed to handle a database are;

! 1. Toallow you to enter and edit records !

. 'To gwe you a mechanism for storing the database permanently I

3. Toallow vou to look up a specific record by specifying a field J

4. Anything else you think you want!

RY THIS

When vou're designing a program of The next thing to do 1s 1o set up

his sort the first tnng youneed todo 1s some kind of control menu giving you
vork out how the data is to be stored. access to all the various cptions:

~vhat arrays are needed and sc on. For

:xampie, take a record collection - 4;; ?E:‘: TNy

space needs to be set aside for the - =
ecord title, the artist, the tracks, and 118 F:;I NT “ DATABASE OF 7;
he date recorded. This should do to 120 PRINT

tart with, but you can easily add to i
ater if vou need to.
0 let's start with the following

1380 PRINT” 1...EDIT DATA”
140 PRINT” 2...SEARCH DATA”
158 PRINT” 3...LOAD DATA”

DCHOE 160 PRINT” 4...SAVE DATA"

'@ REM SET UP ARRAYS 170 PRINT” @...END”

2@ DIM T$(30,15):REM 38 175 PRINT” CURRENT RECORD
RECORDS WITH TS 1S:”:PTR
HOLDING THE TITLES 180 LET AS=INKEYS$

0 DIM B$(30,15): 198 IF A$=“1" THEN GOSUB
REM ARTIST(S) EDIT:GO TO 100

40 DIM R$(30,14,15): 200 IF A$=“2" THEN GOSUB
EM 14 TRACKS ON EACH SRCH:GO TO 100
RECORD 210 IF A$="3" THEN GOSUB

5@ DIM D$(3@,8) LOAD:GO TO 100

60 DIM P$(15): 220 IF A$="4" THEN GOSUB
REM DATABASE TITLE SAVE:GO TO 100

55 DIM S$(15) 23@ IF A$="0" THEN GOSUB

70 LET PTR=1:REM CURRENT FINI:GO TO 100
RECORD POINTER 240 GO TO 180

35
niormaton handling

Notice the wav we're writing the
yrogram - s¢ 1ar we've decided what
ve want to do. allowed array space for
1. then approached it logically by
oresenung the user with a series of
mwuons, each handled by a GOSUB. As
ret the program doesn't actually do
invthing, so wed best get down to
vrinna the subroutines!

| ‘Norking out the works

Jne advantage the Spectrui has is s
ipiity to use commands like GOSUDR

v, where A 15 set to the value of a line
umper. You can see the virtues of this
n the section above, as you can name
he subroutines with handy

unemonics. All these subroutines can
wow be written and then the varlables

set up to point to them. For instance,
ve ll start EDIT at 300

‘99 REM EDIT STARTS AT 3@0
08 CLs
1@ PRINT# EDIT MENU"

32@ PRINT

33@ PRINT” 1...SELECT
RECORD"

348 PRINT” 2...EDIT CURRENT
RECORD”

35@ PRINT” 3...STEP FORWARD
A RECORD”

368 PRINT” 4...STEP

BACKWARD A RECORD”
7@ PRINT” @...MAIN MENL”
275 PRINT” CURRENT RECORD
57 PTR
3880 LET AS=INKEY3
9@ IF A$="1" THEN GOSUB
SLT:GOSUB CRR:GO TO
360
IF A$="2" THEN GOSUB
CRR:GO 710 329
IF A$="3" THEN GOSUB
FWD:G0 TC 3¢0
IF A%="4" THEN GOSUB
BKD:GO TO 3d@0@
IF A$="Q THEN RETURN
GO TO 3808

400
410
420

430
440

You'll have gathered by now that a
dood way to design precgrams of this
vpe 13 to write the men sections first.

nicrmation handling

"aking the simplest of the edit
eCcuons:

499

S@e
51@
519

20
530
239

540
550

560

570
580

REM FWD (58@)
INCREMENT RECORD
POINTER

LET PTR=PTR+(PTR<31)
RETURN

REM BKW (52@)
PECREMENT RECORD
POINTER

LET PTR=PTR—{PTR=0@)
RETURN

REM SELECT (54@) A
RECORD BY NUMBER
CLS

INPUT “ENTER RECORD
NUMBER “:A%

IF VAL A%$<1 OR VAL
A$>30 THEN RETURN
LET PTR=VAL A%
RETURN

Now 1t's a question of producing the
nore complex field editor. Here it
wvould be nice to have a subrcutine
hat prints a record onto the screen,
snich 1s what the GOSUB 1000 1s all

iDou!
299
600

510

615

520
530

H40

550

REM CRR FIELD EDITOR
GOSUB 10@@:REM PRINT
RECORD

INPUT “ENTER LETTER OR
NUMBER OR FIELD TO
DIT. X TO END. ”;A$
IF A$="*" THEN INPUT
“NEW DBASE TITLE: ”;P$
IF A$="“A”" THEN INPUT
“NEW TITLE: “;
T$(PTR):GO TO 600

IF A$="B” THEN INPUT
“NEW DATE: “;D$(PTR):GO
Q0 600

IF A$=“C” THEN INPUT
“EW ARTIST: “;B$(PTR)
IF A$=“X" THEN RETURN

3T

655
66@
670

680
690

IF CODE(A$)>65 THEN GO
T0 680

IF VAL (A$)<1 OR VAL
{A$)>14 THEN GO TO 608
PRINT “NEW TRACK “;
VAL(AS) ;“:";

INPUT R$(PTR,VAL(AS))
GG TO 600

Now the record display

1008
1805

1086
1010
1820
1838
1840
1850

1060
1879

CLS

PRINT “+#_.DATABASE

OF: ";P%

PRINT “RECORD NUMBER:
"PTR

PRINT “A.TITLE
"2 TS(PTR)

PRINT “B.DATE :";
DEC(PTR)

PRINT “C.ARTIST
B$(PTR)

FOR I=1 TQ 20 STEP Z
PRINT I; “ "

RELPIR, 10:% "=l =
RE(PTR,I+1)

NEXT I

RETURN

[L
o

After that we can deal with a few
easv options from the same menu

99
8@0

310
320
3308
340
850
36@
599

niformation handling

REM SAVE P3{) T30
BEOTREC) D3O
INPUT “ENTER FILE
NAME :":F$
SAVE F3+"P”
SAVE F3+"T"
SAVE F$+'B"
SAVE F3+“R”
SAVE F$+“D”
RETURN

REM LOAD PS() TEQO)
BE() R$(> 0$Q)

DATA
DATA
DATA
DATA
DATA

P$()
T$0)
B$()
RE()
DS

0@ INPUT “ENTER FILE records, that contain it. This 1s where
NAME :":F$% the single record display routine

21@ LOAD F$+“P” DATA P3() comes in handy.

920 LOAD F$+“T" DATA T3() 4

230 LOAD F$+“B” DATA B%() i;gg ﬁEz SEARCH

94@ LOAD F$+7R” DATA R$Q) 1518 LET PTR=1

750 LOAD F$+“D” DATA D3(> ' =

& 152@ PRINT“ SEARCH”

268 RETURN 153@ PRINT
"he above could easily be converted 154@ INPUT # ENTER STRING
o Microdnve by prefixing the file TO BE SEARCHED FOR ”;
iames with *'m"; 1, and this would give AS
rou a talrly fast iling system. 1550 LET S3=A%

1559 REM SEARCH TITLES

‘568 GOSUB 210@

157@ FOR T=1 7O 38

1588 IF S$(1 TO 15)=T&{(T)
THEN LET PTR=T:GOSUB

"he final section of the program 1s the 1000 : GOSUB 2000
earch routine. which looks through 1598 NEXT T

he entire dalabase for a specific field 1599 REM SEARCH DATES
ind then displays the record, or 1600 LET S$=AS$

(v xic O
N, _

B
nformation handling

161@

620
1630

16440
1659
1660
670
1680
1690

1700
1709
71@
720
1730
1740
1750

IF LEN S$<8 THEN
S$=S%+" ":GO TO
FOR T=1 TO 3@

IF S8(1 TO 8)=D%(T)
"HEN LET PTR=T:GOSUB
'9@@:c05UB 2000

NEXT T

REM SEARCH
LET S$=A$%
GOSUB 2100
FOR T=1 TO 3@

IF S3$(1 TO 15)=A%(T)
"HEN LET PTR=T:GOSUB
1000:GosuB 2@04d

NEXT T

REM SEARCH TRACKS
LET S$=A$

GOSUB 21042

FOR T=1 TO 3@

FOR S=1 TG 14

IF S3(1 TO 15)=
R$(T,S) THEN LET
PTR=T :GOSUB
1000:605uB 2000

LET
1610

ARTISTS

1768
1770
2220
2018

2020
2099

2100
2110
2199
2200

221@
2228

NEXT S:NEXT T

RETURN

PRINT AT 20,0;“PRESS
SPACE TO CONTINUE"

LET CP3=INKEY$:IF C3<>
“ ™ THEN GO TO Z20@1@
RETURN

REM MAKE 5% UP TO 15
CHARS

IF LEN(S$) <15 THEN
LET S$$=5%+" ":6G0 T0
2100

RETURN

REM FINISH STARTS AT
2200

INPUT *“ARE YOU
SURE?"; A%
IF AS<>"Y"
STOP

THEN RETURN

“You now have the makings of a
snimitive database, but there's still one
*hing you have to do. Go through the
Drogram again, and set up the
rartables for the GOSUBs in a new line

3

nfoermation handling

0 as follows: The EDIT sectiorn, for
wxample, starts at 300, so you should
ay LET EDIT=300.

'@ LET EDIT=3@@: LET
SRCH=1500:

ET LOAD=9@@: LET

SAVE=800:

'ET CRR=600@: LET SLT=544:

ET FWD=500: LET BKD=570:

ET FINI=2200

The database vou've got holds 30
‘ecords, and has a maximum field
ength of 15 characters. You can aller
hese numbers deoending on how
nicn memory you have available, and
10w long you want the data to take to

aad.

Checklist

1 this chapter you should have
earned:

1 ''he cifferences between arrays
ina DATA statements, and the way
sou can use polh these methods of

iandling information in your
DrOgrIams.

| How to use RESTORE

| How to wrlte a database nrogram
ogically, using a combination of
nenus ana GOSUBs.

e e ’Iﬂ_i g e

| Rewrite the database program so
hat 1t will catalogue a collection of
5o0oks, or the addresses of your
riends.

0
niormation handling

_ham e

Handling arrays

ne of the maior uses of arrays, both
mmerne and stnng, 1s in adventure
sames. ‘These allow you to wander
irouna a sort of maze picking up
neces of gold and confronting various
NONSIers,

et's see how we can wrile a
orogram that allows you 1o define the
‘00MmSs and passageways and wander
iround them. As with the file handling
srograrm, the best way o start the
JrogralT aesian 18 o work out what
irravs wiil be needed.

ince the program needs a set of

descripticns for the rocoms etc. we
need a string array to hold these. The
total numnber of locations possibie 13 set
by the amount of memory you have
avallable. In the program that fcllows
this 1s se? to 1€ using the vanable M.
This can be increased until the
menory runs out. The length of the
description string 1s get wath T, this can
also be Increased but 1t does eat up
large quantities of memory. The trade
off 15 between lots of localions with
short descriptiors, or less with large
descrptions

Iandhng arrays

0 use the descripticn array we will
ilso need a set of pointers to allow the
‘ooms 10 be linked together 1n varlous
vavs. We also need to set the pomter
irrav 1o default values. The following
ecton does just this,

BORDER 3

INK 3

LET T=30

LET M=10

DIM D$(M,T)

DIM S(M,4)

DIM E(M.4)

LET B$="NO"

FOR T=1 TO M: FOR S=1
TO 4: LET E(T,S)=-1:
NEXT S: NEXT T

The next thing to do 1s to sel oul
some Kind of control for the program
"hig 1s the main menu and gives the
euons to edit the descriptions, load
ind save definitions, link up the rooms
narandom way, and play the game.
"his 1s set cut as [pllows:

@ CLS

45 DEF FN R(R)=
INT(RND*R)+1
PRINT “ SIMPLE
ADVENTURE"
PRINT
PRINT “
PRINT “
PRINT *#
PRINT “
PRINT * . - RANDOMI ZE”
PRINT “ 6...END”

LET A$=INKEY$:IF A%=""
THEN GOTO 128

IF A$="1" THEN GOSUB
500:G0T0 4@

IF A$="2" THEN GOSUB
230:607T0 40

IF A$="3" THEN GOSUB
?00:G0TO 4@

-
o | |‘:"

(WP VAN S
L IR = RN = S

>0

60
i
50
20
100
118
115
120

« « PLAY”
. ~EDITOR”
. « LOAD”
. « SAVE”

1.
.4
%
4.
5.
‘50

148

158

'3

1680 IF A$="4" THEN GOSUB
800:60T0 40
IF A$="5" THEN GOSUB
450:6G0T0 40
IF A$="¢" THEN GOSUB
208:60T0 40

GOTO 12@

170
130

190

Taking the easiest option first we will
define the end option. To make sure
you don't came out of the program
without saving the data, 1t 1s generally
a good 1dea to ask beiore doing
something as drastic as stepping.

2@@ INPUT “ARE YOU SURE “;
3%

210 IF B$=“YES" THEN STOP

728 RETURN

The next sections are the major parts
of the prcgram. Let's take the editor
first This is again controlled from a
menu gqiving all of the major needs to
be able 10 define a series of locations.
The menu 1s written 1n exactly the
same way as the main menu, note that
the REM statements are notused,
allowing them to be removed (o save
space later on.

225 REM THIS IS THE EDITOR
238 CLS

240 PRINT “EDITOR MENU”
250 PRINT

2680 PRINT “1...LIST
LOCATIONS”

PRINT “2...EDIT

| OCATION"

PRINT “3...MAIN MENU"
LET A$=INKEY$

ILF A$="1" THEN GOSUB
24@:60T0 230

IF A$="2" THEN GOSUB
410:G0T0 230

IF A%$="3" THEN GOSUB
1080 :RETURN

GOTO 29@

270
280
290
200
210
220

230

landling arrays

“akina these options in order hereisa
ouune to hisl the locations that have. cr
naven't. been defined. Chviously if
here are a large number of locations
& a good idea to allow some kand of
escape mechanism to get back to the
JrevIous menu.

:35 REM LIST LOCATIONS
40 PRINT “HIT 'S’ TQO STOP”
5@ FOR T=1 TO M

560 PRINT T:"==>";D$(T)
65 PRINT “EXITS ARE ”;
266 FOR S=171 TO 4:PRINT
(“NORTH " AND E(T,S)=0
AND $=1):(“SOUTH ” AND
£(T,8)=@ AND $=2);
“EAST " AND E(T.S)=0
WD 5=3): (“WEST " AND
(T.5)=@ AND S$=4);:
NEXT S

PRINT

LET A$=INKEY$

IF A$="S” THEN LET T=M
90 NEXT T

@0 RETURN

‘ne of the clever things about the
pectrum's Basic 1s the ability to
sertorm the print statement in line 366

cdlowing the exits to be printed only if

hev have been specified by putiing a
erointhe E arrav.

“his direction specification 1s
>erformed 1n the edit location section
hat follows. This just asks for the
ocatlon number and then expects a

cet of exit directions. These are north’

:outh', ‘east’, and ‘west'. Directions

such as 'uw', and down’ ete. can be
aaded by changing the DIM in line 25
ana 30 to allowspace mthe Eand &
ATTAVS.

05
410

67
.70
180

REM EDIT LOCATION
INPUT “ENTER LOCATION
0 EDIT ";L

4

420
430
431

PRINT D${L)>
INPUT“==>";D%(L)
INPUT “Enter exits
nfs/efw ":A%

Mdter entering information you don't
need to use it all. The nexl sedtion
~hecks the entries and puts them in
the correct positions on the 'E' array.
North being E{T, 1), South being E(T 2]
and Bast and West being 2and 4
respectively. Using this routine allows
the exits to be entered in the wrong
crder without confusing the prograrm.

£32 FOR T=1 TO 4

433 FOR S=1 TO LEN A%

434 LET ECL,T)=((A%(S TO
SI="N") AND T=1)+
{(A$(S TO S)=“8") AND
T=2)+((A%(S TO S)="E")
AND T=3)+({A%(S TO
3)="W') AND T=4)-1

435 IF E(L,T)=0 THEN LET
3=5

437 NEXT S:NEXT T

“4@ RETURN

Once all the locatons have been
defined and described they need to
e attached to each other. Normally,
an adventure will have these
predefined as part of the game. Since
this 1s a simple adventure and contains
1o meveable objects we have to make
it exciting somehcw. This 1= done by
allowing locaticns to ke attached
randomly to 2ach oiher but making
sure that if yon exat south then you
nust enter north.

444 REM JUGGLER

450 GOSUB 1068

455 FOR T=1 TO M

46@ FOR $S=1 TO 4

470 IF E(T,S)=-—1 THEN
a0TO 508

fandling arrays

480 IF E(T7,S)<>=B THEN 515

G0TO 508 520
98 GOSUB 5208 530
SB@ NEXT S 540
51@ RETURN
"he juggler routine 1s split into three
naimn paris. The first 1s a subroutine that
‘esets the original directions into the E 545
irrav (subroutine 1060). The juggler =
hen aoes through the locations and
‘necks whether they have any valid 1
x1s. If thev contain 0, an exat, the i 20
outine jumps down to line 520 and 270
0018 through 100 random locations 3@
ntl one 1s found that fits the bill of When
matchinag North for South, East to West covered
1c. 'The location numbers are then main rme

wapped over in the Earray, making a

CNnNecilon.

15
landling arrays

REM SWAP EXITS

FOR U=1 TO 188

LET V=FN R(M)

IF (S=1 AND E(V,2)<=-@)
OR (S=2 AND E(V,1)<>0)
OR (S5=3 AND E(V,4)<=@)
OR (5=4 AND E{V,3)<=@)
THEN GOTO 570

LET E(V,(5=2)+
((S=1)%2) + ((S=3)*4)+
((S=4)*3))=T

LET E{(T,S)=V:LET U=1G0
NEXT U

RETURN

all the loccations have been
the routine returns to the
T,

i'ne next maijcr seciion of the
srogram allows the adventure to be
un. First the description of location
me 18 displayed and then the exits are
nven. After entering the direction to
ne followead lines 640 and 650 work out
wvnether the direction is vaid or
vhether 1t has not been assianed. Line
580 assigns the new location number to
. the correct position.

299 REM MAIN GAME
588 LET L=1

585 PRINT D$C(L)

620 PRINT “EXITS ARE ”;
(“NORTH” AND EC(L.1)
=—1): (* SOUTH” AND
ClL,2)<>—=13:(* EAST" AND
ECL,3)<>-1);(" WEST”
AND E(L,4)<>-1)

PRINT A$;“
INPUT “WHICH WAY ;A%
LET A$=A%(1 TO 1)

IF (A$="N" AND E(L.1)=
—1) OR (A$="5" AND
E(L,2)=—1) OR (A$="E"
iND ECL,3)=-1) OR
(AS="W" AND E(L.,4)=-1)
THEN PRINT “SORRY, YOU
ANT GO THAT WAY":
i0T0 620
IF (A$="N" AND E(L,1)=
4) 0OR (A$="5" AND
L(L,2)=@) OR (AS="E"
AND EC(L.3)=0) OR
(A$="W" AND E(L,4)=0)
THEN PRINT*YQU
ARE IN THE

WILDERNESS. YOUD BEST
=0 BACK": GOTO 618

IF A$=“F" THEN GOSUB
‘00

IF B$=“YES” THEN RETURN

IF A%$="L" THEN GOTO 610

625

430
435
4@

150

568

o780
680

'6

682 LET L=((A$S="N")*E(L,1))
+C(AS="S")*E(L,2))+
((AS="E)*ECL,3))+
CCAS="W)*ECL,4))

IF L=@ THEN PRINT “EH
2971 LET L=1

699 GOTO 61@

The other options are L which
raprints the current descriphon, and F
which allows vou to get back to the
main menu. Agaln, to make the
program as 1diot-procf as possible, 1t 13
a good idea to ask whether the player
would like to end or not with:

685

78@ INPUT “ARE YOU SURE ~;
2%

71@ RETURN

799 REM SAVE D$() E() SQ)

'I'ne firal subrocutines are generally
~oncerned with data handling, ang
allow the main game array to be saved
and loaded from tape or microdrive.

80@ INPUT “ENTER ADVENTURE
FTILE NAME ";F%

815 SAVE *“m”;1;F$4+5”
DATA S()

828 SAVE *“m”;1;F3+“D”
DATA D$SQ)

83@ SAVE *“m";1;F3+"P”
DATA EQ)

34@ RETURN

899 REM LOAD S() E() DSOQO)

090 INPUT “ENTER FILE
NAME “; F$

918 LOAD *“M’;1;F5+"5"
NATA S()

215 LOAD *“M";1;F3+D"
DATA D3 ()

928 LOAD *“M';1;F$+"P"
DATA EC)

7?30 RETURN

landlinc arrays

ince the juggler program alters the 198@ LET E(T,5)=S(T,S)

. arrav, to re-juggle the program the 1998 NEXT S
urections need to be saved 110@ NEXT T
:omewnere. The following two 111@ RETURN

ounnes load and save the E arrav in

s o o g s ou And that's it. You can probably think
L e).

of hundreds of improvemen:s to this,

99 REM STORE ORIGINAL and it has been written In such a way

YIRECTIONS as to allow these to be entered with

008 FOR T=1 TO M ease. 'I'ne art of using the program to

@18 FOR S=1 T0O 4 define a good adventure 1s to make the

@20 LET S(T,S)=E(T,S) locations interesting encugh sc tha!

@38 NEXT S thev stand up on their own. if you want

@48 NEXT T to provide monsters then simply enter

‘@50 RETURN a description such as

'B59 REM RETRIEVE ORIGINAL You stand 1n a dank dark closet.
)IRECTIONS from the corner comes a plercing

1060 FOR T=1 TO M shriek which dies away ntc a

'@7@ FOR S=1 TO 4 whimpering moan.

¥4
landhng arrays

checkﬁst e == ae——1

n this chapter you should have
earned;
| How the Spectrum can handle
nultinle arrays, and how you can
nake them relate to one ancther,

| To make sure your REM staternents
ome In the line before a
mpbroutine starts, so that they don't
nierfere with vour read:ing of the

Qrogralm.

1 How AND can be used to sort
hrouagh possible options in a
JTOgIan.

- 'The way to use random GOSUBs to
sring an element of chance into the
orogran.

_mject—

: Trv adding a sechicn that allows you
0 pick up peces of treasure to the

Srograrn.

'8
Handling arrays

'he Svectrum's graphics facilities are picture elements, or pixeis. The
airly easy to use — graphics are much Spectrum has 255 x 176 of these.

nore complicated on many home But there's one major disadvantage
nicros. On the Spectrum graphics to graphics on the Spectrum. You can
yasically fall into two categories — only set INK and PAPER colours down
ser-defined graphics, which are to individual character positions, not to
»ased on the 32X 22 character pixels, and, while you can get round
sosiions avallable on the Spectrum's this if you remernber 1t, you can make
creen, and the PLOT and DRAW a dreadful mess of the screen if vou get
1roup oI commands that allow you to YOUI SUITS Wrong. |

Srodauce graphics down to individual

RY THIS

et's sav you want to draw a grid on What you should have here isa
he Spectrum's screen, youd possibly program that draws coloured lines
15e something like this: vertically on the screen, then draws
‘0 CLS nonzonlal lines acrossthemina
58 FOR N=5 TO 253 STEP 8 different colour. But as the second
i@ INK 5: PLOT N.@: DRAMW Jroup of lines 15 gcing througa the
' 2 1?5' st character positions occupied by the
.0 !;lEr){T N first group of lines, it resets the INK
5@ FOR N=5 TO 173 STEP 8 coiour of those lires to the new INK
68 INK 6: PLOT @,N: DRAW calar
255 @ You'll get the same effect whatever
70 ﬁ EXT’ N screen handling commands you use
230 GO TO 20 30 even if you're using user-deined
13535
Jser-defined Graphics
15368
anace for data and machine code programs
RAMtop
Basic program area
13296
‘creen display
6384
{OM
<0

ntroduction to graphics

wrapnics vou'll ind that anything in
wnother INK colocur being drawn in that
20810 will change a graphic's colour
Jsually this 15 a problem, but there are
nstances when 1t can be useiul.
et's sav you design an invaders

vpe game, using PLOT and DEAW to
1eal with the lasers. If a white laser
seamt enters the invader's character
posiien it could be used to turn the
illen white before vou make it
1sappear or explods,

Displays defined

t's all verv well to be able to draw
olctures and fill them, and there’s no
Iredl problem saving them cn tape as
: 3CREENS, but you'll have noticed
10w lona 1t takes to reload a picture.
"'his 15 fine if vou want a cispiay on the
creen wnile a long game 13 loading,
sut if vou wanted to call up a series of
seres within a game itd be useless.

t's al 1his potnt that it becomes
andy to learn a little about how the
Jpectrum organises its memory. 'The
nagrarm here shows part of the
‘pectrum's memery map - for more
niormaton vou should refer to chapter
"4 of the Spectrum manual. The 48K
Soectrum has 65,536 memory locations
itogether, and you can think of these
38 boXes that can store numbers.

ach of these addresses can hold
ne pvie, which 15 a number from
}-255. Now think about the wav you
1efine user-defined araphics — each
ine of the araphic defined contains an
sant digit binary number from
0000003 t0 11111111 which, if you
:onvert it to decimal, 1s scmewnere
rom 0-253.

Now vou can store numbers of this

niraciction

oraer in all memory locations, not just
i1 lhe localions that deal with user-
defined graphics — chapter 25 ¢f the
sSpectrum manual shows you what 1s
actually stored in the memoaory area
from 23552 to 23733, and what you can
do by varying this.

Mbost ol the area above 23296
consists of the Basic program area,
which stretches up to RAMtop, beyond
which you find the user-defined
graphics. A Basic program wili not

nterfere with anvthing siored above
{tAMtop (literally, the fop of Random
ycoess Memorv), so17's possible to
store information above this point, and
srovided your Basic program doesn't
POKE any new numbers into this area
it's pessikle to call up machine code
routines from Basic

| RY THIS

As you're about tc find out, the
Spectran’s screen display 1s
organised i a bizarre and unnerving
fashion — don't worry too much about
this yet, as we'll show you how to get
round 1t snortly!

1@ FOR N=16384 T0 23295
2@ POKE N,INT(RND*256)
28 NEXT N

Azk vourself what we're doing here
—the memory locations lrom 16384 10
22528 control the screen display, or
display file. We're POKEIng a random
number from 0-255 into each of these
locations, and this 1s ulimately
producing a combination of dot pattern
and colour on each of the character
posiions on the screern. Depending on
your taste, the effect 1s either colourful
Or Jruesome!

to araphics

jut vou'll notice that the Spectrum iine at the bottom of the screen, and

iraws the screen oddly, in small you'll find your display remains 26 lines
ectons, and finally inks in the celour. deep rather than reverling to 24 when
'his 15 because of the shahtly odd way the report comes up. You can't actually
1 stores the screen information in produce a display on the twe repert
nemory. 1f you add 40 GO TO 40, lines from Basic,

ncidentally, you'll suppress the report

O

Storing your treasures

Tom what you've leamed so far it But think of the practicalities before
snould be clear how voucanstoreand you write 1t — this will be a routine
ecall a screen display. As the statusof you'll want 10 use repeatedly, and

he display is held as numbers from although it couid be done in Basic
}-265 in locations 16384-22528, allyou you'd then have to wnite it into all vour
1eed is a routine that reads these Basic programs. So what do you do?

wmpers, stores them elsewhere In
nemory, and calls them back when
Jou need them.

2
ntroduction to graphics

TRY THIS |

t's possible to decrease the =ize of the
3@SIC program area by moving
{ANtop down. This leaves vou more
apace 1oy machine code programs
vnich, with the qualifications we dealt
vitn above, do not interiere with Basic
DICOrams.

‘® CLEAR 58430

‘B FOR N=58431 TO 58450

@ READ B: POKE N.B:
NEXT N

“@ DATA 33.0,64,17,83,228,
’4,.6,33,83,228,17,8,
64,1,0,27,237,176,201

@ NEW

What vou've got here 18 a program
hat brinas RAMtop down to 58430 and
YOKEs a machine code nrogram into

the area above thig. [t then NEWs
isell removing the Basic prograr
hines, but leaving the machine code
above RAMtop.

You can now draw your screen as
you wish, and call the rcutine to store it
with LET screen=USE 58431. You call
e screen back with LET screen=
JOR 584239, The screen itself is stcred
, the 6912 addresses from 58431 on
This numbker 6912 comes frem the
calculation of elght lines per character
position X 32 columnsx 24 rows plus
J2% 24 for the attributes of each
character position.

Tou can use anv variable you liks
instead of ‘screen’, but bear in mind
that it should not be a variable used in
a Basic program you're running.

.; 3

niradoction io graphics

Jne of the more useful graphics
‘oulines that 1s not provided on the
spectrum 1s the ability to fiill shapes.
"here are a number of metheds of
101ng this, most of which are fairly slow
n Basic.

"he following routine 1s called the
irassfire fill'. From a specified point
nside the area to be fillad, the routine
-necks four adiacent points to see if
hev have been filled. If they're not,
hen they are filled and their locations
ire saved 1n two arravs (one for the X
ind one for the Y positions). This filling
‘ontinues until all the points inside the
irea have been filled. The boundary
an pe thouaght of as a trench dug
around the area which stops the
spread of the fire,

'me size of the area to be filled 15
imited by the size of the array used to
101d the adiacent points. This has the
nsadvantage that the size is limited to
ibout a 200x 2C0 point square. The
avantage is that not too much memory
s 1aken up and 1n the machine code
7ersion vou are sure of the routine
1opping eventually.

'rv this and note how slow 1t 1s:

‘@ LET A=Z20@:REM SIZE OF
POINT ARRAY

DIM XCA)}:DIM Y{(A)
CIRCLE 10@.100,30

LET X=1@5:LET Y=1@5
GOSUB 1@0@@:REM FILL
STOP

REM GRASSFIRE FILL
STARTING AT X,Y

LET P1=1:LET P2=2

LET X(1)=X:LET Y(1)=Y
FOR D=1 TO 4

LET T=—(D=1)+(D=3):
LET $=—(D=4)+(D=2)
LET PX=X(P1)+T: LET
PY=Y(P1)+S

0
20
40
S0
5@
199

10ed
1010
820
1930

1040

4

185@ IF POINT (PX,PY)=1
THEN G0TO 1100
PLOT PX,PY

LET X(P2)=PX:LET
Y (P2)=PY

LET P2=P2+1

IF P2>A THEN LET
NEXT D

LET P1=P1+1

IF P1>A THEN LET P1=1
IF P1<>P2 THEN GOTO
1820

1148 RETURN

Now enter the next routine and save
the machine code 1o tape, or
microarive, with:

SAVE “FILL” CODE 3@519,173

1860
1879

1880
1892
110@
1118
1120
1138

p2=1

oI

SAVE **M’;1;“FILL” CODE
58519,168

5 REM MACHINE CODE
VERSION OF GRASSFIRE
CLEAR 30000

LET ¢=0

FOR T=3@519 T0
30519+168

2@ READ A:POKE T,A

40 LET C=C+A

5@ NEXT T

6@ IF C<>15116 THEN
PRINT“CHECKSUM ERROR?
CHECK YOUR DATA
STATEMENTS .”

PRINTPOKE 38514 WITH X
LO CH

PRINTPOKE 3@515 WITH Y
Loc”

PRINT“EXECUTE WITH RAND
USR 38519~

DATA 62,0,50,48,119,62,
1,50,49,119

DATA 33,48,117,58,50,
119,119,33,48,118

18
15
20

/2
80
2@
108

118

ntroduction to araphics

120
‘38
140
50
160
‘70
180
100
20
210
20
3@
A
°5@
260

7@

DATA 58.51,119,119,62,4,

50,52,119,33

DATA 48.,117,58,48,119,
’5,22,0,25,78

DATA 33,48,118,25,70,
58,52,119,254 ,1

DATA 202,13@,119,254,
2,2082,126,119,254,3
DATA 202,122,119,13,
95,131,119,4,195,131

DATA 119,12,195,131,119,

5,12@,58,54,119

DATA 121,50,53,119,58,
54,119,71,58,53

DATA 119,79,205,206,34,
205,213 ,45,254,1

DATA 202,198,119,58,54,
119.71,58,53,119

DATA 79,205,229,34,33,
48,117,58,49,119

DATA 95,22,0,25,58,53,
119,119,33,48

DATA 118.25,58,54,119,
19.58,49,119,60

DATA 58,49,119,58,52,
119.61,50,52,119

DATA 194,84,119,58,48,
119.608,5@,48,119

DATA 71,58,49,119,184,
194,79,119,201,75

DATA 69,78,78

B

Watch how much faster machine code
1S 11 this program:

10 CLEAR 3@000

20 LOAD *“M’;1;“FILL” CODE
38519 :REM MICRODRIVE
LOAD, STRIP OFF **M';1;
FOR CASSETTE

CIRCLE 108,100,30

POKE 30514 ,100

POKE 3@515,100

6@ RANDOMIZE USR 38519

70 PRINT“NEAT EH?"

Memory location 30514 15 used to hold
the horizontal position of a peint inside
the shape, and 30515 holds the vertical
position. Calling the routine at 30519
rurs the machine code.

The CLEAR 30000, at the beginning
of the program, not only sets aside
some memory area for the machine
code, 1t rteserves memory for the
arrays.

The machine code routine works in
exactly the same way as the Basic
program but, as you can see, 18 quite a
lot faster.

You will be able to fill any shape
with this routine. The only thing to be
careful of i3 to make sure tha: the edge
of the area has no gaps 1n it as thig wall
ead to the fire spreading outside the
aquired area.

@
40
50

ntroduction to araphics

Ere = = &= &1 Sheck]j_st_

n this chapter you should have
earned:

| How the Spectrum crganises 11s
;creen. and how the picture on the
:creen 18 stored In memory.

1 A little about the Spectrum's
nemory map, and how to make
mace [or machine code by using

-LEAR.

.| How to take a picture from the
«creen, siore it above RAMiop, then

-all it back at will.

Project

| Write a drawing prograrn that
nciudes a Basic routine to read the
ittributes of every character
Josimen on the screen, and then
‘hange the colour - see ATTR 1n
he Spectrum manual for help.

6
niroduction to araphics

I vou've tned to draw detailed
sictures with vour Spectrum and iof
rouve also seen the title screens of
sorme ol the more spectacular
OmiInercial games around, you'll
sropably have asked yourself how
arogramimers ac it. These games
ipparently have highly detailed
pening screens where individual
JXels are marked in separate colours.
Now as vou're probably aware the

pectrurm 1s perlectly happy having
ndividual pixels set as INK and

'APER colours, but it has the limitation
hat vou can only set one INK and one

PAPER colour for each character
position - 5o how 12 1t done?

The short answer is that it 1sn't done
this way. It may seem disappointing
that vou can't alter thus, but the fact that
superb pictorial screens are possible
on the Spectrum shows that, with a
liitle ingenuity, you can get round the
problem.

Really it's all a matter of drawing
YOUI plctures so that your lines fit
easily into character positions - taks a
lock at the diagram here to see how 1t
should be done.

T s o e i o e e o o e e

-
\" d-cll-"""'-"—-—- il

l'-_-"lll-

—---—--u—----u-'

Right

B

\dvancad colour

You alreadv have a routine to ill in the
;napes you've drawn, but PLOTting
inad DRAWing on the Spectrum can be
airlv tedious, and 1t's easy to make
Tustakes. What vou really need isa
vav 1o DRAW shapes easily, one that
illows vou to rub out your mistakes.
Naturallv you'll want to use colour in
his routine, so vou'll also need a way to
‘heck when vou're geing out of a
‘naracter position's boundanes. [f you
an see this on the screen 1t'll stop you
naking tco many messy mistakes,

'@ LET INK=1: LET X=128:
LET Y=838

‘@ LET GRID=20@:
_ET REPORT=900:
LET PRINT=300:
LET STOP=500

5@ GOSUB GRID:REM SET UP
GRID

4@ GOSUB REPORT:REM SET
UP PRINTING IN REPORT
LINES

49 REM SET UP MODES

5@ IF INKEY$="1" THEN
INK=1: GOSUB PRINT

6@ IF INKEY3="Q" THEN
INK=3: GOSUB PRINT

7@ 1F INKEY$="P” THEN LET
INK=0

/5 GOSUB PRINT

80 IF INKEY$=“S” THEN
GOSUB STOP

?9 REM MOVE CURSOR

LET

LET

1890 IF INKEY$="A" THEN LET
X=X-1

1@ IF INKEY$=“D" THEN LET
X=X+1

120 IF INKEY$3="W’ THEN LET
Y=Y+1

130 IF INKEY$="X" THEN LET
Y=Y-1

%
N P

R E Tty

i

140 1IF INKEY3="Q” THEN LET
X=X—1:LET Y=Y+1

150 IF INKEY$=“E” THEN LET
X=X+1:LET Y=Y+1

160 IF INKEY$=“Z" THEN LET
X=X—-1:LET Y=Y-1

170 IF INKEY$=“C" THEN LET
X=X+1:LET Y=Y-1

180 GO TO 50

in this program key in INK as I, N and
%; and key in PRINT and STCOP in the
same way. They are variable names
101 key words.

4 - ,
Bi=0
(=]

What we have here iollows the usual
format. With the exception cf lines
100-170, which activate an eight-
cirection cursor cluster around the &5
kev, the program so far consists of
GOSUBs. You'll notice, however, that
there's a GOSUB for the menu (GOSUB
REPCRTY, and this 15 a new diversion.

There's a perfectly logical reason for
this. What we're producing here 1sa
araphics design prograrm, so you'll
want to use the whole of the screen for
drawing on. If you have your menu
nrnnted on the screen you'll find you
don't have the whele of it to draw on, sc
the tidiest way of dealing with the
nroblem is by using the report lines,
which aren't available from Basic, and

wdvanced colour

:tearly 1t would be foolish to tackle that
sart of the program first!

lold onto your hat though — we're
101ng 1o tackle that bit secornd.

jefore we do. take a look at the
nher subroutines we'll be writing. The
id routine 1s fairly plain sailling, What
we |l do 18 produce a chessboard
—attern that will show the boundaries
i1 the character positions all over the
;creern. INK and PAPER are cbvious
mough, showing you whether you're
rrawing a line or skipping, while
JTOP will awve yeu an elegant way of
Jringing the whole show to a halt,
wviile PRINT will mess around with
YOINT to sort out whether or not the
made 1S on the screen.

The menu

"ouve already seen how you can get
il image on the botlom two lines of the
wcreen by POKLEIng numbers inte the
elevant parts of the display file — this
Tiay seerm a ledious way lo do things,
aut bear in mind that some micros
nake vou use POKE to print on all the
‘CIEET.

Stitl, vou're probably wondering
now vou work out the numbers you
:nouid POKE into each location -
ounds tedious, doesn't 11”7 Fortunately
11sn't. It's all a matter of looking in the
OM for the dot patterns of what you
sant to PRINT, then POKEing this
umper into the part of screen
nemory aealing with the character
yostion you want to PRINT at.

"ou could simnlhify this further by
vorking out the necessary DATA

you'd need to POKE 1n, then just
POKEing it in witha FOR. . .NEXT
loop, but we're not going fo do this
right now, as the problem with DATA
statements is the fact that nobody but
the author understands them. And
besides that, the {cllowing subroutine,
apart from making the author's head
hur! while he was working it out,
allows you 1o prinl any characters you
like 1n the report lines. Just change
what's written in A$:

899 REM PRINT IN REPORT
t INES - REPORT=%20

000 DIM AS(61)

21@ LET A$="MODE = DRAW
CURSOR = 128,88 PRESS
D FOR DRAW, § FOR
SKIP”

920 FOR N=1 TO &1

930 LET B=CODE AS(N)

948 LET C=1536@+B%8

250 LET D=2@671+N

960 FOR P=@ TO 7

7@ POKE D+(256%P) ,PEEK
{C+P)

980 NEXT P:NEXT N

79@ RETURN

If you want ¢ see this program in
action add a PAUSE 0 line a1 885 - this
wi1ll freeze the screen until vou pressa
key. Now exactly what are we doing
here? Lines 900 and 910 are [airly
obvious, dunensioning a 681 character
string array anc defining it. Make sure
the string you type 1n has €1
characters, by the way, otherwise
you'll get an error message.

Line 920 beginsa FOR. . NEXT loce
which first obtains the CODE of the
character youre on then defines C as
15360 plus e1ght times that CODE. The
address in memory where the
Spectrum’s character set starts 15
15360, and as each character has eight

idvanced colowr

anes of dot patterns, taking up eight
addresses, the start address of any

1ven character 1s eight times 1fs
ZODE plus 153€0.

Now we know where the character
starts we have to find out where to put
ton the screen. Address 20672 is the
sadress of the fiirst row of pixels for the
[rst character in hine 22 of the screen,
ind. as ior each character position the
o1ant addresses go up in stages of 256,
rou have to POKE your number mnto D,

‘nen into D+25€, then D+ 512 and so

on. This 1s what the first part of line 970
does.

Bur just to keep you on your toes the
ROM character set is stored in
consecutive addresses, so the secong
part of 870 PEEKs these. You then
move onto the nex: character, and the
next character position by adding L to
D, as the first address of the next
characler position 1s 1 higher than last.
You might be lorgiven for asking what
maniac devised the screen memory!

3l

Sodvanced colour

Display memory map

LINE START OF LINE END OF LINE
2 16384] | 16415 h
1 16416 \ t 16447
2 16448 16479
3 16480 - 16511
4 16512 / | | 16543
‘ 16544 16575
5 16576 | 16607
7 16608 [16639
8 18432 [18463
9 18464 | 18495

10 18496 \ |\ 18527

11 18528 } \ 18559

12 18560 | 18591

13 18592 [18623

1 18624 [18655

15 18656 | 18687

16 20430 }“F 20511

17 28512 || 20543

18 20544 \ | 20575

19 20576) 20607

20 20608 | | 20639

21 20640 | 20671

22 20672 20703

23 20704 i‘ 20735

, o8

You'll notice that there is a system except in the case of the jump
oI sorts to the screen memorv. The between lines 15 and 16, where you
start of each line is 32 addresses have to add 1824.
above the start of the previous line,

62
\dvanced colour

Thetnnﬁbr

""he location of the cursor is probably
he most impertant part of the
orogram, pecause if you can't jucge
yren voure leaving a given character
oosition you'll wind up with the most
innoiv mess when you come to fill your
rrawings in. Normally you'd think of a
Ursor as a tlashing square or as a
'10ss snape, but for this specialised
surpose you really need something
hat shows the boundaries of the
quare youre on.

50 vou could organise it as a dot with
i line drawn around the characier
J0sition it's currently in. But you'd have
o move this box before the cursor
ame into contact with 1t or it would
Dol your drawing, and this would be
nute fiddly. For the same reason
anvihing invelving INK colour would
oe difficult to manaae as two rival INKs
n ‘he same character pcsiticn will
‘ause chaos.

AMhich leads us on to PAPER. If we
'OKE cvan PAPER altnibutes inlo
wery second character position on the
creen, we ll wind up with a blue and

white chess board pattern. You can
draw over this as much as you like,
then, when you're finished, toggle it off
and uge the fill routine you collected
earhier.

199 REM SET UP GRID -
GR1D=200

20@ FOR N=22528 TO 23168
STEP 64

21@ FOR P=@ TO 31 STEP 2

228 POKE N+P,48: POKE
N+P+33,48

230 NEXT P:NEXT N

240 RETURN

Here N 1s again dealing with
memory lccations, this time the area
used to store the atinibutes of a given
character position. BEach of these
memory locations stores a specific
number for a combination of INK,
PAPER, BRIGHT and FLASH, so1t's
st a matter of wning a routine to
POKE them into the right positions.

The table here shows the relevant
addresses for each position:

Attribute screen memory map
LINE START OF LINE END OF LINE
0 22528 | [22559
1 22560 | | 22591
2 22592 | 22623
3 22624 | 22655
4 22656 / [22687
5 22688 [22719
5 22720 \ \ | | 22751
7 22752 \\ ([22783

a3

wlvanced colour

8 22784 ; 22815
2 22816 \ | 22847
0 22848 \ | 22879
11 22880 . L | 22911
22912 22943
'3 22944 | 22975
14 22976 | [23007
15 23008 \ 23039
16 23040 | 23071
17 23072 1 [23103
18 23104 [| 23135
19 23136 [| [23167
20 23168 \ | [23199
21 23200 \ 23231
22 23232 | 23263
23 23264 /]| 23295
“"he only thing leftto do is to 430 LET B=CODE A%(N)
sroduce a method of aliering the 440 LET C=15360+B*8
node indicator 1 the report line. It 450 LET D=20678+N
vould pe possible ¢ incorporate it 460 FOR P=@ TO 7
n our eariier routine for printing in 470 POKE D+(256*P) ,PEEK
hese lines, but not doing this {C+P)
iwoesn't add much to the program: 488 NEXT P:NEXT N
99 REM PRINT 90 RETURN
@@ PLOT INK INK:X,Y We could &lso tidy up the stop
‘99 REM CHANGE WINDOW routine.
L3="DRAW’ 'S i
410 IF INK=0® THEN LET :?g ;gEENN252228 T TRa1E2
— ' = s
AS="SKI1P 528 NEXT N:STOP

20 FOR N=1 TO 4

it
\dvanced coloar

5 o
b g SRS o e S5 ..'.k-r e PN e TR
& I- T :
M o 3 £ i I "

nce vouve got to grips with the You shoula also be able to put the
pectrum's screen memory, producing drawing program logelher with the {ill
:olour 1s relativelv easy. Previded program to produce quite a

rou ve got your INK colours in the right convincing graphics program. Of
‘naracter positions, 1's justamatterof course there are plenty of things 1t
iltering the attnbutes of the character can't do - in particular, itd make hie a
positions you want to colour. The table 1ot easier if you could magmfy the

nelow shows vou what you should | character position the cursor was cn so
*OKE in for each combination of vou could see individual pixels, but
Tects. this could be added.

*aper Ink

lack Blue Red Magenta Green Cyan Yellow While
3lack 0 1 2 3 4 5 6 i

ilue g 10 11 12 13 14 15
Red 16 17 18 19 20 21 22 o
Magenta 24 a9 26 ol a8 29 30 3l
sreen 3 33 34 35 36 37 38 39
yan 40 4] 42 43 44 45 46 47
‘ellow 48 43 50 51 ¥ 53 54 il
Nhite 56 Bl 58 59 6l 61 62 63

f vou want a character BRIGHT then you add 64 1o the alliibules above, and
'LASH 1s obtained by acding a further .28

i5
vdvanced colour

Checklist

n this chapter you snould have
earned,

| How to avoid making a mess of the
«creen through clashes of DRAW
ina INK and PAPER.

| How to work out where to POKE in
'CYEEn IMemory 1o get an image on
he screen, and where else tc
*OKE to colour it

| How to read dol patterns from
1OM.

——] e ———

| Write a new subroutine to change
he attributes for the whole screen
nanv way the user wishes,

| Write a tvpewriter roufine that
ares what vou xev in and prints it
n the report lines.

6

vdvanced colour

Al Dl Ll |é&i (R

The system variables are what the
‘omputer uses to do 1ts house keeping.
wuch things as keeping track of the
wrrent Basic program line, and the
1ate of the kevboard are all stored in
he sysiem variables memory between
25002 and 23732, All of these variables
e available for the user to read but
101 all of them are writeable, since
10Ing 50 can cause the system to
1asn. Generally the crash is caused

bv not knowing exactly what the
location is used for and POKEIng
sormething mto 1t at the wrong time.

Scme of the variables can be very
useful and allow the Spectrum to be
taillored tc suit a particular need, such
as completely redefining the character
set oY Writing on the status lines,

Tc avold unexpected results, turn
off. and then on, your Spectrum
between using the following roulines.

8

1€ system variabes

The following list gives some detalls
i the more useful vanables and some
adeas of what they can be used for.

Sefore starting on these, there are a
oupte of useful functions you can have
it vour finger tips. 'The first allows a
wo byvte address to be PEEKed from
nemcry. Thisis:

DEF FN A(X)=PEEK X+256*PEEK
(X+1)

ind, as you will see later, it comes in
rery nandy when explonng pointers
hat point to pointers.

"o split a number (N) into 11s high
ina low components, use the following
nethod

AI=INT(N/256)
LO=N—256*INT(N/256)

"his will also be used quite a lct
ater on since mest of the pointers in
he system varlables are held as two
yvtes, allcwing addresses and line
wmpers between 0 and 65535 o he
sointed 1. Some of the system
ranables are either so transitory or “ust
aiain useless to us that they are not
vorth bothering with for Basic
oulines. Some of the ones not covered
nav pe of use to machine code
Jrogrammers but since this is a little
ayevond the scope of this book, you
snould look elsewhere for the details.

RS R R s

The locations from 23552 to 23559 are
1sed bv the system for scanning the
<evboard. They are sphit into two sets
i1 four bytes. The second set1s used to
-ontrol the detection of the first key
oressea. If another key 1s held down,
ind the first then released, the first

39

.our locations take over but have the
same funciions. Taking the top set

43956 containg 255 1f no key is being
oressed, otherwise it holds the ASCII
code of the upper case letter of the
key.

23557 holds the current kev repeat
speed counter, normaily 5 and copied
from 23562.

23558 holds the delay number
netween the press of the key and the
repeat time. This value is obtained
Tom 23561 and 1s normally 33. [t counts
down to 0 before the key repeats.

23959 contains the lower case ASCII
ode of the kev currently being
oressed.

13560 LASTK

Thig locatior: s used by the keyboard
scan routine to store the ASCII value of
the last key that was pressed. [t could
be PEEKed instead of using INKEY$,
obviating the need to use CODE.

"he system vanables

23561

REPDEL

"he number that specifies the delay
sefore the kevs repeat 1s held here.
iny number between 0 and 255 can
»e POKEd into this location -- 0 turns
he repeat off completely | gives
nrivally no delay and the keys start
‘epeanng straight away. while 255
slows the whole process down.

23562 REPPLR

'he repeat speed of the keys 1s stored
1ere, and again can be changed to be
iny vaiue between 0 and 255. 0 does
not furn the repeat off, it merely makes
he countdown wrap-around, i1e the
ounter counts U, 255, 254 etc— |
peeds things up a lot,

23563 A DEFADD

"hese two locations hold the address
o the user-defined function currently

being evaluated. For example;

1@ FOR T=FN X(@) 70 fN
X(@)+50

20 PRINT T;# *;

50 PRINT PEEK(T);” *;

40 IF PEEK(T)>=31 THEN
PRINT CHRE(PEEK(T)):

GOTO 68
5@ PRINT
6@ NEXT T

7@ DEF FN X(R)=PEEK
23563+256*%PEEK 23564

Running this program gives you an
dea of how functions are stored in
nermory. Nete that if no functions are
Jeing evaluated, then DEFADD
contains 0.

23566 TVDATA

This location 1s sumilar to K DATA wath
the excepton that the second byte
holds the horizontal character position
of the last TAB or AT used.

23568 -23605 STRMS

'The addresses of the various channels
attached to the streams are held in
these locations. To start with, the first
14 bytes hold the data for streams —3
to 3. As extra sireams aere added, the
information is inserted up to a total

of 19.

23606/7 CHARS

The address of the ROM characier set
18 neld in these two locathons. 'The

0

"he system vanables

iddress is 256 less than the first
srintable character, which may seem
ad at first sight. If vou consider that
he first 31 characters are unprintable,
.e. thev are control codes, then 1t
nakes sense, since the first printable
‘naracter 15 space with a code of 32
znd 32*8=256. 'l'o find the address of a
‘haracter definition. the processor
izeq only multiply the code by 8 and
:ad this to CHARS
v useful facility of this location 1s that

1allows the whole character set to be
‘esnaped. The following program
‘elocates the character set into RAM
ind then redelines part of ‘A’ (ASCII 65).

'@ CLEAR 39999

28 PRINT “AAAAA”

5@ PRINT PEEK(236064).
PEEK(23607)

LET CH=PEEK(23686)+
256*PEEK(23607)

LET CH=CH+256

FOR T=@ TO 127+%8

POKE 40000+T ,PEEK
(15616+T3

NEXT T

POKE 236@7 ,INT{(40000-
2563} 7/256)

POKE 236086 ,40000—256+
'NT(40000/256)

40

5@
50
e

50
70

100

118
20
130

I'c restore the original pointer,
POKE 23606,0 and POKE 23607,60

POKE 39744+-(8%635) ,255
PRINT “AAAAA”

23608 RASP

"he value held here specifies the
ength of the warning buzz.

REM REDEFINE PART OF ‘A

‘1

23609 PIP

This one defines the length of the
xeyboard chick which can be POKEd
aith a larger value tc maxke the pipa
ittle more audible.

23610 ERR NR

One less than the report code 1s held
nere and if a number 1s POKEd into the
iocation, 1: causes the appropriale
error o be generated.

23611 FLAGS

"his location contams a number of
lags used by the Spectrum for vanous
peranons. The eight bits are set out as
follows:;

iit 1 1s set (1) when s'ream three 15
to be used for output from a print
command. It 18 zere i stream 2 1s being
1sed (3 18 normally the printer and 2 15
he main screen). Bit 2 1s set when

"he system varlables

orinting in L' mode, and zero for 'K
mnode. Bit 313 set when inputtingin 'L
node, and zero when in 'K mode.

it 513 set if a new key has been
Jressed since it was last set to zero.

31t 6 18 used to indicate if the current
Xpression 1s a number (0) or string (1).

31t 7 Is zero when Basic 18 checkinag
» line for syntax on entry and sel lo one
nvhen a program is being run.

Viost of the flags are of httle use for
'OKEina but can be usefu! status
ndicators for PFEEKina.

23612 TVFLAG

"his set of ilags 1s used to indicate the
status of the screen.
i1t 0 1s set if the lower part of the
screen i1s ceindg used, zero I the main
:Creen I1s being handled.
it 3 signals that the current mode
K', 'l etc) may have changed and
1eeas rechecking.
it 415 set if an automatic listing is
selng printed. Otherwise it 1s zero.
21t 5 1s used to signal that the lower
sart of the screen needs to ke cleared.

2

13613/4 ERR 5SP

"he name qven to this location is
siiahtly wrong as it 1s actually used to
point to the line where a GOSUB was
:alled from. For instance, try:

1@ PRINT FN A(FN A
(23613)+2)
GOSUB 1008@

STOP

DEF FN A{X)=PEEK X+
256*PEEK(X+1)
PRINT FN A(FN A
(23613) +2)
GOSUB 2009
RETURN

PRINT FN A(FN A
(23613)+2)

201@ RETURN

The function FN A 15 used to gel the
b bit address from the location
specified as its argument. Thus, if 11 s
nsed twice, 1t gets the number pomted
tc by the address of the firs: execution.
The +2 copes with the fact that the
ZOSUB line numbers are kepton a
ctack and the stack pomnter has been
rcremented by the time we are in the
subroutine. The program given above
:ould usefullv be implemented ina
program that has problems with its
subroutines since 1t tells you where
cach GOSUB comes from.

2@
@
10

1000

310
1820
2000

23617 MODE

The contents of this location define the
sursor and input mode to be used. For
nstance, Iy

1@ INPUT"Enter a number @-
255 ;A
28 POKE 23617,A

"he sysiem variables

@ GOTO 1@

ind notice how the different cursors
ippear 1or different nurnbers. Try
:nienng numbpers like 10 and 255 and
10te how the cursor changes to 'C or
. This can be useful when incutting
1ata that need to be put in a certain
mode, 1e caps-lock or graphics.

This program can only be EUN
mce.

23618/9 NEWPPC
23620 NSPPC :

These three can be taken together as use Irom within Basic, but they could

hev can be used to define the rext be used from an interrupt-driven
Ine number and statement to be machine code routine to provide a
¥eculed by Basic. For instance, try: line/statemen: trace facility.

1@ PRINT “LINE 1@
‘0 POKE 23618,100@-256*INT

(1800/256) :POKE 23619, R e ho RS T T T
INT(1000/256) : 23624 BORDCR
-0 ;g f rET”EL?)I?EEE ﬁ‘f This conlains the border colour
4@ STOP ;Ilumplled by eight. BllaﬁandT[Eﬁﬁ
180@ PRINT “LINE 10@@ sT17: and 128)can be used to make the
JRINT“LINE 108@ ST?2”- iower screen flash and bnght _
SRINT“LINE 108@ ST3” TfOKEmg values into this location will
1910 GOTO 30 show what happens,

This program will jump directly to
e 1000 statement 3, and the basic

dea can be used in a number of ways, -~ 23625/6 E PPC
oven irom machine code. to jump o
lirectly into a certain Basic line. When the LIST command 1s used, o

in automatc listing 1s forced, these
wocations hold the number of the line
.hat contains the editing cursor.
POKEIg these twao locations with
another line number will change it A
possible use for this 1s to come out cof a
orograrn with the cursor in a certain
LOSILOL.

Alternatively, the cursor can be

vaain, these three can be taken
ogether since they point directly to
he statement currentlv being
sxecuted. Theyv are not really of nmuch

3
The systermn variables

23635/6 PRQOG

"ne address of the start of the Basic
srogram s stored here. Tms cannot
wrmaily be altered, as on some
TICYOS. S0 there 1s no possibility of
1AvVINGg twWo prodrams In memaory at one
1me without altering a lot meore of the
oonters,

23637/8 NXTLN

"he address of the next Basic line
mper o be executed is stored 1n [his
.ocation. Again there i1s not r=ally
much use to which this can be put,
Hesides perhaps allowing programs to
iter themselves Iy this and see what

emoved by POKEIng both of these
ccations with zero. useful for Listings.

Tabpens:
'3627/8 VARS 1@ POKE FN A(23637)+6,65
2@ REM “Hello there”
"he pointer to the start of the varigble 18@ DEF FN A(X)=PEEK
1orage i$ held in these locations, This X+256 *PEEK(X+1)

somntey may be of some use to users
Ao want to access the Basic vanable
norage ares lrom machine code 1@ POKE FN A(23637)+4,245
Jrograms, allowing data to be pressed
sack and forth without resorting to
'EEKs and POKEs. The lavout of the
rarlable area 1s detailaed in the
Jbectrum user guide.

i you row alter line 10 to:

and re-run the program you'll see how
orograms can be made to alter
hemselves. A clue to what happens 1s
~at 245 15 a loken.

23629/30 DEST 23639/40 DATADD

i1he address held here 1sused to keep
rack of the last data itern used. If there
8 No mere data after this statement, an
Cut of data error’ occurs.

"hese nold the address of the first
etter of the name of the vanable
urrentv in use by Basic. If thisisa
1w variable thev peint to the location
mmediately befcre E LINE, where the
tart of the new vanable s to be

Tored.

‘4
"he sys:iem variables

23641/2 E LINE

"hese two locations hold the address

i the star: of the editing area and point
o the beainning of the line currently
seing edited there.

23659 DF SZ

'his location contains the number of
mes, including the blank cne, 1in the
ower screen (status line). This value 1s
ormally 2 but can be altered to C to
1ve IWe more lines on the main
creen The drawback 1s that 1t must
ve changed back to 2 befcre the end
oI & program, otherwise the machine
mill crash.

Fhe number of ines specified here
an also be mereased causing the
croll Y messade to occur further up
he screen. The proklem here 1s that if
’Ou answer yes, you get the ‘out of
creen error. So the only real use 1sto
ncrease the number of screen lines to
4 like this:

'@ LET AS=INKEY$

°@ IF A$=" " THEN GOTO 100

30 POKE 23659.0:REM SEE
SCR CT

40 PRINTYAA";

50 GOTO 10

0@ POKE 23659,¢

Note that If vou break while the bottom
wo lines are full. the Spectrum will
rasn Also dcn't trv and use PRINT AT
5 this also causes a crash.

'3

23660/1

S TP

These two locations hold the hine
number where the auto list startz and
POKEing these with a different
number 1s directly equivalent o using
LIST line number,

23662/3 OLDPPC

"When the command CONTINUE 1s
Jsed, this 1s where the line number to
restar! from is kept, so running:

1@ PRINT AT ©,@;“LINE @"
2@ STOP
1@@ PRINT “CONTINUE 10@”

then POKEing 43662 with 100, an_d
23663 with zero, then entering CON'T
gives the sxpected result,

The systern varlaples

™is location can be used 1n the same
vay as OLDPPC but 1t pomnts to the
datement number withun a line.

"he seed used to generate the random
numbper, 1s stored here. POKEing
nunbers inte this location has exactly
he same effect as RANDOMIZE s¢.

‘@ RANDOMIZE 1

/@ PRINT RND

5@ POKE 2367@,1:POKE
23671,0

4@ PRINT RND

oroduces the same pseudo random
umber.

One of the things that the Spectrum
acks iz a real me clock. or does 1t?

6

“"RAMES can be used to obtain fairly
iccurate time to an accuracy of ssth of
1 3econd. Try

'@ LET T=PEEK 23672+
(256%PEEK 23673)+
(65536*%PEEK 23674)

°@ PRINT AT @,@;INTCCT/
SB)—-6B*xINT((T/5@)/6@))

i@ GOTO 1@

a get seconds. Smce the number of
rames sent to the screen is counted m
! bytes, the max number of ssthsof a

second in 24 hours 1s;

6777216. and the number of sgths of a
second In 24 hours is:

1320000, This means that there 1s
amuple room for a 24 hour clock. Sumply
work out the correct numkbkers and
POKE them into FRAMES. A
subroutine similar to the seconds
demo above will then provide the
arIrern ume.

Aswith the character set pointer
CHARS, UDG pomts to the user
defined graphics There are a number
of uses to which this pcinter can be
put. First it can be altered to point
nigher up In memory, leaving some
space for a machine code routine.
Alternatively, it could be used to point
‘0 a number of different character sets
defined in RAM. This 15 a hittle easier
than altenng the standard characier
ser, as USR "A" always returns the
aadress of the UDG set pointed to by
23675/8, so the same routines can be
used to define all the different UDG
els. Switching between them is
simply a matter of changing this
peointer.

'he system variables

23677/8 COORDS

'he horizontal and vertical coordinates
of the last point PLOTted are held

were, This also applies to the DRAW
ommand and so these locations can
2e used o provide an ahsolute move
ommand that allows the PLOT
oasition to be relocated without having
o resort to INVERSE. Try

@ PLCT 0,0

’@ DRAW 10,10
5@ POKE 23677,50
4@ POKE 23678,60
5@ DRAW 10,10

23684 DF CC

These locations hold the address of the
srint position 1n the display file and
-ould be used to provide an

ilternative print routine.

Of more use are locations 23686/7 as
hev riormally give the address of the
tart of the lower screen. This address
an be used along with a few cthers
11scussed eatlier to provide a routine
'or printing messages on the lower
wreern, ‘This program does just this
181ng the pomter to CHARS to get the
niormaticn about the character
napes.
‘2
‘0
50
40
50

BORDER @
DIM A3(31)
LET LS=FN
INPUT AS
FOR T=1 TO LEN (A%)

A(23686)

17

6@
@

fOR S=@ 10O 7

POKE LS—1+(5*256)+T,
PEEK((CODE (A$(T TO
1)))*8+FN A(236@6)+S)

80 NEXT S
9@ NEXT T
18@ PRINT“USE BREAK TO GET
QUT QF THE PROGRAM’
1@ GOTO 100
10@0@ DEF FN A(X)=PEEK
A+256*PEEK(X+13

Note that exactly the same routine
can pe used to print on the main
screen simply by setting LS to 16384 1n
line 30.

The screen print position 1s held here.
Oddly encugh 17 takes its origin as the
hottom left hand corner of the screen
so the normal PRINT AT 0,0;"a" wall
cause these twe locations to hold 33
and 22 and not 0.0. They can be
POXEd to provide a kind of PRINT AT
but this 15 likely to cause a crash.

"he system variables

23692 SCR CT

This location 1s used bv the system to
:ontrol the scrolling of the screen and
vnen it reaches 1 the 'Scroll ?
nessage s displayed. This can be
wowaed by POKEInga Oor 2 into it
cefore each print statement. This can
be used to make the routine used to
ncrease the screen size (see DF 52 a
ittle safer; simply add 35 POKE
13692.0 to get rid of the temptation to
sreak Into the program.

A\S vou can see, quite a few of the
system varlables can be of some use
ina. although there are imes when
are should be taken, don't be afraid to
Xperument a little as there 1s always
he option of pulling the plug when the
Spectrum crashes. Tallcring of the
‘naracter set and printing at unusual
olaces on the screen can come In very
1zenul in vour own programs and, 1f you
wWer pecome a machine code freak,
roull probably iind some of the meore
nscure system variables provide the
“hance to do something really shck,
vhich after all, 15 the joy of
Jrograrmming.

8

"he system vanables

Iser-defined graphics

o to a point it's very easy to
maerstand how the Speclrum's user-
iefined graphics operate, asif's
wmply a question of assigning eight
sinary numbers to an 8x 8 gnid matrix
hat makes up one user-defined
‘naracter. fer example:

‘@ POKE USR “A"+@, BIN

8101810

‘@ POKE USR “A"+1, BIN
"18121@1

5@ POKE USR “A"+2, BIN
8191019

@ POKE USR “A"+3, BIN
71012121

5@ POKE USR “A"+4,. BIN
101010102 :

6@ POKE USR “A"+5, BIN
1016121

‘@ POKE USR “A"+6, BIN
9181019

3@ POKE USR “A"+7, BIN
11810181

7@ PRINT “A”: REM UDG

'he elaht hines above will POKE a
iichwork pattern into the Spectrum's
rapnic ‘A’ and you can see the sort of

30

pattern that will develop from the 1s
and 0s in the binary numbers. Clearly
as you're specifying BIN before the
number - try it without and the
apectrum will assume 1t's decimal, and
give you an mteger out of range’
message — you can £ase the typing
proplems by converting the number 1o
decimal. You can also POKE the
numpers In from DATA statements,
using a FOR. . .NEXT loop:

1@ FOR N=@ TO 7: READ B:
POKE USR “A"+N,B: NEXT N

2@ ODATA 179,85,17@,85,178,
85,178 ,85

wNow if you're sharp eved you'll have
neoticed something significant about
the decimal numbers that 1sn't
immediately obvious from the binary
version, and thal 1s that every second
aumiber 1s half the one belfore. You'll
see why by locking at the binary
version, where they've had the zerc on
the end lopped off. The reason for this
s that dividing a binary nuriber by
two 1s just Lke dividing a decimal
number by ten.

This becomes even clearer if you try
this:

1@ FOR N=0 TO 7: POKE USR
“A"+N,INT(255/(2"N)):
NEXT N

By repeatedly dividing by two and
INTing 1t yeu're producing the series
of numbers 255,127,63,31,15,7,3, 1.
forming a sort of wedge shape.

You should now be beainning to see
iow arnithimetical operations can be
1sed with UDGs. Performing
:alculations on the numbers the UDG

locations contain can be important for
animathon — we'll explore that later, but
Can you guess how it's done now?

Iser-dafined graphics

2@ FOR I=0 TO 7

3@ POKE 65368+I,INT
(RND*256)

4@ NEXT I

5@ PRINT AT 10.16;"A":
REM UDG

4@ NEXT N

Graphics and memory

he difficulty many Spectrum users
ace when thevre dealing with user-
iefined graphics 1s cne of coming to
erms with what's actually going on
vnen you program them. In this sense
IDGs are their own worst enemy,
secause thev're so easy ¢ program
hat vou're hable to miss the
poorunity tc learn more about how
he Spectrum's memory operales.

Nhat vou should understand 1s that
he Spectrum's UDG area of memcery 18
-eally just another stack of memory
ocatlons. For example:

PRINT USR “A”

"his crints the location of the first of
he eight addreszses that make up the
Sbectrum's graphic A, 65368, 5o the
xpressien USR A 1s ust a way of
ivo1ading having to remember a
SpecHIC memaory location.

Ty this:

'@ FOR N=1 TO 1@

65368
65363
nS3i0
69371
W3ia
#3373
18374
BB3T5

(ISR A

This hittle program redefines graphic
A by POKEing random numkers trito it
and cycles througn this ten imes — try
going inlo graphics and typing A to
confirm: that 65368 15 just the same as
USK ‘A’ A short routine like this 1
easily incerporated in & garne, but
there are more systematic ways of
handling UDGs

S LET P=167

1@ FOR N=0 TO 167

280 POKE USR “A"+N,PEEK
(1588@+P)

7@ LET P=P—1

40 NEXT N

This 15 simply a loop that counts
through N and P, so that when N is 0
Pis 167 downto N being 167 and P
being 0. In line 20 we're POKEing into
the 168 locaticns (21 user-defined
graphics times 8 locations). Now the
first address of lhe Spectrum's
character A in ROM 1s 15880, and a=
‘hese are organised on exactly the

Iser-defined graphics

ame basis as the user-defined
rapnics character set, 15880 plus 167
nves you the last address of the
‘naracter U. So we're PEEKIng
sackwards from there. and POKEing
orward nto the UDG sel, leaving us
vith an inverted and backward
naracter set!

fwe'd performed this operation on
he UDG set. incidentally, we'd have
ound the first half of the UDG

naracter sel was a mirrol imaae of the

s;econd half.
jut with what we have above vou

ion't actually get a complete character

sel. lust to show there's very httle real

difference between UDG memory and
other areas of memory, try this one;

1@ CLEAR 59999

20 FOR N=@ TO 1024

3@ POKE 6@@80+N,PEEK
(15360+N)

48 NEXT N

5@ POKE 236@7,234

50 POKE 236086,96

Run this and, provided you ve typed it
i right, yeu'll see no difference a: all.
These of you who carn see a real and
unpleasant difference (your character
set 18 corrupted) should type:

Iser-defined araphics

"OKE 23606.0:POKE 23607 ,60

.na check vour hsting again. What
~vere doing here 18 reserving space
ipove 59999 for a complete copy of the
“ooctrum's character set. Line 30
:opies the dot patterns from 15360 on
nto the locations from 60000 on.

Now the important ines are 50 and
i, which alter the address of the
wstem varnable CEARS, which keeps
rack of where the Spectrum looks to
nd its character set. As the addross of
he character set is clearlv going to be
arder ‘han 4259, the largest number
70U Can nave in one location, it clearly
1eeds Two locatlons. You calculate
HARS like this;

PRINT PEEK 236@6+256*PEEK
236@7

Norking backwards from this, as we
vant 1o pownt CHARS at 60000 (we
ould put it anywhere else, within
eason) we divide 6C000 by 255, giving
15 234.375. so the number in 23607

i3

must be 234. Then multhiply 234 by 256,
ake that away from 60000 and 1t gives
1s 96, which is the number to go Into
asB0e.,

Now to show you one way to use this,
add these lincs:

4@ FOR N=96 TO 120
/@ POKE 23686 N

8@ LIST

9@ NEXT N

10@¢ POKE 23606,%6

‘When we saud the character set was
corruoied, that wasn't strictly true. The
unes we've added here are sunply
shifting the pointer to the character set
Jne address at a time, so with =2ach
successive pass through the secord
ioop the character set 15 shifting
upwards, so that eventually it becomes
otally umintelagikle.

You could use this as a security
method, but you can make astings just
as unreadable by POKLing odd
nambers into 23606 and 43607 without
mnoving the character se: atsll.

Iscr defired araphics

g

Ising the method above you can see it
vould be quite easy to get the
sSpectrum o use an alternative
‘haracter set, but you'd still have to sit
1own with araph paper and draw up
rour cnaracter set. Or would you?

n fact, you wouldn't. Unless you're
alking about Chinese or Arabic,

:haracter sets usually have quite a lot

Adding character

In commeon - logically enough,
because iIf they didn’t you wouildn't be
able to read them. So if you think abeout
whal you want to do 1U's often possible
to perform a systematic operation on
the character set that will resultin a
new lypeface al the cost of very litlle
typing.

RY THIS

onsicer the problem of producing an
talic face. This 1s essentially a
vpeface that slopes, so by moving the
oD rows of the character's dot pattern
0 one side, and the bottom rows to the
ither, you could produce a fair
amulation of italics:

2@ CLEAR 64529
5@ FOR T=32 T0
4@ FOR S=0 T0 8
5@ LET A=PEEK(15360+
(T*8)+S)

IF S>=@ AND S<4 THEN
LET A=A/Z

IF S=6 OR S=7 THEN
LET A=Ax%/

LET A=A—((A>255)%256)
POKE 64273+(T*8)+S,A
NEXT 5

NEXT T

GOSUB 12@@

PRINT “THIS IS WHAT “;
GOSUB 200@

PRINT “ITALICS ":GOSUB
1@00: PRINT “LOCK
LIKE. ": GOSUB Z200@:
PRINT “OK!"

FOR T=@ T0 5

127

60
/@

3@

20
100
11@
120
140
150
16@

170

i4

180 GOSUB 100@:PRINT
“ABCDEFGHLJKLM"
GOSUB 20080:
PRINT"ABCDEFGHIJKLM’
NEXT T

STOP

POKE 236086,8:
23607 ,60
RETURN

POKE 23686 ,64273—256%
INT(64273/256)

POKE 23687 ,INT(64273/
256)

RETURN

19@

200
210
1000 POKE
1810
2000

201@

202@

It should be fairly easy for you {o work
out what's going on here. Address
15360 in line S0 is the start of the
character set, but the part we're really
interested in begins a little further on. |
can't visualise what an italic space
looks like either, but we'll let that pass!

Line 60 uses S to check to see if
we're on the top four pixel lines of the
dol patlern, and i so shifts them one
pixel to the right by dividing the
number by two. The fifth and sixth
lines are left as thev are, and the
seventh and exghth lines are multiphed
av two, shifting them one fo the left,

Iser-defined araphics

ane 80 checks to see if the resulting what the set locks like, and the

wrnper 18 too g to fitin an address, subroutines at 1000 and 2000
ind if so lops off 256. respectively switch the character set
wnd, aparl from POKEIng the new between the normal one and the italic
et 1n at line 90, that'sit. The rest of the one. The program takes a while to
Jrogram gives you a demonsiration of produce results.
x UDGs and the screen

f vou construct your programs from blocks, but the Spectrum has other
1zer-aefined graphics alone you're facilities that you can take advantage
eally missing out on something. of. By messing around with the
ertainly it's easy to build the screens scrolling, for example, you can

or programs out of user-defined produce mteresting effects easily.

RY THIS

s you know the Spectrum's screen 1s the roulines singly il you wish:
rganised in rather a complex way, so

nanipuiating it can be difficult. The 1@ CLEAR 59999

ollowing prograrm, however, 0 GOSUB 500

ncorporates two machine code 30 LET X=1@0: LET I=16

outines that will scroll the top and 49 FOR N=060080 TO 60033

sottom thirds of the screen. It's been 5@ READ E "

sraamsed that way to allow you to use), }{>
30

Iser-defined araphics

60
'@
100
11@

120

‘30
140
15@
160
70
180

90
280

POKE N,E

NEXT N

LET Y=48: LET YY=120
LET D=INT (RND*2): LET
PP=(1 AND D=1)+(-1
AND D=0)

LET C=INT (RND%*2): LET

P=(1 AND C=1)+(—1 AND
=)

IF Y=B THEN LET P=1
IF Y=4@ THEN LET P=—1
IF YY=174 THEN LET
P=—1

IF YY=115 THEN LET
PP=1

LET Y=Y+P: LET
YY=YY+PP

PLOT @,Y: DRAW @,—Y:
PLOT @,YY: DRAW
0,175—YY

PRINT AT X,I;* "
IF INKEY$=“1" THEN LET

210
220
230

240
499
11
51@
529
230
549

550
680

690

6
Jser-defined graphics

X=X—1

IF INKEY$=“q” THEN LET
X=X+1

PRINT AT X,Z;“A":
REM UDG

LET B=USR 60@@0:
A=USR 60017

GO TO 110

REM SET UP UDG
FOR N=0 TO 7
READ E

POKE USR “A"+N,E
NEXT N

DATA 7,3@,124,255,124,
30,7,0

RETURN

DATA 33,0,80,62,63,6,
52,183,203,30,35,16,
251,61,32,245,201

DATA 33,8,64,62,63,6,
52,183,2@3,3@,35,16,
251,61,32,245,201

LET

The crucial elements of this
nrograrm are in ines 680 and 690, These
ire pasicallv the same routine except
or the third piece of data, which
1woverns the screen address the
outne starts from. In the case of the
1rst routine the number is 680, and if
oU use the same methoca we used
o deal with CHARS 1e. multiply it by
06 and add the number in the addrass
cefore it, we get 20480, which 1sthe
tart address of the bottom third of the
;creen. ‘I'he same operation
reriormed on the routine in line 650G
nves us 16384, the start address of the
op third of the screen.

“rom this vou'll see what we're
101nd 18 scrolling the top and the
sottom of the screen independently,

—

e gt N

leaving your UDG spaceship in the
centre. Were using PLOT and DEAW
to generate the scenery, which slows it
up semewhat, but you could speed it
up a ttle by noet filling 1 the scenery,
and you could add a reutine check to
see If you'd hit the cave walls. This
would just invelve making sure the
ATTRibutes of X,7 equalled a space
before vou printed the ship on 1t.

Should you wish to pull the scrolling
routines out for use in other games,
you'll find the op part is called by LET
B=USE 80000 and the bottom part by
LET A=USRK 60017. You could also use
RANDOMIZE USR instead of LET
A=USR, asit'sust a matter of locking
the Spectrum into the relevant routine
at reqular intervals

37
Iser-defined graphics

Checklist se—

n this chapter you should have
earned.

.} How USK 'A’ etc 18 just shorthand for
one ol the Spectrum's memory
ocations, and how dot patterns are
stored 1n the UDG area.

i How to manipulate the shape cfa
‘naracter on the screen by
seriorming arithmetical operations
n the numnber stored in memory.

| How to page in completely new
“naracter sets by varying the value
stored in system varlable CHAES,
proaucing just about as many user-
iefined araphics as you'te ever
1kely to want.

| How to use scrolling routines mixed
sth UDGs to preduce simple
1ames,

18
Iser-defined graphics

Af 0' L e

nimation 1s basically a way tc make 7@ PRINT AT 1@,7;" ”;

sictures move on the screen. There 83 PRINT AT 1@,.T-1;'M"
ire vanous ievels at which this can be 90 NEXT T

1one, the simplest being to have a 18908 GOTO 1@

jasic routine that priats a character K her topisicria i .
mmo the screein. rubs il oul, and then ARSE TP SIS PERGEE,. JOu

should have an "M whizzing back and

orinis it at the next position 1 IS
position like this forth across the screen. The prcblem

"@ PRINT AT 12.0;'M’; with this approach s, as you will have
‘@ FOR T=0@ 10O 30 noticed. that it 1s jerky, and it flickers a
2@ PRINT AT 18,7;" “; lot. The general idea, however, 1s the
4@ PRINT AT 10,7+1;*M"; basis for sprites and mcvement of any
“@ NEXT T sinale figure,

5@ FOR T=31 TO @ STEP —1

0
sprites and andmation

)

'c get an 1idea cf how sprites actually
wvork, we'll have a guick overniew of
now the Spectrura's screen works.

"he picture is made up from a series
i1 horizontal ines. each of which 1s
iJain spiit into a number of dots. These
ines and dots give the resolution of the
:«creen n pixels. The Spectrum's
)creen, as with a number of other
MCYDS, 12 also split into two main
ecuens, the border and the main
screen. As the screen 1s drawn, al 50
umes a second, the television's
;canning beam is effectively turned on
ina off depending on its position and
he contents of the video RAM. The
hardware that is responsible for deing
ill of the screen data handiing is the
amous Sinclair ULA.

quring the first part of the scan, this
ust sends out a single colour signal
hat forms the top part of the border.

18 soon as the printable section of the
creen 1s reached, the ULA first sends
il the border signal and then scans
he video RAM and. if a bit contains a
me. a dot 18 sent out; if it's a zero, then
1 Space 18 sent. After the picture line
138 been drawn. the ULA resumes
wrawing the border until the lower
Jorder 1s reached. when 1t just sends
ut a single colour.

\s well as scanning the picture pari
i1the RAM. from 16354 to 22528, the
JLA also scans the attribute section,
rom 22528 to 23296, to form the colours
il the screen. The colour signals
-ause the picture information to be
sent to the different colour quns i the
"V and. i you have a cclour television,
nis creates a pretty colour picture.

A hen you move characters around
he screen. a lot of the flickering is

Sereen fayout

caused by interference between the
screen scan and writing into the
screen RAM. Since the object nasto
be erased and then re-drawn to make
I- mave, the ULA scan will probably
pick up the picture halfway through
elther the erase part of the program, or
somewhere In the re-draw section,
giving rise to severe ghosting and
flickering, and generally making quite
a mess of things.

Fortunately, all 1s not lest, as there
are times whean the ULA is not actually
scanning the video RAM, e.g. when it
15 drawing the border, or when the
bearn 1s flving back’ 1o the top of the
picture. These times are when all the
redrawing should be dore.

To aet back to sprites, the following
section describes a set of machine
code routines that allow you to place
characters anywhere on the screen (at
any of 0-255, 0-175 honzontai, vertical
positions).

The following program is used 1o
load the sprte machine code into
memocry and then store it on either

microdrive or tape.
@ REM LOADER PROGRAM FOR
SPRITES
2@ FOR T=30022 TO 38176
3@ READ A:POKE T,A
4@ NEXT T
@ SAVE *"M";1;"SPRT.BIN’
CODE 30@0@@,175
5@ STOP
108 DATA 2@5,129,117,205,
219,117 ,2081,205,170
T18@ DATA 117,201,42,68,117,1,
56,117,22,8,126,2
120 DATA 3,35,21,3%2,249,201,
205,170,117

3y

Jpries and animation

130 DATA 58,66,117,50,64,

17,58,67,117,50,65

140 DATA 117,205,129,117,

285,119,117,201,205

DATA 81,117,33,56,117,

205,173,117,281,33

DATA 48,117,237,75,64,

117,22,8,30,8

170 DATA 197,213,229,205,
206,34 ,205,213,45

180 DATA 225,209,193,2@3,

47,203%,22,12,29

DATA 32,236,35,5,121,

214,8,79,21,32

°00 DATA 225,201,33,48,117,
237,75,64,117

1@ DATA 22,8,30,8,2083,38,

718,191

DATA 117,62,12,50,145,

92,197,213,229

230 DATA 205,229,34,225,
209 ,193,62,8,50

240 DATA 145,92,12,29,32,
228,121,214,8,79

’50 DATA 35.5,21,194,179,
117,201

6@ DATA 8@3,11,114,99,101

"his machine code allows any
naracter to be moved aroundg the
creen as a sprite, Before the spnte is
nicved to a particular position on the
screen, the data at that position 18
‘ored. After the sorite has moved on,
his data is replaced so that the
»ackground does not get messed up
oV any sprite movements.

"o use the program, the following
;adresses need to be noted:

0020 (ADL) holds the low byte of the
:cddress of the character to be used as
he sprite.

10021 {ADH) holds the lugh byte of the
iddress,

016 (X)) holds the start horizontal
sosition of the sprite.

150

168

190

220

30017 (Y) holds the start vertical
position of the sprite.

30018 (X1) holds the horizontal position
of the coordinate to which the sprite is
1o be moved with MSPR.

30019 (Y1) holds the vertical position to
be moved to.

30022 (SPON) Executing at this
address turns the sprite on.

30029 (SPOF") This cne turns the sprite
off.

30049 (MSPR) This moves the sprite
from X, Y to X1,Y1 and after it has
fimshed X becomes X1, Y becomes Y 1

With this information, you have
cverything yvou need to be able to shifl
he sprite around the screen. Note that
since the position specified by Xand Y
= a pixel position, the character can
be placed anywhere on the screen.

Here is a demonstration:

12 GOSUB 1@0@:REM LOAD
MACHINE CODE

20 LET X=30016

30 LET Y=30@17

40 LET X1=30018

5@ LET Y1=30@819

6@ LET CL=30@20

70 LET CH=30821

8@ LET SPON=30022

9@ LET SPOF=30029

190 LET MSPR=30049

118 LET DX=1:LET DY=1

120 LET SX=10:LET SY=10

13@ POKE CH,255:POKE CL,88

14@ POKE X,SX:POKE Y,SY

15@ RANDOMIZE USR SPON

16@ LET SX=SX+DX:LET

SY=SY+DY

IF SX=24@ OR SX<10

THEN LET DX=—DX

IF SY>160 OR SY<1@

THEN LET DY=-DY

POKE X1,SX:POKE Y1,SY

RANDOMIZE USR MSPR

17@
188

198
200

Spriteg and animation

218 GOTO 160
1000 LOAD **“M’:1;“SPRT.
BIN'CODE
1@7@ RETURN

‘ust to prove that the background
'f_'uflll not be erased. add the followina
ine,;

@5 FOR T=@ TO 600:
PRINT“B”; :NEXT T

'he other use {or the sprite routines
= 10 allow printing anywhere on the
:creen &o iry the following:

1® GOSUB 100@:REM LOAD
MACHINE CODE

@ LET X=30@16: LET Y=
30017: LET X1=30018:
LET Y1=3001%9: LET

CL=30028: LET CH=300:21:

LET SPON=3@@22: LET
LET SPOF=30029: LET
MSPR=30049

1@ FOR T=65 TO 85

128 POKE CL,(USR

Full screen animation

wnother type of animation 1s that used
Il carioens, consisting of a sequence of
snapsnols of a figure ina set of
cositions each of which 1s slightly
noved on from the previous one. On
he Spectrum this can be achieved by
irawing the first snapshot onto the
:creen and saving the whole screen
nw memory. The next shot is then
irawrt, and the next, and the next.

\ll of the screens are saved into
Nemoery as a series that can be loaded
o the video RAM in secruence. There
ire Two main drawbacks to doing this,
he first being the amount of memory
hat each screen takes up (about 6K).
'he second drawback 1s that from
lasic. 1t would take an appreciable

CHRS(T))—
256*INT(USR CHR$(T)/
256)
13@ POKE CH,INTC(USR
CHR$(T)/256)
14@ POKE X,FN R(20@)+1@
158 POKE Y,FN R(100)+1@
160 RANDOMIZE USR SPON
170 NEXT T
188 DEF FN R(X)=
INT CRND#*X) —1
999 STOP
1008 LOAD*M”; 1;“SPRT.
BIN" CODE
1010 RETURN

Bv altering the address poked mto
CH and CL to point to the character
ROM, found by adding the CODE of
the character to:

(33%8)+256+PEEK(236@6)+256%
PEEK(236@7)

you can display any of the printable
characters anywhere,

amount of ume to transfer the data.

Fortunately, the speed at which this
can be done can be increased
dramatically by using a machine code
routine. The Z80 microprocessor at the
heart of the Spectrum has a special
command for copying sections of
meraory around at hugh speed, so the
rouline o copy the screens around is
nice and short.

if vou try the following program, you
will see that images can be swapped
from screen to memory pretty quickly.

1@ CLEAR 50004
20 LET SWAP=50000
38 GOSuB 200 EH)

“prites and animation

| I

RSy =y

T & i e e) el Y
[(LIt 3t 3F 3]
@ FOR T=@ TO 255 STEP 5 220 NEXT T
5@ PLOT @,0 230 RETURN
50 DRAW T.,175 240 DATA 33,8,64,17,8,224,
‘@ NEXT T 1,8
580 RANDOMIZE USR SWAP 258 DATA 27.,126,245,26,119,
@ CLS 241,.18,11
@@ FOR T=-255 TO @ STEP 5 26@ DATA 35,19,120,177,32,
‘1@ PLOT 255.@ 243,177 ,32
20 DRAW T.,175 270 DATA 243,201,187 ,1@41,
130 NEXT T 118,110
;g gg?gowig MSR: SHAE 2he ﬁrs_t Screenisdrawnaﬂd then
200 FOR T=SWAP TO SWAP+29 -Wappediniomemory, with
1@ READ A:POKE T.A RANDOMIZE USE SWAF, which

happens to be empty. The next picture

4
“prites and animation

s then drawn and the two swanped
wver.

i thing to ncte 15 that the routine 18
‘elocatable, Le. 1t can be placed
invwhnere in RAM simply by altering
he value of SWAF. You should.
1owever remember to chanae the
-LEAE statement. But. 1t 15 not the
astest wav of doing things and. as you
‘an see, 1t thekers,

Y much kbetter method 1s to use the
ollowing suite of programs to store the
madges In memory and then recall
hem 1n secuence to the screen.

‘'he first program loads the machine
:ocie from a series of data statements
inid then saves the sppropriate section
1 memory to tape or microdrnive, It 1s
eloaded later on using:

LOAD *"M":7;“TRN.BIN”
CODE 65280

f Ior tape:
JOAD “TRN.BIN” CODE 6528@

This machine code 158 Used to cony a
zection of memory whose address
nust be put intc addresses 65280 and
no2B1. The first nolds the low bvte of
he address, obtained from.

LO.ADDR=ADDR—256%*
INTCADDR/Z56)

“he location, 65281, holds the high
ovte of the address, found by

" 4I1.ADDR=INT(ADDR/256)

nce these two numbers have been
niered, the machine code nrogram
mows where the screen data 1s to be
noved from and, using RANDOMIZE
JoR 85282, executes the code, moving
hat portion of memeory to the screen.
Note that the attribute memory 1s not
1sed, allowing the rounne to work that
ittle bit faster.

Loader program for animatiorn.

? REM LOAD THE MACHINE
CODE, AND SAVE AS
TRN.BIN THIS IS USED TO
TRANSFER MEMORY TO
SCREEN.

10 FOR T=6528@ TO 65295

20 READ A:POKE T,A

20 NEXT T

4@ SAVE *“M*;1;“TRN.BIN”
CODE 65280,15

5@ DATA 192,165,42,8,255,17,
2,64,1,8

50 DATA 24,237,176,201,80,
11,114,99,101

The next program demonstrates
how each part of the amimation 1s
formed and copied intc memory.
I'here g room in memory for a
maximum of abcut five fo s1x pictures,

iepending upon the leng:h of the
progran used to draw them. This
program dces take quite a long time to
opy the screen from one peint to
another, and demonstrates the
amazing speed of Z80 machine code n
comparison to Basic. The copying can
be done in machine code with a very
similar routine to that used to call up
Jhe pictures;
ORG 65280
start DEFW B Set asids

some memory space for the address
‘0 be moved to.

D HL,16384 :Put the screen
address into the HL reqgisters.

LD DE,(start) :Loadthe DE
regisiers with the address of the
Jqemory location to be moved to.

LD BC,6144 ‘Load BC with the
length of the screen 6144 bytes.

Sprites and animation

'DIR 'This 15 the Instruciion 120 POKE 65281,INTC(AD/256)

hat performs the tnck of copyimg 13@ RANDOMIZE USR 65282
he memory all in one go, using the 140 RETURN
-IL, Dhand BC IEC}lSTEIS.. and add the following lines o il
ET ‘Return to Basic = GOSUB 200
Don't worry too much if you don't 200 FOR T=6528@ TO 65295
inderstand any of this All youreally 218 READ A:POKE T,A
1eed to know is how to use it and the 220 NEXT T
winpers of the assembled code. 23@ RETURN
o use It, Just replace the subroutine 240 DATA 0,@,33,0,64,237,
n the desian program cppaosite, 91,8,255,1,@
starting at line 100, with: 2580 DATA 24,237,176,201,74,
00 LET AD=308B0+(S*6192) 11,104,110
11@ POKE 65280 ,AD—256* This now does the whole thing a great
INT(AD/256) tleal faster.
H =T -f' -r-l- et 1T J1isliLy)
1 1 I I
3 I ! I
" -
f
1T mEEE THH e EEEE EmEEE ittt i

s
_prites and anumalion

o0
bl
7@

80
1_}9

100
10

120
130

Design program

FOR T=18 TO 5@ STEP 1@
LET S=(T/18)-1

CLS

CIRCLE 10@,100,T:
CIRCLE 150,98,1/3:

CIRCLE 148.11@,7/2
PRINT“SCREEN NO. ":S:

PAUSE 10@@

GOsSuUB 1028

NEXT T

SAVE **M":1;“RAIN" CODE
50000 ,.35280

STOP

REM READ SCREEN DATA
(NTO MEMORY

FOR D=0 TO 6144

POKE 30@00+D+(6192%5),
PEEK(16384+D)

NEXT D

RETURN

"he next thing to be done s to
inmate the screens. This means
pading to the main screen RAM with

he picture data in sequence, using the

machine code routine loaded and
saved previcusly.,

e
@
30
40
58
5@
79
@
79

10a
185

1@

120

CLEAR 30000

GOSUB 180

FOR T=30000 TO
30000+(4%6192) STEP
6192

POKE 65288,T—256&%
INT(T/256)

POKE 65281,INT(T/256)
RANDOMIZE USR 65282
NEXT T

GOTO 3@

REM LOAD MACHINE CODE
AND SCREEN DATA
PRINT “LOADING CODE”
LOAD*“M”: 1:“TRN.BIN"
CODE 65280

LOAD*“M*: 1;“RAIN” CODE
30000

RETURN

Once you have run this, you should be

able to

work ou: why the picture file 15

called RAIN'

[T [TIITIT1 I I ITIITI
- ’u,_.,_,T’ £ T F
m 1 TI TIT]
T T T
- aas F 4 o P ...i,’l':]
W m — T
T ! £
. ; ngas
a 1] i I
H J I
" i=rTiTaas, 11 mE o ; 1 Il
[i Ul 1 i i
|] H 1 N
| #: r T i
L
i 1
1 11
=] i} [
- LE N - -
o .
1 1] [[]
” 1
L -)] Lt
| AN —emee A i1
3FEEAITE=ATES : IEEMIASEEIEEEIATERIE + 1Y
BT aee SEReewN AN | aee = L R -e II!! 1
i TE i il
['I: 11 I!
s ey e ww I-i;l--'i r;
[q i l |
E ¥ .] :Hl + Ina + - H
1 iTT T T I T I T T 1 i H

17

Spriles and animation

*rojects

| Trv setting up a more detailed full
oYeern animation seguence.

| Alter the Basic part of the sprite

ounne to allow more than one
prie to be used.

| Change the full screen amimation

Srograms o inciude the attribute
{AM for full colour.

1 Incorporate the full screen
immation method into the
waventure program descriped in
‘napter 3 to allow pictures of the

ocations to be shown instead of just
1escriptions.

| See if you can encode the screen
1ata used in full screen anumation to
Jdlow more screens to be used.

Jote that a great deal of the data in
acn picture is the same,

8
_prites and animation

Memory in detail

19

Lverv now and again in this book you'll
1ave run intc areas where you've been
old 'vou don't really need to
maerstand this right now’. Quite cften
his will have referred to a stack of
wmpeers held m DATA statements

hat. wnen you POKE them into
TIemoryv, seem 1o do incredibie things,
ina do them a lot faster than Basic
loes,

‘oull probably have also geen the
sdIme hina in magazines, and here
o]l usually only be told itsa
nachine code program’; if you warit to
snow more about machine code this
st really very helpful Clearly these
umpers mean something, but what?

I'0 aet a grasp of this you really have
o take a step back and think of what
he Spectrum actually 15, and how its
nemory 1s stuctured [n essence, ifsa
eres of switches that can be either on

NG !

00

or off, and these switches interact with
one ang:her to store numbers. The
Spectrum doesn't actually store
anything but numbers, so wher it's
‘storing' lext, graphics and so onit's
actually a mimeric representation of
whatever you think it's stering.

'Therefore, whenever youtype ina
Basic command the Spectrum's Basic
intarpreter has to translate the
command befors the machine can act
onit, and it acts on 1t by tarning that
command into a number, or a senes of
numbers, then execuing it I essence
this is why Basic 1s siow compared to
machine code.

What youre doing with the DATA
statements of decimal numbers is
talking to the Spectrum in the
language it understands, and the
munbers in these statements are
actually a series of commands, forming

Viemory in detail

i macnine code program. You've
iiready learned that machine code
hould be stered above RAMtop, and
herefore vou should lower RAMtop to
Jrovide enough space to hold your
srograms (all you need do is lower 1t
ov the number of DATA statements
/ou have), and that you execule the
machine code with the call
ANDOMIZE USR {address), where
wddress 1s the first address of the
srogratn, e the first location above the
ew RAMton.

Nhv RANDCMIZE USR? It's
:ommeon 1or micros to have an EXEC
ir CALL command for running
nacnine code. and it's fairlv obvious
rom the command what this does. It's
ess so 1 the case of the Spectrum, but
JNCE vou ve grasped it it's also preity
lear.

f vou check with the manual vou'll
ind RANDOMIZE 1s used as a poniter,
ind bv adding USE yvoure telling the

Spectrum you wish to point at a
nemory aadress. The Spectrum then
umps 1o that address, reads your first
ommand and vou're off,

Hexplanation time

Don't panic if you still reckon the
nmoers are meaninaless, because
oroadly speaking youre right.
iecause computers think 1n terms of
Hinary switches, although they
inderstand decimal numbers as
nstructions theyre not organised in a
rarucularly logical way. However, if
ol were to translate those numbers
nto hexadecimal. 1.e. base 16, you'd
1art to see some sort of svstem behind
herm.

01

Assembler

Even If you manage to master your hex
‘imes takbles you'll have a
communications problem. You'll still
be faced with the problem of thinking
:n English and trying te communicate
directly with something that thinks in
numbers. This is basically what an
assembler is all about. An assermbler is
a program that uses easily
remembered mnemonics for you to
type 1n, and communicates with the
computer in the numbers it
anderstands. Note however that there
18 a undamental difference between
an assembler and the Basic lancuage.
:n the case of Basic you're giving the
computer a series of instructions that it
stores, then interprets one at a ime,
~nereas in assembler you're still
POKEIng the mformation directly inte
memcry, even though 1t doesn't always
feel like thal's whal you're doing. It's no
part of this book's function to explain
machine code or assembiler, but if's
important that you understand what
*hev are, If only for future reference.

TRY THIS

courd is a good example of what you
can do 1n machine code by addressing
the Spectrum's memory directly. If
you've experimented with the sound
facilities of the Spectrum you'll
probably be acutely disappointed,
particularly if you've had a chance to
near what otner machines can
produce.

The most important problem with
‘he Spectrum’s sound is the fact that all
s operations are controlled by its 280

viermory n detail

orocessor. ‘This means that sound is

ust one of the other operations,
ynereas on many other rmicros it is
onirolled by a separate processor,
ind the end result i1s thal, when vou're
orogramming in Basic, everything else
stops while the Spectrum BEEPs.

n machine code, however, you can
1et around this. You can use interrupts
0 produce noise while the program is
ipparently stll executing — although 1n
act it's stopping very briefly at regular
nrervals, and you can also produce
rersions of the sort of sounds yeu'd
nore normatly associate with arcade
james, lke this:

1@ CLEAR 65205

20 FOR X=65206 TO 65280
i@ READ A

4@ POKE X,A

58 NEXT X

SEED ﬁu

02

viemory in detail

6@
70
80
90

108
11@

12@
13@

14@
15@

DATA 58,72,92,31,31,31,
23@,7 ,14,255

DATA 38,0,68,203,231,
211,254 ,16,254 ,68

DATA 203,167,211,254,16,
254,203,231,211,254
DATA 16,254,203,167,211,
254,16 ,254,36,13

DATA 32,226,2@1

DATA 58,72,92,31,31,31,
230,7,225,229

DATA 95,14,0,22,15,126,
230,16,131,211

DATA 254,65,16,254,35,
21,32,243,13,32

DATA 238,201

FOR N=1 TO 3:
RANDOMIZE USR 65206:
RANDOMIZE USR 65247:
NEXT N

il'. _-""I i i

J

Tou'll have got the idea about
srograims like this already. You're
TO1INg a roufine - or in this case two
‘ourines — above RAMton, and calling
1with a RANDOMIZE USR call to the
iadress it starts from. In this case
ve ve got two machine code programs
hat will produce the sound of a laser
surs: and an explosicn, 1 the case of
he latter flashing the border to make
he point,

Now 1f vou count your wav through
he DIATA statements vou'll ind the
st reutine, which ends at 65246,
mishes at the end of line 100. The
secona ends at the end of 140, and vou
:nould now be able to see a similarity

s0th end with 201, and if vou check
hat in the Z80 chip instruction set youll
ind 1t means RET. or return. You'll find
here are other numbers that repeat,
ina if vou're going to get involved 1n
nachine code vou'll become familiar
vith them. but at the moment it's just a
narter of vour being able to see a

pattern.

In the case of the program here you
should be able o detect a difference
between what vou can produce from
Basic and what you get from machine
code. In Basic you canuse a
FOR. . .NEX'l' loop to produce a series
of notes, but they're separate notes -
you can't produce anyihing like a
smooth graduation. But machine code
is much more flexible.

The Spectrum's BEEP is basically
just a click. The speaker 1s connecied
to one of the output ports of the 280,
and whenever the speaker pit D4 15 sel
a click 1s produced. The pitch of the
note you hear 1s determuned by the
number of imes per second D4
switches on and off. So instead of
varying pitch and duration through
Basic it's just a matter of varving the
rate of clicking through machine code,
and this preduces a smoother variation
n note.

“"he memory map

"he diagram overleaf shows you how
he Spectrum's memory is organised,
ind how the decimal numbers of the
ocations relate to the hexadecunal
rersions. In the interests of logic we'll
1eal with hex numbering here. The
nemory 18 best viewed as a long line
I numbered boxes going from 0000h
o FFFFh (TFFFhin the 16K Soectrum).
‘ach of these boxes contains one 8-bit
yvte, known to mere mortals as an
nant character binary number.
'he memory is split up 1nto Read

mly Memory, the ROM, and Randorn
‘ccess Memorv {RAM). Youcan
nange what's in EAM, but you can't

change the ROM - vcu can, however
use some of its built-in routines as
Wwe've shown vou 1n the chapter on
systernl varnables.

''ne ROM runs from 000Ch to 2FFFh
it i basically a set of programs

written in Z80 machine language, and
15 arguably the one key feature that
meakes the Spectrum a Spectrum
rather than, say, a Memolech. If youdo
get a thorough grounding 1 assembly
language you'll find that various parts
of the programs in the ROM can
actually be used as subroutines in your

03

OWT1 PIrograls.
If you want to mess around seriously

viemory In detail

vith these, vou'll need a disassemnbled
1sting of the Spectrum’'s ROM. A
wmbper of books containing these
1ave been published, and, while
hev're not exactly easy to understand,
i pit of application will pay dividends.

ust above the ROM 1n the memory
rou run nto the fixed RAM. This 1san
irea of RAM. within which fixed
iddresses are used by the ROM for
hings like the display and attributes
1les, which we covered n the chapter
n colour. As far as we're concerned.
‘he other imporlan! area here 1s the
e holding the addresses used by the
1OM to operate the Spectrum - these
ire the gystem variables,

Jnce you're through this section you
1et to the floating RAM, where the
:ections have no fixed length, aithough
{OM keenps track of where they are by
1olding their addresses 11 the systemn
ranaples. These sections include
nannel information and the
viicrodrive mans, and are followed by
norade areas for Basic programs and
heir variables.

wfter this there are sections dealing

with editing, temporary workspace
and the calculaicr stack, and these are
assoclated with the operation of Basic
programs. The spare space above this
varies in size depending on the size of
the Basic program and the amount of
variables it uses, but it can be used for
stonng data or for rmachine code
programs.

Beyond this, and immediately below
RAMtop, we have the machine stack
and the GOSUB stack. Once youre out
of this territorv and beyond RAMiop
yvou've lell the area of mmemory which
can be reset by NLW, sc by lowernng
RAMIop with a CLEAR youre
providing an area of memory that 1s
protected against being overwritten
by a totally Basic operation.
Incidentally, the user-defined graphics
are normally just above RAMtop,
which i1s why you can't reset them with
NEW. The system variable UDG
normally points at the first address of
the user-defined graphics, but you can
alter this to point scmewhere else 1
necessary.

Iser-defined graphics

SO5UB stack

Machine stack

‘pare space

P_RAMT FFFF 65536 T
LAMton FFEST =~
2
=
'a ¥
Spars
STKEND

Viemory in detail

lalculator stack

STKBOT
'emporary work space
INPUT data
WORKSP
ommand or program ine being edited
... o LINE
/ariables
-- TARS
asic program
TROG
Channel informeation
.. s “JANS
viicrodrive maps
oystem vanables
rinter buffer
sttrnibutes
nawlay fle
Sharacter set
Calculator

HCBB

SCO0

sBOO

3800

1000

D00

W88

000

16384

0000

WY DULeO]]

>4

NV PoxLY

>4

—NOH

05
Memory 1n detaul

Checklist e—

n thus chapter you should have
earned.

|7 How the Spectrum's memory 1s laid
W1t

. How you can use POKE or an
1ssembler to communicate with
he memory, and to store programs
nit

"1 How to call machine coce routines
wvith RANDOMIZE USE.

106
viemory in detail

07

~omputers are being used more and
Tiore (o play music these days. The
nethods, and resulls, are many and
raned. 'rom semi-random notes to
ATIAZING g1Zmos, such as the Fairlight
wnich can be used to record vanous
:ounds diaitally, such as breaking
1lass, or barking dogs, and then play
hem back at different speeds to
~naple tunes to be played.

Jne of the advantages of music is
hat it can be represented in a number
of different wavys. All of these are
numerncallv related, making them easy
or a computer to handle. The
ifference between the notes in
iifferent octaves isrelated by
recuency, 1.e. the C above middle C 15
Xactv twice the frequency. So, to
move a note up an octave, simply
multioly by two.

An octave 1s defined as being the
nterval between one frequency and
15 double, sphit into eight. In factitis
aplit into 13 semitones, the highest
sena twice the frequency of the first

Infortunatelv, this 1s where things

begn to get a little more complex
since the Western ear isusedtoa
major scale of eighl noles and, of
course, there are thirteen. For
example, listen to the following two
DIrograms:

@ FOR T=@ 710 12
28 BEEP .5,1
2@ NEXT T

10
20
20

FOR T=0B T0 7

READ A

BEEP .5,A

49 NEXT T

5@ DATA ©,2,4,5,7,9,11,12

The first plavs all the semitones in the
scale, the second plays only the major
notes, that 1s, no sharps or flats.

To ge: around this, all keyboard
mstrurnents, such as planos,
harpsichords, and most synthesisers,
have their keyboards split into two
sections, the black notes, and the
white notes. The former contain all the
sharps and flats but, as we shall see
later, this is relative to the key.

F Ty
| | ZX SpE{:tru m
¥
] BLJE RED MAGEWTS CREEY LA HELLOW WH:T
ELIIG LAFE LK THLE Yokl 1INy VIDELD L | L L} = WSRAPHICS GEILETE
i] o= [| 1l %] nl |
| 1 o g 3 4 5 5 = By 7 8 b Q_
LEF b5 =H o IHE CPEM & CLOSE # W E EHASE e cal FiiRRA A
1 LI [] Thak, 1T e BT THAS SILOE FEE.. AR u'lll
l =OIWY E™ IR T 2 Y™ U= i ; y :
0T DAY ELk Eunt flaNT ST I INEL) ECKE 21217 /
A5H aCE aTh VIR TT MEFGE I~ ot & / /}
READ SESTORE nata SEM ARE S+ Y LEM =R i :/
*
ETE= [Ly = = i
F G Ht A K + L EMTER |
W __SAWE LK b | Ty w1l LA LIST LET
-~ 1 % { 1 CIHGLE VaLE SLHEE NS ATl Ir.-"ll
LM LaFE L PARMNT LLIST dihd IH KEYS Fl /J.lll J
ZAaPS g L l,hf . B * - = R BEEAK
SHIFT [eiv] CLEAR CONT [at OCADER: HENT FAUSE SHIFT quCE
| REEF ih, BapLa FLAZR BRH? ONER INALHSL //7
Ll : i e /
1
08

Sou

it

the intervals between Eand Fand B

ina C are taken to be semitones
whereas the other intervals are full

ones. 'I'he upshot of all this 1s the ease
#ith which 1t 1s pessible 10 play simple
unes tn the key of C (no black notes).
Viost of the followina programs will use
»nly the major scale aithough it needn't
e the kev of C. Simply adding an
ifset to the value of the notes will
hanage the key toc be anything you
visn. For instance, the fcllowing
srogram, a development of the
orevious, aemonstrates this.

10 FOR S=0 TO 12

20 FOR T=0 TO 7

2@ READ A

4@ BEEP .1,A4S

S0 NEXT T

50 RESTORE

7@ NEXT S

380 DATA 0.2,4,5,7,9,11,12

‘'he Spectrum's typewriter keyboard
dan pe set up o imiiate a plano
cevyboard using the letters

VW ERT Y U Ifor the white
otes, and 2 3 5 6 7 forthe black. The
avout will look like this:

B
oJW)(&)(=)()(y)u]()

0 give the notes

4 D#
D E F

F+ Ab Bb
e A B G

i rather useful subroutine 1s one that
1ecodes the kevs and produces the

by reading the keyboard with INKEY$
and then using the equality operator (o
pick/filter out the correct value. The
note values are kept in an array for
convenlence, allowing them to be
altered at will, without having to edit a
great long Basic ine. The routine 1s:

100 LET A$=INKEYS

11@ IF A$=“" THEN GOTO 10@

115 LET N=((A$="“Q")*S(1))+
((A$="2")*S(2))+ ((A%=
M) %S (3) 14 ((AS="3") *
SC4))+ ((AS="E")*S
(5))+((AS="R") %S (6))
+((A$="5")*S(7))+
CC(AS="T")*S(8))+
(CAS=“6")*5(9))
+C((AS="Y") %S (1@))+
(CAS="7")%5(11) 3+
((AS="U")*S{12))+
((A$="1")%5(13))

120 BEEP .1,N

130 GOTO 100

"'t set up the array, this next routine
needs to be executed first,

18@0 DIM S(13)

1818 FOR T=1 T0O 13

1920 READ sS(T)

1830 NEXT T

1848 RETURN

1850 DATA —3,-2,-1,0,1,2,3,
afsiﬁ!?fgfg

Uhe first line of the program should be:
i@ LET A$="": GOSUB 1208

ind vou have a musical kevboard
'here are a number of drawbacks to
this program, not least its lack of
Hlexaibility.
Jne problem 1s that the notes repeat
ar too quickly, A solution to this is 1o
aiter the following lines:

100 LET S3=A%:LET

LR

ipproprate note values This 1s done A$=INKEY$

09
Sound

‘06 I1IF S$=A%$ THEN GOTO
00
10@5 LET A$=~ *

which gets rid of the repeats
altogether.

ne of the other main problems with
he Spectrum's sound command 15 that,
once 1t starts, it can't be stopped, so
niake sure the note lenagth in line 12018
101 too lona.

‘Tom here, a number of features can
se added to make the program much
nore useful and versatile.

The first of these 15 a vibrato effect to
nake the sound a little more
nieresting. it would also be nice if this
-ifect could be turned on and off. To
et the vibrato, the beep frequency
leeds to be altered hke this:

19 BEEP .01,0
2@ BEEP .01,.7
3@ GOTO 1@

Using this idea, the following
subroutine and lines can be added o
get vibrato. It also offers a way around
the preblem of the note not being
interrupted by another keypress.
since the actual BEEP 1s quite short, 1t
15 possible to detect another keypress
halfway through and thus abort the
current note for the next.

Another feature 1s the ability to tune
the kevboard to any key or octave
desired, and since there are now
going to be quite a few functions, if's
time to start defining some sort of
menu system. Inserting the following
lines starts us on our way.

20

79
106
187
2@
168
299

18a5
1006

1999
000
084

2085
2910
’@20
‘@30

2999
seed
@1@
S@20
030
2040
30850

5060
5870
@90
3100
3110
3120

5200
5210

3220

LET A%="": GOSUB 1000
GOTO 30200

REM PLAY

IF S$=A%$ THEN GOTO 12@
IF A$="“K”" THEN RETURN
GOSUB 2040

RETURN

REM SET UP VARIABLES
AND ARRAYS

LET A$=""

LET D=@:LET L=1@:

LET 0=0

REM NEW BEEP ROUTINE
FOR T=0 TO L

IF INKEY$="" THEN LET
T=L:GOTO 20208

BEEP.@1 ,N+0

BEEP.@1 ,N+0+D

NEXT T

RETURN

REM MAIN MENU
CLS:PRINT” MAIN MENU"
PRINT

PRINT “Z...TUNE UP”
PRINT “X...TUNE DOWN"
PRINT “M...0CTAVE UP”
PRINT “N...OCTAVE
J0WN”

PRINT “B...LENGTHEN
NOTE”

PRINT “¥...SHORTEN
NOTE"

PRINT “S...INCREASE
VIB DEPTH”

PRINT “D...DECREASE
VIB DEPTH”

PRINT “L...PLAY"
PRINT “K...MENUL”

LET AS=INKEY3

IF A$="Z" THEN LET
0=0+.5:G05UB 350@:
GOTO 3000

IF AS="X" THEN LET
0=0—-.5:G0SUB 3500:
s0TO 3000

11

3230 IF AS="M" THEN LET
0=0+12:G0SUB 350@:
GOTO 3000

3240 1IF A%$="N" THEN LET
0=0—-12:G0SUB 3500@:
GOTO 3008

3250 IF A$="B" THEN LET
L=L+1:G0SUB 3600:
GOTO 3000

2268 1IF A%S="\V" THEN LET
L =L—1:G0SUB 3600:
GOTO 3000

3278 IF A%="S5" THEN LET
D=D+.1:G0SUB 3600:
GOTO 3000

2280 IF A%$="D" THEN LET
D=D—.1:G0SUB 3600:
GOTO 3000

3298 IF A%=“L" THEN
CLS:PRINT” PLAY":
G0sSUB 18@:60T0 3200

3308 GOTO 3200

5499 REM PLAY SCALE

3500 FOR N=0 70 12

35180 GOsSus 20@0

3520 NEXT N

5530 RETURN

5599 REM PLAY SINGLE NOTE

5600 LET N=0

3618 GOSUB 2000

36280 RETURN

'his program now allows tunes to be
plaved on the Spectrum keyboard,
(use capital letters when you choose
rom the menu). The next thing to do 1s
0 allow them to be recorded and
played back. There is also the
opportnty here for allowing the notes
o be shown on the screen in their
proper place on the staff. The bes: way
0 do this 1s to use user-defined
Jgraphics like this:

LPD® RESTORE 4000 :
4005 FOR T=@ TO 159 DX

ound

@210
4020
- 100

110

120

+130

140

145

+15@

- 160

170

<180

190

READ A:POKE USR“A"+T,A
NEXT T

DATA 0.255,8,08,255,8,8,

’55,8,8,255,8,8,255,
4,24

DATA 0,255,08,8,255,8,8,

¢55,8,8,255,8,24,255,
’4,0

DATA @.,255,8,8,255,8,8,

255,8.,8,255,26..24.,.255,
a,8

DATA @,255,8,8,255,8,8, .

’55,8,24,255,24,8,255,
4,0

DATA 8,255,8,8,255,8,8,
’55.24,24,255,8,0,255,
h,0

DATA @.255,0,8,255,0,
14 .255,24,16,255 16,
16.,255,16,16

DATA @.255,0,8,255,24,
24,255 ,16,16,255,16,
"6,255,16,16

DATA @.255,8,24,255,24,
16.,255,16,16,255,16,
16,255,16,0

DATA @,255,24,24,255,
16,16,255,16,16,235,16,
'6.255,0,0

DATA 24.255,24,16,255,
16,16,255,16,16,255,16,
4,255,0,8

RETURN

nce these era in, they can be used
#1th the following subroutine,
Note that the characters in hnes 4205
ina 42 .0 are graphics characters

UDGs).
:200

201

+2@5

LET G=G+1:1F G=3@
'HEN LET M=M+35:
LET G=@

IF M=>21 THEN LET

219

& (7" N\

J

i
)

(“E” AND N=1); (“G" AND
N=2):(“I” AND N=4);
(K" AND N=6);(“M" AND
N=8): (0" AND N=10);
PRINT AT M+1,G; ("B
AND N=—3); ("D AND
N=—1); (“F* AND N=1);
(“H* AND N=2);(“J" AND
N=4);(“L” AND N=6);
(“N“ AND N=8); (“P"
AND N=1@);

4220 RETURN

'l'c use this we must also add the

following lines.

1087 LET M=Z2:LET G=@
125 GOSUB 4200

M=2:LET G=0
PRINT AT M,G; (“A” AND
N==3%);(“C”" AND N=-1);

11 GOSUB 4000
and change line 3280

12
ound

7290 IF A$="L" THEN LET

Now, whenever a note 18 played, the

M=2:LET G=0:CLS:GOSUB

189:G0TO 3000

ipproprate rmusic comes up on the

creer. 'l'o record the notes, they mus:

o€ stored in an array so letf's set up

irrav () and provide a facility lead
ind save tunes from tape or
viicrodrive. Add to the mamn menu

PRINT “G...TUNE EDIT

2130
2295

5000
5010
5820
6030
2040

»@5@
5B6d
H@7@
6080
6200
5210

6220
5230
02&3
1250
3295
5268
2299
5300
2318

1520
1330

TENU
IF A$="G" THEN

5000 :REM TUNE EDIT MENU

CLS
PRINT“TUNE EDIT
PRINT

GOSUB

MENU"

PRINT“A...NEW TUNE"

PRINT“B...PLAY
TUNE"
PRINT“C...EDIT
PRINT“D...SAVE
PRINT“E...LOAD
PRINT“D@...MAIN
LET AS=INKEY3S
IF A$="A" THEN
5300:G0T0 6008
IF A$="B” THEN
400:60T0 6000
IF A$="C" THEN
7708:G0TO 6080
IF A$="D" THEN
5500:60TC 6000
IF A3="E" THEN
H600:G0T0 6000

IF A$="0" THEN RETURN

GOTO 62008
REM NEW TUNE

LET R==1:REM SET RECORD

FLAG

BACK
TUNE”
TUNE”
TUNE"
MENL"
GOSuUB
GOSuUB
GOSUB
GOSUB

GOSUB

LET C=1:LET M=2:LET
5=@:CLS:GOSUB 100
LET NTS=C:LET R=0

RETURN

Addma:

26

and hnes
1881
1848

6399
6400

5418
5420
5430

5440

6445
5450

;
5
:

ournd

ine 126

IF R=1 THEN LET
A(CI=N:LET C=C+1

DIM Q{64)
LET R=@Q:LET

NTS=1

REM PLAY BACK TUNE
CLS:PRINT“HOLD B DOWN
TG HEAR TUNE"

LET M=2:LET

a=0

FOR C=1 TO NTS
LET N=Q{():G0SUB 2000:

G05UB 4200
NEXT C
GOSUB 1500
RETURN

\ ¢
I

h,___% h Q.%

nsert hines:

'S@@ PRINT AT 21.0;:“PRESS
SPACE TO CONTINUE”
IF INKEY$<>* ” THEN
GOTO 151@

RETURN

REM SAVE THAT TUNE
INPUT”ENTER FILE NAME ”;
°$

SAVE *“M’:1;F$ DATA QC)
RETURN

REM LOAD THAT TUNE
INPUTENTER FILE NAME “:
°$

5618 LOAD *'M’:1;F$ DATA Q()
5628 RETURN

"o allow editing, some of the
Jrogram must be changed around a
ittle. The only routine that needs
iiterina 1sto make line 115 a
uproutine in its own right. Simply LIST

15 and then edit 12. Change the line
wmper to 150 and change 11510
>0O5UB 150 Then make a2 new line 160
{ETURN.

"his allows the keyboard reading
ounne to be used separately.

5699 REM EDIT THAT TUNE
6780 CLS:PRINT” STEP
THROUGH THE TUNE

BY “:PRINT” PRESSING
SPACE. USE W TO EXIT.”
PRINT“TC CHANGE A
NOTE, PRESS THE NEW
NOTE KEY ”

LET M=8:LET G=0

FOR C=1 TO 64

LET N=Q(():GOSUB
4200:BEEP .1,N

LET AB=INKEY$:1F A%=""
THEN GOTO 6740

IF A$="X" THEN LET
=64

1510

520
65499
6500

655108
6520
5599
6600

5710

5715
6720
5730
6740

6745

675@ IF A$<>" ” THEN GOSUB
i5@:BEEP .1,N:LET
A(C)=N:LET G6=G—1:
GOSUB 4200

IF C>NTS THEN LET
NTS=NTS+1

6778 NEXT C

6780 RETURN

Obviously, improvements can be
inade to this program but it does lay
the basis for a composing program.
The way in which 1t was constructed
shows some of the methods of program
modification and construction.
rarticularly the need for documenting
he program with REMs.

The main use of the Spectrum's
sound generator 18 to create
background noises fcr games, 1.e. zaps,
bangs, kapows etc. Most of these are
easy to construct and are documented
in many other books and manuals. For
completeness, we will include a few
such effects here, to give vou an idea
of what can be achieved. For instance,
a spaceship taking off;

@ FOR T=@ TO 69
20 FOR S=0 T0 5
3@ BEEP .005.T
4@ NEXT S

5@ NEXT T

5755

14

ounG

Yo land it sunply change the firsl line
0

'@ FOR T=69 TO @ STEP —1
0 e’ a fire engine or the scene, use

'@ BEEP .5,18
20 BEEP .5,5
@ GOT0 10

“or more effective noises, it is better to
iCcess the Spectrum's speaker
lirectly. Using the OUT(Z254)
nstruction this can be done fairly

asiv Unfortunately, the border

‘olour 18 also cortrelled from here so
ve must OUT the correct colour as
vell as the sound. For example:

1@ QUT 254,16
‘B OUT 254,80
‘@ GOTO 10

1ves a nice machine type sound but
he border changes colour. The first
hree bits of the byvte that 1s output
ontrol the red. blue and green
:oiours. To malntain the current
sorder colour you rmust make sure that
he mix 13 correct. This can be
icnieved with a little expenmentation,
'Ty this:

@ FOR T=@ 710 7
‘@ 0UT 254,T

25 PRINT T

@ PAUSE B

@ NEXT T

"his shows the colours that can be
sptained. Simoly adding or subiracting
b from the selected colocur number
turns the speaker on and off. So
selecting a white border for the
macnine sound programm 1s done like
this:

1@ 0UT 254,23
2@ OUT 25&,7
30 GOTO 10

15
sound

whnere 23 15 16+ 7. If vou alter line 10 to

JUT 254, 16+ T you will notice a

‘nange In the frequency of the sound
iue to the Spectrum having to evaluate
6+ every ime 1t goes through the
QOD,

To get a Gelger counter moving

1way from a radiation source we can
156

‘@ FOR T=@ TO 100

‘@ OUT 254,23

3@ QUT 254,7

4@ FOR S=0@ TO T:NEXT S
5@ NEXT T

ind to gel randorn pulses:

'@ QUT 254.23:0UT 254,7
c@ FOR T=@ TO INT

(RND*1@)—1:NEXT T
3@ GOTO 1@

"he amount by which REND is
nuitinhed gives the average
requency of these pulses.

"nere are many moere tricks that can
oe achieved by accessing the OUT
.04 directly but to get any good effects
115 usually necessary to resort tc
rmachine code. Such things as white

i01Se, and cricket or helicopter sounds

ire then possible but the meansarea
ittle beyond this book,

Projects

[J Improve on the music composer
program to give a full screen editor
to change the notes and allow them
to be printed out {try the COPY
command) The compoeser program
could also be modified to produce
sharps and flats with the graphics,
a.though you will probably need o
redefine the main character set to
get enough graphics characters.

1 Expenment with the BEEFP
ommand tc get various sound
effects, then modify your pregrams
o do the same thing with OUT 254.

[] Look up pulse width modulation
and see how this can be used to
enable the Spectrum to produce
speech.

'16

Sound

17

The Speclrurm thal you buy in the

shops 15 excellent value, but after

vou ve done a bit of programiming on it
rou 1l run into a couple of major
lisadvantages, including the difficulty
nvolved 1n producing a printout and
he slow loading and saving times

associated with tape storage. The
popularity of the Spectrum has meant
that a number of sclutions t¢ these
problems have been developed, not
least of them being Sinclairs own
Interface 1.

'o understand what Interface 1 1svou
iave to lcok a little at the basic desian
il the Spectrum. The machine as it
tands 18 a self-contained unit that
ommunicates with the cutside world
iy through its TV output and its tape
sockets. At the back of the machine
here 1s also something called an ‘edge
onnector which is basically an
Xtension of the computer's matn
1rcult board. If vou look at this vou'll
ee a number of ines which are
solenhally communications channels.
N more expensive computers
hese lines are formed 1into a number

of sockets that allow you to plug into
printers, monitors and so on, but you
can see that it's actually a lot cheaper
st to design the circuit board so that
these lines proiect out of a hole in the
back of the machine, and worry about
the plugs later.

What Interface | does s to take
these hines and use them for three
speciiic purposes — a printer interface,
control of the Sinclair Microdrives, and
a networking facility. It's worth looking
at these three areas in a little more
detall.

'i8
nterface | and interfacing

The printer interface

"here are essentiallv two standard
ornter interfaces for use with
ompuiers, Centromes, or parallel,

ing RS232, or sernal Interface | uses
he latter. Without gettirg too techmical
he easiest way to explain the
difference between thage 1sthat a
rarailel interface sends data along a
mmper of ines simultanecusly while a
seral interface sends data alonag cne
ne. You can varv the speed and form
i data transfer with a senal interface,
Jut vou cannot with a parailel

mierace.

Jow a consecuence of thisis that
OU Can use a vanerty of methods i
arry senal data — you can send 1t
lond telephone lines, for example,
1mply by converting the signal to
ouna and back again, The RS232

therefore gives vou the opportunity to
communicate with other micros, or
with devices like robots and burgiar
alarms. So RS232 18 about
communications and control and all
you ne=d do to cpen this world up s to
write the software!

If you simply want a printer interface
I order to produce written output, for
word processing or ior histing your
programs, the Centronics imterface 1s
probably more convenent. It lacks the
flexibility of RS232, but because you do
not have to set data transfer rates it 1s
often less trouble to use. Although
Interface | doesnt have this facility you
can get Centronics interfaces for the
opectrum, and youll find a number of
these listed at the end of this chapter.

/ 205
/ C? E_-J -
‘ﬁ%aﬁﬁggﬁ O

/

=
-—

\O

=

O

DOOODOo

0oooooon

ooooooo

> :

‘merface | and interfacing

The network

nterface 1 includes a facility for
sometning called a 'local area network’
‘his 1s essentially a group of
‘omputers cperating within cable-
enagth of one another, and linked by
hose cables. Sinclair's svsterm will
support anything from two to sixty-four
Joectrums linked in this way, and,
iithough there are things youand a
ew friends could use the network for.

he most obvious applicaticn 1s1n _ =
scnools. f gnsugnﬁnﬂnﬁuﬁuun'!;

'he basic use of the network is joottoatnt
qtraighiforward, and employs versions e ———
i1 other Spectrum/Interface 1
ommands for control purposes. In
wder to send information, for example
yoU use a vanation on the SAVE
ommand, while tc receive you use
OAD - the only difference 1s that
voure SAVEINg to and LOADing from
1 opectrum, rather than tape.

f you do have a number of friends
vno own Interface 1 then it might be
rvorthwhile to develop some [orm of
nteractive game that would allow you
0 use the networking facility - there
ire aiready a few of these being sold
ommerclally, but there are plenty of
deas that could stll be developed.

The Microdrives

"he idea of the Sinclawr Microdrive 1s
hat 1t should provide a cheap and
sifective alternative to disk storage,
ind broadly speaking 1t does this. 'lhe
sasic unit is a black box about the size
o1 vour fist that will take a small
-artridge containing a continuous tape
oop. With disk storage you can usually

20
nterface | and interfacing

cad programs by using 'tandom
access —Le. the disk drive unit can go
to any part of the disk to pick up the
information to be loaded, rather like a
record nlayer can.

With tape units vou have to wind
through the whaole of the tape to get to
a particular program. The Microdrive
1s a tape unit, but has the advantage
-hat 1t runs so fast that it only takes
alght seconds or so to go through the
entire tape — 11s access times are
therefore comparable to those of some
disk drnve units.

RY THIS

Because of the improved access times
1t's feasikle to do things with
Microdrnives that you cannot do with
tape. Let's say you want a way 1o
lisplay your artistic talents to your
riends. and allhough you have an
xcellent drawing program, you've jusl
101 S0 many pictures vou can't fit them
all In memory at orce;

‘B CLS
‘@ PRINT
@ PRINT “FILM SHOW”

5@ INPUT “ENTER NUMBER OF
PICTURES ON
CARTRIDGE”: A%

6@ IF VAL A$<1 OR VAL
A$:>2@ THEN BEEP 1,1:

GO TO 50
7@ LET A=VAL A$: CLS
8@ PRINT

9@ PRINT “SELECT MODE”

18@ PRINT “1...FOR
CONTINUOUS SHOW"

‘@5 PRINT “2...FOR PAUSE
iETWEEN PICTURES”

21
nterface 1 ard interfacing

"11® PRINT “3...TO SELECT A

PICTURE”

120 IF INKEY$3=“1" THEN FOR
N=1 TO A: LOAD #»M:1;
STR$(N) SCREENS:

NEXT N

‘3@ IF INKEY$="2" THEN FOR
N=1 TO A: LOAD
%W :1:STRS(N)SCREENS:
SAUSE @: NEXT N

4@ IF INKEY$="3" THEN
PRINT: INPUT “PICTURE
NUMBER? ”;N: LOAD
““M':1:STR$(N) SCREENS

150 GO TO 9@

What vou ve got here is the basis of
in nteresting little shide show
srogram. You'll see it's a lot faster than
ape, but 1t's still a little slow. But as you
mow the Spectrum has the space 1n
memory te hold a number of screens at
one ume, so you could use the
Jrodgram nere as the basis for a sort of
inimated segquence. As 1t stands the
Jrogram can be used to recall any
SCREENYS saved as a number. If you
vant to do anvthing cleverer though
sou snould be able to work it out.

The commands

FORMAT “M’;N;“NAME"

CAT N

ERASE “M’;N;”“FILENAME"
SAVE *“M’';N;“FILENAME”
LOAD *“M’':N;“FILENAME"
VERIFY *=“M";N;“FLLENAME"
MERGE *"M";N;“FILENAME"

As you can see from the table the
pasic Microdrive handling commands,
with the addition of FORMA'T, CAT
and ERASE, are similar o the
spectrum's tape handling commands,
although the =yntax 1s more
somplicated. You must specify a
filename when loading, saving etc.,
and you must also specify the
Microdrive number (N in the table).

The Interface | unit has ifs own
ROM, and this 1s switched 1nto the
Spectrum's ROM as a sort of error
mtercept. Normally you'll get an exrcr
message Uf you try to use a Microdrive
command, but with Interface !
connected the Spectrum checks with
the Interface | ROM first, and if the

a2

nterface | and interfacing

ommand 1s 1n fact CK it executes 1t
Note that there could be a usetul bonus
1ere — if you can head ofl the ROM
‘ounnes dealina with this you could
ictually add your own commands to

he Spectrum.

"he second Spectrum peripheral
1evice of interest to us 1s Interface 2.
'his is simpler than Interface | in that it
nlv provides two extra faciities, for
ROM cartridges and joysticks. The
{OM cartridages are useful in that they
ire the fastest possible way to load a
iame, by virtue of the fac: that they're
ictually switching 1n an area of
nemory, but 1t's net possible for you to
JAVE vour own programs onto them,

T he cartridges do however open a
wunper of opportumties for things hke
swiiching in whole new operating
wstems for the Spectrum and no
1oubt one day somecne will start
elhng something hike this,

"he oysticks however are
omething you can incorporate in your
orograms. ‘The following table shows
1ow the two joysticks relate to the
‘pDectrum's keyboard:

oystick
movement
Left
: Right
} Dowm
! Up
) Fire
) Left
4 Riaht
Down
Up
Fire

Key Joystick

e e e —— O O O DO DD

LS W

oo 1f vou plug two joysticks into
Interface 2 you'll get the same effect as
using these keys, provided, of course,
your program allows [or it.

Normally you'd use INKEY$ to do
this, but this has the disadvantage of
ceind unable to read two key presses
i1 the same time, 30 1t's not possible to
nove and fire at the same time.
There 18, however, another command
'hat can be used.

'1'he function IN and the statement
QOUT are used to control the Input/
Output (I/O) ports of the Spectrum. By
typIng: '

IN address

you can ge! the byte from the port
whose address you use returned. You
wnife to that port by using

OUT address, value

'l'he one that concerns us at the
moiment 15 IN. The addresses
govermng the two joystck ports are
61438 for joystick 1 and 63486 for 2. So
saying IN 61438 will return us an eight
bit number giving us informaticn on
the status of joystick 1. There are five
movements to be governed by the
port, 50 it's only the firs: five of the
elght bits we're interested

Movement Joystick | Joystick 2
IN61438 IN 53486

Hire Bit Bit 4

Up Bit 1 Bit 3

Down Bit 2 Bil &

Right Bit 3 Bit 1

Left Bit 4 Bit 0

The situation here 1s analogous to that
of the KSTATE system vanables By
moving joystick | yvou change the
number held in 51438, and as you see
frem the table above each of the first
five bits of that number governs one
warticular action. So 1n order to use IN
o move something on the screen we

nterface | and interfacing

have to examine these bits
naividually. First we need a vanable
oI each movement:

‘® LET F=0: LET uU=0: LET
=@: LET R=0: LET L=0

“lere we've got five vanables, one
or each movement, and we've sot
hem to zero, 1.e. statonary. The next
Tep 18 to read the value at 61438, and
emove 1ne bits 5, 6 and 7. as we don't
vant them:

20 LET N=255—IN 61438
3@ IF N=127 THEN LET

=N—-128

4@ IF N=>63 THEN LET
N=N-—6&4

50 IF N>31 THEN LET
N=N-32

We now have all the bits we want. So
now we read them mmdividually, and
rmodify the state of our five vanables
depending on what's being done with
e suck:

6@ IF N=15 THEN LET

N=N—16: LET L=1

7@ IF N>7 THEN LET N=N-8:
LET R=1

8@ IF N>3 THEN LET N=N—&:
—ET D=1

9@ IF N>1 THEN LET N=N-2:
LET U=1

18@ LF N=1 THEN LET F=1

All you need de now is o write a
lopsy-turvy routine for joystick 2, and
plug m the movement based on the
/alues of the variables.

Other peripherals

'his book 1sn't reallv the place for a
suver's guide to Spectrum
Serpherals, but there are a number of
hinas you might be interested in
earning more about. Should you wish
o get yourself a Centronics interface
ather instead of or in addition to
nterface | then switchable
‘entronics/RS232 interfaces are
nanuiactured by Eurcelectronics and
Morex. Both these are compatible with
nterface 1, and this is important, as
nerpherals made by some companes
wiil not work with Interface |
onnected.

"wo other devices vou may be
nierested In are a monitor and a
yroper keyboard for the Spectrum. In
TI0S1 cases a new kevboard will mean
nvaldating vour Spectrum's
marantee, as you'll have to open the

case, but this Is unnecessary 1n a few
cases. Probably the best of the ones
that force you to open your Spectrum is
made by Transform, and of those that
dorn't the Stonechip 1s one you rmight
like to look at.

Ycu can reallv only connect a
monitor if vou kaow a little about
soldering, or you knew someone who
does. Look at the plan of the edge
connector at the end of chapter 23 of
the Spectrum manual and you'll see
where two lines are, Video and 0V,
Connect the Video line to the central
core of your TV cable and OV to the
outside, and you have a composite
video output. In the case of the 13sue 3
apectrum Of you've bought your
Spectrurm any time since Christmas
1583 1t will be: an 1ssue 3) this is all you
need o do, but there 1s another

24

nlerface | and interfacing

onnecuon to make on earlier models.
n any event, don't do this unless you
mow exactly what you're doing.

"here are plenty more add-ons you
'an buy for the Specirurn, and if you do
vant 1o expand your systemn the best
hing you can do 1s keep an eye cn
wvnat's being written and advertised In
he speciahst Sinclair magazines. You
:nould also be able to find the
addresses of the companies
nentoned above. One last word of
NAITUNG - always make sure the
ompany is still in business, and that 1t
1ocks the product you want, before
enaing meney through the post, and

rou ll save yourself a lot of
usappointment.

e

w

125
nterface | and interfacing

Checklist e——

n this chapter you sheuld have
earned:

"] 'The difference between an RS232
ind a Centronles interface.

| What a local area network 1s.

] 'The difference between Random
\coess and Serial Access.

1 How to tallor vour programs sc they
nvork with Interface 2.

26
nterface | and interfacing

Appendix

27

ASCH codes of the Spectrums character set

Code Character Hex 280 Assembler — after CH —after £
A = 29 NOP RLCE
g1 IL.D BCnn RLC C
“ L nakitead @2 LD (BC), A RLC D
] @33 TNC BC RLCE
‘ B4 INC B RLC H
j @5 DECB RLCL
i PRINT cornuna @6 LD Bn RLC (HL)
7 EDIT @7 RLCA ELC A
} cursor left 28 EX AF AF”’ RRCE
! cursor right 1% ADDHL,BC RRCC
@ cursor dowrn @A LD A (BC) RRCD
1 CUrsor up @B DEC BC RRCE
2 DELETE aC INCC RRCH
3 ENTER oD DECE RRECL
4 number OF LDCrn RRC {HL)
5 not used QF RECA RRC A
B INK control 1@ DINZ 1 RLEB
7 PAPER controt 11 L.D DE nn RLC
8 FLASH control 12 LD (DE).A RL D
9 BRIGHT control 13 INC DE RLE
@ INVERSE control 14 INCD EL H
Al OVER control 15 PEC T EL L
2 AT control 16 LD Dn RL (HL)
w3 TABRB conirol 17} ELA RL A
4] I8 TKEn RR B
25 19 ADD HL,DE RERC
6 1A LD A.(DLE) BRD
7 e 1B DEC DE RRE
8 - notused IC INCE RR H
9 1D DECE ER L
0 E LDEn KE (HL)
31 1} IF ERA RRA
32 space il JRNZn SLA B
13 '. &l LD HL.in SLAC
4 % 22 LD (nn),HL SLA D
33 # 23 INC HL SLAE
S S 24 INCH sLA H
37 % 25 DECH SLA L
8 & 26 LD Hn SLA (HL)
9 : & DAA SLA A
@ { 28 IRZn SRAB
11) 29 ADD HL HL SEA C
28

\opendix

Character Hex 280 Assembler - after CB --after ED

1 O O O O b sy OO non Oy en LN A O Ol Ll U + .
S BN AN - B OB adARWIN - &

4

B W 0] O WO D —

- . -.
U LD A WA

Ll Do r—

k 2A LD HL.(nn) SEA D

+ 2B DEC HL oEA E

: 2C INC L SRA H

- 2D DEC L SRA L

. 2E. LD L.n SEA (HL)

/ 2F CPL SEA A

¢ 30 TR NC.n

1 31 LD SP.nn

2 32 LD (nn), A

3 33 INC SP

4 34 INC (HL)

5 35 DEC (HL)

6 36 LD (HL).n

y 37 SCF

8 38 JRCn SREL B

9 39 ADD HL,SP SRLC

' 3A LD A{nn) SRL D

: 3B DEC SP SRL E

< 3 INC A SRL H

= 3D DEC A SRL L

o 3E LDAn SRL (HL)

? 3F COF SRL A

(@ 49 LD BD BIT@.B IN B,(C)

A 4] LD B.C BIT @.C QUT (C}.B

B 42 LD B.D BIT®,D SBC HL,BC

C 43 LD BE BIT@,E LD (nn),BC

D 44 LDBH BIT @ H NEG

E 45 LD B.L BIT @,L RETN

F 48 LD B,(HL) BIT @.(HL) IM@

G 47 LDBA BIT@ A LD LA

H 48 LDCB BIT |,B INC,(C}

I 49 LDCC BIT1L.C QUT (C).C

4A LDCD BIT 1.D ADC HL,BC

K 4B LDCE BIT LE LD BC {nn)

L 4C LD CH BIT 1LH

M 4D LD CL BIT 1.L RETI

N 4E LD C.(HL) BIT 1,(HL)

O 4F LD CA BIT LA LDRA

P 50 LD DB BIT 2.B IN D,(C}

Q Bl LDDC BIT 2.C OUT(C).D

R 52 LD DD BIT 2.D SBC HL,DE

S B LD DE BIT2.E LD (nn),DE
.29

wppendix

ode Character Heox Z80 Assembler — after B after EI

] T 54 LDDH BIT 2 H

15 4] 55 LDDL BIT 2 L

16 vV 56 LD D.(HL) BITZ2.(HL) IM1

37 W 57 LDD.A BIT 2.A LD Al

3 X o8 LD E.B BIT 3.B IN E.(C)

3 Y 59 LDE.C BIT 3,C OUT(C).E
10 ¥ SA LDED BIT 3D ACC HL.DE
4] | 5B LDEE BIT 3.E LD DE.(nn)
32 f 5C LDEH BIT 3.H

33 1 5D LDEL BIT3.L

8 1 SE LD E,(HL) BIT3,(HL) IM2

15 B RF LDE. A BIT 3 A LD AR

6 £ Al LDHBE BIT 4,B IN H.(C)

37 a Gl LDH.C BIT4.C QUT () H
18 b 62 LDHD BIT4,D SBC HILL HL
19 s 63 LD H.E RIT4E LD {nn),HL
) d 64 LD HH BIT4.H

@1 & 65 LD HL BIT 4.L

@2 f 66 LD H.(HL) BIT 4, (HL)

@3 a 67 LD HA BIT4 A RRD

P4 h 68 LD LB BITS.B IN L.{C)

@5 1 63 LD LC BIT 8.0 CUT (C)L
06 1 6A LD LD BIT 5.D ADC HL,HL
@7 k 6B LDLE BITS.E LD HL.(an)
@8 1 6C LD L.H BIT 5 H

e m 6D LD LL BIT 5,L

] n BE LD L.(HL) BIT 5 (HL)
111 0 BF LD LA BITS A RLD

12 D 10 LD (HL) B BIT6,B INF,.(C)

13 | 11 LD (L), C BiT6.C

14 Y i2 LD (HL) D BIT 8,D SBC HL.SP
15 g 13 LD (HL).E BIT&.E LD (nn),SP
16 t 74 LD (HL).H EIT 6 H
17 u in LD (HL), L BIT 6. L

18 v 76 HALT BIT 6.(HL)

19 W 17 LD (HL)A BITG6 A

20 ‘s 18 LD AB BIT 7.B IN A.(C)

2l v 79 LDAC BIT 7.C CUT (C)A
22 z 1A LDAD BIT 1,.D ADC HL,SP
23 { 78 LD AE BIT 1.E LE SP,{nn)
24 | 1C LDAH BIT Z.H

25 } D LD AL BIT 7.L

26 ~ TE LD A (HL) BIT 7.{HL)

a7 © 7F LD AA BIT 7,

‘30

\opendix

ippendix

code Character Hex Z80 Assembler —afterCB -affer ED
28 O3 8¢ ADD AB RES @B

29 ™ g8l ADDAC RES9.C

30 J 82 ADDAD RES @D

31 = 83 ADDAE RESQ.E

32 (s 84 ADD AH RES @.H

33 [N 85 ADD AL RES @ L

34 % 86 ADD A (HL) RES 8,(HL)

35 s | 87 ADDAA RES @A

36 b 88 ADCAB RES |,B

37 " 89 ADCAC RES 1,C

38 K 8A ADCAD RES 1,.D

39 .l 8B ADCAEL RES LLE

49 = 8C ADC AH RES |.H

41 4 8D ADCAL RES |,L

42 L 8E ADC A(EL) RES |,(HL)

43 - 8F ADCAA RES LA
44 (a) 90 SUB B RES 2B
145 (h) 91 SUB C RES 2.C

46 (C) 32 SUB D RESZ2.D

47 (d) 93 SUE E RESZE

48 (e) 94 SUB H RES 2.H

49 (f) 95 SUB L RESZ L

50 (g 96 SUB (HL) RES 2.(HL)

51 (h) 97 SUB A RESZ2 A

02 (1) 98 SBC A B RES 3B

83 (1) et 89 SBC A C RES 3,C

o4 (k) F : 9A SBC AD RES 3D

85 (1) |9=PUS o5 SRCAE RES 3,E

56 (m) aC SBC A H RES 3,H

57 (n) gD SBC AL RES 3L
158 (0) SE SBC A.(HL) RES 3,(HL)

o9 §) gF SBCAA RES3.A

€0 o) AQ ANDB RES 4B LDI
Bl (1) Al ANDC RES4,C CP1
62 (s) A2 AND D RES 4,D INI
63 (1) A3 ANDE RES4.E OUTI
64) . Ad ANDH RES 4 H

65 RND A5 AND L RES 4L,

56 INKEYS Ab AND (HL) RES 4,(HL)

51 Pl Al AND A RES4.A

o8 FN A8 XORB RES 5B LDD
69 POINT AS XORC RES 5C CPD
70 SCREENS AR XORD RES 5D IND
71 ATTR AB XORE RESSE OuUTD

31

Clode Character Hex 280 Assembier —after CB — after ED
72 AT AC XORH RES5H
13 TAB AD XOR L RES 5L
14 VALS AE XOR (HL) RES 5,(HL)
15 CODE AF XORA RES 5 A
16 VAL BY) OR B RES6,B LDIR
17 LEN Bl ORC RES6,C CPIR
18 SIN BZ OR D RES6,D INIE
9 COs B3 ORE RES6,E QOTIR
3 TAN B4 ORH RES6H
Bl ASN BS ORL RES 6L
82 ACS B6 OR (HL) RES6,(HL)
83 ATN BY OR A RESGA
54 LN B8 CPB EESTR LDDR
89 EXP BY CPC RES1.C CPDR
66 INT BA CPD RESTD INCE
87 SOR BE CPE RESTE OTDR
88 SGN BC CPH REST.H
89 ABS BD CPL RES 7.L
o¢ PEEK BE CP (HL) RES 7,(HL)
91 IN BF CPA RES 1A
92 USR Ca RET NZ SET@.B
92 STRS Cl POP BC SET@aC
94 CHRS Ce JP NZ,nn SET@.D
95 NOT C3 P nn SET @.E
9 BIN C4 CALL NZnn SET @ H
9 OR C5 PUSH BC SETO.L
98 AND 6 ADDAn SET @,(HL)
9% o= C1 RST @ SET@A
e e C8 RET Z SET 1.B
01 <> C9 RET SET 1LE
a2 LINE CA TP Z,nn SET 1.D
B3 THEN CB SET 1E
04 TO @ CALL Z, nn SET LH
05 STEP CD CALLnn Sl 1,
06 DEF FN CE ADC An SET 1,(HL)
07 CAT CF RST 8 SET LA
W08 FORMAT Do RET NC SET 2.B
B9 MOVE Dl POP DE SET 2,C
1@ ERASE D2 IPNC.nn SET2.D
311 OPEN # D3 OUT (n) A sEl 2.E
18 CLOSE # D4 CALL NC.nn eETl 2.H
13 MERGE DS PUSII DE SET 2,L
114 VERIFY D6 SUBn SET 2,(HL)
15 BEEP f RST 16 SET 2 A
132

\ppendix

snpendhix

Jode Character Hex Z80 Assembler - after CB - after ED
16 CIRCLE D8 RETC okl 3.8
A INK DS EXX SET 3.C
18 PAPER DA [P C.nn oET 3.D
319 FLASH DB IN A.(n) SET3E
Al BRIGHT DC CALL Cnn SET 3 H
74 INVERSE DD prefixes SET 3,

nstrchons

1sing 1X
A OVER B SEC An SET 3.(HL)
AR ouT DF RST 24 SET 3.A
24 LPRINT EG RET PO SET 4.B
s LLIST El POP HL SET 4,C
186 STOP E2 1P PO.nn SET 4,13
A READ E3 EX (SP),HL SET 4.E
08 DATA E4 CALL PO.nn SET 4.H
es RESTORE ES PUSH HL SET 4L
30 NEW E6 ANDn SET 4.(HL)
a3l BORDER E7 RST 32 SET 4. A
32 CONTINUE ES RET PE SET 5B
33 DIM ES 1P (HL) SELSC
134 REM EA JPPE.nn SET 5D
35 FOR EB EX DE.HL SETSE
36 GO TO EC CALL PE.nn SET 5 H
a1 GO SUB ED SET S 1,
138 INPUT L XORn SET 5.(HL)
39 LOAD EF EST 49 SET SA
440 LIST Fe RETP SET 6,B
41 LET Fl POP AF SET 6,C
242 PAUSE F2 JPP.nn SET &8 D
43 NEXT F3 DI SET 6,E
44 POKE F4 CALL Pnn SET g H
45 PRINT 5 PUSH AF SET'6,L
146 PLOT F OEn SET 6.(HL)
41 RUN 4§ RST 48 SET 6.A
48 SAVE I8 RET M SET 7.B
49 RANDOMIZE 9 LD 5P HL SET 1.0
50 IF FA TP M nn obl 1,.D
51 CLS FB El SET LE
082 DRAW FC CALL M.in obil LH
193 CLEAR FD prefixes SET1.L

nsiructions

mng 1Y
54 RETURN FE CPn SET 1,(HL)
55 COoPY FE RoT 56 SETTA

33

"he mumber in colurnn 1 is the number of bytes in the variable. For two bytes,
he first one 1s the less sionificanl byle,

inclair
Svtes Address Name Contents
3 23552 KSTATE Used 1n readina the keyboard.
23560 LASTK Stores newlv pressed key.
23561 EEPDEL Time (in 50ths of a second) that a key must be
1eld down before it repeats. This starts off at
35 but you can POKE in other values.
23562 REPPER Delay (in 50ths of a second) between succes-
ave repeats of a key held down: imitially 5.
23563 DEFADD Address of arguments of user-defined function
ione iIs being evaluaied; otherwise .
23565 KDATA Stores end byte of colour controls entered from
<eyboard.
23566 TVDATA Stores bytes of colour, AT and TAB contrcls
10ng o television,
23568 STRMS Channel address attached to streams.
RIS CHARS Pcinter to the character set.
23608 RASPE Lenath of warmng buzz.
23699 PIP Lenath of kevboard click.
23e1@ ERR NR Error report code (less 1),
23e11 FLAGS Basic flags.
23612 TV FLAG Television flags.
23613 ERR SP Error return address.
23615 LIST SP Address of the automatic listing return address.
a3el? MODE Cursortvpe K, L, C, Eor G.
23€18 NEWPPC Basic line to be jumped to.
23620 NSPPC Basic statement number in line to be jumped
i
3621 PPC Basic line number of statement currentlv being
Kecued,
23623 SUBPPC Nurmber within a Basic line of statement being
sxecuted.
23624 BORDCR Border colour * 8 and the attributes used for
the lower half of the screen.
) 23625 E PPC ‘Number of current line (with program cursor).
) 23627 VARS Basic variables address.
) 23629 DEST Address of variable 1n assignment.
23631 CIANS Channel data address.

134
\opendlx

nclair

Byvtes Address Name

Contents

bo o

23633

23635
23637
23639
23641
23643
23645

23641
23649
23651
23653
23655
23656
23658
23659

23660

23662
23664

23665
13666
43679

23672

23675
23677
23678
236719
23680

CURCHL

PROG
NXTLIN
DATADD
E LINE
KCUR
CH ADD

X PTR
WORKSP
STKBOT
STKEND
BREG
MEM
FLAGSZ
DF 52

S TOP

OLDPPC
OSPCC

FLAGX
STRLEN
SEED
FRAMES

UDG
COORDS

P POSN
PR CC

Address of information currentlv being used
‘or Input and output.

Address of Basic program.

Address of next line in Basic program.

Address of terrminator of last DATA item.
Address of command beina typed 1n.

Address of cursor.

Address of the next character to be Inter-
preted.

Address of the character after the [marker.
Address of temporary work space.

Address of bottormn of calculator stack.

Address of start of spare space.

Calculator's B register.

Address of area used for calculator's memory.
Flags.

The number of lines (including one blank line)
n the lower part of the screen.

The number of the top program line in auto-
natc listings.

Line number to which CONTINUE jumps.
Number within line of statement to which
CONTINUE jumps.

Flags.

Lenath of stning type destination in assignment.
The seed for RND. This is the variable that is
et by RANDOMIZE.

3 byvte (least significant first). Frame counter.
ncremented every 20ms.

Address of 1st user-defined graphic.

x-coordinate of last point plotted.

y-coordinate of last point plotted.

33-column number of printer position.

Less significant byte of address of next position
ior LPRINT to print at (in printer buffer).

135
Appendix

sincialr

wvtes Address Name Contents
23681 Not used.
23682 ECHOE 33-colummn number and 24-line number (in
ower half) of end of input buffer.
: 23684 DF CC Address in display file of PRINT paositior.
2 23686 DFCCL Like DF CC for lower part of screen.
23688 S PCSN 33-column nurnber for PRINT position.
23689 24-line number for PRINT position.
23690 SPOSNL Like S POSN for lower part.
23692 SCRCT scroll counter.
23693 ATTRP Permanent current colours.
23654 MASK P Used for transparent colours, etc.
23695 ATTRT Termporary current colours.
23696 MASK T Like MASK P. but tempcrary.
23697 PFLAG Flags.
0 23638 MEMBOT Calculator's memory area.
: 23128 Not used.
23730 RAMTOP Address of last byte of Basic systemn area
RAM TOP.
) 23732 PRAMT Address of last byte of physical RAM
136

wpendix

Hexadecimal conversion chart

lex

A0
a1
Az
@43
A4
a5
hé
a7
A8
ag
AA
B
ac
ap
AE
@F
19
11
12
13
14
15
16
|7
18
9
1A
B
1C

=

PN NP RN BN =
-l =E T m

Decimal

OO0 SO Ny = &

0 [P P e NI G N NN P VT N
S0 00~ O W B WD - B

AP PRI D ORI g
SO0~V WM —

L L LA LW LA
W N) =

£ L W N N
=0 00 =~ O

- 137
wppendix

Binary

02000
A0202001
20022212
P02ead11
A02e0100
2002121
20202110
P02ea111
20001002
P02a1001
daee1e18@
A0a01a11
000221100
0008 11@1
P0ea111@
20881111
00210000
22012821
20a1021@
Pea10e11
20010108
20d1a121
2021811@
@2@1a111
20211000
@0@211901
@001101@
20811011
20811100
00311181
20611110
@ee11111
20100000
221000a1
P010001@
20100811
da1ea10e
2012@101
08102119
@a108111
20101000

41
42
43
44
45
46
47
48
49
5@
51
52
53
54
55
56
57
58
59
60
61
62
63
64
&5
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

38
yppendix

00121001
00121010
00121811
20191180
22101101
28101110
3181111
931102000
0a1100a1
00110210
20110811
0011012a
208110181
221181192
22118111
23111008e
#a11101
28111010
28111211
20111100

20111121

22111110
@A111111
@1000000
21000001
21600010
21000011
21000100
2102211
21002110
pieeai1
01001000
#1001001
21001010
21001811
21081180
21081181
21900111@
21081111
21010000
21310001
21910010
21812011
81910100

55
l:.6
57
58
59
5A
5B
5C

5D
>F
5@
41
a2
a3
64
65
66
67
68
69
OGA
HB
oC
ab
413

70
71
72
73
74
75
76
7
/8
79
A
7C
D
E
7F
30

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
184
185
186
107
188
189
11@
111
112
113
114
115
116
117
118
119
12@
121
122
123
124
125
126
127
128

139
Appendix

21810181
@181011@
21818111
21011000
91811001
21811210
@1811@11
21811100
@18111@1
31611110
21811111
@11000060
211000061
21108210
21100811
21100100
21100181
21100110
@11008111
21101000
21101021
211@8101@
81181011
81131100
21181101
81121110
21101111
31110000
21110001
21110010
21118011
01118109
21118101
21118110
21118111
81111000
211110881
91111910
81111811
21111100
21111101
81111118
81111111
10020000

129
138
131
132
133
134
135
136
137
138
139
148
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
168
161
162
163
164
165
166
167
166
169
179
171
172

140
Yopendix

10006281
10000019
10000811
1000010@
18602101
10000110
10008111
10001200
10001001
10001010
18881811
10881104
10681101
10081110
18801111
10010220
1001001
18210819
18810811
16810100
10012181
10019118
10818111
1221 1620
16811081
18211019
19811011
16@11108@
10811101
10811110
18811111
1010280
18100281
18130218
18102211
10102108
18188101
18128110
18182111
12181000
191010@1
1€181219
180181211
19101100

AD
AE
AF
30
31
B2
85
B4
35
86
37
B8
BY
3A
3B
BC
8D
SE
BF
co

Ce
C3
Ch
cs

.
b

cr
c8
C9
CA

CC
CD
C

CF
D@
)]
ne
D3
D&
25
16
Df
D&

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
283
204
2@5
206
2@7
208
2@9
218
211
212
213
214
215
216

41
inpendix

13181181
19101110
19181111
10110200
10110001
10110610
12110811
12110100
18110181
1811811@
18118111
10111000
18111221
10111810
19111011
1911110@
18111181
19111110
18111111
11000000
11000001
11000810
11000811
11000100
11008121
11800114@
11880111
11861080
110@1001
110@191@
11021811
11081100
11981181
11601110
11881111
11210002
11210881
11810014
11010811
11019100
11018181
1101@11@
11018111
11911000

09
DA
.jB
pCc
bD

vt " ey Sy - :
OO NP WN=_E MmO oD

T T N
mm s

217
218
219
22@
221
222
223
224
225
226
227
228
229
238
231
232
233
234
235
236
237
238
239
240
241
242
243
2hé
245
246
247
248
249
250
251
252
233
254
255

142
mpendix

11011881
11811018
11811811
11011100
11011181
1101111@
11811111
11100020
11160081
11100010
1112e@11
11182100
11188121
11100110
11180111
11121000
11181881
11181810
11101@11
11101100
11101181
11181110
11181111
11110000
11110621
11110010
11119811
11110100
11110101
11118110
11118111
11111800
11111081
11111818
11111011
11111100
11111101
11111118
11111111

|

0

1

2

3

:

S

§

1

8

g-A-B C D B F

HMA OO @ W - R GO — O

¥
16
32
48
64
80
96
112
128
144
160
176
192

]
17
33
44
65
g1
97

113
129
145
1€1
171

193

208 209
224 225
240 241

2
18
34
50
66
82
98

114
13C
146
162
178
194
210
246
242

3
19
35
51
61
83
99

115
13:
147
163
179
195

4
20
36
52
68
84
100
116
132
148
164
180
196

5
al
37
83
69
89
101
117
133
149
163
181
197

6
oy
38
54
G
86
102
118
134
150
166
182
198

2ll 212 213 214
221 228 229
243 244 245

230
246

1
a3
39
o9
1!

-
1

103
119
135
151
167
183
198
215
231
241

8
24
40
56
12
88

104
120
136
152
168
184
200
216
232

9
25
4]
57
13
89

105
121
137
153
169
185
201
al?
233

248 249

10
26
42
58
4
90
106
122
138
154
170
186

1l
21
43
59
15
91
107
123
139
155
171
187

12
28
44
60
18
92
108
124
143
155
172
188

a0a a03 204
218 218 220 221
234 235 236 2317
250 251 252 253

13
29
45
g1
7
g3
169
125
141
1571
113
189
s

14
30
46
B2
18
94
1i0
126
142
158
174
180

15
31
47
63
19
95
111
127
143
158
175
191

206 2071
22a 433
238 239
254 255

'43

Appendix

Lisnlay File Attnbutes Frinter Buffer
16384 22528 23656 23554
;vstem Variables Micredrive maps : “:ham‘_?l
nformation
3134 CHANS
{0h BASIC nrogram Variables a0h
, | 4
PROG VARS ELINE
sommand or NL | 80h | INPUT data
orogram line being edited
NORKSP
Temporary Calculator Machine
NL work space stack Spare s5ack
TKBOT STKEND sp
0OsUB " e : 9,
s . SEh User Defined CGraphics
AM UDG PRAMT
"OF

144
\ppendix

¢

-

i

3l

Ll

9l

gl

4l

el

¢l

11

D = OO O

a

&= 0 03 =T

(SO 52 92 /7 92 G2 PeFz 22 120261 QL LI QTSI PL EL QI [T 2T 6 8 L 9 S b € 2 1

- | . sauuppd usauss wnaoadg

45
pendix

k

.

A RP A7 J? Q7 C7 $7 7 77 TZ (O7 RT R[JI 91 €1 B[©f 91 7] @]

[

4]

]

0

¥ E 2

(A

Be
61
gl
A

91

bl
£l

o = W) D b= o0 O

—

=

46
iopendix

e
0e

61
81

L1

91

Gl

Pl

el

od

-
—_—

= o~ 0] o= W) O [~ O) =

CQL A7 B2 17 92 G2 262 22120261 Q1 2L S1CI Bl S12I (1@ A 8 L O G P € 2 1 O

a

147
ippendix

e 0F 62 82 /2 92 G2 b2 €2 22 12 07 61 81 71 O S1 FI £1 21 11 0]

=

o

1z
oe
Bl
81
L1
al
&1
Pl
El
gl

L

= ab

o

= —] 0 = LD

148
Appendix

1€ 0F 7 8% 77 92 C7 P2 £7 77 [2 02 A 1 11 a1 1 b1 o 21 11

(AR

T

I

5]

o

12
oe
6l
81
Al
91
G1
I
el
el

D W M~ 0D O =

=2 == w] O3} =P

45
yppendix

1€ O€ 62 22 IZ 92 SZ V2 £2 22 1¢ 0¢ 61 81 L1 91 S! #1 €1 21 11 0l

&

8

T

da

9 ¢ p

8,

7

B~ 0] M = M~ 00

150
Appendix

[€ OE 62 BS 12 92 G2 ¥e €2 22 12 0¢ 61 81 LI 91 &I #1 €1 21 11 0l

5 8 L 8.5

bV € ©

[

O =~ 0300 =m0 =D DS e
e T e T e B B e T e I B % [v |

O = o) o M~ 0D

S — 0d

181

prendix

i
L

IEQE 62 B2 12 9262 P2 €2 22 12 02 6T BT ZI ST GI PI E1 21 T1 O1 6 8 L

&

e
il
B1
g1
L1
81
I
il
el
¢l
[

D = D oy = O O

2 —

g2
\ppendix

10 67 Q7 J2 92 C7 P2 E2 22 12 02 61 81 11 Of ST #1 £1 21 11 @1

1é

02
61

81

= o~ 00 O = Wy O b
i =i = = ==l e e pmay

— e 00 = W O b~ O

=3

183

ippendix

154

Index

88

A

ABS 20
ACS 2]
4adress 60
qventure 42
AND 14
smimanon 90
arrays 33
wCIT 69
ASN 2]
wsempler 101
ATN 21
ATTR 87

3

Jasic interpreter 100
BEEP 103

3IN B0

cinary 80
sranching 13
ouilt-in funchions 17

o

entronics 1.9
“hannels 70
zharacter positions 50
‘naracter set {0
"HARS 87
'HR$ 25

dock 76
DOPE 21 8]
olour 9Y, 65
h: 21

D

DATA 32
DIM 33
usplay file 31
JRAW 50

=

3
1eld editor 37
lags 712

lats 108
'OR. .. NEXT 15

156
ndex

Tecquency 108
unctions 18

tE
GOSUB 8
SO0TO 8

jlaphics 22, 49, 79
srassibre fill 54

S |
iexadecimal 101

|

nicrmaticn handling 32
NK 50

INKEY$ 27

NPUT 27

INT 20

nieractive programming 25
nterfacel 118 119
mterface 2 143

nterrupts 102

5L

LEN 27
local area network 120

M

nachine code 101
mnemory 99
nemorvy map 57, 103
MENU 35, 43
Microdrive 118

N
NOT 14
wies (08

2

wltave 108
R 14

utput pert 103

P
PAPER &0

87
ndex

PEEK 69

pixelz 50

PLOT 50

poner 83

oseudo random rumber 18

'R

‘adlans 21

RAMTOP 51
LANDOMIZE 19
YANDOMIZE USR? 101
XEAD 32

{EM 43

RESTORE 33

KND 18

8232 119

S

scanmng beam 91
screen oU
SCREENE 51
scroll 78

seed 18, o
emiones 108
SGN 2C

narps 108

3IN 2l

ound 101, 107
prites 90

slack pointer 124
streams {0
qngarray 42
ftructure 8
suproutines 10
:ystem{ranab]es 68

T
'AN 21
ohll 54

J

JLA 9l

1ser-aefined graphics B0
ISR 83

158
ndex

v

VAL 27

nprate 110
ndeo RAM 91, 93

59

. ¥
ba

S it
=
e

s
NG

L el P

'-:-_l et
e A
0
= ¢

s
s O

Programming with
added power

Turbocharge your ZX Spectrum

BETTER PROGRAMMING

Turbocharge your ZX Spectrum tells you how the
oroiessionals do it It concentrates on putiing more power
wvnere 1t matters - in your hands.

't shows how you can exploit your micro to the full and
now to approach programming problems the right way.

‘N-DEPTH EXPLORATION

The great strength of the ZX Spectrum lies in its flexibility.
I'he swift development of games programming shows
just how far it can be stretched and how much can be got
out of it.

Discovering iis stmngths and weaknesses for yourself
‘an be fun but it's not something you can hope todoina
TV, That s where Turbocharge your ZX Spectrum
comes in.

THE RIGHT STUFF

“urbocharge your ZX Spectrum gives expert insights into
he full power of your ZX Spectrum. There are powerful
agraphics and sound routines and many K’s worth of
listings for vou to explore and exploit.

FOR THE PROFESSIONAL TOUCH IN YOUR

PROGRAMS,
"URBOCHARGE YOUR ZX SPECTRUM

SBN 0-582-91Lk04-G&

l.ongman i '
“omputer
300ks - 9 780582'916043

