THE
SPECTRUM

PROGRAMMER

“he Spectrum
“rogrammer

The Spectrum
Programmer

S. M. Gee

“ditorial Adviser: Henry Budgett

sFRANADA
Tondon Toronto Sycdney New York

rranada Publishing Limited Technical Books Division
‘rogmore, St Albans, Herts AL2 2NF

ind

6 Golden Sguare, London WIR 4AH

.15 Madison Avenue. New York, NY 10022, USA

17 York Street. Svdney. NSW 2000, Australia

00 Skvway Avenue, Rexdale, Ontario, Canada M9IW 3A6
1] Beach Road. Auckland, Iew Zealand

‘opyright @ 1983 by 5. M. Gee

ritish Library Carafopwing in Publicarion Data

jee, 5.M.

he Spectrum programner.

. Sinclair ZX Spectrum {(Computers)—Programming
. Title

101.64°2 QAT76.2.562/

SBN v 246 12025-8

irst published in Great Britain 1983 by Granada Publishing Ltd
Leprinted 1983 {twice)

Tvpeset by V & M Graphiecs Led, Avlesbury. Bucks
rinted in Great Britain by Mackays of Chatham. Kenat

vl righis reserved. No part of this publication may be reproduced.
:xored in a retrieval svstem, or transmitted in any form or by any
neans. clectronic, mechanical, photocopying, recording or otherwise,
vithout the nrior permission of the publishers,

iranada®
iranada Publishing®

Contents

reface
Before You Switch On
¥hat is a computer?
rograms and programming
“he history of the ZX Spectrum
Getting to Know Your Spectrum
L new acquaintance
Setting up the Spectrum
Jsing the keyboard
‘ntering a program
Voare about the kevboard
Ising a tape recorder
:diting and our second program

1§ vou go along

First Steps - Variables, PRINT, LET and INPUT

‘ariables

storing things in variables — LET
‘inding out what’s in a variable - PRINT

arithmetic

‘nderstanding expressions the order of evaluation

/ariables and constants — the full expression

1\ short program

vnother wav of altering variables - INPUT

‘ariables and constants as expressions

ix

i <Y

o0 =1 w1 LA

10

14
17
19
22
23
23
24
25
26

28
29
29

Describing BASIC
NPUT prompting
viixed PRINT
;ome sample programs
Looping and Choice the Flow of Control
he flow of control
Looping the GOTO
‘hoices and conditions the IF statement
jsing IF
che FOR statement
'sing the FOR loop
F ... THEN and the colon
v final example
I'he flow of control summarised
Handling Text and Numbers
trings
SIring expressions
ArTayvs
1 word game
nitialising variables - DATA and RESTORE
Saving data on tape
Functions and Subroutines
"he idea of a function
“he Spectrum’s functions
Jser-defined functions DEIF FN and FN
subroutines GOSUB and RETURN
Ising subroutines
Graphics
‘ontrolling PRINT
PRINT functions - TAB and AT
A full screen - CLS and scroliing
‘ontrolling INPUT

“he graphics characters 93

Jser-defined graphics characters 96
hanging the way characters look - INVERSE
ina OVER 99
‘haracter attributes FLASH and BRIGHT 101
‘olour BORDER, INK and PAPER 102
Jisnlay commands in colour 104
“emporary celours 105
Jsing graphics in games 106
3 Sound and Games 107
:imple sounds BEEP 107
’rogramming tunes 109
lesting PAUSE 112
some sound effects 113
attack the saucer the SCREENS lunction 114
< 2 Hhgh-resolution Graphics 118
“he high-resolution screen 118
“he graphics commands - PLOT, DRAW and
A RCLE 119
Tigh-resolution colours 124
In-plotting - OVER and INVERSE 125
‘inding out what's on the screen - POINT 126
Ising hi-res graphics 127
) Logic and Other Topics 130
.ogic and the conditional expressions 130
nside the Spectrum - BIN, PEEK, POKE, IN, OUT,
JSR and CLEAR 133
‘inding out the colour - ATTR 136
REMark and good programming 136
Vhere next? 137
urther Reading 138

ndex 139

rreface

"his book has been written lor all Spectrum users who want Lo fearn
o write their own programs. Programming your Spectrum can be
rreat fun and very rewarding and learning BASIC is by no means a
iaunting undertaking. This book 1s intended to take vou from very
undamental routines te proficient programming by clear and easy-
o-follow stages.

"hapter One introduces some 1deas that are relevantl to all
‘omputers and programming in general and looks at the Spectrum’s
amilv tree. Chapter I'wo deals with getting readv to learn
yrogramming on your Spectrum and it includes a program that
yrovides vour Spectrum with its very own test card for tuning the TV
et. We start to learn programming m Chapter Three which
ntroduces variables and some of the essential keywords. such as
'RINT. INPUT and LLET that are used to handle them. Chapter
‘our introduces the idea of the flow of control which 1s central to
omputer programming. Chapter Five shows how your Spectrum
1andles hoth numbers and words and how you can combine both in
‘our programs. ihe uses of the Spectrum’s functions and the related
dea of subroutines are the main topics in Chapter Six and this is
vnere the very important commands RND, RANDOMISE and
NKEY®$ are discussed. The book pays a great deal of attention to
he Spectrum’s graphics and colour starting in Chapter Seven,
cound 1s added in Chapter Eight which also presents a games
rogram wnich uses colour graphics and sound with exciting effects.
“hapter Nine explains the Spectrum’s high-resolution graphics
capabilities and includes lots of short programs that shaw off its
eatures in this respect. The final chapter covers the topic of logic
ina also introduces some commands that allow the programmer to
-ontrol the Spectrum’s inner workings in a direct way,

v vou will already realise, this book covers a lot of ground.
Towever, it is not meant to be hard going - it is meant to be fun.

x ‘he Spectrum Programmer

More importantly, it is not meant as a rcading book - it1s meantasa
ry-it-yourself book. There are lots of programs and program
sninpets included and they are all there for you to use. So stand by
rour Spectrum and enjoy learning BASIC.
've actually had a good deal of fun writing this book and have
1so learned some interesting things both about the Spectrum, which
think is a remarkable micro. and about BASIC, which has long
»een the best computer language as far as I'm concerned. [would
ike to express my thanks to Jane Patience who helped with the not-
.o-enioyable stages of presenting my publishers with a readable
nanuscript.

“hapter One
sefore You Switch On

¥hen vou lirst set eves on the Spectrum vou may be surprised by
‘ust how small it 15. You may be even more amazed if you know that
miy twenty years ago a computer with a similar memory capacity
would have filled the whole of a family house. You may wonder
vhether the circuttry inside so slim and compact a case canreally do
i1l the things the adverts claim for it, Wellit can do all those things -
tcan tackle complicated calculations, produce colour graphics and
'mut 4 variety of sounds - and come up with many more extras
sesides. and any limitations it has are not really to do with its small
:xterior aithough they are governed by its price. However, the fact
that modern micro-technology has enabled so much to be squeezed
nto so small a space 1s a fact that the Spectrum vser can cheerfully
gnore, Tor at the same time as computer design 1s becoming more
sopnisticated, computer use 18 becoming accessible to everyone who
vants to join in.

Nhat is a computer?

“his guestion 1s one that can be answered at many levels, Whole
-napters, even whole books, can be devoted to the subject. In order
0 ust vour Specirum, however, you really do not even need to ask
his question. After all, we all watch TV but few of us ever question
:xactly what a television s, Ilf you want to know every detail of the
vav the Spectrum works then there 1s no choice but to learn about
:lectronics. However it 1s not difficult to gain an understanding of
vnat a computer does and roughly how it does it without knowing
invthing about electronics or the ever present cAip! The point is that
i computer 1s something that would exist even if electronics had
iever peen invented. Indeed the first computers were built using
cogs ana gears and it took one hundred years before a valve (an early

2 The Spectrum Programmer

-lectronic component} found its way into such a machine. Although
n practical terms the computer seems to be a product of micropro-
essor lechnology, the 1dea that lies behind a computer doesn't
iepend on the matenals that you choose to build it from.

wverv computer i1s composed of a number of parts that each

serform a well-defined function. Any computer has to have some
vav oI communicating with the outside world. In the case of the
;pectrum this need is met by a keyboard, on which you type, and the
"V screen. which the Spectrum can use to show you what vou have
vped and anvthing else 1t needs to tell you. The keyboard 1s an
:xampie of an inpus device and the TV screen 1s an outpur device.
“hese are not the only input / output or 1/ O devices that can be used
vith a computer. You can buy a small printer that can be used with
the Spectrum for example and you can direct the Spectrum to
yroauce 1ts output on this printer instead of, or as well as, the screen,

v machine that could only receive information and pass it on
imncnanged wouldn’t really be worth calling a computer. Rather 1t
night be classed as a telephone or a telex! Inside every computer
here has to be some mechanism that can change or process
nformation before it i1s printed out. This mechanism usually takes
he torm (these davs at least) of complex electronics hidden 1nside
he computer. What we are talking about is often referred to as the
‘eniragl Processing Unir or CPU but it also has a traditional English
1ame that betrays the fact that computers were once made of cogs
ind gears - the mill.

n the Spectrum the CPU 1s contained in a singic chip knownasa
‘8¢t and this is of course the origin of the Z in the Spectrum'’s full
iame — the ZX Spectrum. Whar exactly the Z80 does isn't of too
nuch importance from the point of view of programming in BASIC

ana the way that it does it certainly isn’t! In general, however, what

he ZBO does is to perform arithmetic and other operations on
nformation input from the keyboard and stored within the
nachine. What operations it does are controlled by a list of
nstructions called a program. This aspect of a computer is so
mportant that you could almost say that a computer /s a machine
that will obey a Iist of instructions - but any sort of definition of a
machine as complicated as a computer is dangerous! What sort of
nstructions the Spectrum can obev will occupy the rest of this book,
.0 Tor the moment the subject will be set aside.

f a computer is going to obey a list of instructions concerning
vhat to do with various pieces of information it must obviously have
.omewhnere to store not only the information but also the list of

tefore You Switch On 3

nstructions. This part of a computer is known as memory but the
ipightly less general term RAM (standing for Random Access
dfermorv)is almost umversally used instead. You can think of RAM
18 a sort of note pad where the CPU can record its list of instructions
ing any data that it nceds. Obviously every memory has a limited
apacity and this is an important measure of how powerful a
-:omputer 1s. The larger the memory the larger the list of instructions
hat can he stored. The most convenient unit of measurement to
ipply to computer memory is the Ayze. Roughly speaking a memorythat
:an store one bvte, can store one character. (Here the term character
neans a letter. a digit or any punctuation that vou might find in a
1ormal text - such as this book!) So 4 400 byte memory could store
nougnh characters to hold about a quarter of a page of this book.
he only trouble with this convenient unit of measure 1s that it is a
ittle too small. Computers normally have memonries that can store
housands of characters and so it makes good sense to think interms
i1 thousands of characters. The unit used for this is the kifobvie,
voich 1s often shortened te kbvie or even just K. For various
gasons. however, | kbyte isn’t 1000 bytes as its name suggests, but
024 bvtes. (You may notice that this strange number 1s the nearest
rower oI two to 1000 and, as vou might already know, computers
vork in binary which is based on #wo states,) There are two versions
o1 the Spectrum that differ only in the amount of memory that they
‘an use —either 16K or 48K. So even the smallesr Spectrum can store
oughly 16000 characters which is enough for a wide range of
nteresting applications. (Early computers that were used by the
niittary to calculate missile trajectones, etc., often had less than
6K!)
"his combination of 1/0 devices. CPU and memory is all that
here 15 to a computer. The 1/0 communicates with the outside
vorid. the CPU calculates and generally processes information and
he memory holds the hist ol instructions that the machine obeys and
he data that the CPU acts on. In practice, there is one addition that
ve must make to this list. When vou switch yvour Spectrum off it
orgets everything stored in its memory. To keep information stored
iccurately, most computer memories need a constant supply of
stiectricitv. It vou switch off the supply, the information is lost. This
ort of memorv is often known as volatile memory, This loss of
nemory 1s something of a problem because it implies that we have to
vpe 1n the list of instructions every time that the Spectrum has been
switched off. To overcome this dilliculty most computers have a
secona form of memory that is - ron-vaolarile. Tn the case of the

4 The Spectrum Programiner

;pectrum, this takes the form of a standard cassette tape recorder
hat can be used to save programs and data in a form that exists even
vhen the power has been switched off. A second advantage with this
vpe of memory is that it is removable. You canrecord a program on
i casselle and then take it out of the recorder (and even send il Lo
:omeone eise), The Spectrum is then ready for you to start ona new
yrogram or go pack to an old one, which you can do by /loading it
Tom an earlier recorded tape. The Spectrum can also use a second,
sut less common form of removable storage - the Microdrive. This
-an be purchased as an addition to the basic Spectrum and it works
erv mucn like a cassette recorder except a lot faster! If you are
erious about computing, or become serious by the end of this book,
hen a Microdrive 1s a must.

Programs and programming

vs mentioned earlier, a computer obeys a list of instructions stored
n s memory. [his list of instructions 1s known as a program and
yriting such lists of instructions 1s known as programming. It is
iten thought that programming is an activity that started with the
nodern digital computers, but people have been writing lists of
nstructions for other people to obey since writing was first invented.
In this sense. programming is nothing new and can be seen in the
orm of recipes and knitting patterns in almost every home. Perhaps
e of the best examples of traditional programming is written
nusic. You can think of sheet music as heing a program that will
nstruct a musician to play a specific tune. In fact written music is
ery like a computer program in that it relies on using a special
anguage that is much more precise than ordinary language. Just one
10te out ot place and vou have a different tune! A computer
program 1s written using a special and equally precise language. In
the case of the Spectrum this language is BASIC, the most popular
nrogramming ianguage in the world. Just as with written music,
aight changes in a BASIC program can alter its meaning
-ompietely, so it is important to realise as you learn BASIC that you
nust pay attention to the fine details right from the very beginning.
inlike learning Enghish, where you can first learn words and
:entences and then add punctuation, you have to take notice of every
:omma 1n a line of BASIC (or it to make any sense at all!
{ all this talk of strict rules 1s worrying you it i1s worth saying that
the rules are usually very simple and very regular. Unlike English

Jefore You Switchh On B

here are rarelv any exceptions to spelling and punctuation rules in
3ASIC! In addition, there are some powerful underlying ideas
sehind BASIC, Once vou have recognised these they make 1t easy to
inderstand why the rules are there at all. As you progress through
this book there are therefore two tvpes of thing that you will learn
the tine detail concerning the exact form of each BASIC statement
ind the general features that all programming languages share. The
inal detail is important to actually getting a program working but
inderstanding the general details makes the act of programming a
:ensible occupation.

The history of the ZX Spectrum

3efore moving on to a discussion of the Spectrum it might be of
nicrest to take a brief look at its family tree. In 1980 Sinclair
Lesearch launched a small plastic-cased computer, the ZX80, that
orought computing within the reach of nearly evervone. The trouble
vas that it was very limited. It was a revolution, but in many senses it was
ust a little before its time, [t could be used to run small programs
vritten in BASIC but the sort of arithmetic that it could do was
-estricted to whole numbers. 1t could display information ona TV
creen out only while it wasn’t processing data. If it was doing
invthing at all useful the TV screen flickered disturbingly. This
meant that a lot of people who bought the ZXE0 for various reasons
vere aisabpointed to discover that it just couldn’t live up to their
:xpectations of a computer,

n 1981 Sinclair launched the successor to the ZX80, the ZX8I1.
The ZX81 is the first reallv useful computer to figure in this brief
ystory. It had very hittle memory (1K) but at least its screen didn’t
licker and for the first time 1t was possible to use good graphics -
soth static and moving! The ZX¥] 1s also notable because it
ntroduced Sinclair- or ZX-BASIC which is used in a slightly
-xtended form in the Spectrum. ZX-BASIC is a fully developed
grsion of BASIC that has many advantages over the BASIC on
yther machines. To make up for the small memory size Sinclair
sroauced a 16K add-on RAM pack and to extend the machine’s
‘ange o1 use a small low cost printer was offered. The 16K RAM
nack can only be used with the ZX81 but the printer is still available
ind works very well with the Spectrum. (The program outputs in
his book were produced using just such a printer.)

In 1982 Sinclair announced the Spectrum to complement the

6 The Spectrum Programmer

"X81. The Spectrum added sound, colour and high-resolution
:;raphics to the capabilities of the ZX81 and generally offered an
mproved performance for a slightly higher price, In addition to the
spectrum, Sinclair also introduced a very low cost storage device,
he Microdrive. and a communications interface {neither of which
-an be used with the ZX81). The availability of these two extras
ruarantees the Spectrum a place in both popular and serious
ipplications for some time to come.

.een as a steady development of the Sinclair range, the Spectrum
s a iogical and well-designed machine that builds on the experience
sained both from the ZX80 and the ZX8!. This ensures it a place as
in 1mportant and popular computer. ZX-BASIC has also
nrogressed steadily and has taken its place as an important and
yopuiar programming language. Learning this BASIC s, therefore,
likelv to stand vou in good stead for now and for the future.

Chapter Two
Getting to Know Your
spectrum

"here are two problems in using a computer. T'he first is simply
zetting it set up and getting used to its idiosyncrasies. The second is
vriting working programs. 'This chapter deals with both these
proplems so that we can get them out of the way before we get down
o the main task of learning BASIC.

A new acquaintance

ietting to know a computer is a problem that exists even if you're an
:xpert. For although there 1s a lot in common between different
:omputers, there are always enough little differences to mean that
here has to be a period of adjustment when moving from one
nachine to the next, For example, nearly every computer uses a
:tandard tvpewriter (or QWERTY) keyboard but most place exira,
yut verv important, keys in slightly different places and this can
make even the most expert look silly at first! Now, if vou're an
:xnert, then you know that this early phase soon passes butif you're
i beginner you may panic and think that computing 1s always going
o be this trickv! The trouble is that not being ‘at home® with your
omputer can make easy programming ideas seem difficult,

There is no wav to avoid this early barrier to programming
>ecause being on friendly terms with your computer is simply a
natter of time and a matter of using it. You'll come through this
rather frustrating period more easily if vou bear in mind the
ollowing advice:

1} Separate in vour mind any dilficulty that you encounter in
1sing your Spectrum from any difficulties that you have with
rogramming.

2) Don’t immediately assume that any szrange behaviour on the
vart of your Spectrum is its fault - at first the chances are that
he mistake 1s yours!

8 The Spectrum Programmer

3) Don't immediately assume that any unexpected behaviour of a
yrogram means that your Spectrum s illogical - computers are
-uthlessly logical. Try not to confuse tvping errors with
ogramming errors.

o trv and help you identify this initial difficulty and to help you
wercome 1. this chapter includes two short programs that you
nould trv to get runming on your Spectrum before moving onto the
‘est of the book. Thev are presented as complete and working
yrograms 1or you to use to find out about the non-programming
woblems of using the Spectrum. At this stage you are not expected
o be able to understand how they work and you might like to return
o them as vou rcad through later chapters to see how you're
IOLressing.

Setting up the Spectrum

I'he Spectrum 15 one of the world’s easiest computers to get going.
il vou have to do is to plug the power supply (the small black box
narked ZX POWER SUPPLY) into the mains and then insert the
:mall cvlindrical plug into the socket on the back of the Spectrum
narked 9V DC. At this point you should be able to hear a high
piiched whine, sounding rather like a persistent mosguito, coming
rom vour Spectrum! If you can’t hear anything then check that the
nains power is switched on. If it1s and you still cannot hear anything
nen press the key marked ‘A’ on the left of the keyboard. If you keep
his kev pressed you should hear a low clicking noise coming from
rour 3pectrum. This test should not fail with any working Spectrum.
‘onnecting the mains to your Spectrum is the only thing that is
equired to make it start working. However, if you want to see what
it 1s doing you will have to conncect it to a working UHF TV set! This
yeration is a little more difficult than connecting the mains (o the
spectrum because it involves a piece of equipment that will vary
rom house to house — the TV set. When connecting the Spectrum to
he TV set. it will help to think of it as being an extra channel, Yes, the
spectrum is not only a computer, it is a small television station!
¥hen your TV set was first delivered 1t had to be tuned-1n to reccive
he channels that are used in vour area. In the same way, when vou
irst use vour Spectrum you have to tune the TV set to receive it. If
rour iV set has push button tuning then you will have to decide
vhich button is going to be the Spectrum channel and find out how
o tune it in from the instruction manual that came with the

Getting to Know Your Spectrum 9

et. It vour set has dial tuning then finding the Spectrum channel
s exactiv thc samc as finding any other channel. However,
sefore vou connect the Spectrum to the TV set, either tune the
'nannel button that vou are going to use or set the dial to receive
3BC 2. (Non-UK readers must consult the tuning information that
:omes with the Spectrum to discover their equivalent of BBC 2.) The
-eason Tor this is that {in most regions) the Spectrum channel is justa
ittle Afgher than BBC 2 and rather than start the search from
inywhere it is easier to start from BBC 2 and then tune the set away
rom the other BBC and ITV channels toward channel 36 — which is
he one Spectrum uses.

Nith the set tuned to BBC 2. take the lead that came with your
spectrum, with the TV acrial plug on one end, and plug it into the
"V's aerial socket (removing the original aerial’s plug first!). Then
siug the other end into the socket at the back of the Spectrum
narked TV. Now with both the Spectrum and the TV switched on
you should turn the TV's sound right down to avoid unpleasant
101ses) start tuning the TV set. As you get close to the Spectrum
cnannel you will begin to sce a fuzzy picture. Keep going until you
an see the message:

o 1982 Sinclair Research Ltd.

1iearly on the bottom of the screen. Just as with any TV channel, if
vou haven't tuned-in exactly the picture quality will be poor, so take
-are and be patient with the fine tuning until you have a nice sharp
image.

f vou are using a colour set then you may have to adjust the
brightness, contrast and colour controls to get the best possible
picture but don’t do this until vou have finished tuning for the
snarpest picture or things will get hopelessly confused. If you're
1sing a plack and white set then you won't be able to see the colours
that the Svectrum produces but you still might have to adjust the
brightness and contrast on your set to produce a satisfactory picture.
\ black and white set will work perfectly well with the Spectrum but
nstead of secing its different colours you will see eight different
.nades of grey ranging from black to white.

f vou want to, you can leave any final adjustments until after you
1ave entered the program given later in this chapter, because it will
sroduce the Spectrum’s very own test card pattern which will help to
‘neck the fine tuning.

10 The Spectrum Programmer
Using the keyboard

fter getting your Spectrum going the next thing to do is to start to
earn vour way around the keyboard. Perhaps the most off-putting
eature of the Spectrum 15 the number of letters and words that are
vritten on and around the keys of the kevboard. The idea of having
-ach kev on a keyboard perform more than one job 1s not a new one.
Aost tvpewriters use a single key to print lower case and capital
etters {upper case) and no-one seems upset by the 1dea of selecting
setween the two by pressing an extra key the shift key. Notice that
he shift kev doesn't actually print anything if you pressit all on its
wn so I1Us not the same as the other kevs on the keyboard. As it
-onirols what the other keys produce, it is known as a control kev.

“he Spectrum actually has a number of control keys which are
1sed 1n different combinations to give access to all its characters,
-ommanas and features. The diagram (Fig. 2.1) shows their location
m the kevboard. The function of all these control keys will be
xpiained in this chapter, starting with the ones needed most
Tequently,

X Spectrum

//

= G

VIDED WIDEC < GHAPRCE DEL

II-L_H | | !IV]I_HI_TII_"]I =

“APS l‘s‘rMFlE_"JL SAF AR

HIET LsHFT SPACE

. i fhfict £t : ;Af

ig. 2.1. The position of the control keys

I'he Spectrum uses two control keys to select between three of the
.15 of characters printed on each key. The CAPS SHIFT key works
n the same wav as the shift key on a typewriter. If you pressakevon

Getting to Know Your Spectrum 11

ts own vou will get the lower case version of the letter written on it.
‘lowever. if you press the key while holding the CAPS SHIFT key
iown vou will get the upper case letter printed on the key.

"he second control key 1s the SYMBOL SHIFT at the far right of
he kevboard. Pressing any kev while holding this down produces
he red word or symbol written on the key to the right of the main
etter or digit.

he use of the two shift kevs seems easy enough but if you have
ust switched on your Spectrum and press the ‘A’ key you will be
:urprised to see the word NEW appear on the screen - something has
‘learly gone wrong! By the above rules pressing just the ‘A’ key
:nould print a lower case ‘a’. The reason for this anomaly is that
very line of BASIC begins with one of a small set of words, the
cevwords. To make life easier, the Spectrum interprets the very first
etter key that vou press as a keyword. The keyword produced by
:ach kev 1s written in white at the bottom. The keyword on the ‘A’
<ev 15 NEW and this is whv the word NEW appears on the screen
vnen the ‘A’ kev is pressed for the first time. If you pressthe *A’keya
:econd time when the letter ‘a’ 1s printed on the screen exactly as
wredicted. To let you know what anv key is going to produce when
‘ou press 1t the Spectrum displays a different letter in the flashing
auare, This 18 known as the cursor. Its position on the screen
ndicates where the next printing position 1s and the letter displayed
rives information about which set of keyboard characters will be
1sed. At the start of everv line the cursor 1s a {lashing K] until a
cevword is entered and then it changes to a flashing[(& stands for
tevword and[| stands for letter.) While the cursor is a flashing L] the

wo shift keys work as described above.
"o summarise, let’s look at one particular key, the one shown

selow:

wTE LETTERNG & R / L sl

lhe white kevwaords printed on the bottom of each key are
produced when the cursor 1s a flashing [K]. In the case of our
xampie key the word RUN is produced.

Ipper and lower case letters are produced when the cursor is a
lashing L], lower case when the CAPS SHIFT 1sn’t pressed (that

"2 The Spectrum Programmer

s °r" in this example) and upper case (that 1s ‘R’) when the CAPS
SHIFT 1s pressed.

“he red svmbols/words printed on the top right hand corner of
he kevs are produced by pressing the key at the same time as the
'YMBOL SHIFT kev. In this case << (the less than symbol) is
yroauced. This works with the cursor showing either K] or[L].

¥e now know how four of the symbols or words that surround
‘acn kev can be produced and this i1s ¢nough to enter a short
yrogram. ihere is more to using the keyhoard but we will return to
his later.

ntering a program

ys explained in Chapter One, a program is a list of instructions that
1 computer can obey. In BASIC this hst of instructions is built up by
vping in iines of commands, each one beginning with a number -
ne line number, The easiest wav to understand this is to try out a
:hort program, Don’t worry if~you don’t understand how the
yrogram works, just concentrate on entering it correctly. Before you
negin, switch your Spectrum off and then, after waiting a moment,
n again. This will produce the familiar copyright message on the
«creen and ensure that anvthing you may have typed in while
:xperimenting is cieared out of the machine. Now type the following
ine taking care not to make a mistake. (If you do make a mistake
hen switch off and start again. This is only & temporary way to
wercome mistakes. More satisfactory methods will be explained
hortlv.)

0 LET a=0

votice that the word LET is a kevword and is produced by pressing
' while the cursor shows a flashing K |. Also notice that the second
ind last characters are zeros. not a letter *O’ (the zero (¢) is on the far
12ht of the top row of keys). The ‘="sign 15 in red on the ‘L’ key and
;0 1o enter this vou have to press SYMBOL SHIFT and ‘L.
vfter vou have tvped this line you have to press the key marked
‘NTER on the far right of the keyboard. The purpose of this is to
ell the Spectrum that you have finished typing the line and that it
can iry to incorporate it into any program that you may have already
vped. The word *try’ is used because, even though you may think
hat what vou have typed is correct, the Spectrum checks it and, if it

GGetting to Know Your Spectrum 13

inds that vou have typed nonsense, it will refuse to accept it. When
he Spectrum accepts the line it disappears from the bottom of the
creen and appears at the top. Now enter the following line:

% PRINT a

Once again the word PRINT 1s a keyword and is entered by pressing
me Kev, in this case ‘P°. Press ENTER, and the second line will
ibpear, again in the upper part of the screen, just below the first line.
Jext. enter the lollowing line:

@ 1LET a=a—+1

“his time. before vou press ENTER, let’s see how vou could correct
inv errors that vou might have made. Suppose, for example, that by
mstake vou had tvped ‘b=a+1". You might then be pleased to know
hat the Spectrum offers vou a backspace facility and enables you to
‘nange the line you have typed very easily. If vou press the left arrow
ey {the 5 on the top row) while you press CAPS SHIFT you will see
he cursor move over the letters that vou have entered. If you press
he DELETE key (the § on the top row) while pressing the CAPS
SHIFT, the letter or even a whole keyword to the left of the cursor
viil vanish (i.e. will be deleted). You can insert a new keyword or
etters by simply tvping them in. You can move the cursor to the
‘tght by using the right arrow key (the 8 on the top row)and any new
‘naracters that vou type will be inserted to the immediate left of the
ursor. (Lhis is all a lot casier to sce happening than it is to explain so
1on't be afraid to experiment — you can’t hurt your Spectrum.}
‘inallv, when vou have finished entering the line, press ENTER.
wext. type:

9 GOTO 20

JTotice that when vou tvpe the key marked GOTO the two words GO
"0 appear on the screen.

“ou should now have the following program in the top part of the
creen:

¢ LET a=0
% PRINT a
¥ LET a=a+1
0 GOTO 20
"his is a list of instructions that vou can make the Spectrum obey

w entering the keyword RUN and then pressing ENTER. But
sefore trying this it 1s worth noticing that there are two ways that the

14 The Spectrum Programmer

‘pectrum can obey commands. If vou tvpe a command without a
ine number and press ENTER then the Spectrum will obey the
:ommanda at once - this is called immediate mode. However, if you
arecede the command with a line number and press ENTER then the
-ommana 1s added to whatever program already exists ready to be
yneved at some later time - this is called deferred mode. When you
vpe RUN there is no line number so the Spectrum obeys the
‘ommand immediately.

Vhen vou do type RUN vou will find that the numbers from @ to
"l are printed on the screen and then the Spectrum prints what looks
ike a question, “Scroll ? y/n". If you press the ‘Y’ key you will
iiscover that the screen 1s shifted up by one line to make room for
nore nformation to be printed. After this has happened 22 times the
iuestion 1s asked again. The reasonfor this s that the Spectrum tries
0 give you the opportunity to view what 15 on the screen before
noving it off the top.

“ou can keep on saying ‘y'(es) to this “Scroll?” question until you
¢l tired of seeing numbers. When this happens answer ‘n’ (no) to the
iext auestion and then press ENTER. You will see a histing of the
yrogram appear on the screen once again. If at any time while a
IrOgram 1s running you want to stop it, then press the key marked
IREAK while pressing CAPS SHIFT. As another example of a
-ommand in immediate mode tvpe LIST (the key marked ‘K") and
press return. 1his will cause the program you have typed in to be
nisplaved on the screen.

‘Vlore about the keyboard

f vou want to enter a program that 1s in any way complicated, there
ire still some symbols and words that we need to know how to
yroauce. In particular, we don’t as vet know how to produce any of
he words or symbols written on the Spectrum’s case, as opposed to
mn the kevs. In fact all of these new symbols and words are entered
vith the cursor in a different mode. In the same way that the
cevwords are produced when the cursor is showing a flashing_, the
ea and green symbols and words are entered in the so-called
xtended mode with the cursor showing a flashing[f1. You can put
the Spectrum into extended mode by pressing both shift keys
ogether. The green words above each key are produced by pressing
he key while in extended mode and the red words below each key
ire proauced by pressing the kev along with the SYMBOL SHIFT

(retting to Know Your Spectrum 15

tey. ‘This 18 easy to remember because to produce any symbol or
vora in ved vou have to press the SYMBOL SHIFT key which 1y
ilso lettered in red. So to enter RND (above the *T" key) you hirst
wave to enter extended mode by pressing CAPS SHIFT and
YMBOIL SHIFT and then press “T". If vou want to enter BEEP
below the “Z7 key) first enter extended mode and then press
SYMBOL SHIFT and *Z'. You automatically leave extended mode
1$ SOON a8 vou type anything but in case you want to leave it without
vping anything vou can press the two shift keys again,

“o summarise this new information, let’s extend the example we
ooked at before. The illustration below shows the ‘R’ key and its
urrounding section of case.

FEENMLETTET NG INT

=L

TUN

TERIFY

SEDLETTERIN

he words in green above each key are produced when the cursor

s a Tlashing 7], after both CAPS SHIFT and SYMBOL SHIFT
wave been pressed. Oncc [7] has appeared typing the ‘R’ key will
esuit in INT being displaved.

"he words in red below each key are produced when the cursor is
i llashing 1] ane/ the SYMBOL SHIFT kev (orthe CAPSSHIFT
<ev) 1s depressed. Such action would result in VERIFY m our
:xample.

Yow vou know how to enter nearly all of the symbols and words
n the kevboard. The only ones left that cause any trouble are those
vritten in white on the top row ot kevs. These have to be entered in
et another mode the graphics mode. While the subject of graphics
s treated in full in Chapter Seven it 1s worth saying how to get into
rraphics mode here. To enter graphics mode all you have to do is to
aress GRAPHICS (over the 9in the top row) and CAPS SHIFT at
he same time. This changes the cursor to a flashing 11| and if vou
sress any of the keys on the top row apart from 9and @ you willfind
hat the shapes printed on the key in white are produced on the
creen, if vou press any of the kevs on the top row while holding
iown CAPS SHIFT vou will find that the shapes are produced
nverted, i.e. white hecomes black and vice versa.

“ou may be wondering what happens if you press any of the

16 The Spectrum Programmer

wmber kevs on the top row withthe CAPSSHIFT held down inthe
normai 1’ mode. After all there 1s no such thing as an upper case
wmber! The answer 1s that no new characters are produced.
nstead. you gain access to the rest of the control functions shown in
“ig. 2.1. Pressing the 1 key and CAPS SHIFT moves the line that
1as the flashing cursor in it into the input arca of the screen where
+ou can edit it, More about this later in the chapter, Pressing the 2
cey and CAPS SHIFT activates the CAPS LOCK. The first time
rou press 1t you wiil see the cursoras ai | where you would expect an
L and all the letters you type on the screen will be capitals. To get
vack to lower case again you have to press CAPS SHIFT and 2
igain. You'll see INV.VIDEO printed above the 4 key. Again this is
iccessea with the CAPS SHIFT and has the etiect of reversing the
:creen aisplay of any new characters entered. They then show as
vhite on black rathcr than black on white. To regain the normal
lisplay you type CAPS SHIFT and 3 which gives TRUE VIDEO,
ressing CAPS SHIFT with 5, 6. 7 and 8 lets you use the cursor
ontrof kevs which allow you to move the cursor around the screen.
hese are used in games as well as in editing text. We have already
net the left (5) and right (8) arrow keys and the other two will be
ntroduced soon. As mentioned above, pressing CAPS SHIFT and
} allows vou to enter graphics mode, signalled by a flashing G
-ursor. if vou are already in this mode, pressing this combination
viil restore vou to the ordinary] | mode. CAPS SHIFT and @ allows
vou to delete the character to the immediate left of the cursor while
ntering or cditing a line.

"he number kevs have a rather different appecarance from the
sthers on the Spectrum so 1t 1s worlh examining one in detail before
eaving the topic of the keyboard for a while. The diagram below
:nows the key that 1s at the top left hand corner - the 1 key - and the
ollowing is a summary of the ways of producing all the words and
.vmbels on and around it and the other number keys.

DIT
AITE LETTERIMNG ?/1 n
|
N\

DEF FN— FFDLITTERNG

¥hen the K] or[1] cursoer is flashing, pressing a number key on its
ywn wiil produce the number on it, in this case 1,

sJetting to Know Your Spectrum 17

ressing it with the SYMBOL SHIFT key will produce the red
.ymbol on the bottom right of each key, in this case an exclamation
nark.

ressing it with CAPS SHIFT has the effect of calling the control
unction indicated 1n white above it. The control function
issociated with each number key has been detailed above. In this
-ase 1t will cause a line of the current program to be displayed at
he bottom of the screen. preparatory to editing.

¥hen the T cursor is flashing and the SYMBOL SHIFT key 1s
ield down the commands printed in red on the Spectrum's case
elow each kev are executed. Inthe case ol the | key the command
itlows a function to be defined.

“he graphics symbol on the top left of each key 1s produced when
‘he kev is pressed in graphics mode. In the case of the 1 key thisisa
:ond sauare with the top right hand quadrant missing.

dne other facilitv of the keyboard is worth mentioning before
eaving this section. It 1s the ahlity to repeat any key by holding the
:ev down tor a prolonged period, If you try keeping vour finger ona
:ev when thell | cursor s flashing you will see the line filling with the
haracter and hear a clicking sound from your Spectrum.

At this noint you might be thinking that the Spectrum’s kevboard
s the most complicated thing that you have ever come across. And
ndeed it is complicated, but as you get used to it you wili find that it
s verv iogical.

UUsing a tape recorder

“he next demonstration program is considerably longer than the
irst and as it is likely that you will be loath to simply switch the
nachine off and so lose 1t altogether once you have finished entering
ind running it, now is the ttme to learn how 1o use a cassette recorder
0 save and load programs. The Spectrum can use almost any
wandard tape recorder to store programs, but it is true that the
setter the tave recorder, the more reliable the result. So if yvou are
hinking about buying a cassette recorder for use with your new
pectrum, 1invest at least £20 or so and try to buy a model that uses
niniature jack sockets for earphone and microphone connections. 1f
he tape recorder that you plan to use doesn’t use miniature jack
ockets then vou will have to buy an adaptor [rom your local hi-fi

18 The Spectrum Programmer

‘hop because miniature jack plugs are all that the Spectrum comes
quipped with.

"o connect the Spectrum to vour tape recorder simply plug the
wo 1ack plugs on the twin audio lead that came with your machine
you ¢an easily recognise it because it’s the only lead not already in
1s¢ by this point}into the two sockets marked MIC and EAR on the
»ack of vour Spectrum. It doesn’t matter at this stage which plug
roes 1nto which socket. Next plug the same colour jack plugthatis in
he MIC socket into the microphone socket on your tape recorder.
‘ou are now ready Lo record your first program.

"0 give the Spectrum something to save type in

@ REM this is a test
‘0 REM this is the second line
@ REM this is the third line

ind then tvpe
JAVE “test”

ind press ENTER. The message “start tape and press any key” will
ippear. At this point vour Spectrum 1s all set to record a program on
ape but it is waiting for vou to tell it that the tape recorder is
unning. insert a blank tape, set the record level to about hall way
this is unnecessary if your recorder has an automatic volume
-ontrol) and set 1t recording. When you press any key you will see a
pattern of horizontal lines appear around the edge of the screen -
his means that the Spectrum is recording a program. When the
message "OK"” appears on the screen the program is saved on tape.
fowever, 1t is still possible that although the program is recorded on
abe 1t may not be good enough to be read back into the Spectrum
or one of a number of reasons. For example, you may have the
recora level set too high or there may be a fault in the tape.

o cheek that the program has been successfully saved rewind the
ape, unplug the jack plug from the microphone socket on the tape
ecorder and plug the other jack plug into the earphone socket. Now
vpe:

FERIFY “test”

ind press ENTER. Set the tape recorder running and if everything
1as gone to plan the next message that you should see on the screen
viil be another “OK™ meaning that the program recorded on tape
w01 only can be read but it i1s the same as the one sull in the
:omputer's memory. If everything hasn’t gone well you might get an

(Getting to Know Your Spectrum 19

*R Tape loading error” or simply nothing. This means that for some
-eason the Spectrum has misread the information on the tape or
-annot even find it. In this case the best thing to do is to wind the tape
back and listen to it (taking the jack plug out of the earphone socket
> the recorder in order to hear what is happening). At the start of
‘he tape vou will hear a steady tone. This should be loud but not
istorted. If this sounds all right then wind the tape on and histen to
in unrecorded patch at the same volume, You should hear a very
;01t hiss. 1f it sounds like a rain storm then reduce the volume and
werhaps alter the tone control and try again. If an unrecorded patch
rives absolute silence then vou should try again with the play-back
rolume increased.

ifter using VERIFY to check that the program has been saved
-orrectlv you can try loading the program for real, First switch your
:pectrum off and on again to convince vourself that the test
yrogram nas been lost and then type:

OATDD Mest™

OAD ™

ind press ENTER. The first version of LOAD will search the tape
mul a program with the name “test™ is found, but the second version
vil load the first program on the tape irrespective of its name.
Jnce vou have the tape system working don't alter the volume
ontrols or tone controls unless it is necessary and remember to
‘nange the jack plugs cach time. Plug in the microphone socket for
SAVE and plug in the earphone socket tor LOAD. This 15 very
moportant as the tape system won't work reliably otherwise.

Zditing and our second program

it this stage vou should feel confident enough to tackle entering a
onger program. The program given below will produce the rest card
sattern shown in Fig. 2.2, Apart from being quite an interesting
yarttern you could use it to adjust the TV set that vou are using with
‘our Spectrum to produce the sharpest image with the best colour.
efore vou start typing in the program the following notes might
help. First, type NEW to clear out any previous program.

verv word, apart from “SPECTRUM TV"” in line 130 and
““‘hannel 367 in line 140. is entered using a single key. so search the

20 The Spectrum Programmer

S ’
j
o]
i }
w'-"-'-'- -h‘-. ;I.
F L] & \"‘: b _j
= 4 ™ =
= 1 ¥ BE —®
s = = ; * ; L
fr== S P FE G W = M g, My = g
! £ b B 1 i =
. Thannet 326 i E—
)= H ;
ﬂ:_ 1 } k.]
E_. Iy i Ch o
G Y B F("' T
. 5 ¥
e 1 = = 1
P o
;
i :]

{g. 2.2, Spectrum test card

cevboard until vou find the word! Also, notice in line 11() the minus
1gn wnich precedes 175 1s obtained by pressing the *J° key at the
;ame tme as the SYMBOL SHIFT key. Because of the ditficulty in
yrinting the characters which are entered in graphics mode, a special
wotation is used. Wherever vou see a character in square brackets
his indicates that vou should enter the character in graphics mode.
f the character 1s preceded by an up-arrow “17 then press CAPS
SHIFT at the same time. So the *[18]”in lines 170, 180, 190 and 209
neans, “‘enter graphics mode and press 8 while holding CAPS
SHIF1”. The result should be a sohd black block.

9 FOR i=p TO 240 STEP 16
0 PLOT 1,8

0 DRAW @.175

) NEXT i
50 FOR i—p TO 175 STEP 16

0 PLOT 9.i

@ DRAW 2550

9 NEXT i
o9 PLOT 0,175

#0 DRAW 2550

10 DRAW $,—175

20 CIRCLE 127.81,64

30 PRINT AT106;“SPECTRUM TV
40 PRINT AT 12,11;“Channel 36"

50 FOR ¢c=§ TO 7

Getting to Know Your Spectrum 21

60 INK ¢

70 PRINT AT 3+2%c, 21§
80 PRINT AT 4-+2%c. 2 18]
90 PRINT AT 3-2*c.28:[18]"
00 PRINT AT 4+2%c,28;[18]"
210 NEXT ¢

120 INK

Vhen vou have finished entering the program simply press RUN
ind vou should sce the test card pattern appear on the screen. If it
woesn't look hke Fig. 2.2 then 1t 1s hkely you have made a typing

error so check the whole program very carefullv against the listing.
'ress the L1ST kev so that the program is displayed on the screen.
“ou mav have omitted a line. This is easy to remedy. To insert a line
just type it, with its line number, and it will appear at the bottom of
he screen. Press ENTER and it will automatically assume its correct
yosition in the program listing. Numbering in computer programs is
normally done in jumps of ten so that vou can easily insert extra lines
i vou need to. If vou want to delete an entire line from a program
‘ust type its number and press ENTER and the line will automatically
aisappear — so do be careful not to delete the program lines you want to
ceep. If you find an error in a line you do not have to retype the entire
ine. Instead vou can edir it, With the program listed on the screen, if you
1se the up-arrow and down-arrow (7 plus CAPS SHIFT and 6 plus
'APS SHIFT respectively) vou will find that you can move the
:ursor up and down the screen to any line that you desire. If you
move the cursor to the line with the errorin it and then press EDIT (1
2ius CAPS SHIFT) vou will find that it appears back at the bottom
sl the screen (the input areq) where you first entered it. Youcan now
ase the right and left arrow keys (on 5and 7) and the DELETE key
plus CAPS SHIFT) to edit it and hopefully correct any mistakes.
Vhen vou have finished editing the line simply press ENTER and
he corrected line will take its rightful place back in the program.

‘ou can sometimes save time when entering a program by making
1se of the editing facility. For example, lines 170 to 209 are very
amiiar. So instead of entering each one in turn, enter line 179 and
hen (with the cursor over it) press EDIT. This will copy the line
»ack into the input area where you can change the line number to
-ead 180 and the 3 following the AT to read 4. If you then press
‘NTER vou will find that line 180 appears in the program without
vou naving had to type it all in.

=2 The Spectrum Progranmmer
As vou go along

s vou learn BASIC and the special features of the Spectrum from
he rest of this book vou are bound to improve, both in vour
ingerstanding and your use of the keyboard until you cannot
inderstand what all the fuss was about. However, until then it is wise
a recall the advice given at the start of thischapterand try not to let
he frustration produced by tvping errors interfere with your
unaersianding of computing in general and BASIC in particular.

Chapter Three
First Steps - Variables,
Z“RINT, LET and INPUT

v program is a list of instructions that your computer can carry out.
“he guestion that this poses is what sort of instructions can you use
nacomputer program? 1t i1s clear that instructions like ‘go and make
1 cup o1 tea’ are too vague for anything other than a human to cope
vith! Instructions used in a computer program must be precise.
They have to specify exactly what must be done and, perhaps less
yoviously, they have to specify what it has to be done to. In other
¥vordas a computer instruction tells the computer what to do and
vhat to do it to. In this chapter we will look at the simplest objects in
JASIC and some very simple things that you can do with them.

Variables

he idea of a variable is the most important single idea in
yrogramming. A variable is an area of computer memory that is
15ea to store information. This sounds like an easy idea but it has
ne or two subtle points, If you are going to store information inan
area Ol memory vou are going to need some way of referring to it.
‘ou’re going to have to give it a name! This 1s not such an unusual
dea if vou think about other, more traditional, ways of storing data.
‘or example, each file in a filing cabinet is normally given a name
hat identifies it and it alone. Just think of the confusion of asking
or a file if two files had the same name! It is just the same with
JASIC. An area of memory that 1s used to store information, a
sarianle. must be given a unigue name that can be used to refer to it.
The only additional difficulty with a BASIC vanable is that you
nust also define what sort of obiects you are going to store in the
memory area. Une reason for this (we will meet others later) is that
he amount of memory set aside to store the information depends on
ts tvpe. For the time being the only sort of information that we will

284 The Spectrum Programmer

store in memory will be numbers of any type. A variable that is used
to store a number is called a nurmeric variable or a simple variable.

You cannot give a variable any name that takes your fancy
because this would lead to confusion on the computer’s part. For
*xample, suppose you gave the name ‘I’ to a variable. How would
he Spectrum know the difference between the vanable | and the
member 17 In the case of the Spectrum you can give a simple variable
a name of any length as long as it starts with a letter and thereafter
1ses oniv letters and digits. You can use both upper and lower case
etters but the Spectrum will not distinguish between them (i.e. the
ariapole name ‘A’ is treated as being the same as ‘a’). You can also
nsert spaces anywhere in the name to make it more readable but the
ipectrum ignores them. Here are some examples of simple variable
1amecs that are allowed:

sum. sUM, Sum

Totalscore. TOTAIL SCORE, TOTALSCORE

ihis is the longest name that anyene would ever want to use
"otall

otal2

day2Zmonth3year80

lotice that all the versions of ‘sum’ are treated as the same name and
;0 are ail the versions of ‘total score’. It is often difficult to think up
names Tor variables that suggest the nature of the information to be
tored in them but it is well worth doing. If you come back toread a
program aiter a long time, clear and obvious variable names can
make it a lot easier to re-understand vour own program! Even so you
snould try to avoid very long variable names - they can be very
boring to type out over and over againina program. Some examples
I names that the Spectrum would not allow are:

name reason for rejection

Iday starts with a number

*date starts with an * which is not a letter

aate* contains * which is not a letter and 1s not a digit

answer?! 7 1s not a letter or a digit
wer-time - 1s not a letter or a digit

Storing things in variables - LET

Vow that we know about variables and how to give them names it is

First Steps - Variables, PRINT, LET and INPUT 25

ime to discover how to store information in them. This can be done
1sing the BASIC command LET. For example:

¢ LET total=56

viil store the number 56 in an area of memory called ‘total’. If you
ecail, lines of a program are entered with fine numbers that control
their order in the list of instructions that make up the program.

“his example is in fact our first program! If you enterit exactly as
written nothing will happen until you enter RUN when the
;pectrum will start obeying the list of commands. In this case there
s oniy one command and this is veryeasy to obey the number 56is
tored in an area of memory called ‘total’. If you think about it, just a
ittle more than this has happened. Before the program was run there
was no area of memory called ‘total’ to store 56 in! When the
spectrum comes across the name of a variable that you wish to use
o store something in, 1t checks to see if it already exists and if it
ioesn't it sets aside an area of memorv of the right size and
emembers its new name. So this innocent single line program has
iwo elfects - it creates the variable called “total’ and then it stores the
iumber 56 in it

Finding out what’'s in a variable - PRINT

"he one-line example in the previous section is a little disappointing
>ecause we have to take on trust that the Spectrum has actually
:tored the number 56 in a variable called ‘total’. What we need is a
:ommand that will make the Spectrum find the variable and print its
-ontents on the TV screen, The BASIC command with this effect s,
nost reasonably, called PRINT. If you add a new line, numbered
ine 20, to the previous example vou will have the following two line
rogram:

§ LET total=56
' PRINT total

f vou RUN this program you will be pleased to find that the number
56 is printed in the top left hand corner of your TV screen.

t is important that at this point you understand exactly what is
1appening as a result of this two line program. Later on when you
1ave absorbed BASIC almost as a second language you will
understand what is going on without even thinking about it, but for
10w 1t 18 all too easy to read this two line program and think you

286 The Spectrum Programmer

inderstand 1t because it sounds all right! So, to recap what we have
uready learned, the first line creates a variable called ‘total’ and
:tores 36 in it. The second line finds the arca of memory with the
iame total’ and prints what is stored in it on the screen. (Notice that
t is easv for a beginner to think that PRINT “total’ would print the
vora ‘total’ on the screen. So. if you already understand why this
nterpretation is incorrect you are no longer a beginner!)

“or the PRINT statement Lo work it has to be possible for the
Jpectrum to find the variable that it refers to. If for some reason you
ry to print a variable that hasn’t been created then the Spectrum
viil. quite rightly, give you an error message - to see this, delete line
from the previous program (simply by typing 1§ and ENTER)
ind RUN it. You should be able to understand why you get a
*variable not found™ error message at the bottom of the screen. This
§ vour 1irst bug!

Arithmetic

Jur programs are slowly becoming more interesting but they are
nll a long way from being useful. We can now store numbers in
sariavles and print out what is stored in any variable but so what! To
e of any use we have to be able to change what s stored in a variable
ind print out something that we regard as an answer. The key to
10ing this lies in the idea of an arithmetic expression, Anarithmetic
:xpression 18 nothing more than a piece of arithmetic that vou
iaven’t vet worked out. Forexample, 3+6 isanarithmetic expression
hat works out or evaluates to 9. You can write an arithmetic
:xpression on the right hand side of the equals signina LET state-
nent with the cffect that the Spectrum will evaluate the expression
ind store the result in the variable, For example try:

' LET total=3+6
§ PRINT total

‘ou will see 9 printed in the top left hand corner of the screen. As
sromised the Spectrum has cvaluated the expression and stored the
cesult in ‘total’.

1s with most things to do with computers, there are rules
roverning what makes a correct expression. You can use the four
perations that vou should be familiar with from simple arithmetic.
vddition and subtraction are indicated by the usual symbols, + and

but multiplication and division use the symbols, *, and /. The

First Steps — Variables, PRINT, LET and INPUT 27
-gason for using * to mean multiply instead of a cross is that the
raditional symbol is too easy to confuse with the letter ‘x". Some

cxamples of correct arithmetic expressions are;

Xpression evaiuates to

3+2 5
32 6
)/ 2 3
+2—4 1
2 1433 5.4

Apart from the four usual operations of arithmetic there are two
sthers that can be used on the Spectrum - the unary minus and raise
o a power. | he unary minus sounds rather grand but it 1s simply the
iormal subtraction sign used in front of a single number. For
xampie, the *— in 3—2 is the normal subtraction sign but the *—’
1sed in —31s the unarv minus. Although the same sign is used in both
-ases, as we will see later, they are treated slightly differently, The
aise toapower signis I Forexample, 212 1s read as two raised to the
power of two, 1.e. two squared, or four. The raise to a power sign is
10t used very often and 1t 1s mentioned here more for completeness
than for its importance.

Uinderstanding expressions - the corder of evaluation

ithough the idea of an anthmetic expression seems straight-
orward, there is a hidden complication. For example, if you write
he innocent-looking expression 3+2*4 does it mean three plus two
(1.e. five} times four (answer twenty) or does it mean three plus the
inswer to two times four (i.e. three plus eight, answer eleven). [t may
.eem strange to you that there are two possible ways to work out this
'xpression because you may feel that one of the two methods is
yoviously correct and the other is equally obviously incorrect.
lowever, even 1n arithmetic, there are no absolute answers! The
:orrect interoretation is a matter of convention and i1sn’t something
that is handed down from on high. The question of whether we do
he + or the * first in an expression like 3+2%*4 s settled by a general
igreement that multiplication is more important than addition and
:0 1t should be done first, making the correct answer eleven, This
igreement that multiplication is more important than addition can
1e formalised in terms of assigning priorities to each operation and

28 The Spectrum Programmer

:arrying out the operation with the highest priority first. The
issignment of priorities can be extended to every operation that can
se used in an expression (even some that we haven't metas yet). The
sriorities that the Spectrum uses to sort out the order in which
irithmetic should be carried out are:

werarnon priority
10 - highest
mnary— 9
& I.,r S
(it 6 - lowest

he reason whv the priorities start at 10 and finish at 6 is to allow
yther operators that we have yet to meet to be assigned priorities. To
-valuate an expression vou should always work out the operators
vith the highest priority first, If two operators in an expression have
he same priority then you should do the one furthest to the left first
1.e. in the absence of any other preference, you work from left to
1gnt).
All this may seem over-complicated just to carry out a little
arithmetic but it is necessary if you want to write unambiguous
expressions. However there is another way of specifying the order of
cvaluation that can be used to override the usual priorities brackets
(). It 1s a longstanding convention that any parts of an expression
enclosed in brackets are carried out first. For example, although
i+2*%418 11, (3+2)y*4 is 20. If you're ever in any doubt about how the
;pectrum will evaluate an expression then put brackets around the
yarts that you want worked out first. Brackets sometimes waste time
ind effort but they can never cause trouble!

Variables and constants - the full expression

0 far we have looked at arithmetic expressions invelving only
wmpobers but there 1s no reason why we cannot use variables in
-xpressions. 1f you write an expression such as ‘total+3' the
spectrum will find the variable called ‘total’ and retrieve the
number stored in it. It will then add three to this number. For
:xample, if ‘total’ had 32 stored in it, the expression ‘total+ 3" would
vaiuate to 35. Notice that there is no suggestion that what is
stored in the variable ‘total’ is in anv way altered. Its contents
ire sumpiy used in the evaluation of an expression. A number

irst Steps - Variables, PRINT, LET and INPUT 29

such as 32 1s known as a constant (because its value never changes)
inQ now we can see that an expression can be made up of variables
ana constants with the arithmetic operators, +, —, /, *, t. An
:Xpression always evaluates to a constant and it is this constant
that is stored in a variable by a LET statement.

A short program

sing all that we have found out so far about constants, variables
ina exoressions we can now writc a short program that adds two
wumbpers together:

® LET number1=23.34

'® LET number2—=44.32

'® LET answer=number!+number?2
‘) PRINT answer

f vou enter and RUN this program you will see that the sum of the
wo numbers in lines 10 and 20 are printed by line 49, Although this
s 4 simpie example it demonstrates a wide variety of programming
deas. In lines 10 and 20 the by now familiar LET statement is used
0 store two constants in two variables. In line 30 the arithmetic
-xpression number |--number?’ is evaluated and the resull is stored
n a third variable ‘answer’, Line 4@ prints the contents of ‘answer’ on
the screen. 1 vou think this 1s easy, so far so good! Ity changing lines
® and 20 to add different numbers together and change line 30 to
nve you different anthmetic expressions,

Another way of altering variables - INPUT

n the previous example the two vanables ‘number!’ and ‘number2’

nhad numbers stored in them by use of the LET statement. This 1s
onvenient unless we want to use the program many times with
ifferent values. As suggested, the only way that it is possible to
‘nange the values stored in the variables 1s to edit cach line before
unning the program. Obviously what we need 1s a statement that
11l allow us to enter any value into the variable while the program is
unming. 1his 1s what the BASIC statement INPUT is for. For
‘xample try the following program:

0 LET numberl=3

30 The Spectrum Programmer

® INPUT number2
'® LET answer=number!+number2
1) PRINT answer
Vhen vou run this you might ve surprised to find that nothing
iappens! Don't panic! What has happened is that line 1) was carried
wut and 5 was stored in the variable ‘number]’. Then the Spectrum
noved on to line 20 where it obeved the command INPUT by
vaiting for vou to tvpe a number and this is why nothing is
1appening. The Spectrum 1s waiting for vou to type a number and
then press ENTER 1o signal that you have finished typing/correcting
the number. [t then stores the number that vou have typed n the
‘anable ‘number2’ and proceeds to the next instruction. So if you
1aven’t alreadv done so, run the program and type in a number of
sour cnoice. You will be pleased to see vour number with five added
.0 1t printed In the usual place.
Ve now have two wavs of storing numbers in a variable - LET
ind INPUT. It is important to understand the difference between
ne wav LET and INPUT work. As in the case of LET, if a variable
10esn’t exist before its use inan INPUT statement the Spectrum will
create 1t. If vou always want to store the same value or the result of
in expression in a variable then use a LE'T statement. If you want to
tore a different value in a variable each time the program is run,
hen use an INPUT statement.

Variables and constants as expressions

Jne of the most powerful features of BASIC is the way that almost
INYWNCre you can use a constant or a variable, you can use an
:xpression as weil. For example, in the PRINT statement vou can
vrite:

) PRINT numberl+number2

ind the Spectrum will evaluate the expression and print the result.

t 1s also true that the simplest forms of an expression are the
:onstant and the variable. For example, the number 3 can be
hought of as either a constant or an extremely simple expression.
similarly, the variable ‘total’ can also be thought of as an expression.
J0 not only can you use an expression wherever you might usc a
-aniable or a constant, youcan use a variable ora constant anywhere
hat vou can use an expression! For example:

ET number!=number2

First Steps - Varrables, PRINT, LET and INPUT 31

ind
2RINT 3

ire both valid BASIC statements,

Describing BASIC

t is difficult to describe anv language and BASIC is no different.
'he trouble is that, while it’s easy to give an example of what 15
‘orrect. 1t is difficult to explain all the possible correct variations.
“or example, at the start of this chapter the LET statement was
ntroduced by:

ET total=56

>ut this gave no hint that vou could write things like:
ET total=number

i
ET total=number |+number?2

To try to overcome this difficulty it 1s usual to give a definition
nvoiving the general types of things that a statement allows. For
'xampie, the general form of the I.ET statement can be written as:

ET ‘simple variable’ = *arithmetic expression’

vnere the things between the single quotes are not to be taken
iterally but replaced by an example of the stated tyvpe. So in 4 real
.ET statement ‘simple variable’ would be replaced by a variable
1ame sucn as total, sum, number, etc.

"hroughout the rest of this book, BASIC statements will be

nireduced by examples and then delined in the same way as the
ET statement above. As we learn more about a statement it may
yrove necessary to redefine it to include a wider range of features. So
ar the two other BASIC statements that we have introduced,
PRINT and INPUT can be defined as follows:

PRINT ‘arithmetic expression’
and
NPUT ‘simple variable’

yut as we shall see later these are not the final definitions!

32 The Spectrum Programmer
INPUT prompting

slthough we can now use INPUT to store information in variables,

the way the Spectrum just stops and waits for someone to type a
1umber in is a little unsatisfactorv. What is required is the ability to
Tint a message on the screen saying something like “type in a
wmber now” or “what is vour number”. Such a message is often
:ailed an input prompt and BASIC provides two similar ways to
print such messages. Try the following short program:

@ PRINT “this is a prompt”
B INPUT “what is vour number ? ";number|

ine 10 will display “this is a prompt™ in the top left hand corner of
he screen and iine 20 displays *“what is your number 7" at the
yottom of the screen and then waits for vou to type a number. In
yoth cases the characters printed on the screen are the ones inside the
iouble quotation marks. A set of characters in double quotes is
<nown as a fiteral string or simply as a siring. You can use either
PRINT or INPUT to produce prompt messages on the screen
iepending on which 1s more convenient. As anexample of the use of
both, consider the following version of the number addition
srogram given earlhier:

@ PRINT *“what is vour first number 7"

9 INPUT number|

0 INPUT “what is your second number ? ";number2
' PRINT number!+number?

Viixed PRINT

"he abilitv to print messages on the screen is clearly a very useful
acility for other things than just printing prompts. For example, in
‘he last program it would have been better to print a message saying
that the number about to be printed was the sum of the two
numbers. You can in fact use a single PRINT statement to print
nore than one thing at a time. For example, change line 40 in the
Irevious program to:

40 PRINT numberl:*“+":number2;*=";number|+number2

ind vou will see that the contents of ‘number !’ are printed, then a
;pace and a plus sign, followed by another space, then the contents

irst Steps — Variables, PRINT, LET and INPUT 33

f ‘number? followed by an equals sign with a space on either side of
t and the answer. You can consider this PRINT statement as a list
of items Lo be printed, cach item in the list being separated by a
s;emicoion and printed in the next free printing position. OQur general
iefinition of PRINT can now he updated to read:

PRINT ‘print hst’

vnere ‘print list’ is a list of items separated by semicolons. The items
-an pe either expressions or strings. Each PRINT statement starts
minting on a4 new iine. In Chapter Seven we will return to the
iefinition of the ‘print list” and expand it to include ways of
ormatting the information on the screen but this simple version of
the ‘print list” will satisfy all our requirements until then,

Some sample programs

‘ven with so little BASIC it is possible to write some usetul, if
1mpie, programs. For example, if you want regularly to work out
iow many dollars you would buy for a given number of pounds then
i currency converston program wouid be useful, The overall outline
i1 this program is easy to explain as follows:

ask the user for the conversion rate
ask for the number of pounds te be used to buy dollars
snint number of pounds times conversion rate

v now vou should realise that this programisasimple one for vour
spectrum, so before you look at the version given below, try to write
sour own version. Remember to include input prompting and
‘Xpianatory messages. There Is no one perfect way to write any
yrogram, so don’t worry if your version is different from the one
nown. It could well turn out to be better!

1@ PRINT “Pounds To Dollar Conversion™

) INPUT “What is the conversion rate ? "jrate

@ INPUT “How many pounds do you want to spend ?™;amount
‘) PRINT

0 PRINT “For ";amount;* pounds ”

29 PRINT “you can buy *;rate*amount;* dollars”

ine 1¢ simply prints a title for the program. Lines 20 and 3¢ prompt
ind accept the necessary input. Notice how line 4@ 1s used to print a

34 The Spectrum Programmer

slank line to space the output into an input and a results section.
ines 50 and 60 print the answer with some explanation.

vs another example, consider the problem of calculating the
ctopping distance of a car travelling at any speed in miles per hour.
“he main problem in writing this program is knowing how to
calculate the stopping distance. Itis important to realise at this stage
hat no computer can calculate something unless you can explainto
t how to do the calculation. Locoking at the highway code reveals
hat the stopping distance 1s made up from two components — a
minking distance and a braking distance. The thinking distance in
eet 1s roughly the same as the speed in mph. The braking distance is
i little more complicated and 1s given by the square of the speed
nvided by 20. However both of these quantities are very easy for the
;pectrum to calculate, so to add to the uscfulness of this short
yrogram 1t is reasonable to print out the thinking distance, the
yraking distance, the overall distance and how many car lengths it
akes to come to a stop. T'his last calculation is based on the fact that
he average (UK) car is 14 feet long. The program is now easy to
yriie:

PRINT “Stopping Distance”
0 PRINT
O INPUT “Speed in mph=";speed
) PRINT “At ":speed:“mph™
0 PRINT
@ PRINT “Thinking distance=";speed;" feet”
0 LET brakdist—speed*speed; 20
30 PRINT “Braking distance=";brakdist;" feet”
) PRINT “Overall distance=";speed +brakdist;" feet”
09 PRINT
16 PRINT “Which i1s ";(speed+brakdist); 14;" car lengths”

ine 1@ simply prints a title for the program. Line 3¢ prompts for the
inly information needed by this program - the speed in mph. This is
:tored in the variable *speed’. Lines 40 and 50 start giving the answer
o the user bv printing the speed that the calculation is for and
eaving some space. Line 6§ prints the thinking distance, which
requires no caiculation as it 1s numerically the same as the speed in
nph. The braking distance is calculated by line 7 and printed in line
0. The overall distance is calculated and printed by line 99. Notice
that this is anexample of using an expressionin a PRIN'I statement.
"ine 110 calculates and prints the overall stopping distance in terms
ot car lengths, Notice that you have to put brackets around the

“irst Steps - Variables, PRINT, LET and INPUT 35

iadition to make sure that it is carried out first.

“he final example in this chapter is a sizeable and really useful
yrogram 1f vou are interested in DIY, A very common problem is
hat of estimating how much sand, aggregate and cement vou should
yuy to cast a slab of concrete. To help with this difficult task the
ollowing program is a “Concrete Calculator”. Once again our first
yroblem is knowing how to do the calculation before we begin
vriting the program. Looking up the relevant information in a book
»n building reveals the following - one cubic metre of concrete made
1Ip Irom one part cement, x parts of sand and y parts of aggregate
i.c. a l:x:v mix) needs

l
).025*%([+x+y)

»ags of cement and

c*1.5

I+xty)
“ubic metres of sand and

) o

[+x+)
-upic metres of aggregate, (It's not too important to undersitand why
hese eauations work, it is often the case that a program is written
rom information that the programmer doesn’t fully understand -
ind why should it be otherwise!) Converting this information into a
yrogram 1, once again, reiatively easy. Thefirst part of the program
s:nould ask for the dimensions of the concrete slab and then calculate
15 volume. The program should then ask for the mixture ratio and,
ising the equations given above, work out the number of bags of
-ement and the volume of sand and aggregate required. Finally, the
esuits should be printed out in a form that the user will find
icceptable. The details of the program are:

@ PRINT “Concrete Calculator”

% PRINT

P INPUT “What is the thickness in mm ? ";thick
'@ INPUT “What is the length in m ? ";len

@ INPUT “What is the width in m ? ";width

) PRINT

0 LET vol=thick*.0@ 1*len*width

W0 PRINT “Total volume = "vol:* cubic m”™

)0 PRINT

26 The Spectrum Programmer

0¢ INPUT “How many parts of sand to one of cement ?
" partsand

10 INPUT “How many parts of aggregate to one of cement ?
Tpartagg

20 LET total=1+ partsand- partagg

30 LET cement=vol/total/0.025

40 1.ET sand=vol*partsand*1.5/total

'50 LE L agg=vol*partagg*1.5;total

160 PRINT “Using a 1:";partsand;":";partagg;" mix”

70 PRINT “you need ”

80 PRINT cement;” bags of cement”™

190 PRINT sand;* cubic m of sand”

‘90 PRINT “and “;partagg;” cubic m of aggregate”

ines 30-8¢ ask for the dimensions of the slab and both calculate
ana print the total volume. Lines 100 and 11¢ ask for the ratio of the
mx and line 120 calculates [1xty used in all of the following
calculations. The most interesting lines of the whole program are
30 209. The first few lines (13¢-150) carry out the main
calculations and the last section (16@ 204) prints the results. If vou
ook carefullv at the calculations you will see that an arithmetic
cxoression in BASIC doesn’t always look like the equation that it
comes Irom. For example, vou might fall into the trap of writing:

|
}.025%(1+x+v)

s 170.025%(1+x+7)

t the result of this BASIC arithmetic expression is given by
tividing | by 0.025 and then multiplying the answer by (1+x+y) Le.
t works out;

l
S
025 LX)

-ather than the eguation that we are interested in. The correct
"Xpression is;

0,025/ (1+x+y)
1T you want to use exira brackets to clarify matters:

H0.025%(1—x+1))

-irst Steps - Varrables, PRINT, LET and INPUT 37

n the section that prints the results, notice the way that each answer
s embedded in the orinted message. Remember that you do not have
o write programs that produce results in a standard way -
:xperiment with what looks good and seems natural.

Chapter Four
Looping and Choice -

the Flow of Control

;0 lar we have written programs that are a list of instructions that
ire carried out one at a time from the top to the bottom. Although it
s possible to write useful programs using nothing more, program-
ming reaily only becomes interesting when vou can change the order
n which instructions are carried out.

The flow of control

f vou look at any of the example programs at the end of Chapter

hree it should be possible for you to follow through with your
‘inger the order that the instructions would be obeyed by the
spectrum. You can think of this as tracing the flow of control
hrough the program. Each instruction has its turn at governing or
onirotling what the Spectrum is doing and it then passes controlto
e next instruction. In the absence of any other information the
ieXt instruction is taken to be the next line down. So the default flow
o1 control is a line starting at the top of the program and finishing at
he bottom. The following 1s a very simple program that
demonstrates this default condition.

INPUT a
'} PRINT a _
INPUT b Y
p PRINT b |
4g. 4.7,

Looping - the GOTO

JASIC provides a single statement for changing the default flow of

ooping and Choice - the Flow of Contro/ 39

ontrol — the GOTO statement. Try the following program:

LRIEAD
S

D LET tesi=0 :

0 PRINT test e o

0 GOTO 20 Fig. 4.2.

{f vou run this program vou will see the screen fill with zeros (one
o each line) and then the Spectrum will stop and ask “Scroll 7y/n".
t vou answer y to this question the screen once again fills with zeros
ind so on, This program is our first example of a loop. Tracing the
low of control through the program soon shows why the word foop
s appropriate. First line [stores zeroin the variable ‘test’, then line
‘0 prints the contents of ‘test’. Line 30 is new in that it uses GOTO
ut its meaning should be clear Irom just readingit, The statement
iOTO 20 causes the Spectrum to obey line 20 as the next
nstruction. So after line 39 control is transferred to line 2§ and the
-ontents of variable ‘test” are printed on the screen for a second time.
ifter this line 30 is again carried out. This transfers control back to
ine 20 and so on ... until the screen is tull of zeros and the Spectrum
isks for permission to move the screen on to make room to print
-ven more zeros! The repetition of lines 2¢ and 3¢ will continue
orever and tracing the flow of control shows it to take the formofa
oop. Not a very useful loop however and, because the only way to
:top 1t 1s to press the BREAK key or answer n to the “Scroll? y/n”
westion, it is usually called an infinite loop.

v GOTO statement can be used to force the Spectrum to carry out
iny struction next. Its general form is:

GOTO *arithmetic expression’
.0 vou can write things hke:

;OTO 2*10

10 The Spectrum Programmer

meaning the same thing as GOTO 2§) but this sort of thing is not
1sed very often and it 1s better to think of GOTO as:

1OTO ‘line number’

You may be wonderimg what happens if you write something like
1OTO 50 and line 50 doesn’t exist. Most versions of BASIC would
amply stop and give you an error message to the effect that you are
rving to transfer control to a nen-existent line but the Spectrum’s
rersion of BASIC is a little different. If the line number doesn’t exist
hen control is transferred to the line with the next highest line
iumoer. For examole, if you use GOTO 5§ and line 5¢ doesn’t exist
yut line 55 does. then control will pass to linc 55. If there is no ‘next
iighest line’ 1.e. the GOTO tries to transfer control out of the
program then the program stops without an error message. This
neans that it 18 virtuallv impossibie to getan error by usinga GOTO!
‘ou may think that this is an advantage but lake great care because
I vou have made a typing error ina GOTO the Spectrum won't tell
ou that you are transferring controlito a line that doesn’t exist. This
might not cause any problem at first because the next highest line number
nught just be theline you wanted to GOTO anyway, butif vouinsertany
ines of program later on trouble might appear from nowhere!

\lthough the example of the infinite loop serves to introduce the
dea of transferring control to a different point in the program, it
ioesn’t really indicate the sort of thing that a loop is used for. An
mportant idea in programming is the repetition of series of
oerations. This is often called iteration. For example, the
nstruction LE'l count=count - I simply adds 1 te the contents of the
ranable ‘count” and stores the answer back in ‘count’. In other words,
1 increases the number stored in*count’ by 1. If vou repeat this opera-
1on by using a GOTO you have something more than adding | to a
ariaple - vou have a program that counts! Try the tollowing:

10 LET count=0

' LET count=count+]1
'@ PRINT count

9 GOTO 20

"ou will see the screen fill with the numbers 1 to 21 and then the usual
‘Seroll? v/n” question. By answering v to this you can keep the
iumbers coming for a very long time.

Votice that by addinga GOTO to an instruction thatadds one toa
rariable we actuallv seem to produce a program that does a bit more
han just count. In fact, we generate a sequence of numbers. This is

| poping and Choice - the Flow of Control 41

nuch more the flavour of real programming than the one-after-the-
yher programs in Chapter Three. To see looping doing something a
ittle more useful try:

0 LET count=§

0 PRINT “x= ":count;“ x squared= ";count®*count

i LET count=count+]

1) GOTO 26
"his program will print out two lists of numbers, the second being
he square of the first.

Even if you are very familiar with the idca of a loop you can be
:onfused about what the current value of a variable 1s at any point in
he loop. For example, in the case of the counting loop program, the
irst value of ‘count’ that was printed was one but in the squares
yrogram the first value was zero. This difference 1s simply due to
vnere in the program the line that adds one to ‘count’ is placed and
7iso what value ‘count’ is set to before the loop starts. If yvou change
ine 19 in the squares program to read 19 LET count=1 then the first
ralue to be printed will be one.

Jnderstanding what goes oninaloop gets easier with practise but
Us all a matter of following through the action of the program
ciearlv and without rushing.

Choice and conditions - the IF statement

slthough the GOTO is a very useful statement the only thing that

vou can ao with it is to form infinite loops. This 1s fine for simple
things like printing tables of values but it is a bit too crude for many
ipplications. What we are lacking is a statement that will stop the
oop when a condition is satisfied. For example, suppose we want to
vrite a program that will add ten numbers together and then print
yut the answer. At the moment the best that we can do is to type in
cacn number in turn and add it to a running rotal which we print out
cach time. as in the following example:

0 LET total=¢
20 LET count=¢

B INPUT “number = *;number
#) LET total=total+number

) LET count=count +1

@ PRINT count;™ total =";total
0 GOTO 30

o stop this program type STOP when it asks for the next number.

12 The Spectrum Programmer

{ vou run this program you will find that it produces rather a lot of
wutput that vou don’t need. What we really want to do is read inthe
en numbers. keep a ‘running’ sum and only print out the answer at
he end. This can be achieved using the IF statement:

0 LET total=9

) LET count=90

‘0 INPUT “number = "number
0 LET total=total+number

0 LET count=count+1

0 IF count=1¢ THEN GOTO §p
0 GOTO 3¢

30 PRINT count;” total =":total

"he only difference between this and the birst program to add ten
wmoers together is the use of the 1F statement in line 69. Each time
hrough the loop formed by the lines from 39 to 7¢ the IIF statement
s obeved. This takes the form of comparing the contents of the
‘ariable ‘count” to 10. If itisnt equal to [0, control passes to the next
tatement. 1.e. line 70, and the GOTO following the THEN has no
-ifect. However if ‘count’ 1s equal to 10 the GOTO following the
"HEN 1s carried out and control passes to line 8¢ printing the
inswer and ending the loop.

“here are many ways of using the I1F ... THEN GOTO statement
0 alter the flow of control denending on whether or not a condition
s true. Before we can go on to investigate the sort of thing that can
se done with 1F we have to [ind out what tvpes of conditions we can
15¢€.

il of the conditions that vou can use in an IF statement take a
rerv sumpie form:

irithmetic expression 1 *relation’ ‘arithmetic expression2’

Ve alreadv know what an arithmeltic expression 1s so the only new
ciement is the refarion. In BASIC there are six relations:

efation meaning
aquals
greater than
less than
— less than or equal to
— greater than orequal to
> not equal to

‘otice that on the Spectrum each of these svmbols is entered by a

coping and Choice — the Flow of Control 43

iingle keypress. You will get an error if vou enter a << and a > to
nake up a single <<>! The meaning in BASIC of each of these
elations is the same as their normal meaning.

‘onditions are verv often called conditional expressions and a
:ondition is like an expression in that it evaluates 1o a value, but in
'1s case there are only two possible results, true or false. It is
'mportant to read conditions in the right way to avoid confusion.

or example, the condition *count=3" 1s no7 an instruction to make

:ount equal to 3, itis a guestiorn about what 1s stored in ‘count’. I the
tue stored in ‘count’ 18 3 then ‘count=23" is true, but if the value is
invthing other than 3 then ‘count=3" is false. Thus the Spectrum
15€s the sign = in two different ways - as an instruction to store a
alue in a variable and as a relation in a condition. The only way to
ell which is the correct meaning in any case is to look at the rest of
he instruction. Some examples of conditions are:

ount<. >4 false if count is 4, otherwise true
ount*2>> 10 true if count*2 1s greater than 10, otherwise false
i>1 ALWAYS true
=6 ALWAYS false

"o reinforce the idea that a condition is an expression that evaluates
0 one of two values (true or false) it 1s worth saying that the
;pectrum represents both values as numbers. True 1s represented by

and false is represented as 0. In other words, if a condition is true it
valuates to | and if it is false it evaluates to 0. To prove that this is
he case try the following program:

@ INPUT “first number™;a

0 INPUT “second number™;b

‘0 PRINT *“the result of ™;a;*>>":b;" 1s ™a>b

) GOTO 10
‘ou will find that either a | or a ® will be printed depending on
vhether *a>»b’ 1s true or false in the case of the numbers you typed.
‘ou might be surprised that you can write a condition ina PRINT
tatement where vou would normally write an arithmetic
'xpression. This is simply another reflection of the fact that a
:onaition is an expression just like an arithmetic expression and it
-an be used anywhere that an arithmetic expression can. Indeed you
an mix conditional and arithmetic expressions with no problems as
ong as you pay attention 1o the order in which they are evaluated.
Relations have priority 4 which means that any arithmetic is done
sefore thev are evaluated.) For example:

14 Jhe Spectrum Programmer

PRINT (1Z22H-(3> 1) +(3=2+1)

¥1il orint 2 on the screen because (12>2) is false and cvaluates to 0,
3>1) is true and evaluates to | and (3=2+1) is also true and
-valuates to |. which gives 0+ 141 1.e. 2. (Notice that the conditions
il have to be enclosed 1n brackets to stop the Spectrum trying to do
he arithmetic first!) This sort of thing is fairly advanced BASIC so
1on't worry if you don’t understand it fully -~ what is important is
hat vou understand that something like 2=3 is an expression and
'valuates to true or false rather than an instruction to do some
peration.

¥¢ have taken a slight detour around the subject of the IF
ratement to examine the idea of a conditional expression but armed
v1th this new information the remainder of this chapter should seem
-asier. The general form of the [F ... THEN GOTOQ statement is;

F ‘conditional expression’ THEN GOTO ‘line number’

f the conditional expression evaluates to 1, or true, thenthe GOTO
ollowing the THEN i1s obeved. [f the conditional expression
vaiuates to 0. or false, then the statement following the IF is
rbeved.

I'here are so manv ways of using the IF ... THEN GOTO apart
rom breaking out of loops, that it is difficult to give examples of
:vervthing. But if you understand the ideas of flow of control and
he wav that IF and GOTO can be used to change it then you should
nave no trouble in understanding the examples in the rest of this
ok,

Ising IF

'he only way to tind out how useful IF can be is to write your own
srograms that use it. [n this way yowll slowly pick up all the
tandard ways that you can change the flow of control depending on
he result of a conditional expression. However, to speed up this
process and avoid clumsy ways of using the IF statement, 1t might
1elp to give examples of some of the most common ways that it is
1sed.
vn [F statement can be used to skip a section of program

INPUT a

0 IF a>¢ THEN GOTO 49
0 LET a=—2

{0 PRINT a

ooping and Choice - the Flow of Contro! 45

“his short program refuses to let you enter a negative! The
F statement in line 20 checks to see if the number in ‘a’ is greater
han zero and if so control passes to line 40 - effectively skipping line
10. If *a>>@" is false line 3@ changes the sign of the contents of ‘a’. In
inother program a different list of statements might be skipped
wccording to some other condition, The shape ol the skip 1s depicted
n Fig. 4.3 which illustrates how the result of the condition decides
vnether or not the list of instructions is carried out or skipped.

\ \
Hg. 4.3

1n extension of the idea of skipping some lincs of BASIC s to
‘noose between two different lists of commands. Inthiscaseitiseasier
ounderstand the idea after lookingattheshape of the flow of control
see Fig. 4.4).

ist
ne

g 4.4

Vhich list is carried out depends on the condition used in the IF
tatement. The reason why it 1s useful to look at Fig. 4.4 before
ooking at an example of an IF statement to sefect between two sets
i instructions is that it i1s a little difficult to see the simple division
nto two in the BASIC. Consider the following program:

a6 The Spectrum Programmer

@ INPUT a

0 IF a<@ THEN GOTO 6
' PRINT “a is positive”
ip LET b=a

0 GOTO 80

0 PRINT “a is negative”
® LET b=-a

i PRINT a.b

yccording to the value of ‘a’ either lines 3@, 40 and 50 are obeyed or
ines 6@t and 7Q. The division point in the diagram corresponds to the
F statement itself (line 20). The join up point 1s line 80 because this
s the first statement that will be carried out no matter which of the
wo lists of instructions is selected. If vou trv to superimpose Fig.
1.4 on the program you will see that, although it represents what
wappens, it is difficult to fit it. The reason for this is that it s
mpossible in BASIC to write the two alternative lists next to each
sther. so the flow of control diagram is more like the one in Fig. 4.5.

ig. 4.5,

f vou look at Fig. 4.5 you should be able to see that it is a
mangled” form of Fig. 4.4 Using the IF to select between two

ooping and Choice -~ the Flow of Control 47

iiternatives is easier to understand from Fig. 4.4 but Fig. 4.5 corres-
yonds more closely to reality.

Ve have already met the only other important use of the IF
tatement. that of breaking out of a loop. The flow of control
niagram for that circumstance can be visuahised as shown in Fig. 4.6.

.qa . .
__f” Loop A
¥ S
th-t o
[
ig. 4.6.

“ou should be able to see the familiar shape of an infinite loop. The
»ath that leads out of the loop and back to the normal flow of
‘ontrol corresponds to a GOTO taken when the condition in the IF
xatement 1s true. Notice that the point at which the [F statement
sreaks out of the loop can be placed anvwhere. In other words, you
‘an break out of a loop anywhere from the first statement te the last.

‘or example:

0 LET a=0

) LET a=a+t1

9 IF a=2p THEN GOTO 6
i) PRINT a

0 GOTO 20

W) PRINT “finished”

1as its exit point in the middle and

A48 The Spectrum Programmer

'@ LET a=¢
9 LET a=a+t 1
& PRINT a
i) 1F a=2¢ THEN GOTO 60
9 GOTO 20
) PRINT “finished”
1as its exit point at the end of the loop.

n general, although it is possible to place the exit point of a loop
anvwnere, it is better to place it either right at the beginning or right
it the end. The reason for this is that it is better to avoid carrving out
»arr of a loop. (Technically a loop with only one exit point placed at
he beginning is known as while loop and a loop with only one exit
point at the end 15 known as an until loop. However, these names
come rrom other computer languages and are not important when
srogramming in BASIC))

v\ loop that has its exit point at the end can be simplified by
urming the cond:tion round the other way, for example:

0 LET a=0
% LET a=a+1
) PRINT a
i IF a=2¢ THEN GOTO 6§
6 GOTO 20
W PRINT “finished”
-an be turned into

0 LET a=¢

¢ LET a=a+1

') PRINT a

@ IF a<<>>20 THEN GO10 2¢

@ PRINT “finished”
'he loop in the first example comes to an end when ‘a’1s equal to 20
ind line 50 contains the GOTO that otherwise makes the loop
:ontinue. In the second example the GOTO has been eliminated by
urning the condition around to make the loop continue when “a’ 15
101 equal to 20. After seeing this sort of thing a few times you will
idopt the shorter, neater form without thinking, but it is worth
wecasionailv remembering where it derives from.

1§ stated at the beginning of this section, there are many ways of
using an iF statement to alter the flow of control of a program and
vou snouldn’t feel restricted to just those that have been introduced
n this section, However, it 1s wise notl Lo experiment too much

L ooping and Choice - the Flow of Controf 49

because thec morc wavs that you usc the IF statcment the more
aifficult it will be to understand vour program. In essence the rule is
o make the flow of control diagram as simple as possible so that your
rograms wiil be easy to read, understand and debug.

The FOR statement

wpart from the position of the exit point, loops differ in two other
wavs. All loops continue until a condition 1s satisfied but in many
>ases this 1s eauivalent to carrying out the loop a fixed number of
umes. For exambple, if you wanted to print the word “Hello” on the
:creen Tive times vou could do it using:

§ LET a=i

% PRINT “Hello”

P LET a=a+1

9 IF al=5 THEN GOTO 2§
lowever. this 1s such a common situation that BASIC provides two
:xtra statcments - FOR and NEXT - to make repeating lists of
statements easier. Using FOR and NEXT the program that prints

Ty

lello” on the screen five times can be written:

¢ FOR a=1TO 5
9 PRINT “Hello”
‘@ NEXT a

“he meaning of the FOR and NEXT should be clear from the
srogram, 1he variable ‘a’ is used to count the number of times that
he loop has been obeyed in the same way as in the earlier example.
“he difference is that everything is done automatically, The FOR
ctatement first sets ‘a’ to one. Each time the NEXT statement is
-arried out one is added to ‘a’ and, as long as its value hasn't
.xceeded 5, control is transferred back to line 2 (i.e. there is an
mpiied GOTO 20). The result is that the PRINT statement at line
0 is exccuted five times before control passes on to the statement
‘ollowing the NEXT.
"he general form of the FOR ... NEXT loop is:

‘OR ‘index variablc™='start value’ TO ‘end value’

S EXT 'index variabie’

50 The Spectrum Programimer

“he ‘index variable’ is initially set to the ‘start value’. Each time
NEXT is reached the “index variable’ 1s increased bv one and as long
:s the value hasn't exceeded the ‘end value’ control 1s transferred to
he statement just after the FOR. The only restriction is that the
1ame ot the ‘index variable’ can only be a single letter - so ‘index
‘anable’ can be anv one of ‘@’ through to 7. To make sure that you
inderstand exactly what a FOR loop can do try the following
*xamples:

0 FOR i=1 TO 1§

0 PRINT i

@ NEXT i

0 FOR 7=190 TO 119
0 PRINT 7

'@ NEXT 7

n general both the ‘start value’ and the ‘end value’ can be full
irithmetic exnressions but it 1s important to realise that these are
iy evaluated orce at the start of the loop. This becomes clear if vou
hink of the FOR statement as only being carried out once at the
:tart of the loop. The value of the ‘index variable’ can be used in
arithmetic expressions during the loop but its value must not be
‘nanged. In other words, you can use the ‘index variable’ ina LET
.tatement on the right hand side of an — sign but not on the left. For
xample, the following short program will print a multiplication
able

@ INPUT “Which table (e.g. enter 2 for two times table) 7t
B INPUT “Starting at ;s

‘@ INPUT “Ending at ;e

) FOR i=s TO e

@ PRINT ;" x ™3 = "5i%t

W0 NEXT i

sotice that both the start and end values of the FOR loop are
irithmetic expressions, simple variables in fact! Also note the usc of
he ‘index variable’ ‘I’ in line 5.

The simple FOR loop serves for most purposes, however thereis a
lightly more advanced form that is occasionally useful and is
-ertainiy worth knowing about. In the simple FOR loop each time
‘hrough the loop one was added to the value of the index vanable.
“his is sensible if you are using the index variable to count the
iumber of times that the loop has been carried out. However, it Is

Looping and Choice - the Flow of Contro! B1

;omenimes the case that a calculation carried out inside the loop
1eeds a value that changes by something other than one each time
hrough the loop. This is catered for by the addition of the BASIC
:tatcment STEP. the general form of which 1s:

‘OR ‘index vanable™=*start value' TO ‘end value’ STEP
‘ncrement’

The ‘increment’ specified following STEP is the amount that 1
idded to the index variable each time through the loop. So the
ample FOR loop 1s equivalent to STEP 1. The only thing that you
nave to be careful of when using FOR STEP 1s 10 make sure you
¢now when the loop will come to an end. The rule is that the loop
erminates when the value of the index exceeds the finish’ value. So
he value of an index variable in a FOR loop can never become
arger than the *finish value’. To see this in action try the following
xamples:

@ FOR a=.4 TO 19 STEP .01
6 PRINT a
% NEX1 a

T

0 FOR a=1 TO 189 STEP 25

» PRINT a

P NEXT a
“he value of the increment tollowing STEP can be negative, in
vhich case it is better called a decrement. For example:

® FOR a=1§¢ TO §# STEP —15
d PRINT a
i) NEXT a

‘ou may have some slight difficulty in working out when this and
aimilar loops end. However, the rule is almost the same as for a
positive increment. Each time through the loop the value of the
ndex variable decreases by the increment and the loop ends when its
-atue first drops below the ‘end’ value.

\s well as having a negative increment, it is possible for either the
start” or the ‘end’ value to be negative and this is where things can be
-oniusing. Consider this short program:

9 FOR a=—19¢9 TO 50 STEP 1¢
0 PRINT a
)0 NEXT a

22 The Spectrum Programmer

al [1rst sight it may not seem to make sense. However, if you keep a
001 head then vou should be able to see that the same rules apply.
"he value of the increment 15 added to the index variable each time
through the loop until its value exceeds the ‘end” value if the
ncrement is positive, or is less than the ‘end’ value, if the increment is
1wegative.

Jsing the FOR loop

“here are one or two rules that govern the use of FOR loops. As yvou
-an use any valld BASIC statement within a FOR loop it is possible
ousea GOTO or an [F toleave a FOR loop before it is finished (i.e.
hefore the index variable has reached the ‘end’ value), This is quite
sermissiple in Spectrum BASIC but many other versions of BASIC
viil complain if you leave FOR loops inan unfinished state, Because
i this it is better not to fall into the habit of using sfoppy FOR loops.
t 1s often the case that FOR loops are used in combination. This is
:asy to understand as long as you think logically about the way each
oop works. For cxample:

@ FOR a=1TO 10
‘0 FOR b=1 TO 1§
'@ PRINT a,b

) NEXT b

‘) NEXT a

s correct because the FOR loon formed by lines 2¢), 30 and 40 is
:ompletely contained within the FOR loop starting at line 1§ and
:naing at line 5. This means that the inner loop is carried out each
ime through the owter loop. It is all too easy to make a slight
mistake and end up with:

0 FOR a=1TO 1§

" FOR b=1TO 19

‘0 PRINT a, b

) NEXT a

® NEXT b

vinich will give you an error message.

F ... THEN and the colon

“here 15 an even more general version of the [F statement than the
ne we nave examined so [ar. As well as being able to follow the

ooping and Choice - the Flow of Contro!/ 53

"HEN bv the BASIC command GOTO, you can in fact use any
raild BASIC command. For example:

¢ INPUT a

'® IF a<¢ THEN PRINT “a is negative”
0 IF a—@ THEN PRINT “a is zero”

19 IF a>0 THEN PRINT “a is positive”
8 GOTO 1§

“he best way to think of this is as a sort of easier version of the IF to
:Kip an instruction. Only in this case the instruction is only carned
wit 1if the condition is true. There isn’t very much to add to this
aescription except to emphasise the fact that you can follow THEN
by any valid BASIC statement including another IF!

'his extended version of the IF statement seems very usctul at
st but vou gquickly come to the conclusion that it's not often that
JOU want to execute a single statement as a result of some condition.

‘learly what is needed 1s some way of writing a list of BASIC
statements following the THEN. Spectrum BASIC does provide a
vay of doing this although it is important to realise that not all
ersions of BASIC do. You can group together a number of BASIC
atements on a singie line, separating cach one by a colon and they
viil be obeved in turn from left to right. For example:

@ PRINT “first™:LET a=1:PRINT “second™;a

viil be carried out as a single line of BASIC working from left to
1gnt and 15 equivalent to:

@ PRINT “first”
D LET a=1
' PRINT “second™a

"his use of colons to group a number of BASIC statements
ogether effcctively extends the rule for the default flow of control.
Now instead of just obeving instructions in order of increasing line
wumpoer (i.e. effectively moving down the screen) instructions that
are groupea together on a line are obeyed trom left to right. This
s exactly the same way that a human would read a list of
nstructions irom a sheet of paper (ie. left to right and then
iownwards). Although this extension can make life much easier it
:hould be remembered that, as other versions of BASIC do not have
his facility, over-using it may make vou very dependent on the
spectrum’s version of BASIC.

\s mentioned earlier, the place where it is really useful to have the

34 The Spectrurm Programimer

ioility to put more than one BASIC instruction on to a line is
ollowing a THEN. For example, at the end of most games
yrograms 1t is usual to ask if the player would like another game. In
he following example of a routine that could be added to the end of
1 program the answer is expected in the form of 1, to mean yes, or §,
o mean no. Anv other value as a response will be taken to be a
nistake and a message to that effect will then be printed and the
iuestion asked again.

10 INPUT “do you want another game (ves=1,no=0)"a

20 IF a=1 THEN GOTO xxx

30 IF a<>) THEN PRINT“you must answer | or
»M.GOTO 119

4@ PRINT “byel!!”

Jotice the use of the colon to group two BASIC commands together
n iine 130. The xxx in line 120 should of course be replaced by the
iine number of the start of the program.

There 15 a simple BASIC statement that we have not dis-
‘ussea so far that is very useful when used in conjunction with the
F statement. Suppose that as a result of some condition you should
vant the program to stop, then currently the only way that we know
i achieving this 1s to GOTO a line number that is at the end of the
wrogram. ihe BASIC statement STOP can be used anywhere in a
rogram to return control to the user. For example:

® PRINT “Do you want to continue Y=1,N=¢”

'p INPUT a

0 IF a=¢ THEN PRINT"bye bye™:STOP

) 1F a<>>1 THEN PRINT “I don’t understand - vou must
:nter either | or 8”:GOTO 1§

4§ PRINT “I continue - master”

0 GOTO 19

Notice the use of the colon to group commands together in lines 3¢
ina 40 and the use of STOP in line 39.

A final example

s a further example of both the 1F and FOR statements consider
the problem of turning the stopping distance program given in
‘hapter Three into a sort of quiz. For a range of specds the plaver is
isked for the thinking, braking and total stopping distance in feet.

"ooping and Choice - the Flow of Control 55

® PRINT “Stopping distance”

0 LET mark=0

' FOR s=19 TO &) STEP 19
4() PRINT “What is the thinking distance at ”;s;* mph 77
A INPUT t
of IF t=s THEN LET mark=mark+1

@ PRINT “What is the braking distance at ”;s;* mph 7
i INPUT b
90 IF b=s*s/20 THEN LET mark=mark+1

00 PRINT “What is the total stopping distance 7"

16 INPUT d

20 IF d=s*s/2¢0+s THEN LET mark=mark+1

‘30 NEXT s

40 PRINT

150 PRINT “You scored ":mark

60 PRINT *out of a possible 24"

‘he flow of control summarised

b *

rafault Skip select

:onditional \oop

ig. 4.7 Flow of contral diagrams

56 The Spectrum Programmer

t is difficult to sav exactly what goes on in the mind of an
-xperienced programmer. Whatever it 1s, 1t 1s a process that marks
he difference between a beginner and an expert. One thing that does
:eem certain 1s that. in addition to the catalogue of programs that
1ave been seen before and a collection of handy tricks, the standard
orms of the flow of control diagrams that we have been studying in
this chapter are ever-present. It is worth mentioning at this point
‘hat i1 has been proved that you can write any program using only
the default. select and conditional loop. This is so important that it is
vorth gathering together the flow of control diagrams so that you
(00 can store them away in your personal memory.

Chapter Five
“andling Text and
<umbers

o far the onlv programs that we have written have used numbers. If
his was all that computers could do they would be little different
rom pocket calculators! In this chapter we will look at how the
:pectrum can handle characters and text just as easily as digits and
wumbpers. In the last part of this chapter some other ways of
:xtending the things we can do with data are introduced - arraysand
ape storage.

strings

n Chaptcr Three the idea of a sirinng a collection of letters within
1ouble guotes — was introduced as a way of printing messages and
srompis. In fact what we have been calling a string is really a string
‘onstant. 1he use of the word constant might alert you to the fact
hat there are such things as string variables. A string vanable is
amiiar to a simple variable in that it is a named area of memory that
-an oe¢ uscd to store information. In this case, the information is a
‘ollection of characters instead of a number. The rules for naming
:rming variables are different from simple variables. A string
raniable’s name consists of a letter followed by a dollar sign. The
10llar sign is used to distinguish between a simple variable and a
tring variable (e.g. ‘b’ 1s a simple variable but ‘b$’ is a string variable
ina therefore different). The LET statement can be used to store a
iring constant in a string variable and the PRINT statement can be
1sea to print its contents.

1@ LET a$="this is a string”
'® PRINT a$

n fact. a string variable can be used anywhere that a simple vanable
'an as long as it makes sense. For example, youcanuse INPUT a$to

28 The Spectrum Programmer

tore a string typed infrom the keybeard while a program is running
ut LET total=3+a8 is obviously nonsense (voucannot add a string
0 a number!). Notice in particular the difference between:

O TLET at="1"
ind
) LET a$—1

dne 10 is fine because the | is enclosed in double guotes and is
herefore a string but line 2P will give an error message because a% is
; string variable and 1 1s a number.

“he introduction of string variables is exciting because it opens up
he possibility of the Spectrum handling text and even dialogues. So
ar, however, the only sort of program that we can write is:

@ INPUT “What is your name ?":n$
‘@ PRINT “Hello ";n8§:", [am vour Spectrum computer”

vmich 1s all nght lor a start but it can result in unnatural dialogues

ike:

Vhat is vour name? Fred Bloggs
iello Fred Bloggs, [am your Spectrum computer

'he trouble 1s that although we can INPUT, PRINT and store
;rings, we have mo way of changing them. This is rather like being
iole to INPUT. PRINT and store numbers but having no way of
ioing arithmetic - it's obvious that this would limit the programs
hat we could write! The answer lies in inventing an ‘arithmetic’ for
trings so that as well as having arithmetic expressions we can use
tring expressions’.

String expressions

ietore introducing the Spectrum’s facilities for handling strings it is
vorth considering what sort of things you might like to do and then
:ee 1f the Spectrum can actually fit the bill. If a program had
:omeone s first name in f$ and their last name in 18 then it would be
1setul to be able to join them together to form one longer string.
such joining together of strings is known as corcarenation. Another
hing that would be useful is the ability to exrract part of a string.
‘or example, you could extract the last name from a string
onsisting of an initial and surname i.e. extract “BLOGGS” from

fandling Text and Numbers 59

‘. BLOGGS"”. A string that is part of another string is often called a
upnstring. For example, BLOGGS is a substning of F.BLOGGS.
another useful facility would be to replace one substring with
inother. For example, if we were trying to keep F.BLOGGS a secret
wve might want to replace the surname with asterisks giving
‘TokdkkxEx" Finallv it would be a great advantage to he able to test
or the presence of a particular substring within a string, for
:xampie, to see if the substring “BLOGGS” occurred in the name
stored in n$. To recap, the string operations that we would like to
ind are concatenation. substring extraction, substring replacement
ina substring searching,

Jur first requirement, string concatenation, 18 immediately satis-
ied by the Spectrum’s concatenation sign +. If a$ contains the string
“1bed” and b$ contains “efgh” then after:

ET cS=a$+b§

'$ contains *“abcdefgh™. Notice that we now have two uses for the
vmpol +, as the sign for addition and as the sign for concatenation.
‘ou can use the + sign more than once in a string expression:

ET ¢&—"Mr "+31+" "+1%

viil 10in up the four strings involved and if {§ contains a first name
‘“red” and 1% a last name “Bloggs™ then c$ will contain “Mr Fred
3logps™. Notice the use of a single space between the two strings to
ivold the result being “Mr FredBloggs™!

Cxtracting or changing a substring can be done by using a single
16w operauon, sficing. Most other versions of BASIC use methods
hat are much more complicated than the Spectrum’s string slicing.
\though the Spectrum may be on its own when it comes 1o
1andling strings, in fact it offers a distinct improvement over other
3ASICs. A string shicer specifics a substring by giving the position of
the first and last letters. For example:

’RINT “12345678" (3 TO 6}

nsplays the substring “3456” 1.e. starting at the third character and
'naing at the sixth, Remember that TO must be entered by a single
tevstroke (it is to be found on the *F’ kevpad). Typing the letter ‘T
andg the letter ‘O’ just won’t do! The general form of a slicer is:

“iring { ‘arithmetic T ‘arithmetic)
'xpression” \expressionl” expression?’

ina the substring that the slicer specifies starts at the character given

30 The Spectrum Programmer

»v ‘arithmetic expression 1’ and ends at the character given by
arithmetic exoression 2° in the string that ‘string expression’
valuates to. This mav scem like a complicated definition, and
ndeed it does go further than the most common forms of the slicing
1otation found in other BASICs. For most of the time the ‘string
"XDpression’ is either a constant or a single string variable and the
irithmetic expressions are again simply constant numbers or single
-artables. For example:

‘abed™(2 TO 3)
"
*ibcd"fcount TO 3)

Towever. by now you may have realised that one of thc most
yowertul prineiples in BASIC is that anywhere vou can use a
'onstant or a variable vou are also allowed to use an expression.
tring slicing is no different in this respect and you can write things
like:

“abed”+“efgh”){start TO start+3)

vnich first concatenates the two strings “abed” and “efgh” to form
he single string “abcdefgh™ and then extracts four letters, starting
¥ith the character at the position stored in ‘start’. You shouldn’t be
rightened to write complicated string expressions any more than
sou would be over complicated arithmetic expressions.

“here are a number of special cases of the shicing notation that are
vell worth knowing about. The start and end of a string are so often
1sed in forming substrings by slicing that if yvou leave ‘arithmetic
:xpresston 17 out the start of the string s assumed and if you leave
arithmetic expression 2 out the end of the string is assumed. So:

1234567 TO 5) means “123456”(1 TO 5) which is “12345"
*123456"(3 TO) means *“123456”(3 TO 6) which is “3456”
*123456"(TO) means “123456™(1 TO 6) which is “123456"

here is also a very useful abbreviation that will extract a single
haracter at any position in a string. [nstead of having to write (n TO
1) to extract the character at position n in the string you can simply
vrite (n). So:

*23456"(3) means “123456”(3 TO 3) which 15 3

1 18 possible to get things wrong when using slicing. For example,
I vou specify a character position that doesn’t exist vou will get an

fandling Text and Numbers 61

TTOr message saying “Subscript wrong” or “Integer out of range”.
‘or example, “1234567(4 TO 7) or “123456"(—1 TO 3) will both
yroduce error messages. However, if you use a starting position that
s iess than the final position, e.g. *123456"(3 TO 1) vou might be
arnrised to discover that you do not get an error message. Instead
he answer is a verv special form of string - the nuff string. The null
aring has no characters in it and plays a very similar role in string
:xpressions to that of zero in arithmetic expressions. The string
:onstant that corresponds to the null string 1s written “”1.e, a pair of
aouble auotes with nothing in between, Notice the difference
Setween “” and “”. The first 1s the null string and has no charactersin
I. the second is a string consisting of one character - ablank orspace.
rom the point of view of a computer a space is just as much a
:naracter as a letter of the alphabet, it takes up one position to print
ind needs 1ust as much computer memory to store it. If you print a
nuil string it has no effect whatsoever. The statements PRINT a:b
:nd PRINT a:*";b produce the same result.
1s an example of using slicing consider the problem of printing
he name of a month given its number (i.e. you should print Dec for
‘2 and May for 5 etc.). Try the following short program:

LET v$="JanFebMarAprMayJunJulAugSepOctNovDec”
% INPUT “Meonth number 7°;mon

10 PRINT “month “:mon;“is ” ;¥$(1+3*(mon—1) TO 3*mon)
4 GOTO 2¢

'f vou enter in the range | to 12 the program will print the correct
inbreviation for the month in question. The way that it works is by
#icing out the three letter name tfrom the long string v8. The best way
T understanding the slicer in line 30 is by working it out by hand for
2 tew values of ‘mon’. if ‘mon’ is 4 then {1+ 3*(mon-1)} is [0 and
*mon is 12 and (10 TO 12) specities the three letters “Apr”.

slicing can not only be used to extract a substrning but also to
:hange all the characters in the substring. You can use the standard
;lcing notation to define a substring to be changed on the lelt hand
ide of the = in a LET statement. For example:

10 LET a$=*123456"
§ LET a$(3 TO 4="ABCDEFG”
'@ PRINT a$

vill print ‘12AB36" on the screen. This feature is a very logical
:xtension of the normal use of LET to store a string in a string
rariable. L'he slicer simply restricts the range of the characters that

B2 The Spectrum Programmer

ire altered by the LET. It the string on the right hand side of the = 1n
he LET is bigger than the substring specified the extra characters
ire 1gnored and if it 1s shorter then it is padded with blanks. For
:xample:

® LET a$="123456"
% LET a%(2 TO S)="ABC”
P PRINT a$

viil orint the string “lABC 6" on the screen. (Notice the blank
ollowing the letter C.)

"he onlv thing left from our imtal list of string handling
‘equirements Is testing to see if a particular substring 1s present in
inother string. Spectrum BASIC doesn’t provide a direct method of
icnicving this but it does extend the use of conditional expressions
see Chapter Four) to strings and this can be used to achieve the
.ame enas. You can use all of the relations that were introduced in
hat chapter with strings. The meaning of=and <“>are easy enough
to understand. Namelv, two strings are equal if they are of the same
ength and contain the same characters in the same order otherwise
hev are not equal. However, what do the relations <, >, <= and

= mean when applied to strings? The answer to this guestion varies
rom BASIC to BASIC. In the case of the Spectrum, however, they
ire defined so that a$<b$ is true if the string in a§ would come
sefore the string in b$ in an alphabetically ordered list of strings. The
irouble 1s that we are all so familiar with alphabetically ordered lists
hat we tend to forget how they work! If the two strings being
‘ompared are single letters, then a$<<b$ if the letter in a$ comes
-ariier in the alphabet than the letter in b$. Forexample, "a”<*b"” is
rue but “d"<*b” is false. What about comparing strings that
-ontain singie characters that are not necessarily letters, forexample
vhat do we make of “*"<“$"? In the case of the letters, the alphabet
provided us with a readymade order so what we need 1s to extend
his order to include all the other svmbols that the Spectrum can use.
'n other words we need a super alphaber! This is already available
or the Spectrum. Hf you look at Appendix A in the Specrrum
vanual vou will sec a listing of the complete set of Spectrum
-naracters 1n a predefined order and it is this that is used as the super
iinhabet to decide if a$<<b§. If vou don't have the Spectrum Manuai
o hand. or if you are just interested, you can print all the characters
'n their proper order by using the lollowing program:

fandling Text and Numbers 863

§ FOR i=34 TO 255
"0 PRINT “character *;i;* = ";CHRS$(1)
9 NEXT i

ine 10 specilies 34 as the starting point as the characters before that

ire unprintable. Don’t worry about the use of CHRS in line 2 this
viil be cxplained later. If you run this program you might be
urprised to see words ike PRINT and FOR appearing on the
.creen as cnaracters! This is simply a reflection of the fact that the
;pectrum treats everything that can be entered as a single kevstroke
is a singie character even if 1t appears on the screen as a word!
‘oming back to the question of whether or not “*"<*$" 15 true or
alse, “*" 1s character 42 and “$” is character 36 so “$” comes before
“* in the order and “*"<*$” 1s false. You can decide the truth or
ytherwise of anv relationship in the same way.

f the two strings contain more than one character they are
:ompared one character at a tume until the first pair of different
'naracters is found. The relationship between the two strings is then
iecided on the basis of those two characters. For example,
yBCD<AZCD 15 (rue because the first pair of letters that are
tifferent is Band Z and B<<Z is true. If one of the strings is the same
:§ the other apart trom the addition of a few extra characters then
he comparison is based on length, i.e. ABCID<JABCDEF, because
here 1s no pair of letters that is different and ABCT is shorter than
\BCDEF.

“he idea of the length of a string is quite important and so the
ipectrum provides a very simple way of finding the length of any
:tring. Try the following program:

0 INPUT a$
‘0 PRINT LEN(a$)
‘0 GOTO 19

ou will see that it prints the number of characters that vou type in
esponse 1o the INPUT. In general:

ENC('string expression’)

viil give the number of characters in the ‘string expression’. (The use
I LEN will be discussed in more detail in Chapter Six.)

irrays

itrings and numbers are the only two types of data that the

54 The Spectrum Programmer

.pectrum can handle and this is quite sufficient for most purposes,
‘However. the Spectrum does provide a way of using the basic types
T data in a more sophisticated way, the array.

“onsider the problem of reading in five numbers and printing
them out on the screen in the reverse order. So far the only method
‘hat we could use is:

1§ INPUT al,a2,a3.ad4,a5
ﬂ PRINT a5, a4, a3, a2, al

vnich is not too bad for five numbers but think what the program
vowd look like if the problem was to reverse 100 numbers!

¥hat we need to be able to do is to refer to a variable like ‘a(i)’
vhere i can take values from 1 to Sin a FOR loop. Then we could
vrite:

' FOR i=1 TO 5

'@ INPUT ali)

@ NEXT i

9 FOR i=5 TO 1 STEP —1

“9 PRINT af(i),

‘9 NEXT i
This is in fact exactly what BASIC allows you to do. The collection
f variables a(1} to a(5) 1s called the array @ and a particular variable
ati) 1s called an elemenr of the array, (see Fig. 5.1).

JIM ai10]

2 3 4 5 & 7 8 9 10

-

it7)

Sdg. 5.1, A one-dimensional array

The onlvcomplication is that before you canuseanarray you must
ell vour Spectrum how many elements the array is going to have.
“his is done using the DIMension statement:

0 DIM a(5)

which should be added to the previous program to make it work! If
rou define a variable as having only five elements and try to usc a(6)

fandling Text and Numbers 65

hen vou will get an error message for trying to use something that
ioesn’t exist! It 1s tempting to think that it is better to define arrays
arger than you need to try to avoid such error messages but be
varneq, arrays can quickly use up all the memory that your machine
1as to offer! There is a similar restriction on the names of arrays as
n inaex variables i.e. they can only be one letter long! This means
hat vou can only have 26 different arrays called ‘a’ to ‘z’, but this is
1isuaily more than enough. Using the DIM statement destroys any
irrays that already exist with the same name and creates a brand
1ew array initiaiised so that each element stores zero.

n addition to being able to define arrays that can be thought of as
‘ows of variables (see Fig. 5.1) you can define arrays that correspond
to orgamsing variables into tables made up ot rowsand columns. For
xample:

DIM a(19,19)

iefines a collection of variables organised into 19 rows and I¢
:olumns. A particular element of this array can be referred to as
1(1,)) where the two indices select the row and column.

“he idea of a two-dimensional array can be extended to three-,
‘our- ... up to 255-dimensional arrays. It 1s difficult to think of an
irrangement ot variables that corresponds to the higher-dimen-
nonal arrays but they are defined and used in roughly the same way
is one- ana two-dimensional arrays. For example:

MM a(19,20,5)

s a three-dimensional array and typical element is a(2,1,4), There is
100 much use for arrays with dimensions greater than two, This is
ortunate because thev tend to use up memory very, very fast.

“ou can form arravs from string variables as well as numbers and
hese can be used to store and manipulate lists of words. There is one
:omplication, however, in that in some senscs a string is already a
me-aimensional arrav of characters. If you define a one-
iimensional string array, in fact what you get 1s a string of fixed
ength. For example:

)M s8(19)

s a string variable that always stores 10 characters no matter what
even if some are blank). To see the difference between the string r$
and the string array s$ try the following program:

66 The Spectrum Programmer

0 DIM s$(1¢)

'0 LET s§=“abc”

@ LET r$=*abc”

i@ PRINT s$;“x";r$;“x”

“ou should see that s$ is ten characters long no matter what you
itore 1n it. Notice that for string arrays you can store values in more
than one element at a time. You can also store single characters in
:iements. however, The following lines store z in s$(5).

50 LET s$(5)="2"
) PRINT 53

“ou might be able to see a similarity between this and the slicing
1otation intreduced carlier.

‘ou can handle lists of words by using two-dimensional string
arravs. ror example, the number reversing program can be used to
everse a list of words:

P DIM a$(5,19)

% FOR i=! TO 5

0 INPUT a$(i)

i) NEXT i

9 FOR i=5TO | STEP —1
% PRINT a$(i)

0 NEXT i

votice that if you leave out the last index in a two- (or more)
Jimensional string array this is taken to mean that you want to treat
he arrav as a collection of strings. For example:

23$(5,2) is a single character
hut
a3{5) is a string of 10 characters.

‘ou can even use the slicing notation to pick out substrings. For
‘Xample:

:$(5,1 TO 2)

s a substring starting at character 1 and ending at character 2,

;inclair BASIC allows very flexible uses of strings and arrays.
"hese can be difficult to understand at first but once you have
hecome accustomed to them vou will find that they are very
powertul.

fandling Text and Numbers &7

\ word game

s an example of using string arrays considcer the problem of writing
i program 1o play the game of hangman. Because the computer
:annot ‘think up’ a list of words for you to guess, it is necessary to ask
:omeone else to tvpe in a list for you to guess. Once the list of words
1as been entered the player must try to guess each word in turn letter
v letter. Each letter that 1s entered must be checked against each
etter in the word. If it is present then the letter in the word must be
eplaced by a blank to make sure that the player cannot guess it a
.econg time, When all the letters have been guessed the program
moves on 1o the next word. or if there are none, comes to an end.
fter this descrintion you should be able to make a good attempt
it vour own hangman program before looking at the one below:

A DIM w$(5,10)

20.4+°'OR i=1 TO 5
40 INPUT “Word = ";w$(i)

49 TEXT i
HFOR1=1TOS5

60 LE = g=¢

70 LT t$=w8(1)

80 ET e=pg+1

}lﬂ INPUT “guess=";a$%
109 ET t=p

MO FIR =1 TO 1§
12¢ IF a$i1)=w$(i,j)) THEN PRINT“YLS! - ™a$(1):LET
T (=
30 1F w3(i,j)<<>“”" THEN LET f=1
ADNEXT j
K54 TF =1 THEN GOTO 80
WS PRINT “You got it in ";g;" 1"
/r’."} PRINT “The word was ™t$
@ NEXT i
A90 PRINT “game over”
ine 10 defines the array w$ so that it can hold five words of up to
en letters each. Lines 20 to 40 are used to input the words. The FOR
oop starting at line 59 and ending at line 18(repeats the guessing
yart of the program five times, once for each word, The variable t§ is
ased in line 70 to store the word until the end of the game so that the
irray element can be modified by storing blanks in the place of
etters that have been guessed. The guess is input in line 9p. Each

68 The Spectrum Pregrammer

etter in the word 1s checked against the current guess by the FOR
oop starting at line 11 to line 149. The variable f” is used to check
that there are stull letters left to be guessed.

nitialising variables - DATA and RESTORE

t often happens that a standard set of values needs to be stored ina
et of variables or an array for a program to work properly. For
:xample, suppose we want to print the number of days in a given
nonth we could set up an array of 12 elements and STORE the
inswer 1n each ¢lement - 1.¢. the number of days in Jan would be
:tored in the first element of the array, the number in Feb in the
:.econa and so on. This i1s a very simple and useful idea but how do
‘ou 1nitaiise each element of the array to the correct value? You
:ouid use a FOR loop and an INPUT statement to read in the
inswers or vou could write 12 LET statements. To make life slightly
-asier, BASIC provides the facility to store data within a program so
‘hat 1t can be transferred to any vanable of your choice. The data is
stored 1in a DATA statement that 1s composed simply of the word
JATA followed by a list of values separated by commas. For
:xample, the days in each month could be written as:

0 DATA 31,28,31.30.31,30,31,31,3¢,31,39,31

"o transter these data values into variables the REAID statement 1s
1sed. A READ statement is simply the keyword READ followed
sv a list of variables separated by commas. Each time a READ
statement 1s encountered data values are transferred into vanables
n the variable list - one data value per variable. The best way to
hink of this is to imagine a pointer initially set to the first datum
qalue in the DATA statement. Each time a READ statement
ransters a datum value into a variable, the pointer 18 moved on Lo
‘he next datum value. Whenever a READ statement i1s obeved data
s transferred. starting from whatever datum value 1t has reached
iter previous READ statements, So the array holding the 12 data
salues in the example DATA statement given above can be
yroduced using:

H DIM m(12)

® FOR i=1TO 12
i) READ m(i)

P NEXT i

tandling Text and Numbers 69

‘ou can have as many DATA statements in a program as you likc,
invwhere that vou like, and they are treated as if all the data that
‘hev store was contained in one big DATA statement. So when the
yotnter moves past the end of a DATA statement it moves to the
seginning of the next DATA statement. If there isn't one, however,
;ou’ll get an error message.
There 1s no restriction on the types of data that you can store in a
YATA statement (i.e. you can use strings or numbers) but you must
ilwavs be careful to READ data into variables of the same type, i e.
itrings into string variables and numbers into numeric variables.
strings in DATA statements have to have double quotes around
‘hem otherwise it wouldn’t be possible to tell where one datum item
nacd and another began. As an example of using strings in DATA
.tatements consider the following:

b5 T "

0 DATA “jan”,"feb”,*mar” “apr” “may”,“jun”,“jul” “aug”.
‘sep”."oct™”,“nov”, *dec”

B DIM m$(12)

#® FOR =1 TO 12

i READ m$(1)

p NEXT i

ina compare it to the example given earher.

;ometimes, especially in games, it would make things easier if we
:ouid alter the position of the imaginary pointcr in data statements,
“his can be done using the RESTORE command. H vou use
RESTORE followed bv a line number, then the next READ
tatement will start taking its data from the beginning of the next
JATA statement following the line number specitied (if there isn’t
e vou wiil get an error message). If you just RESTORE without a
ine numbecr. then the pointer is moved to the beginning of the first
DATA statement in the program. For example try:

@ DATA 1,234
0 READ a,b,c.d
10 PRINT a,b.c.d
i) RESTORE

0 GOTO 2¢

:aving data on tape

Ve have alreadv seen that it is possible to SAVE and LOAD
yrograms on tape. It would seem to be logical to extend the facility

70 The Spectrum Programmer

o include SAVEing and LOADing data stored in variables to and
rom tape. In fact the Spectrum only allows SAVEing and
.OADing of arrays but this 1s no disadvantage as any simple
ranable that vou might want to save can be first transferred to free
irrav elements and then the array saved. All you have to do to save
in array on tape 1s to proceed exactly as you would for saving a
Jrogram but use:

SAVE ‘filename’ DATA ‘arrav name’ ()

Vhere ‘tilename’ is a string constant or variable that is the name of
he file of data and *arrav name’ is the name of the array, numeric or
siring to be saved.(Notice the ecmpty brackets at the end of the
iefinition.) Similarly, to load a previously saved array use:

OAD Hilename’ DATA ‘arrav name’ ()

“his will search the tape until a previously saved array is found with
he correct file name. Any existing arrays with the same name are
ieleted and the saved version of the array is read in. Notice that both
sAVE and LOAD can be uscd from within a program. You can
dso use:

/ERIFY ‘*filename’ DATA ‘arrav name’ ()

0 check that data has been saved without error in the same way as
or orograms. As an example of saving and loading data try:

@ DIM a(18)

¢ FOR i=1 TO 1§

0 LET a(i)=i

49 NEXT i

@ PRINT “rewind tape and”

W SAVE “test” DATA a()

'® PRINT “rewind tape and press play”
W 1LOAD “test” DATA a()

9 PRINT “data loaded OK”

\part from remembering to press the correct controls on the tape
recoraer, it’s as easy as that.

Chapter Six

“unctions and
-ubroutines

vt this point in learning BASIC you should be in a position to see

‘hat the expression is the main way that programs change data.
‘Without expressions - arithmetic, conditional and string - BASIC
vould be reduced to moving values from one place to another. It is
niv by the use of expressions that values can be combined and
‘ompared to produce new results. To make expressions even more
useful. BASIC provides a large range of operations that can be used
0 make exoressions, in the form of functions. You can also extend
he range of functions by creating vour own, user-defined
functions. This creation of new operations can be taken one stage
urther in BASIC by using the GOSUBand RETURN statements to
roup statements together into functional units or subroutines.

n the first part of this chapter we will look at the generalidea of a
unction and then move on to examine some of the more common
unctions available to the Spectrum programmer. The sections that
ieal with particular functions can be read very quickly or even
:kipped until you need to use them or until they are used in an
xample. However, don't skip the section on special functions
secause these arc particularly important.

The idea of a function

3efore dealing with the way the Spectrum handles functions, it is
vorth looking at functions in general. You may already be familiar
yvith the idea of a function from mathematics. For example, sin(x)1s
i Tunction. However, the idea of a function isn’t really anything to
io with advanced mathematics. At its most simple, a function is an
yperation on data that produces a single value as its result. For
:xampie, finding the larger of two numbers is an operation on data
hat returns a single value - the maximum of 3 and 42 1s 42, the

72 The Spectrum Programmer

naximum of 2 and 2 is 2 — and maximum 1s therefore a function.

The Spectrum doesn’t have a maximum function but it is
1evertheless a useful one to consider as an example because it is easy
© understand and. as we will see later, 1t is easy to remedy the
teficiency and program a maximum function of our own.

“he standard wav of writing a function involves writing its name
o the left of the values on which it 1s to operate that are enclosed in
rrackets. In the case of finding the maximum of two numbers a
.ensible name for this function 1s *‘max’ and so the previous two
:xamples can be written:

nax(3,42)
ind
nax(2,2)

‘ollowing the usual BASIC convention that anywhere that you can
1s€ a constant or a variable vou can use an expression, the following
s also allowed:

nax(count+3,total*20)

“he data values that follow the name of thc function are called
>aramelers. 1t 1s possible for functions to have any number of
narameters but all of the functions supplied on the Spectrum only
have one.

‘unctions can be used in expressions just as if they were variables
r constants. For example:

ET resuli=max(3.3,4.2)

vould evaluate our function ‘max’ and store the answer (4.2} in
-esult’. (Remember that the Spectrum doesn't have a ‘max’ function
0 qon’t trv this example.) You can now see why the condition that a
unction should give only one result is so important. If a function
rave more than one result, which one would be stored in the
rariable ‘result’ or which one would be used to evaluate the rest of
he expression? As we want to use functions in expressions they can
miy return one answer. Sometimes 1t 1s possible to change
;omething that isn’t a function into a function by simply choosing
yne ol the nossible answers. For example, the Spectrum has a
unction SOQOR which gives the square root of a number, Now if you
isk for the square root of four the answer is obviously two i.e. two
tmes two is four. but it is all too easy to forget that minus two is also
he sauare root of four. A minus times a minus 1s a positive and so

*—21s 4 {not —4). The objection that the square root operation

unctions and Subroutines 73

sn't a function can be overcome by simply deciding that SQR will be
i Tunction that returns the positive square root of a number,

The Spectrum’s functions

“he Spectrum has a very wide range of functions and some of them
ire so specialised that it is better to deal with them in detail in other
‘hapters. However, there is a cenfral core of functions that you
vould expect to find in any BASIC and these will be explained in
his chanter. A full list, with brief explanations, of all the Spectrum’s
unctions can be found in Appendix C of the Spectrum Manual.
“he core functions can be divided into three groups: the
irithmetic functions such as SOR and ABS; the trigonometrical
unctions such as SIN and COS: and the string functions such as
EN and CHRS. In addition there are a number of unclassifiable
but very important one-off functions such as RND, All of the
unctions are entered by a single kevstroke and the use of brackets
iround the parameters 1s optional. The most important thing is to
1ave some idea of what functions are available. so a brief reading of
he description of each function listed bhelow 18 recommended.
iowever. it is difficult to appreciate, let alone remember, the subtler
1etails of the use of a function unti! vou actually reed to use it! If you
vant to see the effect of anv of the functions use the following
rOLram:

0 INPUT x
*0 PRINT SIN x
0 GOTO 19

sut change the PRINT SIN x to the function that you are interested
in.

irithmetic Functions

A\BS - ABSolute value of a number

“he absolute value of a number 15 obtained bv ignoring its sign and
reating it as positive, i.e. ABS(—2) 15 2 and ABS(2) 1s 2.

-XP - EXPonential function
EXPix), the exponential number, which has the value 2. 718281, is
:alculated bv raising ‘e’ to the power of ‘x’. That is, EXP(x) is the
ame as ¢,

t is difficult to explain why this function is so important but it

74 The Spectrum Programmer

rops up 1n just about every area of mathematics, (see also the
unction LN). When using EXP it 1s well worth being aware of the
act that EXP(x) gets very big [or even small values of ‘x’. The
argest integer that EXP(x)can accommodate on the Spectrum s 88.
arger numbers will cause the message “Number too big” to be
tisplayed.

INT - INTeger value of a number
'he INT function i1s probably the simplest and most used of all the
irithmetic functions. It will remove the ractional part of a number
ina turn it into a whoele number or an irteger by rounding it down.
‘or positive numbers this corresponds to chopping off the fractional
vart, e.g. INT(3.21) is 3 but for negative numbers things are a little
nore compiicated. Rounding a negative number down looks a little
strange. e.g. INT(—4.7) is —5, but this is simply because —4>—5 Le.
- 18 smalfer than —4!

.N - Natural Logarithm of a number

The natural logarithm of a number is the power to which yvou have to
aise ‘e’ to give the number. Most people are more familiar with a
;ightly different form of the logarithm. The logarithm that is given
n most log tables is in fact the logarithm to the base 10. In other
voras 1t is the number to which 10 has to be raised to give the
riginai number. Some versions of BASIC include the log to the
vase 10 in the form of the LOG function. The Spectrum lacks such a
unction but this is no great disadvantage because you can obtain the
og to the base ten by using LN{x)/LN(10). As LN(x) is the number
o which vou have to raise ‘e’ to get X vou should be able to see that
XPILN(x)) 15 x.

Pl {)

his is a very odd function in that it has no parameters and always
eturns the same result (w=3.14159265) but 1t 15 very useful. As
evervone Knows, the area of a circle of radius r is given by wr? and this
ranslates to BASIC as:

O LET area=Pl*r*r

SGN - the SiGN of a number
The sign of a number is +1 if the number is positive and —1 if it is
1egative. For example, SGN(—232) is —1 and SGN(3239) is 1.

Functions and Subroutines 756

5QR - the SQuare Root of a number
"he sauare root of a number is a result that when multiplied by itself
nves the original number 1.e.:

SOR{XP*SQR(x) equals x

Votice that negative numbers do not have square roots because if
vou muitiply any number, even a negative one, by itself you will get a
ositive number. If you try to take the square reot of a negative
wmber vou will therefore get the very precise error message,
‘Tnvalid argument”.

'rigonometrical functions

Ihe best known examples of functions are probably the frigono-
netrical or rrig functions. It 1s beyond the scope of this book to go
nto detail about the theory of trigonometry and anyway the need to
1se such functions always arises [rom a very specific problem. There
s. however, one use for the trig functions that is important to nearly
'very computer user interested in graphics, namely drawing circles.
f vou want to know more about this topic then see Chapter 10 of
hc Spectrum Manual. Spectrum users are particularly lucky,
however. 1n that Spectrum BASIC includes a command that will
niot a circle. This is covered in Chapter Nine and its presence avoids
the need to go into any detail about using SIN, COS and TAN to
iraw circles.

f vou do need to use any of the trig functions, it is important to
realise that the Spectrum doesn't measurc angles in degrees but in
adians. (Radians as a measure of angle 1s dealt with in Chapter Nine
vnere it is explained with reference to drawing parts of circles on the
:creen.) If you want to convert an angle in degrees to radians then
15€:

-adians=degrees* P1/ 18§

ina to convert radians to degrees use:
iegrees=radians* 8¢/ PI

“he three trig functions available on the Spectrum are:

;IN - SINe of an angle measured in radians
‘0S - COSine of an angle measured in radians
TAN TANgent of an angle measured in radians

“he Spectrum also has available the inverse function related to these
hree.

76 The Spectrum Programmer

SN - ArcSiNe

“he arcsine of a number is the anele in radians whose SIN isequal to
he number. i.e. x=SIN{ASN(x)). Because SIN gives a result
retween +1and - 1. ASN(x)can only be worked out for x in thisrange.

ACS - ArcCoSine

"he arccosine of a number is the angle in radians whose COS is
:qual to the number, 1.6, x=COS(ACS(x)). Because COS gives a
esuit between +1 and 1, ASN(x) can only be worked out for x in
his range.

ATN - ArcTaNgent
'he arctangent of a number is the angle in radians whose TAN is
equal to the number, 1.e. X=TAN(ATN(x)).

String Functions
‘We have already met some of the string functions in Chapter Five.

CHR$ - CHaRacter function
"HRS n will give the ‘character’ that 1s at the nth position in the list
1 all the Spectrum’s characters. Notice that as keywords such as
.ET count. from the Spectrum’s point of view, asa single ‘character’
he tunction CHRS can return a string of more than one letter.
"HRS$ will return all the characters that the Spectrum can use even if
hev cannot be printed on the screen. So, if you type CHRS$(8), or
iny numboer up to and including 33, all you will see 1s a blank screen.

~“ODE - the code of a character

"he CODE tunction does the opposite to the CHRS function in that
1 returns the position in the list of characters of any particular
-naracter. For example, CODE “A” is 65 and CHRS$(65) is “A”. If
CODE is applied to a string of more than one letter the code of the
irst character in the string is returned as the result. If the string is
jull, i.e. contains no characters, the code returned is zero.

LEN - the LENgth of a string
The LEN function returns the length of any string. For example,
[LEN “computer™ is eight and LEN *” (the null string) is zero.

STR$
I'he STRS is a function that is useful for advanced applications. It
sonverts any number {(or the result of an expression) to the string of

unctions and Subroutines 77

‘naracters that would be displayed if the number (or the result of the
xpression) were printed. The STR$ function provides a link
retween numbers and strings - for example, “July "+STRS$(31)
vorks out to the string “July 31",

VAL - eVALuate arithmetic expression

The VAL function is the opposite of the STRS function in that it
onverts a string into a number. The string can be any correct
inthmetic expression and the resulting number is the value of the
:xpression. For example, VAL “34” is 34 and VAL “3+3*6" is 21.

special functions

There are two functions. RND and INKEYS, that are so generally
1setul that it seems worthwhile to treat them on their own and at
:ome length. RND i1s a function that returns a number so it could
1ave been treated in the section on arithmetic functions. INKEY$
‘eturns a character so it could have been treated as a string function.

RND

AND is a function with no parameters that returns a number in the
ange U to less than | which can be treated as if it were random. To
:av that a computer can give a number at random always sounds like
i contradiction and indeed to some extent it is. The point of
:ontusion comes from the use of the word random. If vou are using
he computer to play a game then all that you need is a sequence of
wmbers that are not predictable by anyone playing the game. In
yther words. [or most purposes 4 list of numbers can be said to be
-anaom if there is no detectable pattern. If you run the following
yrogram:

¢ PRINT RND
0 GOTO 10

‘ou snould see a list of numbers that shows no obvious pattern. (In
act there 1s a pattern but it is so complicated it takes a Spectrum to
ollow 1t!) This sort of randomness 1s more correctly called psendo
-anaomness and the RND function is a pseudo random rumber
reneraror. lThe numbers that it produces are evenly spread
hroughout the range 0 to less than 1, i.e. any number is just as likely
0 ¢come up as any other and there should be no discernible pattern
hat would help someone predict the next number that RND will
sroduce,

“he main trouble with RND is that it’s not often that we need a

/8 The Spectrum Programmer

-andom number in the range to less than 1. We normally need the
srogram 1o do one of a number of different things at random. The
rest wav of doing this is to change the RND into a random whole
wmper between [and n where n is the number of anvthing we want
o select from. using the formula:

NT(RND*n)+1

‘or example, if you want to program a six-sided dice then you
vouid choose six as the value of n and:

® PRINT INT(RND*6)+1
N GOTO 1§

v1il print numbers | to 6 with approximately the same frequency
ina 1n such a way that there should be no obwious pattern.
"he subiect of how to use random numbers in programs 1s too
ast to cover in this book but examples will crop up in later
‘napters.

"he RND function is also special because it is associated with
inother BASTC command, RANDOMISE. The list of numbers that
AND produces doesn’t go ontor ever. Eventually after 65536 values
1 repeats itsell, Every time you switch the Spectrum on the list starts
rom the same place. If you want to check this, first swilch your
spectrum olf and on again and then enter the program that prints a
:creen Tull of random numbers. No matter how often vou repeat this
rocedure, remembering to switch off and on again each time, vou
viil get the same numbers in the same sequence. Obviously this is nota
ro0a idea if you want to play games because you might eventually
earn the seguence that is produced when the Spectrum is first
witched on. Onthe other hand. vou might actually want to generate
he same seauence each time and if this meant switching the machine
oif between each run this would also create difticulties, To overcome
woth these problems, vou can use the RANDOMISE command
entered by pressing the key marked RAND) to start the scquence
1. The command RANDOMISE n will start the sequence off from
he nth random number in the Spectrum’s fixed list. Forexample, if
Jou enter:

® RANDOMISE 3¢
% PRINT RND
B GOTO 20

‘ou will get the same sequence of numbers every time you run it
vithout switching the machine oftf. However, If you use RAN-

“unctions and Subroutines 79

DOMISE @ or RANDOMISE without any starting number the
Spectrum will usc a number that is related to the time that the
nacnine has been switched on to start the sequence. To see this in
iction try:

' RANDOMISE §
@ PRINT RND
0 GOTO 10

voich prints the first number in the sequence produced by
LANDOMISE 0 over and over again. You should see that the
wmbers printed slowly increase, counting the time that the
;pectrum has been switched on. The most random sequence that
'ou can proauce using RND and RANDOMISE can be seen by

unning;

RANDOMISE &
§ PRINT RND
0 GOTO 26

NKEY$

'he function INKEYS is closely related to INPUT in that it can be
1sed to read in a single character trom the keyboard. The difference
s that INPUT AS waits for something to be typed on the kevboard
intil the ENTER kev is pressed but INKEYS doesn’t wait. If youtry
he following program:

0 INPUT A$
% 1F A$<<>*" THEN PRINT A$
0 GOTO 19

rou wiill have to press ENTER before you see anything on the screen.
To stop this program you will need to delete the left hand quote
narks and then tvpe in STOP.) However, if you change linc 19 to:

LET AS=INKEYS

he character corresponding to any kev that vou press appears on the
screen at once. (While running this second version of the program
rv pressing more than one key at a time and try pressing SHIFT and
“he other kevs.) Notice that another difference between INPUT and
NKEYS$ is that INKEYS doesn’t automatically print anything that
7ou type on the bottom of the screen.
Mhenever the Spectrum meets the INKEYS function it immedi-
arely examines the keyboard. If there is a key already pressed the

B0 The Spectrum Programmer

appropriate character is returned by the function. If no key is
yressea the function returns the null string, No matter what has
rappened the INKEYS function does not wait for a key to be
nressed.

“he main use of INKEYS is in games where the arrow keys used
or editing are used to control the movement of something on the
:creen. For example:

0 LET a$—INKEYS$

0 IF a$=*" THEN GOTO 1p

10 1F a$=*“5" THEN PRINT “left”
W) 1F a$="6" THEN PRINT “down”
0 IF a$=“7" THEN PRINT “up”
o0 TF a$="8” THEN PRINT “right”
0 GOTO 19

Line 10 gets the character corresponding to any key pressed on the
cevboard, if any. Line 2 tests tosee if a$ is the null string, i.e. no key
1as been nressed, and if it is, sends control back to line l@_ Thus the
oop formed by line 1§ and 20 only stops when a key is pressed. Then
iines 20 to 5@ test to find out which of the arrow keys are pressed and
yrint an appropriate message. Line 7)) repeats the whole program.
Votice that if any key other than an arrow key is pressed the foop
‘ormed by lines 10 and 2¢) stops but nothingis printed on the screen.
n Chapter Nine an example is given where the same sort of program
is used to drive a dot around the screen.

User-defined functions - DEF FN and FN

n our general introduction to functions, the idea of a function to

find the maximum value of two numbers was discussed but it was
sointed out that, although the Spectrum has a wide range of
‘unctions. such a ‘max’ function isn’t among them. Spectrum
3ASIC does allow the definition of new functions but there are
some tnicky ideas involved.

‘ou can define a new function in terms of an expression. For
-xamnle, the Spectrum lacks a square function, 1.e. one that will
vork out the sgquare of any number. The names of all user-defined
unctions are ‘“FN’ followed by one letter, so you can define the new
“unction ‘FN & to fill this gap by:

JEF FN six)=x*x
(DEF FN is entered by one keystroke. You'll find it at the top left

Functions and Subroutines 81

iand corner of the keyboard, on the | key.) The word DEF is used to
ndicate that this is a function definition. The meaning of this
unction should be clear - whenever the Spectrum sees the function
:atled “FN s’ it squarcs the parameter within the brackets next to it.
‘or example;

ET a=FN s(2)

vouid result in 4 being stored in the variable ‘a’. (The FN is again
ntered as one keystroke. It is on the 2 key.) This is all fairly
raightforward but what about the following:

® DEF FN s(x)=x*x

°p LET x=3

0 LET z=4

‘@ LET a=FN s(z)

30 PRINT “x= "x% ="z, a= 52

before vou run this program try to work out what the values of 'x’ 7’
and ‘a’ will be. The correct answer is that ‘x”is 3, ‘2" is 4 and *a’ is 16.
wnv possible confusion comes from the fact that *x’ is used in the
definition of the *FN s’ function and in the program. A point to note is
that the names that vou give to parameters in the definition of functions
are nothing to do with any variables that you might use in the rest of
he program. In this sense DEF FN s(a)=a*a, DEF FN s{z)=z7%z,
etc., all define the same function! In a function definition the
parameters merely show what is to happen to the rea/ parameters
vhen the function is used — because of this they are often called
hummy paramefers.
t vou've managed to cope with these ideas, you might like to try
to work out what this program’s result 1s:

DEF FN t{i)=total+i
20 LET total=§

1 PRINT FN t(30)

i LET total=1§

i@ PRINT EN t(30)

In this case the variable ‘total’, used in the expression to define the
unction isn’t a dummy parameter and it is therefore taken to be a
sariable in the main program, 1.e. ‘total’ in the function definition is
he same as ‘total’ in the rest of the program. The idea of a dummy
‘ariable gets easier after you have had time to think about it.

"o summarise, the rules for forming a user-defined function are:

82 The Spectrum Programmer

1) Every function that you use must be defined usinga DEF FN
statement somewhere in the program {not necessarily before it
s first used).

2} Both numeric and string functions are allowed. Numeric
unctions, i.e. functions that return a number as a result have
1ames of the form ‘FN’ followed by a single letter. String
unctions. 1.e. functions that return a string as a result have
iames ol the form ‘FN” fellowed bv a single letter and a dollar
agn,

3) A function definition can include any number of dummy
sarameters (or none at all) which can either stand in place of
Jumerie parameters or string parameters. Ali dummy para-
neters have one-letter names and dummy parameters standing
n placc of string paramcters must end with a dollar sign.
irackets must be used even if there are no parameters.

4) Any valid BASIC expression can be used in a function
1efinition.

“hesc four rules may seem like a lot to remember but they all
accora with common sense. Some examples of functions may help
(o clarify matters:

DEF FN m$(a$.i,))=a% (¢ TO 11)—-1)
JEF FN I{x)=LN x/LN 1¢
JEF EN dO)=INT{RND*6)+1

he first function ‘m¥’ is a string function with one dummy string
varameter and two dummy parameters. [t will extract J’ characters
marting from character 1", For example, m$("Hello”,1.4) gives
“*1ell”. The second function ‘I’ is a numeric function with a single
aumeric dummy parameter that will calculate the logto the base ten
i1 X (see the notes on the LN function earlier). Notice that *any valid
JASIC expression’ in point {4) includes expressions that involve
yiher BASIC functions! The third and final example has no
arameters but notice that the brackets () are still necessary in the
aefinition. [t returns as a result a random number in the range | to 6
see the details of the RND function above). You even need the ‘()
vhen vou use the function *d’, e.g. PRINT d().
Ve can now use what we've learned about user-defined functions
o create the ‘max’ function that was used earlier to introduce the
«dea of functions. If vou think about it, it seems as though a user-
defined function couldn’t be used to produce a *‘max’ function. Afler
1l how can vou write an expression that will choose between one of
wo numbers? If. however, vou followed the discussion of

unctions and Subroutines 83

-onaitional expressions in Chapter Four, and remember how they
valuate to I if true and to O if false, the answer to this problem

:nould be easy to understand:

§ DEF FN m(a,b)=a*(a>=b)}+b*a<b)
% INPUT a
'@ INPUT b
49 PRINT FN m(a.b)
0 GOTO 29

f vou run this program you will find that line 4§ always prints the
arger of the two numbers that you type in response to lines 2¢ and
‘0. The function itself works because only ane of the two conditions
‘a>=b})" and *(a<'b)’ can be true and hence one will work oui to |
ing the other to 0. As zero times anv number 1s 7ero you should now
¢ able to see how one of the two numbers 1s selected. This example
»nce again empiasises the fact that arry valid BASIC expression can
e used in a function definition.

Subroutines GOSUB and RETURN

"he idea of creating new eperations by defining functions is a verv
yoweriul one but it is already possible to see its shortcomings.
.ometimes 1t would be an advantage to give a name, not just to one
ine of BASIC in the form of a user-defined function. but to a whole
-otlection of lines. This is the idea behind a subrourine. A subroutine
s nothing more than a group of BASIC statements that can be used
is orten as required just by writing their name. (In the same way
hat a single line of BASIC can be used as often as required by using
i user-defined function’s name.} The trouble with BASIC sub-
ounmes 1s that thev are very limited. You cannot even give a one-
etter name to a subroutine. It has to be referred to by the line
wmoer of its first line and there is no provision for parameters of
iny sort, Even with these restnictions the BASIC subroutine is still
vell worth knowing about and using.

f the hines of BASIC that go to make up the subroutine start at
me ‘n’ then vou can use the subroutine by:

1OSUB n

Vhere GOSUB stands for GO to SUBroutine. [ndeed, the action of
: GOSUB 1s very like GOTO 1n that it transfers control to line ‘n’.
‘'he difference between a GOTO and a GOSUB 1s that the GOSUB

34 The Spectrum Programmaer

command causes the Spectrum to store the line number of the
5OSUB in a snecial area of memory set aside for the purpose. This
tored line number is used by the RETURN statement to transfer
:ontrol to the line following the GOSUB when the subroutinc has
inished. For example, the effect of a GOSUB and a RETURN on
he tlow of control is:

0 GOSUB 100§ - - - - — — - 3
— > 20 PRINT a

!
[
|

rest of program :
E
[

10 LET a=56 <--—--- :
-~ —131p RETURN

ine 10 transfers control to the subroutine that starts at {#§@, which

ampiy stores 56 in the variable ‘a’. The RETURN statement at line
910 ends the subroutine and automatically transfers control back
o line 2.

‘ou can use gany BASIC statement that you can use elsewhereina
yrogram within a subroutine. In particular, there is nothing to stop a
-uoroutine from using GOSUB and transferring control to another
;uproutine. If you do this then the next RETURN will transfer
ontrol back to the statement after the most recent GOSUB. In other
vords. if one subroutine calls another, then RETURN behaves as
‘ou would expect it to, by transferring control back to the place that
‘ach subroutine was initiated. i.e. a RETURN never forgets where it
-ame rrom!

“his pair of instructions GOSUB and RETURN are all that there
s to the BASIC subroutine. All the variables in a subroutine are the
.ame as the variables in the rest of the program, there are no
parameters of any kind. As suggested earlier this might lead you to
nelieve that subroutines are not very useful — this is far from the
ruth.

UUsing subroutines

f vou read the Spectrum Manual (Chapter 5) you are led to believe
that the most useful wav to use a subroutine 1s to replace any piece of
rogram that is needed more than once. For example, if in a large
yrogram you need to print the same message over and over again,

“unctions and Subroutines 85

hen it is better to turn that line into a subroutine and GOSUB to 1t
:very ume 1t 1s needed. Although this 1s an important use of
;ubroutines it is often the case that it is a good idea to form parts of a
rogram 1nto subroutine even if each part 15 only used once! The
‘cason Tor this is that programs that use subroutines are e€asier to
understand. easier to find mistakes in and easier to modify. This is
not the sort of statement that anyone can prove because what is
:asier in this context is clearlv a matter of opinion. The use of
:ubroutines in writing BASIC programs will be illustrated by the
:xamples in the rest of the book. If you discover some other method
T programming that yor Vke better, then no one will be able to
irgue with you! All I can sav 1s that many programmers agree that
:ubroutines are a good thing!

Chapter Seven
=raphics

“he main delight of programming the Spectrum is using its graphics
ina sound! This chapter starts by introducing the sort of graphics
hat can be produced using PRINT statements, low-resolution
rrapaics. Chapter Eight adds sound and Chapter Nine deals with
irawing pictures in finer detail. high-resciution graphics. You
:houldn’t be misled into thinking that high-resolution graphics are
n some way more useful than low-resolution graphics. They are not
nore advanced. just different and it’s amazing how often a program
vorks better and is easier to write using low-resolution graphics.

~ontrolling PRINT

0 far we have used the PRINT statcment to print numbers and
<trings on the screen, either one 1o a line or next toeach other onthe
.ame (ine. Although this is sufficient for most programs there is
orten a need to control exactly where something will be printed on
(he screen. In Chapter Three the PRINT statement was defined as:

PRINT *print list’

vhere ‘print list’ was explained to be a list of items, each one
:eparated by a semicolon. The need for the semicolons is simply to
:how where one item ends and another begins. Forexample, PRINT
otal sum will trv to print a single variable called ‘totalsum’
remember blanks are ignored in variable names), while PRINT
‘otal;sum will try to print two variables ‘total’ and “sum’ next to cach
yther on a single line.

“he Spectrum actually allows the use of three symbols to separate
srint items and each one has a different effect on the layout. The
.emicoion, ; , that we have been using since Chapter Three simply
neans print the next itcm without leaving any space. Using a comma

(iraphrcs B7

dS @ separator means move to the next print zone before printing
he next item. The Spectrum’s screen is divided into two print zones -
he first sixteen printing positions on a line and the last sixteen
yositions on a line. So PRINT “a”.“b” will print *a” in column one
ing “b” in column seventeen. The third and final separator is the
ipostrophe, ', which the Spectrum interprets as an instruction to
;tart a new line before printing the next item. So:

]RINT “a!S !Ltb“
has the same effect as:

JR[NT (f-a'lﬁ
PRINT “b”

‘ou can replace more than one separator between any two print
tems without any ill effects, e.g. PRINT *a”,.*b” will causc the
;bectrum to move on two print zones before printing “b”. If you
hink about it. this means that “a” will be printed at the beginning of
i line and “b™ will appear at the beginning of the next line. The
most important case of using a separator more than once is the
repeated use of apostrophes to leave a number of blank hnes, There
s one special case that 1s worth commenting on. [f any of the three
separators arc placed at the end of a list of print items the automatic
starting of a new line is suppressed. For example:

'RINT *a”,
'RINT “b”

5 the same as PRINT “a” “b”
ind

'RINT “a™;
PRINT “b"

s the same as PRINT “a™;*“b"

¥ course, ending a PRINT statement with an apostrophe
suppresses the automatic starting of a new line but the apostrophe
tseif forces a new line so there is no noticeable difference between
'RINT *a” and PRINT *“a™".
To summarise:

:epararor effect
orint next item without
leaving any space

38 The Spectrum Programimner

move to next print zone

start a new line

PRINT functions - TAB and AT

he use of different print list separators has certainly increased our
:ontrol over how things are printed on the screen but we still cannot
:asliv make a print item start at a particular column on a particular
iine. To achieve this we need something more than different
:eparators. I'wo special functions, TAB and AT, are provided to
-ontrol exactlv the place where any item starts printing. {They are
:peciai 1n the sense that although TAB and AT are wnitten like
unctions. they produce no value as a result of their use and they can
e used onlv as part of a ‘print list’.) TAB can be used to control the
iorizontal position on the current line and AT is an entirely general
unction that can produce output anywhere on the screen.

"he general form of the TAB function is:

'AB ‘anithmetic expression’

and its effect 1s to move the printing position on to the column given
3y the value of ‘anthmetic expression’. For example:

'RINT “a”:TAB 14;"b”

viil print “a” at column one and “b™ at column 1@. You can have as
many 1'ABs in a PRINT statement as you need so:

PRINT “a™TAB 18;“b”; TAB 20;“c”

wiil print “a” at column 1, “b” at column 19 and “c” at column2§.

There are two possible probiems that can arise when using TAR.
What happens if you have already gone beyond the column specified
ov a TAB and what happens if you specify a column that doesn’t
x18t, like TAB 35 (there are only 32 columns)? The answer to the
irst question is that the Spectrum will move to the correct column
mn the next line. You can see this if vou try the following:

'0 PRINT “a”;TAB 156", TAB 14;"¢”

which prints “a” at column 1, “b” atcolumn 15 and “¢” at column 1§
on the next line. The answer to the second guestion is that the
ipectrum subtracts 32 from the column number that you specify
antil it gets a number in the range 0 to 32. For example, TAB 46 has
he same effect as TAB 14, because 46 —32is 14, and TAB 126 hasthe

Graphics 89

.ame erffect as TAB 30, because 126—32i594,94—-32is62 and 62—32
is 30!
The most powerful print function is AT because it can position

yuiput both at a particular line and a particular column. The general
‘orm of AT is:

1T ‘arithmetic expression 1°,'arithmetic expression 2°

“he value of ‘arithmetic expression 1'is the line number that the next
tem will be printed on and the value of *arithmetic expression 2’ is
‘he column number. (If the line or column specified is off the screen
hen vou will get an “out of screen” error message.) Unlike TAB,
vhich numbers printing positions | to 32, with AT the columns are
wmbered starting with 0 and ending with column 31. Similarly, the
ine numbering goes from 0, for the top line, to 21, for the bottom
ine. For example:

PRINT AT 3.,5;"a”

v1il orint “a” on line 3 (i.c. the fourth line down) and column 5 (i.e.
he sixth printing position), (This might seem a little difficult if you
are used to x.v co-ordinates where x is horizontal distance and v 1s
rertical distance. because to move to printing position X,y you have
to use PRINT AT v,x.)

sn interesting difference between TAB and AT is that if you use
I'AB to move to a printing position it c/ears all of the screen fromthe
-urrent orinting position. For example, try:

g PRI 63 sk o o oo o o o koo o oo 8 o 0K o o o KK o o o o

'0 PRINT AT 9.0;
10 PRINT TAB(1§);“a”

t doesn’t matter exactly how many asterisks vou usein line 19, they
ire only there to show the effect of TAB. There are two interesting
»oints about this demonstration. Firstly, you can use AT to move
the current printing position anywhere on the screen without
ictually printing anything and secondly, line 19 shows that the TAB
o column 1@ erases all the asterisks from the beginning of the line to
solumn 10. If you want to see the effect of AT (it doesn’t erase the
isterisks but prints the “a™ in place of the tenth one) substitute:

@ PRINT AT ¢,10;%a”

or line 3.
“ou can have as many ATs in a ‘print list” as you desire. Each one
noves the printing position to the place indicated before going onto

Q0 The Spectrum Programmer

the next item. Not only can you have more than one AT, you can
nix AT. TAB and all the other print controlsymbols in a print list in
inv way that makes sense to you. For example:

0 PRINT AT 10.5;“a™; TAB(5);“a™ AT 3.19;“b™"“¢”

s accepted without qualms by your Spectrum.
1s an exercise in using AT try to write a program that draws a
;quarc made of asterisks on the screen. In case you have any

yroblems, one ot the many possible answers {there 1s always more
han one way of writing a program) is:

@ FOR i=p TO 19

)0 PRINT AT 5,i+1§:*

50 PRINT AT 15,i+1§;"*"
{0 PRINT AT i+5,10; %

0 PRINT AT i+5,20;*

® NEXT i

PRt FgFEEFLE

o o s

=
>

4

S
s o s ok o o ok b Ok

FREEERFEREF
ig. 7.1 Sruare using asterisks
ines 20 and 3@ print the two horizontal rows of asterisks and lines
'@ and 5§ print the two vertical columns of asterisks.

A full screen - CLS and scrolling

“he Spectrum’s screen is 32 characters by 22 lines and sconer or later
sou are pound to use all the space and still want o print yet more
niormation. If vou have finished with everything already on the
creen vou can use the CLS statement (CLS stands for CLear the
.«creen), which simply wipes everything off the screen and sets the
urrent orinting position back to the top left hand corner of the
.creen.

f vou are printing things on the screen working from top to
hottom there will come a time when you reach the bottom line. If
ou try to print another line the Spectrum will print the message
*Scroll 7vin™ and wait for your answer. If you press any key apart

Graphics 91

rom “n”. SPACE or STOP, the whole screen is moved up one line,
_he top line is lost and the new information is printed on the newly
created bottom line. This technigue of moving the screen up by one
‘ine is known as scrolling and was introduced briefly in Chapter Two
n connection with listing programs. After this first scroll new
yottom lines are introduced. 1.e. the screen is scrolled, every time a
PRINT tries to take the printing position off the bottom of the screen.
vfter 22 scrolls the line created by the first scroll is about to
disappear off the top of the screen and the Spectrum once again asks
if i1t’s all right to scroll. In this way, the Spectrum makes sure that
7ou always have a chance to see each screen full of numbers before
thev start vanishing off the top. To see this in operation try, for
:xample:

@ PRINT RND
20 GOTO 19

f for anv reason you want to make the screen scroll before it would
normailv do so you can use:

RINT AT 21.07

wnich first moves the current printing position to line 21 and then
ries to move it on one more line.

Controlling INPUT

t may come as something of a surprise to find that the INPUT
statement can use all of the items that a PRINT statement can, This
s a pleasant discovery because it greatly increases the range of input
srompis that we can give. The general form of the INPUT statement
CH

NPUT ‘*print list’

“here are. however, some additional rules and important differences
n the way that the ‘print list’ 1s interpreted when used inthe INPUT
statement. The first change that is necessary 1s to indicate which
rariables are to have their values changed by the INPUT and which
ire to be printed out as part of the prompt. The rule that the
Spectrum uses is that any ‘print items’ that begin with a letter are
reated as input variables, (Notice that TAB and AT don't begin
vith letters because thev are single keystrokes.} For example, the
NPUT statement:

22 The Spectrum Programmer
§ INPUT “a=";a;“b=";b

viil print a prompt, then wait while you type in the value for ‘a’, print
i secona prompt and wait while you type in a value for ‘b’. You can
:hort-circuit the first letter rule bv enclosing any variables or
*xpressions in brackets. The meaning of an expression isn't changed
by wrapping it up in an unnecessary pair of brackets but then it no
'onger begins with a letter, For example:

0 LET a=10
0 INPUT “a=":(a);"b=";b
i PRINT a,b

viil print the value of ‘a’ on the bottom line and then wait for youto
vpe in the value of ‘b’

v now you will have noticed the strange way that PRINT and
NPUT work in separate parts of the screen. This division of the
screen applies to the way AT works. If you use AT in a PRINT
statement then vou count lines starting at the top of the screen from
ero. However, if you use AT in an INPUT statement then you have
o start counting lines from the bottom of the screen starting from
-ero at the first line in the input area (see Fig. 7.2). For example try:

'@ INPUT AT 9,5:“top line™;AT 1,5;“next line”;a

ne { for
'RINT AT »=| 4
3
3
Standard FRINT area
g2 TEe R S R - ine O for
\ - -
INPUT AT
standarg INPUT area
ey e o s S = fine 1

Fig. 7.2. Screen areas

“his prints two prompts, one on each line of the input area, and then
vaits for you to type in the value of *a’. At this point you might be
vondering what happens if you try to print on lines in the input area
sther than lines @ and 1. The answer is that the Spectrum will scroll
the input area up to bring the line onto the screen. To see this in
yperation, try:

0 INPUT AT 19.0;“this line is normally off the screen”;
vT 0,0;“and this is the top line™;a

iraphics 93

f there is anvthing printed on the upper part ot the screen and an
'NPUT wants to print semething in the same area, then the print
irea oI the screen is scrolled up to make some space for the input
irea. This 1s something that is a lot easier to understand once you
have seen it happen:

0 PRINT AT 15,8;This is printed on line 157

‘D PRINT AT 16,9;“This is printed on line 16"

'0 INPUT AT 26.9:“This is printed on line 2¢ of the input
irea AT 0.9;“this is the top line of the input area™a

‘ou can write an INPU'] statement that only prints on the screen

but vou are unlikely to see the message that it prints because every
NPUT statement clears the input area when it is finished! This
neans that vour message will be briefly flashed on the screen, which
g then cleared and vour Spectrum maoves on to the next instruction.
Vot only does every INPUT statement clear the input area of the
:creen it also restores it to its original size, 1.e. the bottom two lines of
the screen.

“he division of the screen into two different areas. the print and
he input area, is sometimes said to be a problem with the Spectrum
and the ZX81) but if vou understand how it works you should be
ible to turn it to advantage!

he graphics characters

“he combination of PRINT and AT can obviously be used to place a
-naracter anywhere on the screen and, as we saw earlier in this
:napter {in the program that prints a square), this can be used to
sroauce limited graphics. This ability really only comes into its own
vnen used with the Spectrum’s range of graphics characters. These
:an be produced by pressing CAPS SHIFT and GRAPHICS (9) to
:nange the cursor tof~ and then pressing another key. You can leave
rraphics mode by pressing GRAPHICS again. Although something
s displayed on the screen for every key that you press in graphics
mode. therc are only 37 graphics characters. Eight of these are
onnted in white on the top row of keys alongside the numbers. You
:an get eight more by pressing any of the top row of keys together
vith CAPS SHIFT. These additional eight are simply the original
-ignt reversed, i.e. black changed to white and vice versa but it is
mportant to realise that they are distinct characters. This sct of
axteen graphics characters can also be printed on the screen by

24 The Spectrum Programmer

1sing their character codes in the CHRS$ function. To see this
‘ompiete set of sixteen try the following program:

B FOR i=128 TO 136
0 PRINT i,CHR%(i)
0 NEXT i

“he other 21 graphics characters are produced by the keys ‘A’ (o *U’
:ntered while in graphics mode and they correspond to the character
-odes 144 to 164. As will be explained later, these can be changed to
nroauce any shape that is required, that is they are user-defined but
‘nitially they reproduce the upper case character set. Soif youtypea
sraphics *A’, an upper case ‘A’ appears on the screen. Apart from
hese 37 graphics characters, pressing a key while in graphics mode
simply produces a character that can be entered by some other
nethod. To be specific, while 1n graphics mode, pressing any key
:nters the character that i1s 96 further on in the list of characters. In
sther words if the kev produces character CHRS$(n) it will produce
"HR$(n—96) in graphics mode.

wpart [rom having to be entered in a different mode, the graphics
characters behave like any others. For example, they can be used in
PRINT statements and strings. | he program that printed a square of
isterisks can be changed to print a better looking square using
rraphics characters:

¢ FOR i=1 TO 9

0 PRINT AT 5,i+19:*3]"
0 PRINT AT 15,i+10;"[3]"
0 PRINT AT i+5,10;*(5]”
59 PRINT AT i+5,20:45]"
+® NEXT i

RS)

“ig. 7.3. Square using graphics characters
As explained in Chapter Two, because of the difficulties of printing
grapnics characters in a book, they are represented by the main
character on the kev enclosed in square brackets, e.g. [1] is the
rraphics character on the key marked ‘1°. If the character has to be

iraphics 95

‘ntered using CAPS SHIFT to produce the required graphics
‘haracter then a't” will be written before it. So [11] is the graphics
‘haracter produced by pressing ‘1’ with the CAPS SHIFT held
1own.) The trouble with this square is that the corners are missing
ind putting them in is a matter of printing at the correct positions
he L-shaped graphics symbols. This is left for you to remedy.

1§ vou can imagine, drawing more complicated shapes using the
rraphics characters is very difficult. Fortunatelv, apart from
irawing the occasional ‘thick’ horizontal or vertical line, the
rraphics characters on the top row of the keyboard are normally
1sed in small numbers to print special shapes. For example, if vou
vant 1o print the outline of a ship during a game you could use:

SRINT AT v,x;*[12][13][13]”

¥nich will orint a ship at line y and column x.

2] [#42] 28]

rg. 7.4 Ship graphics

ig. 7.5, Ship graphics

f vou would like to see a ship move across the screen try

® FOR x=0 TO 27
® PRINT AT 5,x:* [12][13][13]"
0 NEXT x

98 The Spectrum Programmer

Votice the space left before the first graphics character in line 20. If
vou want to know what the space is for try leaving it out!

User-defined graphics characters

lhe range of shapes that can be made up of combinations of the
graphics characters on the Spectrum’s top row of keys, discussed in
the previous section, is fairly limited. For example, how would you
make up the shape of a man? Fortunately the Spectrum has 21
graphics characters that can be altered to produce any shape that
you could ever want.
lefore we can go on to explain how to define new characters we
irst have to examine how characters are produced on the screen.
‘very character that the Spectrum can display on the screen is in fact
produced from a grid of 64 dots arranged into a square grid, eight
dots by eight dots. The pattern of any character depends on which
iots in the grid are displayed as black and which are displayed as
white. By analogy with printing or writing on paper, black dots are
-eterred to as ‘ink’ dots and white dots are referred to as ‘paper’ dots,
‘or example, the letter ‘a’ is produced by the pattern of dots shown
'n Fig. 7.6 (i stands for ink and p for paper).

S pPPRPPPR
s pRpPPRPR
s i1l tppp
DR PP P
B p o3 pop
_ | £
P piii
»] F:l 1:_‘ r:) l:? i,':l 1'_] i:}

“ou might find it difficult to see the pattern of the letter ‘a’ among
the s and ‘p’s but it becomes very clear if each 1’ is replaced by an
ssterisk and each ‘p’ is replaced by a blank as in Fig. 7.7.

sraphics 97

¥ ¥ X
"
4

nOWON N

=

ig. 7.7

Dbviously, if we are going to define the shape that corresponds to
i user-aefined graphics character, there must be some way of
ipeciiying which dots in the 8 by B grid are ink and which are paper.
"he Spectrum provides a very simple way of doing this by use of the
ISR and the BIN functions. The user-defined character which
‘epiaces the existing definition for the character [n], where n is an
Ipper case letter from ‘A’ to ‘U’, involves the function:

JS R iin!!

[“or example, if we are going to define a new character in the shape of
i man and we want it to be produced when [M] (graphics M) is
typed, the function:

]SR idM!!

s used. The definition of the new character hastobedoncarowata
ume. Each row in the grid can be written as a sequence of eight digits
v writing a @ for every paper dot and a 1 for every ink dot. For
:xample, the row ‘ppiiippp’ would be written as P 111000 Using
his representation each row of the new character can be redefined

y

'OKE USR “M"-+r.BIN ‘dot pattern’

viere ‘r’ is the row number to be defined (the first row is numbered
1) and *dot patiern’ is the sequence of s and 1s that correspond to
he ink and paper pattern. The command POKE and function BIN
¥1il be described in Chapter Ten but exactly what they do is
imimportant for defining characters - they are always used in the
:ame wayv. io define a complete character you have to define eight
"ows and so use the above statement eight times but remember there
s nothing to say that you have to change all cight rows from their
:xisting definitions.

sll this will be easier after an example. The little man character
niroduced earlier could be defined using the following dot pattern:

98 The Spectrum Programmer

PO 11989
P00 11909
SRENRER
MWI111190
111190
0100100
10199199
19109109

vhere | has been used to mean ink and § to mean paper. Thiscan be
‘ransferred to the graphics [M] key row by row by:

0 POKE USR “M” BIN §¢0 11909
>0 POKE USR “M"+1,BIN 9001190
0 POKE USR “M™+2,BIN 11111111
i POKE USR “M"+3,BIN ¢¢ 111190
@ POKE USR “M”+4,BIN $011110¢
0 POKE USR “M”"+5,BIN ¢ 196 10¢
® POKE USR “M"+6,BIN 90100109
30 POKE USR “M"+7.BIN 0010010¢
) PRINT “{M]"

AT AT A AT AR
2000008000000 0 8. 000 0 0 0 R0 R
AT A T AR

LB L]

ig. 7.8. Man figure

Jotice that after vou have run this program the [M] in line 9¢
iisplays as the little man shape. The reason for this is that once you
have defined a graphics character the definition holds until you
either redefine it or switch the machine off.

Iser-defined graphics characters are most useful for producing
‘he special shapes that are so essential to any sort of games program.
“or example, a large dot character could be used as a ball. However,

Graphics 99

here are some serious uses of user-defined graphics characters such
1s snowing mathematical or chemical formulae on the screen.

“hanging the way characters look - INVERSE and OVER

"he two commands INVERSE and OVER do not create or give us
iCCEss 1O any more new characters but they can be used to alter the
vay existing characters appear on the screen. The command
'NVERSE is perhaps the easier to understand. The effect of:

NVERSE |

s to swap the ink and paper dots of every character subsequently
printed, 1.¢. ink dots become paper dots and vice versa. This means
that instead of the usual black characters on a white background you
set white characters on a black background. To change back to the
1sual assignment of ink and paper the command:

NVERSE

1as to be used. You can think about the # and 1 following the word
NVERSE as meaning ‘off’ and ‘on’. For example:

INVERSE |

® PRINT “this is inverted”

‘0 INVERSE 0

'@ PRINT “this is back to normal”

Although INVERSE 1s not a difficult command to understand,
there are two important points to notice INVERSE does not create
anv new cnaracters it merely changes its definition by changing ink
dots to paper dots and vice versa. The effect of INVERSE 1
‘ontinucs untii the Spectrum obeys an INVERSE 0 or until it is
:witched off. The result of this persistence of the INVERSE
command is that if you stop a program before turning the
NVERSE off then all vour listings, etc., willappear on the screen in
nverse mode. The solution to this problem is to enter INVERSE ¢
n immediate mode. i.e. without a line number.
"he command OVER is vervsimilar to INVERSE, ih that it alters
the way that ink and paper dots are displayed, but it is slightly more
difficult to explain. After the command:

JVER |

vhether an ink or a paper dot is displaved depends on what is

100 7he Spectrum Programmer

iiready on the screen. If the new dot and the old dot are both the
same then a paper dot is displayed. If the new dot and the old dot are
different then ink is displayed. This may seem complicated but it can
:as1ly be summarised:

1ew doi old dot displayved
aper paper paper
paper Ink ink
nk paper ink
nk ink paper

ind can be remembered by ‘two anythings make a paper and one of
:acn makes an ink’. (This behaviour is known as an exclusive OR of
the old dot with the new. see Chapter len.) To see what effect this
1as try the following:

‘% OVER 1

0 PRINT AT §.0;“hi there !~

'@ PRINT AT 0.0 . - - . - ... _. 2
‘ou should see the message produced by hine 20 underlined. The
way that this works is that the bottom row of dots of every character
s a row of paper dots and the underline character is simply a bottom
ow of ink dots. By the rules given above, paper and ink make ink so
the underlining appears as the bottom row of each character already
mn the screen. The reason why OVER is so named is because this
ifect is very similar to over-printing on a typewriter. However, it is
important to notice that in many ways OVER is nothing like over-
srinting on a typewriter! For example try:

OVER |
0 PRINT AT §.9,“0"
{;,) PRINT Al ;ﬂ,ﬂ;“;”“

On a typewriter this would have produced a letter O with a slash /
through it but because two inks make a paper the dots where the
:lash and the ‘O’ are black abpear as white paper dots. Although this
mignt appear to be a nuisance it can be used to good effect. Try, for
:Xxampie,

' OVER |
70 PRINT AT 0,0;“*”
) GOTO 2¢

“he first time the asterisk is printed it appears on the screen because

Graphics 101

ail the original dots are paper. The second time it disappears because
all the ink dots are in the same place and so they cance/ out. This is
repeated each time the asterisk is printed and so we get the flashing
:1fect observed.

't is important to notice that OVER is the same as INVERSE in
that it doesn’t create any new characters only alters the way they are
displayed and its effects continue until it is cancelled by:

OVER §

or the machine is switched off.

Character attributes - FLASH and BRIGHT

.0 far we have concentrated on the position and shape of the
characters printed on the screen. However there are other things that
ve can control about the way the Spectrum displays characters. The
:ommands FLASH and BRIGHT can be used to alter the way that
any given characters are displayed on the screen. The command:

“LASH |

-auses all subsequent characters to be printed flashing and:

BRIGHT I

causes ail subseauent characters to be printed brighter than normal.

s for INVERSE and OVER vou can cancel the effects of FLASH
ind BRIGHT by using § instead of | in the commands. These two
commands are easier to illustrate than thev are to explain. Try
the following program:

0 FLASH 1

'® PRINT “Flashing characters”
‘0 FLASH ¢
40 BRIGHT |

) PRINT *“Bright characters”
»0 BRIGHT ¢

The message printed at line 2¢ will flash (black changing to white
and white changing to black) and the message produced by line 50
#1il be brighter than the surrounding screen. As you might expect
the effect of FLLASH and BRIGHT persists until you either cancel it
»r switch the machine off.

02 The Spectrum Programmer

rolour - BORDER, INK and PAPER

“ou may be surprised to find that it has taken so long to reach the
-xciting subject of colour! The reason for this delay 1s that the way
he Spectrum’s celour commands work is much easier to understand
mce the idea of characters being made up of ink and paper dots has
»een introduced. The Spectrum can display eight different colours
and these are referred to by the numbers from @ to 7:

A — black
Vs ane
s - red
1 — magenta (purple)
! — green

cvan (pale blue)
5 - yellow

white

7ou da not., however, need to commit these numbers to memory as the
‘olour names are orinted {in appropriate hues) over the number
<evs, Notice how lower numbers correspond to darker colours. If
vou're not using a colour TV sct with your Specctrum then the
otours will appear as different shades of grey, the darker shades
corresponaing, as might be expected, to the lower numbers.

’erhaps the easiest way to see the Spectrum’s range of colours is
‘0 use the BORDER command. The area of the TV screen that the
spectrum cannot PRINT on is known as the horder and although
vou cannot PRINT on it you can determine its colour. (The border
:onsists of the too and edges of the screen and from the bottom up to
the top line of the input area.) The command:

BORDER ¢

viil change the border to the colour corresponding to the number ¢,
Note that, in general, ‘¢’ can be an arithmetic expression,) Try the
ollowing program:

¢ FOR i=@ TO 7
0 INPUT a$

% BORDER i
i NEXT i

vhich will change the colour of the border each time vou press
‘NTER. To make the point that the input area is included in the
horder, replace line 2¢) by:

Graphics 103

20 INPUT AT 20.9;a8

'n the same wav that the colour of the border can be changed so
-an the colour of the rest of the screen. However unlike the border
his involves specifying rwo colours, one for ink dots and one for
paper dots. When the Spectrum is first switched on ink dots are set
o black and paper dots are set to white but you can alter these
.ettings using:

NK ¢
:iI'ld
APER ¢

The command INK sets the colour of any ink dots subsequently
orinted and PAPER sets the colour of any paper dots subsequently
printed. For example, try the following program:

@ INPUT “ink colour=";i

% INPUT “paper colour=";p
0 INK i

10 PAPER p

50 PRINT “*";

0 GOTO 10

tJsing this program you can print asterisks with any given ink and
saper coiours, (Enter the colour codes in response to the questions
printed by lines 10 and 20.) Notice that the Spectrum will even let
vou specify the ink and paper colour to be the same, in which case of
ourse vou aon't see the asterisk! [t 1s, however, important to realise
hat even though vou cannot see it, the asterisk is still there its
sattern of ink and paper dots are present on the screen but it is
nvisible because both ink and paper are being displayed as the same
:olour.

his 1s almost all that there is to the colour commands on the
Spectrum yet it is possible to create some excellent colour eflects
1sing them. However, it is important to be aware of the limitations
built into this simple method of colour control. Each eight by eight
‘haracter block can onlv display two different colours - the paper
:olour and the ink colour. This means that, although vou can have
1ght colours showing on the screen at the same time, only two
:0lours can meet in a single character position. This becomes more
if a problem when we look at high resolution graphics in Chapter
Nine.

104 The Specirum Programmer

wpart from the colours @ to 7 there are also two pseudo colours
:orresponding to the numbers 8 and 9. If you use the number ¥ in
iny of the commands INK, PAPER, BRIGHT or FLASH the effect
s that the state existing at any character position is unchanged by
iny more prinung. For example, if PAPER 8 15 carried out, all
uture printing uses the paper colour already at the printing
location. FLASH 8 will leave the character positions that were
lashing, still flashing and those that were steady, remain steady.
Because in some senses the commands when used with colour §
ilow the old colour or condition to show through it is sometimes
ererred to as trgnsparent,

T'he colour 9 can only be used with INK and PAPER and simply
nstructs the Spectrum to use a colour that contrasts with the colour
hat 1s present at the printing position. In practice, black is used to
-ontrast with all the light colours (4 to7) and white is used to contrast
vith all the dark colours (@ to 3). To see this try:

¢ INK 9

0 FOR ¢=¢ TO 7
' PAPER ¢

a PRINT ¢

) NEXT c

Display commands in colour

1l the other display commands, OVER, INVERSE, FLASH and
JRIGHT work in a way that is unaffected by whatever colours are
.et tor ink and paper. For example, INVERSE will exchange ink
ind paper dots no matter what colours they correspond to. One
iifference is that in black and white, BRIGHT seems only to affect
yaper aots. This 1s because normally paper dots are white and so can
¢ displayed as extra bright, but ink dots are black and the idea of a
wrighter black 1s a little odd! However for the other colours,
JRIGHT does have an effect. You can also use any of the commands
n combination and the result is usually easy to predict. For example
Lry:

-

'¢ BRIGHT 1
°¢ FLASH 1
10 PRINT “bright flashing”

f vou think in terms of ink and paper dots to form the shapes of

Graphics 105

things on the screen, and the INK and PAPER commands setting
the colours that the ink and paper dots show, then you shouldn’t
have any trouble understanding the Spectrum’s colour display. As
in exampie of how logical everything is, consider the statement CLS
ntroduced earlier. CLS erases the contents of the screen by filling it
with paper dots so if you want to change the whole screen to one
colour try:

10 INPUT “colour="ic
‘0 PAPER ¢

@ CLS

0 GOTO 19

When vou RUN this you should see the screen change colour
‘nstantly.

Temporary colours

t would obviously be an advantage to be able to change the
cotours just for the duration of a PRINT statement. Youcan do this
v including INK or PAPER as part of the PRINT list. For

xample:

10 PAPER 3

% INK 6

@ CLS

' PRINT “COLOUR 6”

p PRINT INK 4;“COLOUR 4"
W PRINT “COLOUR 6"

\nv of the display control commands that we have already met can
ye used in this way, i.e. any of INVERSE, OVER, FLASH,
BRIGHT, INK or PAPER can be used as part of a ‘print list’ and
their effect is restricted to characters printed by the PRINT
:tatement that thev are in. The same holds true for the ‘print list’
used in an INPUT statement. Using such commands in a PRINT
statement is normally the best way to control screen displays for all
but the simplest programs. Set up the overall paper and ink colours
and then everv time you want to print something in another colour
‘mbed the colour command ina PRINT statement. In this way you
iiwavs know what colours will be produced on the screen.

106 The Spectrum Programmer
Ising graphics in games

¥e arc now In a position to use graphics in programming
ipprications. However, the program using what we've learned in this
:napter 1s held over unul after we've considered sound, an
naispensible adjunct to writing exciting games.

Chapter Eight
sound and Games

The command to produce sound from the Spectrum is very simple.

Towever. it can take quite a lot of ingenuity to produce any sounds
vorth listening to. In the first part of this chapter we will examine
:ome of the ideas involved in using sound to good effect. In the
econd part an example of a game involving both sound and
rraphics will be presented and explained. Although most of this
rame could have been written at the end of Chapter Seven it is
emarkable how much excitement can be added to a game by the
arctul use of sound.

Simple sounds - BEEP

The Spectrum’s only sound command is;
3JEEP ‘arithmetic expression | *arithmetic expression 2

vnere the value of ‘arithmetic expression |’ specifies the time in
econds and ‘arithmetic expression 2’ specifies the pitch in semitones
ibove or below middle C. For example:

REEP 1.0

¥1ll sound middle C for one second exactly. Notice that all
:omputung stops for the duration that the note is sounding.
"0 hear the range of notes that you have at your command try:

0 FOR i=69 TO —6f STEP —1
'0 BEEP .1
) NEXT i

“he quality of the very high notes s poor — more of a warblingthana
iteadv note. The lower notes at first sound like a rasping noise and
hen like a series of clicks. This 1s not surprising as a click is the only
1015¢e that the Spectrum can really make! Steady tones are produced

108 The Spectrum Programmer

18 very iast streams of clicks. (Later in the chapter a method is given
‘or making clicks from BASIC.)

f vou know a little bit about music theory then youcan use BEEP
(0 write vour own tunes. However, if you would first of all like to
rear what the Spectrum can do on its own try:

@ BEEP .1,50 —INT(RND*1¢9)
20 GOTO 19

'he noise that this program produces is interesting at first but soon
necomes boring. The trouble is that music which is too random just
doesn’t sound interesting. Although it is very difficult to introduce
‘nough order into the computer-generated music to make it sound
invihing like traditional music, you can see the overall effect of
ncreasing the order if you try the following program:

® LET n=0

'@ LET n=n+SGN(l—2*RND)
0 BEEP .¢1,n

@ GOTO 20

T'his plays a long sequence of notes that go either up or down by one
semitone at most and sounds just a little more like music than the
irst program. In fact it’s not a bad imitation of the Flight of the
3umble Bee! Before leaving the subject of random music it is
nteresting to hear the effect of changing the note length in each of
the above programs. Try substituting values of 1, 9.5, 0.1, 9.1
:econds in line 3.

nstead of random music vou might feel that being able to play the
pectrum 1s a better idea and indeed it is not difficult to turn the
:pectrum’s keyboard into a musical keyboard! Try the fellowing
ample program:

0 DATA $,2.4,57,9,11,12

‘¢ DIM n(8)

@ FOR i=1 TO 8

) READ n(i)

NEXT i

% LET a$=INKEY$

0 IF a$="" THEN GOTO 6§
0 BEEP .3,n(VAL(a$))

% GOTO 6§

"his will allow vou to play notes with the top row of number
cevs from 1 to 8. It works by continually scanning the keyboard

Sound and Games 109

1sing INKEYS ({see Chapter Six). Each number is entered as a
string variable and is then converted from a string to a number
hv the VAL function and used in the BEEP statement (line 89) to
control the vitch. The array ‘n” holds the pitch values for each
iote from middle C to C an octave above. You should be able to
vrite a program to make every key on the board produce a
iifferent note. What is more difficult is to find an arrangement
of kevs and notes that makes the Spectrum casy to play!

f vou want to be able to hear the output of the Spectrum a
ittle louder. then you might be interested to know that the
ouna signal is also available from the cassette sockets. If vou
amply set the tape recorder that you use to SAVE and LOAD
programs to record while the Spectrum is playing something,
sou can rewind and play it back at a highcr volume later. Il you
ire reallv keen on Spectrum sounds there is nothing to stop you
rom connecting an amplifier to the MIC socket.

‘rogramming tunes

Programming either well-known tunes or even tunes that you have
omposed is all a matter of working out the sequence of notes and
heir durations. This is easy if vou have the tune written down. If you
-an 1ind middle C on the music stave then a note drawn on this line

Treble Clef Name of Beep
note pitcn

17
16

\j_u

-\
\
\ /
\.

e adger line

ig. 8.1,

e T o T ER R e e = S 0 8 S v T e S g |

110 The Spectrum Programmer

:orresponds to a pitch of @. Moving up or down by one place on the
.1ave increases or decreases the pitch by 2 or 1, (see Fig. 8.1). The
eason 1or this is that notes sometimes differ by a whole tone and
:ometirnes bv only a semitone, The pattern of tone/semitone
aifferences is easv to remember because it 15 exactly the same as the
irrangement of black and white notes on the plano.

‘or example, starting from C gives the following pattern of
one/semitone differences: '

D-E-F-G-A-B-C
LS T T8

in additional trouble is that most music involves sharps and tlats.
“hese are easv to deal with once you realise that a sharp raises the
salue of the note by one and a tlat lowers it by one. Forexample, Cis
}. C sharp is | and C flat is —1. The only thing that you have to
emember is that if a note 1s shown as sharp or flat at the start of the
nusic (i.e. in the key signature) then it and all its octaves must be
:narpened or tlattened.
T'he well-known beginning of Hearts of Oak, apart from being a
r00d tune, could form the basis for a jingle suitable for a game
‘nvolving ships. The first eleven notes can be seen in Fig. 8.2 and
onverting them to pitch values is easy enough. The three sharp signs
#) at the beginning apply to all Gs, Fs and Cs in the tune and this
uie is best applied by writing the name of each note underneath and
hen writing a sharp sign by cach G, F and C. The pitch values are
then assigned, using Fig. 8.1 and remembering to add one for a
:narp. When converting tunes that have flats in their key signatures
/01 have to subtract one every time a flattened note is played. The
esulting pitch values can be seen under the name of each note in Fig.
3.2. Onlyv cne thing now keeps us from hearing Hearts of Oak and
his is the problem of how long each note should be sounded for,
“ortunatelv, musical notation is rigorously logical (after all it is one
of the first programming languages)! Time 1s divided into intervals
ind a plain ordinary note, like the first in Hearts of Oak should last
one interval. The time that a note lasts is shortened by the number of
streamers drawn on its tail. Each streamer halves the length of the
101¢. so for cxample, the fourth note has two ‘streamers’ the first
shortens it to half an interval and the second reduces it to a quarter,
“he onlv complication is that a dot following a note 1s an instruction
o lengthen it by half the time that it would normally last (it makes
vou wonder how musicians cope). So the third note would normally

Sound and Games 111

ve one half a time interval but because it is followed by adot it has to
»e sounded for onc half plus one quarter, i.e. three quarters.
"ranslating this musical notation into [ractions of the time interval,
mives the results written under the pitch values in Fig. 8.2. There are

y e
T

AcAd KL A G E. A CEERIE
1 @ 9 9 9 1311 9 8 &6 4

i S hFA 1 34 14 1 44 1a 1ve

Hearts of Oak’

ig. 8.2

wo notes that do not occur in Hearts of Oak that have to be sounded
or twice as long and four times as long. These are included in
1g. 8.3. along with all the other note values.

he time has come to start programming! Each note of the tune
jow has two numbers associated with it - its pitch and the time that
s snhould sound. This information is best stored in a DATA
atement and then read into two variables. Try the following:

Fote Tme

i

._“\ ._._\\ “’l_\._._ Q- O

1

Fig. 8.3. Lengths of notes

“12 The Spectrum Programmer

® DATA 4,19.1,9,.75,9,.25,9,1,13,.75,11,.25,9,1,8,.75,6..25,
4,.1.5,99,99

'® LET temp=.25

@ READ p,t

ip 1F p=99 THEN STOP

%9 BEEP t*temp,p

50 GOTO 36

The DATA statement is terminated by two values of 99 and this is
1sed to detect the end of the tune. The variable ‘temp’sets the length
»f the fundamental time interval, in this example one quarter of a
:econd, but vou might like to experiment with other values.

Resting - PAUSE

The onlv thing that the BEEP command doesn’t allow ustodoisto
pause Tor a period of silence. The Spectrum does have another
command that will cause it to stop doing anything for a specified
neriod of time but its format is slightly different. The command:

*AUSE ‘arithmetic expression’

viil stop the Spectrum from doing anything for a time given by the
‘alue of the arithmetic expression. The only trouble is that the time
s measured in fiftieths of a second so:

PAUSE 5¢

v1il cause the Spectrum to do nothing for one second. This isn’t too
much of a problem however, because:

PAUSE t*5¢
viil pause for ‘t’ seconds.
There is one other special feature of the PAUSE command and that
s that pressing any key on the keyboard will immediately cut the

pause short and make the Spectrum continue with the program. If
you use:

PAUSE ¢

‘hen the pause isn't timed and the only way to make the Spectrum
:ontinue is to press a key.

rvthough the PAUSE command has been introduced as a way of
leaving silences in music, it can be used to alter the time that any part

Sound and Games 113

T a program takes to complete. The command PAUSE § is
yarucularly useful for making the Spectrum pause until you want it
‘0 move on,

Some sound effects

“he trouble with using the Spectrum to produce sound effects is that,
vnile any noise 1s coming from the loudspeaker, it stops doing any
-atculations. So even if yvou write a program that makes an excellent
;ouna of a rocket taking off it would be difficult to add any
nmuitaneous graphics ol a rocket taking off. The best you could do
s 10 make a bit of noise. move the rocket a little, then make a bit
nore noise, then move the rocket a Little more and so on. A
conunuous woosh accompanying a moving rocket is not something
hat can be achieved from BASIC alone,

lowever. there are a few extra noises, other than BEEPs, that
-an pe preduced from BASIC. You can produce a single click by
ising the following subroutine:

0900 LET a=PEEK 23624;8
p1¢ OUT 254,a—16

1026 OUT 254,a

030 RETURN

Ihe wav that this works 1s not too important and involves an
maerstanding of the Spectrum’s hardware so don’t worry, just use
t! The subroutine will produce a click every time the pair of
nstructions OUT 254.a—16 and OUT 254,a are executed. For
:Xambie, try:

/009 LET a=PEEK 23624,8
019 FOR i=1 TO 2¢

020 OUT 254,a—16

0390 REM

049 OUT 254.a

050 NEXT i

vaich will produce a low pitched rasping noise. The REM statement
n iine 1930 is there just to use up a litile time between clicks. By
ncreasing the number of REM statements it 1s possible to make a
;ort of machine-gun noise.

yther sound effects can be produced by combining short duration
10tes of different frequencies with individual clicks. The pro-

114 The Soectrum Programmer

rramming methods involved aren’t difficult, they just need a lot

1 patience and time spent trying out different combinations of
ill possible ideas.

Attack the saucer - the SCREEN$ function

"he game listed below uses most of the BASIC commands that have
seen intraduced 1n this chapter and Chapter Seven.

0 LET 1=15

0 LET f=¢

0 LET fx=10

10 LET fy=10

0 GOSUB 1094

@ FOR x=0 TO 3¢

? GOSUB 20¢¢

0 GOSUB 3069

W PRINT AT 20,x;“[A]”

0p NEXT x

10 FOR x=3¢ TO § STEP -1

20 GOSUB 2000

30 GOSUB 3009

40 PRINT AT 29 .x;“[A]™

59 NEXT x

60 GOTO 6§

1000 POKE USR “[A]” . BIN 00900000
919 POKE USR “[A]"+1, BIN ¢611110¢
020 POKE USR ‘{A]"+2. BIN ¢@11119¢
039 POKE USR *{A]"+3, BIN @111111¢
049 INK 2

050 PAPER 5

069 CLS

07¢ RETURN

009 LET f$=INKFEYS

010 IF {$=“" THEN RETURN
020 BEEP .01,19

030 PRINT AT fy fx;*”

049 LET fx=x

050 LET fy=21

060 LET =1

070 RETURN

sound and Games 1158

3000 LET t=t+RND*2-1

3019 IF <5 THEN LET t=t+1

1029 IF 25 THEN LET t=t—1

1030 PRINT AT 5,t; **% 7

040 IF f=p THEN PAUSE 5:RETURN

050 PRINT AT fy,fx;*”

060 LET fy=fy—1

1070 PRINT AT fy.[x;*“1”

‘080 BEEP 0P 1,5¢ —fy*2

1099 1F fy<d THEN LET f=@:PRINT AT fy.,fx;“":RETURN
1109 [F SCREENS(fy —1,fx}<>>**" THEN RETURN
1116 GOSUB 449

112¢ RETURN

0P PRINT AT 54+ ;FLASH [;« *** »
‘010 BEEP .0 1,49

4020 LET a=PEEK 23624/8

1030 FOR i=1 TO 2§

1040 OUT 254,a—16

4050 OUT 254,

ig69 NEXT i

07¢ RETURN

I'he game itself is relatively straightforward to play. An alien‘flving
saucer’, in the form of three asterisks, moves rather jerkily across the
creen. A ship, whose purpose 1s to attack the alien, moves rapidly
backwards and forwards at the bottom of the screen. A missile can
be launched at any time from the attacking ship by pressing any key.
Once a missile has been fired it moves up the screenaccompanied by
1 wnistling noise, increasing in pitch, unti! it either misses the saucer
or hits it with a resulting explosion. If at any time during the flight of
: missiie another kevy is pressed, then the first missile is erased from
he screen and a new missile fired at the saucer.

"he program has been written as a small collection of subroutines
ind is not particularly difficult to understand. It is easier to follow
he main part of the program after a description of each subroutine.
Subroutine 1000 1070 sets up the user-defined graphics character
or the attacking ship (lines 1099 1030) and sets up the overall ink
ind paper colours (lines 1040 1970). Subroutine 209920 7¢ checks
(0 see 1f any key has been pressed and fires the missile. If no key has been
pressea then controlis returned to the main part of the program (line

116 The Spectrum Programmer

019). Ifany key has been pressed thenanyexisting missile isremoved
rom the screen by printing a blank (line 203@) at the current missile
yosition stored in *fy’ and ‘fx’. Then the current missile position is set
(0 the current position of the attacking ship (lines 2049- 2650) and
ariadle “f* is set to 1 (line 2060) to indicate that a missile has been
ired and is in flight. Subroutine 3¢90 3120 moves the saucer a
random amount to the right or left, prints the missile if one is in
light and checks to see if it has hit the saucer. Lines 3009 3030 are
-esponsible for moving the saucer. Notice the checks to stop it from
moving oif the edge of the screen in lines 3019 and 302¢. The
printing of the saucer in line 3930 also serves to remove the old
:aucer [rom the screen because of the blanks included at either end
T the string of asterisks. Lines 3043080 look after moving the
nissiie. Line 3040 checks to seeif there is a missile in flight (i.e. {=1).
If there isn’t. control 1s passed back to the main part of the program.
“he PAUSE is included to make the attack ship move at the same
ate even if there isn’t a missile in flight. Lines 3950 3¢80 move the
nissiie up the screen by one line. Line 3950 blanks out the old
nissiie and line 307¢ prints it at its new position. Line 3080 makes a
.ound that increases in pitch as the missile moves higher up the
icreen. 1.ines 309031 1§ test to see if the missile has hit or missed the
;aucer. Line 3090 tests to see if the missile’s position is such that it
nhas passed the saucer and is about to go off the screen. If this is the
:ase a plank is printed to remove the missile and the variable *f’ is set
o zero to indicate that there are no missiles in flight. Line 3100 uses
he SCREENS function to discover what character is at the next
.creen location that the missile will move into. The SCREENS
‘unction hasn’t been discussed so far but it is verv easy to understand
nhow it works, The function SCREENS(y,x) returns the character
usplayed on the sereen to column x, line y. It is used in line 3108 to

aiscover if the character just above the missile is an asterisk. If it is,
hen the missile is about to hit the saucer and the explosion
:ubroutine is called.

Subroutine 4000 407¢ is the explosion subroutine. Line 4¢{¢
yrints the saucer flashing to indicate an explosion on the screen. Lines
4920-4960) make the rasping noise described in the last section to
stand 1n for the sound of a real explosion.

Now that all the subroutines have been described. the working of
the main nart of the program is easy to understand. Lines 1049 set
b vaiues of some of the important variables — ‘t’ is the horizonial
position of the saucer, ‘f’ is used to indicate when a missile has been
ired and ‘fx” and ‘fv’ are the co-ordinates of the missile. Then

Sound and Games 117

subroutine 1000 is called to set up the user-defined graphics and the
colours used. The main work of the program is done by the two FOR
oops 69 100 and 110 -150. The first FOR loop moves the attack
ship to the right one place at a time. Each time the attack ship moves
subroutine 2090 is called to check for a ‘fire missile’ command and
subroutine 3089 is called to move the saucer and the missile. The
second FOR loop moves the attack ship to the left but otherwise it is
dentical to the first FOR loop.

“his concludes the description of this short games program. If you
itudy it to the point where you are sure that you understand it, the way
‘o find out if you're right is to try to modify it! The game would be
made much more exciting by the addition of only a few very simple
‘eatures. You could, for example, add a routine to keep a score of the
numoer of saucers hit, or give the attacking ship only a limited
wwmboper of moves before the saucer fires a missile back at it! Try
experimenting with these suggestions and your own ideas. After all,
the only way to learn to program is to program!

~hapter Nine
‘zigh-resolution
raphics

“he presence of high-resolution graphics (hi-res graphics) is
.omething that might have lured you into buying vour Spectrum.
lowever. as Chapters Seven and Eight might have convinced you,
11-res graphics is not really needed for most applications. Drawing
nings in hi-res graphics generally takes longer and in most cases you
ire 1imited to two colours. Having placed hi-res graphics in context,
t has been said that the Spectrum’s commands which deal with this
acility are not difficult to understand and use, once you have
nastered the ideas behind low-resolution graphics, and that some of
he effects that can be achieved are verv good indeed.

| he high-resolution screen

“he Spectrum uses the same method for delaying high- and low-
‘esolution graphics. This is not the case with other microcomputers
ind. as it means that vou can mix text with hi-res graphics, it is to the
:pectrum’s advantage!

“he wav that hi-res works 1s casy to understand in terms of the
1ght-by-eight square of dots that makes up each character location on
he screen. Low-resolution commands can only alter entire eight-by-
1ight blocks at a time but hi-res commands can change as little as a
ingie dot in any character location, Notice that this implies that all
he rules for displaving a dot in a character location remain the
:ame. ror example, the colour that a dot is displayed in still depends
n wnether it i1s an ink or paper dot and what INK or PAPER
:ommana has heen given. The hi-res commands only increase the
vavs that we can change the dots in a character location, not the
:olour or any other attributes of a character location,

)bviously, if the hi-res graphics commands can be used to change
angie dots there must be some way of specifving which point. Now,

High-reselution Graphics 119

*

heoretically you could do this by using the existing numbering of
he character positions and refer to individual dots as, say, the third
aot in a particular character, but it turns out that it is much easier to
1ave a completely new numbering system for the dots. As there are
2 characters to a line and each characteris eight dots wide there are
4 total of 32*R. or 256, dots to a line. As there are 22 lines and each
in¢ 1s ¢ight dots high there are 22*8 or 176 dots vertically. Thus the
i-res screen is composed of 256 dots horizontally and 176 dots
ertically and any single dot can be picked out by stating which
'olumn and row it is in. The columns are numbered from zero
:tarting at the far left, and so the column number, or x co-ordinate as
t is called, ranges from § to 255. The rows are numbered from zero
starting at the bottom of the screen and so the row number, or y co-
srdinate as it is called, ranges from @ to 175. (Notice that the row
wumbers go from the bottom to the top unlike the line numbering
vhich starts at the top.) Any dot on the screen can be specified by
siving two numbers, its X co-ordinate and its y co-ordinate. It is
1sual to write these two numbers in brackets with the x co-ordinate
irst. So (§,0) is the bottom left hand corner and (255,175} is the top
1ght hand corner. After a little practise, using X,y co-ordinates will
ecome second nature.

The graphics commands - PLOT, DRAW and CIRCLE

“he hi-res graphics commands are easier to understand when they
are working with only two colours and so this is where we’'ll begin!
I'hrough all of the following discussion it is assumed that either you
1aven't altered the initial setting of black ink and white paper on
our Spectrum, or that you have set up two reasonably contrasting
:olours using INK and PAPER.

“he simplest hi-res command is:

?LOT ‘arithmetic exoression [’,*arithmetic expression 2

T'his changes the dot at the x co-ordinate given by ‘arithmetic
:xpression i’ and the y co-ordinate given by ‘arithmetic expression 2’
o an ink dot. Try the following program, both to discover how
'LOT works and te investigate the way X,y co-ordinates work:

@ INPUT “X.Z“;K;“ yzn;y
206 PLOT x,y
0 GOTO 14

20 The Spectrum Programmer

{ vou enter a value for x and y that takes the point outside the screen

rou wiil get an “Integer out of range” error. For an automatic
demonstration try:

1@ LET x=INT(RND*256)
20 LET y=INT(RND*176)
@ PLOT x,y
9 GOTO 1§

“he most useful of the hi-res commands is:
JRAW ‘arithmetic expression 1, ‘arithmetic expression 2°

vnich produces a straight line. The starting position of the line 1s
vnere the last PLOT or DRAW finished and 1ts ¢nd is ‘arithmetic
:xpression i’ to the right and ‘arithmetic expression 2’ up. For
:xample, if the last PLOT was PLOT §.,0 the command:

DRAW 100,1pp

viil produce a line from (9,8) to (146,100). But if the last PLOT was
"LOT 50,5¢ the line would have started at (50,50) and ended at
159, 15¢). It is important to notice that DR AW uses co-ordinates in
a wayv that is completely different from PLOT. When using hi-res
rraphics commands, you can imagine that there is a graphics cursor
hat moves around the screen with the current graphics position in
nucn the same way that the test cursor moves around the screen
¥1th the current printing position. The command PLOT x,y moves
ne graphics cursor to the point (x,v) and then plots a point. The
:ommana DRAW x.y moves the graphics cursor X units
norizontally and y units vertically and then draws a line between the
old position of the cursor and the new. Commands such as RUN,
'LEAR. CLS and NEW reset the graphics cursor to the point (9,§).
sfter this the graphics cursor i1s moved around the screen by each
rraphics command. The clearest indication that DRAW x.y is
aifferent from PLOT x.y 1s in commands such as:

DRAW —10,1¢

whnich leaves the graphics cursor 10 units to the left and 10 units up.
Negative co-ordinates are not allowed in PLOT!

“he form of the DRAW command is often very convenient but it
:an be difficult to draw a line between two given points. However,
he following combination will draw a line between the point (x1,y1)
ind (x2,y2):

High-resolution Graphics 121

'LOT x1l.y:DRAW x2—x1,y2 -yl

To see the sort of thing that DRAW can do, try the following
program:

@ FOR i=1 TO 175 STEP 4
‘0 PLOT §.,i

i DRAW 255—i,—i

a0 PLOT 1.0

9 DRAW 255-i.i

60 PLOT 0.i—175

0 DRAW 255—i.i

W PLOT i,175

90 DRAW 255—i,—i

4P NEXT i

“rg. 8.1. String pattern program v

"he output from this program is reproduced in Fig. 9.1. You will
ind that you get different effects by altering the values of the STEP
niine 10. Although we haven’t quite exhausted the full extent of the
JRAW command, its additional feature is easier to understand
iter a discussion of the final hi-res graphics command.

"he command:

arithmetic ‘arithmetic ‘arithmetic

'IRCLE e : . - .
»xpression i’, expression 2°, expression 3

wiil result in a circle centered on the point{x.,y), where x and y are the

122 The Spectrum Programmer

-alues ‘of the first two arithmetic expressions, and with a radius

ietermined bv ‘arithmetic expression 3’ being drawn on the screen.
‘or example:

'IRCLE 100, 50,40

araws a circle centered at (100,50) and radius 40. As an example of
the circle command the following program draws random circles, as
lustrated 1in Fig. 9.2:

'@ LET r=RND*5§

"0 LET x=r+RND*(255—2%r)
0 LET y=r+RND*(175—2*r)
ip CIRCLE x.y.r

¢ GOTO 19

“ig. 3.2. Randormn circle program

Notice that when drawing random circles you have to be careful not
o go otf the edge of the screen. This is allowed for in this program by
he inclusion of —2*r in lines 20 and 30.

Now that the CIRCLE command has been explained, the
additional feature of the DR AW command mentioned earlier can be
jealt with. In addition to being able to produce straight lines
setween two points, DRAW can be used to produce parts of circles
setween two points. The general form of the DRAW command is:

arithmetic ‘arithmetic ‘arithmetic
DRAW

'Xpression i°, expression 2', expression 3’

digh-resolution Graphics 123

The meaning of the first two arithmetic expressions has already been
explained and is unaltered by the existence of the third. However,
he third parameter specifies an angle that is used to determine how
much of a circle is drawn.To understand how an angle can specify
how much of a circle 1s drawn. all vou have to do is to imagine that
vou are standing at the centre of a circle. If vou hold out your arms
with the given angle, then the part of the circle that is between vour
arms 1s the part of the circle produced by DRAW. For example, 180
iegrees specifies half a circle and 90 degrees a quarter. The only
:omplication is that the Spectrum measures angles in radians rather
han degrees. To convert from degrees to radians all you have to do
s muitiply by 180 and divide by PI{zr). This results in an angle of PI
speciiying a semicircle, an angle of PI/2 specifying a quarter circle
and so on, As an example of the DRAW command try:

0 PLOT 109,109:DRAW 50.5¢.P1/2

The PLOT first moves the graphics cursor to (100,100) and then
JRAW command nroduces a quarter of a circle starting at
109, 109) and endirg at (150,150). Notice that the part of a circle
that is produced by a DRAW command is determined solely by the
value of the third parameter. The size and orientation of the part of
the circle 1s governed by both the current position of the graphics
-ursor and the values of the {irst two parameters.

‘ou mav have noticed that, unlike a straight line, there are two
ircular arcs between anv two points, For example, if you imagine
(w0 points on a horizontal line, then you can draw a semicircle from
the one on the left to the one on the right going either clockwise or
inti~-clockwise. The clockwise semicircle would be above the
1orizontal line and the anti-clockwise semicircle would be below it.
This description in terms of clockwise and anti-clockwise circles is
»xactly how the Spectrum solves the problem of which circle to

“ig. 8.3. Tangted string program

124 The Spectrum Programmer

iraw. Positive angles result in circular arcs being drawn between
‘w0 points in an anti-clockwise direction and negative angles result
n clockwise arcs.

1s an example of the complete DRAW command try the
ollowing program that produces an output that can only be
iescribed as tangled string (see Fig. 9.3):

@ PLOT 109,109

0 LET x=25—-RND*5)
0 LET y=25—RND*50
'} LET p=PI*RND

@ DRAW x.y,p
50 GOTO 2¢

ine 10 sets the graphics cursor roughly to the middle of the screen
ind lincs 20 to 3 set random values for the three parameters of
JRAW. The random angle is set in line 44 as a fraction of PI so the
DRAW command in line 50 draws fractions of semicircles. If you
leave this program to run long enough it will stop with an error
nessage when one of the arcs finally goes outside the screen area. In
reneral, it 1s quite difficult to detect whether a circular arc produced
v DRAW will go off the screen — until it actually happens, that is!

tigh-resolution colours

“ou can use all of the colour and attribute commands such as INK,
>APER and OVLER. that were introduced in Chapter Seven, to
:ontrol the wayv the high-resclution dots are displayed, For example,
I vou want to produce blue dots on a yellow background all you
1ave to doisto put INK [:PAPER 6before any PLOT, CIRCLE, or
JRAW commands. You can even embed colour commands within
i-res graphics commands in the same way as for thc PRINT
-ommand. In this case the effect of any colour commands is
emporary and only determines the way dots are produced by the
‘ommand that thev are embedded in. The only thing that you have
o0 remember 1s that colours and attributes (apart from OVER and
NVERSE) apply to entire character printing positions. For
-xample, if you plot a single point using PLOT INK 4;1¢:0, 104, then
1l of the ink points in the same character position as (109, 100) will

‘nange to colour 4 (green). The most startling illustration of the way
NK and PAPER commands atfect the entire character block can be

een bv DRAWIng a line using a different PAPER colourto the rest

figh-resolution Graphics 125

T the screen. For example:

'@ PAPER 6
$ CLS
0 DRAW PAPER 1;INK 4;190.109

proauces a very odd display because each point plotted changes all

he paper dots in the character position that it falls in to celour 1
blue). If there were any ink dots of another colour in the character
sosition these would be changed to green.

“he fact that colours (including BRIGHT and FLASH) apply to
:ompiete character positions places a severe restriction on the way
ni-res graphics can use colour. If you DRAW two lines with
iifferent ink colours, then there is no problem unless they meet in a
singie character position. When this happens, the first line produced
‘nanges its colour in the character position where it meets the second
ine. to the colour of the second line. The rule is that you can only
iisplay two colours in any character position - the ink colour and
he paper colour. Aslong as hi-res lines and circles, etc., keep to their
ywn areas of the screen they can be any of the eight colours but if any
»f them sharc the same character position they must have the same
nk and paper colour, For some applications this restriction is not
mportant because lines of different colours naturally occupy
iifferent areas of the screen. If this isn’t the case, however, there is
1othing that can be done to overcome this limitation of the
spectrum’s hi-res graphics. To avoid any such problems the only
hing that you can do is to treat the hi-res graphics screcn as a two-
:olour display.

Jn-plotting - OVER and INVERSE

vlthough the colour commands, INK, PAPER, FLASH and
BRIGHT affect all of the dots in a character square, the commands
)VER and INVERSE merely affect the wav each dot is produced on
he screen. This means that OVER and INVERSE are true hi-res
:ommands that can be used within PI.OT, DRAW or CIRCLE
vithout affecting anything else already on the screen. For example,
INVERSE 1 results in a paper dot being produced instead of ink
iots. So the program:

|0 CIRCLE INVERSE 0:109,1p9,5¢
’0 CIRCLE INVERSE 1;10§,10%,5¢
0 GOTO 19

126 The Spectrum Programmer

rst produces a circle of ink dots and then erases it by plotting paper
dots in the same place.

"he command OVER is more difficult to understand than
NVERSE because its effect depends on what 1s already present at
he nlotting position. Recalling the rules given for how OVER works
n Chapter Seven, you should be able to see that a line of dots plotted
n hi-res graphics following OVER [will appear as ink dots, if they
are replacing paper dots, but as paper dots, if they are replacing ink

dots. In practice, this is very useful because it gives us a way of
nlotting and un-plotting hi-res dots without losing any dots that are
iiready on the screen. To see this in operation. (ry:

¢ CIRCLE 100, 149,50
'0 PLOT §, 199

» DRAW OVER 1;255,0
¢ PAUSE 2§

0 GOTO 26

The first DRAW command produces a line of ink dots passing
hrough the circle plotted by line 19, except where the line cuts
nrough the circle itself where, by the rules given above, paper dots
resuit. After the pause generated by line 40 so that you can look at
the result. the PLOT and DRAW commands are carried out again.
I'his time the ink dots in the line are changed to paper and the line
ranishes. except for the paper dots where the line cut the circle which
ire restored to their original ink value! This appearing and
disappearing of the line continues until you break into the program.
;0 1f vou want to produce some temporary lines or circles, produce
hem using over | and then remove them by a second use of OVER 1.
t is worth summarising the use of OVER and INVERSE in hi-res
commands using PLOT as an example:

'LOT nroduces an ink dot.
’LOT INVERSE 1| produces a paper dot.
LOT OVER | changes the colour of the dot already

resent to the opposite colour.i.e,

nk to paper and paper to ink.
PLOT INVERSE I:OVER 1 has no effect at all apart from

noving the graphics cursor.

Finding cut what’s on the screen - POINT

n the same way that SCREENS could be used to discover what

High-resolution Graphics 127

‘naracter is displaved on the screen at any character location, the
unction POINT can be used to find out what sort of dot 1s on the
.creen at anv given hi-res position. The general lorm of the POINT
‘unction 1s:

YOINT (‘arithmetic expression I’‘arithmetic expression 27)

vhere ‘arithmetic expression |7 1s the x co-ordinate and ‘arithmetic
:xpression 27 1s the y co-ordinate. Notice that, unlike most functions
i the Spectrum, a pair of brackets is necessary. The value returned
ov POINT is 1 if there is an ink dot at the specified co-ordinates and
:) if there is a paper dot. The sort of thing that POINT is used for is
amiiar to the use of SCREENS in the saucer program given in
“haoter Eight.

Lising hi-res graphics

Although there are only a tew hi-res graphics commands, it can be
iifficult to see how they can be used to produce effective displays. As
iiwavs, the best way to learn s to have a look at some examples and
hen try to write your own programs.

: ; 3
RN s o L ! i ;
H i %
R B3 0 AN
e i e S T S
HE O e S S S s
7 e = ——— —— I R O O i
§ : i 13
i £ i 5
i . 1 H
: i i :t ;
: ——
| — 2 n— l I
1 1 i
BN !
; S =
H

famn

ig. 9.4. Etch-a-sketch program

he first example uses the INKEY$ function to control the
rosition of a dot on the screen, By pressing the appropriate arrow
ievs vou can draw shapes on the screen:

128 The Spectrum Programmer

§ LET x=127

® LET y=80

0 LET a$=INKEYS$

A@ TF a$=“5" THEN LET x=x—1
IE} IF a$=*8” THEN LET x=x+1
@ IF a$=*“6" THEN LET v=y—I
78 IF a$="“7" THEN LET y=y+1
30 PLOT x,y

0 GOTO 3¢

7ou can see a sampie of the output of this program in Fig. 9.4. You
sould try to add some improvements of your own such as diagonal
novements and being able to move from one place to another
vithout drawing a line.

“he second example is based on a set of patterns discovered by the
uneteenth century French physicist, Lissajous and aptly called
Tissaious figures':

0 LET =90

'@ LET t=t+§.1

10 LET x=5¢*(1+SIN(1.1%1))
‘0 LET y=50*(1+COS 1)

0 PLOT x+50,y+50

50 GOTO 2§

I'he output of this program can be seenin Fig. 9.5. Youcan produce a
ange of different patterns by changing the value 1.1 in line 3.

/q. 9.5. Lissajous figure

i he final cxample in this chapter is a program that plots the graph
T SIN(x)/x. This produces a particularly interesting shape, as you
an see In Fig.9.6. One difficulty to be aware of is that SIN(x)/ x is

High-resolution Graphics 129

SIN x

X

Fig. 8.6

program

mpossible to work out when X is zero so this point has to be
-arefully left out of the graph.

1 FOR i=1 TO 255

' IF i=127 THEN GOTO 6¢
0 LET x=(i—127)/5

49 LET y=15¢*SIN(x)/x

0 PLOT iy

4 NEXT i

¥hen using graphics in your own programs, the best strategy is
actually to limit your use of high-resolution graphics to those
yeeasions when they perform an essential function. In other words,
t1s advisable to start off using low resolution graphics but to keep
in eye open for situations where high-resolution graphics actually
do the job better.

Chapter Ten
Logic and Other Topics

Jsing the BASIC and other information dealt with in earlier
‘napters, you should by now find it possible to write any program
that vou want to. However, there are facilities on the Spectrum that,
iithough not entirely necessary, do make things easier or go bevond
whnat can be done from simple BASIC. This chapter collects together
hese extras and explains a little of how they work,

I'he first topic to be covered has the rather daunting title of logic
and introduces the commands AND. OR, and NOT. The second
area deals with the commands PEEK. POKE, IN, OUT, USR and

'LEAR which affect the inner working of the Spectrum. Thirdly,
ve constder the command ATTR which can be used to discover the
otour of anv point on the screen and finally we look at one of the
simpiest of BASIC statements, REM. It would be misleading to
hink of this as a collection of unimportant topics just because they
1ave not figured so far in this book. Rather i1t is a case of them being
ntroduced last but not least.

Logic and the conditional expressions

n evervday speech we often say things like, ‘did you buy apples and
rranges”’, ‘do you prefer tea or coffee?’. The use of words like and
ind or are so common that we rarely stop to think about them. 1t
vouid obviously be a great advantage if the use of and and or could
se extended to BASIC conditional expressions. Luckily, most
ersions of BASIC do allow the use of these evervday concepts and
'n Spectrum BASIC vou can write expressions such as:

A<) AND b=3
1§ OR b=3

"he meaning of each of these expressions is in line with the usual

L ogic and Other Topics 131

‘nglish meaning of and and or. The first of the above expressions is
rue 1f both of the conditions "a<{)’ ‘b=3" are true and the sccond
:xpression 1s true if either of the two conditions s true. As well as
1ND and OR the Spectrum also allows the use of NOT, which
amply changes the value of a conditional expression from true to
alse and vice versa, For example, *3=2" is false but ‘NOT 3=2"1is
truc.

“ou can combine AND, OR and NOT with any of the conditions
ve met in Chaonter Four to make more complicated expressions that
*valuate to one of the values rrue or false. (As you already know,
ram Chapter Four, true is represented by 1 and fa/se by B in Spectrum
3ASIC which allows vou to use them very easily in arithmetic
:xpressions.) Conditional expressions that include AND, OR or
NOT are usually called logical expressions and we can now re-write
he definition of the IF statement as:

F 'logical expression’ THEN ‘BASIC statement’

‘or example, 1f you want to check that you’re not about to use an x
:0-ordinate that goes outside the screen area, you could use:

F x<¢ OR x>255 THEN ...

in piace of the two IF statements that would be required without the
1se of OR.

‘orming logical expressions to test for overafl conditions is
1suaily straightforward. However, there are a few traps that even
:xperts 1all into. If you want to translate the English statement ‘a
:quals b and ¢’ then vou must repeat the condition *=". In other
¥OTds, YOU must write:

i—p AND a=c¢
ind not use:
i=b AND ¢

vhich will give a result that depends on whether ¢ is @ or 1. You
snould also be careful when using NOT, For example:

VYOT(a=b AND a=c}
st the same as;
NOT(a=b) AND NOT(a=c)

o see that this is the case try working the two expressions out for a
ew values of *a’. ‘b’ and ‘¢’. The moral 1s that vou should always

‘32 The Spectrum Programmer

eware of using logical expressions without thinking about exactly
vnat they mean.

l'o close the subiect of logical expressions it is worth introducing
the idea of a truth table. If vou consider the logical expression:

i AND b

vnere ‘a’ and ‘b’ are variables that are either @, for false, or 1, for
rue. You can draw up a table that lists the result of the expression
or all possible values of ‘a’ and ‘b’ as follows:

i b aANDD
'8 0
»ol ¢
0 0
1 1

‘uch a table is called a truth table because it lists the conditions
indaer which the logical expression is true or false. You can draw up
truth tables for any logical expression and this is one way to check
that vou understand what is happening. For example, OR and NOT
1ave the following truth tables:

aORb NOTa

8]

0 0
1 1
0 1
' !

S

“he OR that we have used so tar s not entirely equivalent to the
“nglish word ‘or’. Most uses of the English *or’ mean ‘one or the
sther but not both’. For example, ‘You can have jam or marmalade’
means that vou can pick one but not (normally) both! However, the
ogical OR means that vou can have either one or both (look at the
ruth table if vou are unsure of this). The logical OR is more properly
-ailed the inciusive OR because it includes the possibility of both.
The usual English ‘or’ is known as the exclusive or because 1t
excludes the possibility of both. You can make up a logical
cxpression that is equivalent to the exclusive or:

xciusive or = (NQT{a) AND b) OR (a AND NOT(b))

is can pe seen trom the truth table:

Logic and Other Topics 133

i b (NOT(a) AND b) OR (a AND NOT(b))
0 ¢
Aol I
0 |
I P

This pattern of @ (false) and 1 (true) may perhaps remind you of the
nattern of ink and paper dots in Chapter Seven where the OVER
:ommand was discussed. In fact. following OVER | the dot
asroauced on the screen is the exclusive or of the old dot and the dot
hat you are trying to plot. Once you start looking out for it, you’ll
1otice that logic crops up in some strange places!

nside the Spectrum - BIN, PEEK, POKE, IN, OUT, USR
and CLEAR

t may come as something of a surprise to learn that BASIC includes
3 number of commands that allow access to the inner workings of
he Spectrum. The reason why this might seem strange is that all the
BASIC that we have looked at so far has done its best to avoid
setting involved with details of how the machine carries out
commandas. However, there are some applications where the normal
nstructions of BASIC are in some way deficient, For example, they
mignt be too slow or fail to take account of some important feature
i the machine. To allow the programme to find a way around such
difficulties, most versions of BASIC include instructions that allow
sou 10 gain access to the inside of the machine.
We have already met the function BIN in Chapter Seven, where it
was used without explanation in the construction of user-defined
characters. Although, from the point of view of the BASIC
yrogrammer, the Spectrum seems to do its arithmetic in terms of
decimal numbers, in fact it works things out in a more fundamental
.vstem called binary. Humans count in decimal simply because they
have ten fingers. If we had only two fingers then we would count in
the same way that computers do, in binary. Although it 1s not
mportant for anyone to know very much about binary, because
BASIC takes care of converting decimal to binary and back again, it
is important if you ever want to use your Spectrum directly without
the help of BASIC. Even then, all you really need to know is that the
‘unction BIN will take a binary number and convert it to decimal. A
vinary number is simply a number that contains only zeros and ones.

134 The Spectrum Programmer

'ou don’t really have to know any more than that because BASIC
and BIN will look after vou. For example, try:

PRINT BIN ‘number’

vhich will print the decimal equivalent of any binary number that
vou care to enter. You will find that 11 1s3, 11l is7and [111111]
eight ones) is 225, (Notice that BIN, unlike all the other Spectrum
unctions won't allow vou to use an expression.)
We learned very early on that a variable is a named area of
computer memory. However, it 1s sometimes necessary to side-step
his method of using computer memory and use in preference direct
iccess, via PEEK and POKE. PEEK 1s a function that will return the
:ontents of a memory location and POKE is a command that will
ilter the contents of a memory location. It is as simple as that, except
hat vou need to know how to specify which memory location and
vhat sort of number can be stored in a memory location. The first
problem is easily solved because the Spectrum, like all computers,
numbers all its memory locations sequentially starting from zero. So
*EEK(543) will return the contents of the five hundred and forty-
hird memory location, The second problem is also easily solved
mce vou Know that a memory location can store a binary number
vith up to eight zeros or ones init andas BIN [1111111 evaluatesto
’55 this is the largest number that can be held in a single memory
ocation. So POKE 1000,200 will store 200 in memory location
009. However, POKE 109,600 will give an error message because
00 is greater than 255. In general, to use PEEK and POKE you
save 1o have a knowledge of what is stored where inside your
Spectrum and this is often not easy to find out. For this reason,
PEEKing and POKEing are best avoided unless you are absolutely
:ure that vou know what you are doing.
iowever. there are one or two standard applications of PEEK
ind POKE that are worth knowing about and also demonstrate the
vpical way that PEEK and POKE are used. The Spectrum has a
‘Jock that ticks in fiftieths of a second buried deep inside it. From the
rogramming point of view, it looks like three memory locations
that continuously change the values stored in them. The three
memory locations work together to extend the range of time beyond
vnat can be held in one memeorv location. The memory location at
'3 672 counts fiftieths of a second, and as the largest number that can
e stored in a memory location 1s 255 it counts 255 fiftieths of a
;econd and then goes back to zero. Youcan think of this asa hand on
: clock going round every 256 ticks, The second memory location, at

Logic and Other Topics 135

3673, counts how many times the first memory location has, as it
vere, gone round and so counts in units of 256 fiftieths of a second.
'n the same way, the third memory location, at 23674, counts how
many umes the second memory location has gone round and so it
counts 1n units of 256*256 fiftieths of a second. You can make use of
this information by using the PEEK function to discover what is in
each memory location and converting it to a number that represents
a time in seconds. For example:

65536* PEEK 23674 + 256*PEEK 23673 + PEEK 23672)/50

sives you the time in seconds since the clock was started, normally
vhen vou switched on, In the same way, you can use POKE toset the
‘hree locations to any time that you desire. For example, to zero the
clock use:

POKE 23674.0:POKE 23673,§:POKE 23672,0

viost applications of PEEK and POKE arc similar in that they
-equire you 1o know something about where the Spectrum stores
;ome piece of information that is normally hidden from you. For
:xampie, once you know that location 23692 is used to store the
number of lines that will be scrolled up the screen before the familiar
“Scroll? v/n” message appears on the screen, then you can use
POKE 23692.255 to ensure that the message doesn’t appear for 255
.crolls,

n the same way that PEEK and POKE examine and alter the
contents of memory, IN and OUT can be used to communicate with
iny external devices connected to the Spectrum, such as with the ZX
printer. However, unless you have a very special application there is
no reai call to become involved in IN and OUT. You can see an
:xample of IN and OUT in the short subroutine that was used to
produce a click in Chapter Eight. From the Spectrum’s point of
new. its loudspeaker 1s an external device and this is why it requires
these commands to be used to produce sounds.

¥e have already met the USR function in connection with user-
defined characters. However, this use is very special and in general,
the USR function transfers control out of BASIC and into a
nacnine c¢ode program stored somewhere inside the Spectrum.
viachine code is a completely new, and vast, topic and until you want
o get involved in it the USR function will be of httle interest to you.

“he final instruction to be mentioned in this section 1s similarly in
the province of machine code programming. The command CLEAR
can be used to reserve some memory for storing machine code programs

136 The Spectrum Programmer

;0 that the Spectrum doesn’t allocate the area to vanable storage.
Jecause of this specialised use, you are unlikely to come across it
ery often.

“inding out the colour - ATTR

n the same way that the function SCREENS$ and POINT can be
15ed to find what is on the screen, the ATTR function can be used to
ind out what colours are being used for ink and paper and whethera
narucular character location is flashing or bright. The only trouble
s that ATTR returns all of this information in the form of a single
wumper that has to be decoded to find out what 1t means. However,
t is possible to list expressions that will extract each piece of
information:

NT(ATTR(line,col)/ 128))
s 9 if the location is steady and 1 if the location is flashing and:
NT({ATTR(line,col)- INT{ATTR(line,col)/ 128)*128)/ 64)

s @ if the location is bright and ! if the location is not bright.
Similarly:

NT((ATTR(line,col)-INT{ATTR(lin¢,col)/ 64)*64)/ 8}
nves the code for the paper colour and:
yTTR(line,col)-INT(ATTR(line,col)/8)*8

nves the code for the ink celour at the locations specified.

iEMark and good programming

"he BASIC command REM is the simplest of all in that it does
insolutely nothing! Its only purpese is to allow you to include
‘omments that arc not part of a program. For example, you could
nciude inevery program that vou wnite a first line that tells you what
the program is called:

'@ REM Title of program

ina the REM would alert the Spectrum to the fact that what
‘ollowed wasn't to be taken as a line of BASIC forit to pay attention
0. but as a note to any humans that might read the program.

Logic and Other Topics 137

‘ou might think it strange that such a simple command has been
eft to the last chapter of a book on BASIC. The reason for this is
hat although REM is a simple command it can be used to very good
:ifect in writing clear programs, After you have got over the initial
infficulty of writing programs in BASIC you should look for ways of
vriting better programs. At firsta program that works isareward in
tself but later on a well-written nrogram is what you should aim for.
Vhat constitutes a well-written program is something that you will
aiscover for vourself as you learn programming by trial and error
ind by reading other people’s efforts.

“he REM statement is part of better programming in that, while it
ertainly isn’t necessary, it does help to make your programs easier to
inderstand. It is a good 1dea to include REMs that explain what is
1appening in each section of your program as you write it. Good
cxplanations will help you to understand vour own programs more
auickly when you return to them at a later date and will assist other
yeople, to whom you may give them, to grasp what vou intend each
:tage to do.

Nhere next?

\s [have already said many times in this book, the real route to
iearning programming is to write programs. Certainly, books can
ielp you but enly if you are prepared to experiment on your own
»ehalf. Don’t be worried if vour first programs don’t attempt
inything very ambitious. It is better to try out your ideas in short
ind simple routines at first. If vou try anything too complicated
‘here 18 much more chance that vou’ll make mistakes that you can't
ocate. 'I'tv writing program snippets that do just a few things at a
ime - if vou look back through this book you’ll find lots of such
:xamples. When all your mini-programs work then it is time to start
putting them together to build more extensive ones. The main thing
is to go ahead and to have some fun with vour Spectrum.

rurther Reading

)nce vou've read this book you should be reasonably proficient at
vriting programs but in some ways that’s just the beginning,
Topefully this book will leave you wanting to learn more - about
JASIC. about the Spectrum and about computers generally. Lots of
hooks are being published all the time on these subjects so all [can
10pe to do here 1s to mention some that 1 know about that 1 think
rou might like to look out for.

vs far as BASIC is concerned, I'll include a title that starts where
his book ends. The Complete Programmer by Mike James will be

published by Granada in 1983, Once you've mastered the rudiments
T BASIC vou can also learn a lot from books of other people’s
srograms. ihey can be used as a source of ideas and inspiration.
“hey are particularly useful if they include programming details and
1elpful hints, Mike James, Kay Ewbank and I have collaborated to
vrite just that sort of book. It's The Spectrum Book of Games and it
-ontains some games that we found a challenge to program and fun
o play. It too i1s published bv Granada.

‘urning to the Spectrum, if you've not already read it, lock out
or The ZX Spectrum and how to get the mosi from it by lan Sinclair
published by Granada in 1982).

“ou mav also be interested in finding out more about the history
)T computers and their impact on our day-to-day lives. If so, I can
-ecommend fniroducing Computers by Ron Condon, a Macdonalds
ruidelines book and The Making of the Micro by Christopher
‘vans, published by Gollanz in 1981.

f vou want to keep up-to-date with what 1s happening in the
vorid of microcomputers, probably the best way is through the
magazines. 1 he monthly magazine Computing Today is one that |
read — and write for - and [also recommend ZX Computing which is
wuplished every two months. Both these should be casy to obtain
rom vour newsagent or can be bought on subscription.

‘ndex

sBS. 73 Constant, 29
slphabetical vrder, 62 Contrel keys, 1012
ND, 130 33 CO8, 75
woostrophe, B7-8 {ursor, 11
wrccosine. 76 Cursor control keys, 16
yresine, 76
vretangent, 76 DATA, 6B-70
irithinetic expression, 26, 43 Dielault flow of control, 38-9, 56
srithmetic functions, 73 5 Deferred mode, 14
irithmetic operators, 26-28 DEF FN, 80-83
srray, 64-7 Degrees, 123
wrrow kevs, 13 DELETE, 13, 16, 21
vT. 88 90 Dollar sign ($). 57
yTTR. 130, 136 DIM. 64-7

IRAW, 119-25
Jackspace, 13 Dummy parameters. 81, 82
SEEDP. 15, 107-109
3N, 97-4, 133 Edit, 21
limarv. 133 Editing, 17
1I0RDER. 102 ENTER, 12
Irackets. 28 Error messages, 61
IREAK, 14 Exclusive or, 132-3
SRIGHT. 101-104, 125 EXDP, 73-4
vte, 3 Exponential number, 73

ixtended mode, 14
"APS LOCK, 16

TAPS SHIFT, 19 12,93 False, 43-4, 131-3
fassette recarder. 4, 17, 69-70 FLASH, 101,125

‘encral Processing Unit, 2 Flow of control, 38-56
'HRE, 76,94 FOR, 49 52

TRCLE. 121-3 FN, 80-83

TLEAR, 120, 130, 135-6 Functions, 71-83
Clock, 134
LS. 90, 120 GOSUR, 83-5
CODE, 76 GOTO, 13, 38-50, 83
olon, 53-4 GRAPHICS, 15, 93
{"omma. 86-§ Graphics characters, 93 -5
Condition. 41, 43 (iraphics mode, 15-17, 20,93

“onditional expressions. 43-4, 130-31
Conditional loons, 47, 56 High-resolution graphics, 87, 118-29

140 [ndex

F,41 9 Parameters, 72
mmediate mode, 14 PAUSE, 112-13

N, 13035 PEEK, 130,133-5
ndex, variable, 49 PI, 74 3, 123

nlinite loop, 39-41 PLCT, 119 26

NK. 102105, 124-5 POINT. 126-7

NKEYS, 74 80 POKE, 97 8§, 130, 133-5
NPUT. 29-36, 58,91-3, 105 Power supply, 8

nput area, 21 PRINT, 13,25-6,29-38 58 87-9],
nput device, 2 102-104

NT. 74 Printer, 2, 5

nteger, 74 Program, 2, 4, 23
NYERSE. 99 101, 104, 125-6 Pseudo colours, 104

NV VIDEOQ, l6 Pseudo randomness, 77

nverse sraphics, 15, 16

teration, 40 i
eration Radians, 75. 123

RANDOMISE. 78-9

eyboard, 2, 7-10 Random number generator, 77

revwords, 11 READ. 689
telation, 42 -3
EN_63. 76 REM, 130,136 7
ET 12.25,29 36 Repeat key, 17
Aine _numb_er:-:. 12,25 RESTORE, 6%
JAssajous ligures, |28 RETURN, B3-5
IST, 14, 2! RND, [5,77-9
ateral string. 32 RUN, 11,21,120
N.74
OAD, 19,69 70
ogarithm, 74 SAVE, 18, 69-70
ogic, 130, 133 SCREENS, 116, 126 7
ogical expressions, 131, 133 Scroll, 14,90-91
.0op, 40 56 Select, 45-6, 56
ow-tesolution graphics, 87-106, 118 Semicolon, 86, 87
0N, 74
Machine code, 135 Sign, 74
emory. 3 Simple variable, 24
viicrodrive. 4,6 ;?IN’ 75, 128-9
viusical notation, 109-111 Skip, 44-5. 56
Sound effects, 107, 108, 113, 114
TEW. 19, 120 SQR.72.73
NEXT. 49, 52 STER!
JOT. 130-13 STOP.19,41.54

String, 32, 56-63
String concatenation, 58
String constant, 37

. ; String slicing, 59-62
Jne-dimensional arravs, 64 String variable, 57

OR, 13033 STRS. 76 7

Yrder of evaluatian, 27 Qubroutines, 71, $3-5

WTE; 113, !3(}. 135 Substring. 59

I'urtuut device, 2 Subslrin}; extraction, 58

JWWER.99-101, 104, 124 6 Substring replacement, 59-61
substring searching, 59

*APER, 103-105, 124-5 SYMBOL SHIFT, L1 17

~vull string, 61
Yumeric variable. 24

TAB.BR-90
TAN, 75
I'HEN. 42-56
[imer, 134

"rigonometrical functions, 73, 75-6

True, 43-4,131-3

"RUE VIDEO. 16

"ruth table, 132-3

Vet B 9
‘wo-dimensional arravs, 66

Unary minus, 27

Intil loop, 48

Iser-defined functions, 71, 80-83
Iser-defined graphics, 959

‘ndex

USR.,97-9 133, 135

VAL, 77

Variable, 23

YVERIFY, 18-19, 70

While loop, 48

X co-ordinate, 119
" co-ordinate, 119
ZX-BASIC, 5-6

£X80.5
ZX81,5

141

The appearance of the Sinclair ZX Spectrum in 1982 was a
maior event in personal computing. This book takes the
Spectrum user in easy stages from his first steps in
programming to a good level of competence.

“arlv chapters give a brief history of the ZX range, and
give advice on how to set up the machine and use the
keyboard. Subsequent chapters describe one's first steps
in BASIC, looping and choice, handling text and numbers,
and functions and subroutines. There are three chapters
on graphics and sound, while the final chapter is devoted
to logic and other advanced topics.

The book includes many programming examples, and
mnost chapters contain at least one complete program
listing, mainly for games applications. It is clearly and
‘ogically written, and will be invaluable to all Spectrum
isers, in the home, education and small business.

he Author

.. M. Gee is the co-author of a previous book on
orogramming, and is a regular contributor to
_omputing Today.

Ideal for beginners . . . @ much better, more friendly and
vet more informative introduction to Spectrum BASIC and
programming techniques than the manual. | enjoyed
reading this book, often responding to S M Gee’s humour
. This approach will make learning much more

enjoyable - and that's how it should be.’

WICRO UPDATE
Viare books on the Spectrum from Granada

THE ZX SPECTRUM
and how to get the most from it
lan Sinclair

The essential book for all users
1244 120185

.HE SPECTRUM BOOK OF GAMES
M. Jomes, S. M. Gee and K. Ewbank
Twenty-one high quality,

challenging games for your Spectrum
1246 1 2047 9

iy P o g 100583
FRANADA PUBLISHING

"
'nintec in Great Britain 0 246 12025 8 ¥ 5 . 95

