GRAPHICS

f._ NICK HAMPSHIRE

Duckworth Personal Computing series

Spectrum Graphics

Written by Nick Hampshire, author of many books on popular
computing and publisher of Popular Computing Weekly and
Commodore Computing International, this book provides the reader
with an introduction to programming techniques used to generate
graphics displays on a Sinclair SPECTRUM. Topics covered include:

Using colour

Two dimensional shape plotting
Shape plotting

Shape scaling and stretching
Shape movement

Shape rotation

Plotting using matrix manipulation
Three dimensional shape plotting

Spectrum Graphics is a must for every SPECTRUM user who wishes
to use the machine to its maximum graphics display potential.

Duckworth ISBN 0 7156 1700 1
The Old Piano Factory
43 Gloucester Cresdent, London NW1 IN UK ONLY £6.95 NET

SPECTRUM
GRAPHICS

NICK HAMPSHIRE

DUCKWORTH

First published in 1982 by
Gerald Duckworth & Co. Ltd
The Old Piano Factory
43 Gloucester Crescent, London NW 1

© 1982 by Nick Hampshire

All rights reserved. No part of this publication
May be reproduced, stored in a retrieval system,
Or transmitted, in any form or by any means,
Or otherwise, without the prior permission of the publisher.

ISBN 0-7156-1700-1

British Library Cataloguing in Publication Data
Hampshire, Nick
1. Computer Graphics
(Computer)
2. Sinclair ZX Spectrum
(Computer)
001.64'43 T385
ISBN 0-7156-1700-1

Typeset by Centrepoint Lid, London
Printed and bound in Great Britain by
Redwood Burn Ltd, Trowbridge, Wilts

CONTENTS
High Resolution Graphics

Graph Plotting
Using the Video Memory

Scaling and Stretching

Rotating and Moving

3D Displays

25
87
99
123
143
165

AN OVERVIEW

The provision of low cost high resolution colour graphics is probably
one of the most exciting and challenging features of a popular home
computer like the SPECTRUM. With these features a whole new
range of exciting applications are opened up for the adventurous
programmer. Applications which involve the visual display of
concepts, ideas, and fantasies. In this book | hope to show you how
to realise some of colossal graphics display potential possessed by
your machine.

To stimulate your image lets first look at some of the possibilities
presented by a high resolution colour graphics computer. Perhaps the
most obvious application is in simulations, and the most obvious use
of simulations is in education. There is an old saying when trying to
explain a concept, that a picture is worth a thousand words. This is
particularly true in all science related subjects. Relationships can be
shown between two or more mathematical functions displayed as
curves on the screen or a mathematical process such a differentiation
can be shown graphically taking place. In chemistry three
dimensional graphics can be used to show molecular structures and
bonding. A chemical process can be displayed and the various
reactions simulated by the computer.

Some of the best examples of simulations involving high resolution
colour computer graphics come from physics. Offering the teacher
the ability to easily display the concepts of mechanics such as
Newton laws, the trajectory of a missile or planetary motion.
Magnetic and electrostatic fields and their interrelationship can easily
be displayed, as can the path of light trough optical systems. In
electronics the computer can be used to simulate a circuit and the
high resolution graphics used to display the circuit on the screen.

Computer games — which are in the majority of cases just a special
fun form of simulation — are the obvious candidates for improvement
by the use of high resolution colour graphics displays. Although the
SPECTRUM still cannot catch the incredible real time and very
realistic displays found on many of the best arcade games, the
quality of the home computers graphics does allow for the
programming of some fantastic display based games. In all these
games programmes the graphics display is augmented by the sound
generation ability of the SPECTRUM. The range of computer games
iIs enormous, ranging from arcade games like Space Invaders or
Packman to chess programmes with a high quality display of a chess

4

board and all the pieces, or the fantasy games like Adventure which
can be endowed with some very interesting graphics.

Computer art is an application for high resolution colour computer
graphics in which a growing number of people are becoming
increasingly interested. The artist uses the graphics display as a
canvas on which the picture or design is drawn either in a single
colour or using all the colours available on the computer. The picture
is created by using either a specially written program and an input
data base to generate the display, or a light pen or joystick to
interactively paint the picture on the screen, much as one would using
a paint brush. Such displays could of course be either a static one off
picture or an animated sequence. The generation of animated
computer art displays is a subject of increasing interest to creators of
cartoon films, this should be within the capabilities of a home
computer like the SPECTRUM. An example of such graphics was
shown in the film ‘Star Wars’ in the scene where the rebel pilots are
briefed on the workings of the ‘Death Star’, full length feature
animated films generated by computer can be expected within the
next year.

An important application for graphics simulation is using three
dimensional graphics software to aid the designing of buildings or
engineering structures. This is known as CAD, or Computer Aided
Design, and although in commercial applications confined to very
large fast computers it is quite possible to perform most of the CAD
operations on a machine like the SPECTRUM. The designer builds
up a model in the computer memory, and can using this data base
view the structure from any angle or even go inside. Perspective, light
and dark shading, surface texture and colour of solids can all be
emulated by such software, some examples of routines to do these
functions are given in the last section of this book. Another variation
of this type of application is used in flight simulators, where the
computer using a previously entered data base, creates a simulated
display of a piece of terrain or an airfield as the person using the
simulator would see it from any position in three dimensional space.
In a flight simulator the position of viewing would depend on how the
pilot moved the controls. Simulated landings and take offs can thus
give a visual feedback to the pilot through the use of such computer
graphics.

COLOUR
An introduction to the colour commands on the ZX Spectrum.

The Spectrum screen is organised as 24 lines of 32 characters, and
the character and background colour of each one of these 768
character spaces can be individually programmed to one of the eight
possible colours which can be displayed by the Spectrum. The two
colours associated with each character space are the foreground or
character colour, this is referred to as the INK colour, and the
background colour, or PAPER. In the normal power up mode the INK
colour is black and the PAPER colour white.

There are eight different colours, including black and white, which
can be displayed, they are as follows

0 — black

1 — blue

2 —red

3 — purple or magenta
4 — green

5 — pale blue or cyan
6 — yellow

7 — white

These colours are produced on a colour TV by mixing just three
primary colours — blue, red and green. Thus magenta, which is colour
3, is produced by mixing colour 1 and 2 — blue and red. Likewise
colour 5, cyan, is a mix of colours 1 and 4, and colour 6, yellow is a
mix of colours 4 and 2. From this you can see that the colour number
is in fact the sum of the primary colours required to produce that
colour thus white which is produced by having all three primary
colours mixed has colour number 7 or colours 1 + 2 + 4. The number
associated with each colour on the above list is important since it is
used in the colour commands to designate that colour.

The INK command is used to set the character or foreground
colours of characters subsequently displayed using PRINT
commands starting at the current cursor position. The command:

INK 4: PRINT "ink colour green"

will print the statement ,ink colour green® on the screen starting at the
current cursor position in green characters on the existing background
colour (normally white) of the screen. To show the range of colours
try the following program:

6

10FORQ=TO7

20 INK Q

30 PRINT INK "ink colour number"; Q
40 NEXT Q

The PAPER command is identical to the INK command except that
it sets the background colour for the printed characters. Thus the
command:

PAPER 4: PRINT "paper colour is green"

will display the statement ,paper colour is green“ starting at the
current cursor position and using the existing ink colour (normally
black). The following short program shows the 64 different com-
binations of INK and PAPER colours which can be obtained using the
two commands:

10 PRINT "01234567 ink colours"
20FORQ=0TO7
30FORZ=0TO 7: PAPER Q
50 PRINT "™";

60 NEXT Z

70 PRINT "paper colour"; Q

80 NEXT Q

Besides the foreground and background colours there is also the
colour of the border around the screen display area. This border can
have its colour set by use of the BORDER command followed by one
of the eight colour code numbers. Thus the command:

BORDER 5

will set the screen border to a cyan colour.

The original ink or paper colours can be retained for a character by
setting the colour value to 8. This means that the characters printed
following the command are ,transparent®, with the previously defined
colours on the screen being used to display the new characters. Thus
if the command

PAPER 8

is executed then the paper colour will be left as currently displayed on

-

the text following the cursor. However, the ink colour will be that
defined in the previous statement. Similarly the command:

INK 8

will leave the ink colour unchanged but the paper colour changed to
that defined in the previous colour definition statement. Both INK 8
and PAPER 8 can be used together to leave all colours unchanged.

Contrast between some of the colours is very poor for example, it is
virtually impossible to read character which has an ink colour of cyan
and a paper colour of green. To overcome this and ensure enhanced
character contrast there is an extra character code value. By using
the colour code number 9 after either the INK or PAPER commands.
This sets the colour used with either the defined INK or PAPER
colour to a colour with the maximum contrast. Thus if the colour is
dark (eg. black, blue, red or magenta) then the complementary
colour will be made white or if light then the complementary colour
will be black.

There are then a series of commands which can be used to control
the way particular characters are displayed without actually altering
the dot pattern or colours of each character space. The first three of
these commands are BRIGHT, INVERSE and FLASH.

The BRIGHT command will display the background colour of the
printed string following the BRIGHT statement with an enhanced
brightness. This means that it will stand out in relation to other
displayed strings which are used without the BRIGHT command. The
number following the BRIGHT command determines whether it is
turned on or off, a 0 and the ,bright” is off and 1 the ,bright* is on. The
following is an example of a command using BRIGHT:

10 PRINT INK 0; PAPER 7; BRIGHT 1; "this is in bright mode"
20 PRINT INK 0; PAPER 7; BRIGHT 0; "the bright mode is turned
off"

The INVERSE command simply reverses the foreground and
background colours for the characters in the printed string after the
INVERSE command. It does this without changing the dot pattern
printed on the screen. To turn the INVERSE command on it should
be followed by a 1, and to turn it off then it should be followed by a 0.
The following is an example of the INVERSE command:

10 PRINT INK 0; PAPER 7; INVERSE 1; "characters are inversed"
20 PRINT INK 0; PAPER 7; INVERSE 0; "characters returned to
normal"”

The FLASH command is used to set a following character string to
flash on and off between the normal screen display and the inverted
display produced by the INVERSE command. The rate of flashing is
about 3 times per second. This command like the previous two
commands is very useful in drawing attention to a displayed
statement or command. The following is an example of the FLASH
command:

10 INPUT FLASH 1; INK 1; PAPER 7; "input data"; N

The SPECTRUM has a very useful overprinting command called
OVER which allows one to create new characters by overprinting one
or more characters over an existing character. The most obvious use
of this command is to add an accent to a character. Normally when a
character is displayed whatever is already written in that character
space is obliterated, but in the OVER command the existing
character is retained and the dots of the new character added. As
with the previous commands following it it with a 1 will turn it on and a
O will turn it off. The following is an example of the OVER command:

10 OVER 1
20 PRINT "a"; CHR$ 8; "";

note: the CHR$ 8 causes the cursor to back up one character space.

All the commands which control the attributes of a character can
also be set using the character codes which represent the command
thus the following commands and codes are identical:

CHR$ 16 — INK command
CHR$ 17 — PAPER command
CHR$ 18 — FLASH command
CHR$ 19 — BRIGHT command
CHR$ 20 — INVERSE command
CHR$ 21 — OVER command

ADVANCED COLOUR

Each one of the 768 character positions on the Spectrum screen
can be assigned two different colours, a foreground character colour
and a background colour. These two colours can selected from the
eight different colours which can be displayed. To set the background
colour for a character the PAPER command is used and for the
character colour the INK command, both are followed by the required
colour number. These colour values, or attributes as they are called in
the Sinclair manual, are stored in a 768 byte section of memory
stretching from 22528 to 23296. In the eight bits of each byte in the
attribute table are stored the ink and paper colour values plus two
flags which indicate if the displayed character is in the normal bright
or flashing mode. They are stored as follows:

7 6 543 210 bit number

FLASH BRIGHT PAPER INK

To set the INK colour for a character, a binary value between 0 and
7 is placed in the first three bits of the attribute memory by
corresponding to that character. Similarly to set the PAPER colour a
binary value between 0 and 7 is placed in bits 3, 4 and 5 of the
appropriate attribute byte.

A characters colours can be set by using the POKE command to
put the required colour values into the attribute RAM byte
corresponding to the displayed character. It is much easier however
to use the INK and PAPER commands. A knowledge of how the
colour values are stored is necessary if you wish to use the ATTR
(line, col) command, this returns a value equal to the contents of the
attribute memory byte at the assigned character coordinates.

Although there are only eight different colours, interesting coloured
displays can be produced by a careful combination of foreground and
background colours. The background PAPER colours can be used to
give the main coloured display and the foreground INK colours can
be used for the high resolution and text details of the display. An
example of this kind of display is shown in the program MAP. The
use of colour in high resolution graphics is unfortunately not very
effective. The reason being that colours can only be defined on an 8 x
8 dot character resolution. The colour of an individual dot can thus not
be changed without changing the colour of all the other dots within
the character space containing that dot. Similarly the background
PAPER colour can only be defined on a character space resolution.

10

One of the results of this limitation is that it is almost impossible to
have two intersecting high resolution lines of different colours.

11

RANDOM COLOURS
DESCRIPTION

Background — PAPER — colours can be used to fill blocks of the
screen with different colours thereby generating interesting effects.
This program shows how the paper colour command can be used to
generate colourful dynamically moving patterns. The display consists
of a dynamically moving point at which are plotted squares of
different colours, the movement of the point and the colour selection
are random. The resulting display is a changing pattern of variously
shaped different coloured blocks.

RUNNING THE PROGRAM

Since no parameters are input by the program simply type RUN and
watch the program display a constantly changing coloured pattern.

PROGRAM STRUCTURE

50 draw border around screen using subroutine at 400
110 initialise random seed
120 set starting point on screen

160-170 set random variables for colour and number of charac-
ters of same colour

210 set random variable for movement direction

220-260 move in one of four directions

280-310 check character position is within screen boundary

350-360 plot coloured square using a ‘space’ character

400-460 border drawing subroutine

12

* m- (n 8 - m m
* o i C-~ C
E TR - _ -
¥ L mm +
+# +T C= -
* m L m (m]
E T [m -t
¥ W | - (18
¥ Ca (] 2+
m=+* - _ & O+ -
C+ mao m i O —o ~E
. (0] + I o= mnl +
O%* o (I C 4O wup £ 3
A+ Cm il m Od m
O#% A L + = aw A
% +-n - i W onm- I m
* o= o cC Jd =uw =t L
¥ oo 4O & o =+ L
O+ oz & vl ou o
(W = = H& Tm A
=% oum m +HA o HH -
T+ - - M wXxTl imm I im
r+ +- m IO goOm - ¢ U =
m i (] o
LTI w I ITELT XX b o T
W Wy Ol odpddl
Crrrs ok o drco ©JJ@c
m
ANNE C BEE R EEEE O EEEE
=T Q)= D
mon m
m - =4

il
o
!
a

L
w
14
=

e
+1 +1
mmOn0
nmnin
~ mmauon
-+
- |-
O Wl
ZJd 111
C
= A P
O Wil
FEFIIIIL
Z-FF-
aH
I &EAOIN
=minnin
I
I
Wb b

[
L JHHHHI I

L
w

r
i
0
C
-
(]
]
c
-
L
=
1
=
z
w

REM

S
=)

=1
=1
Character

coloured

8 THEM LET b
l THEM LET b
=28 THEM LET a
1 THERH LET a

L
w
[

[
L
L
L
o

GEANRANANGARAEEEEE

0D S = QD o LD = 0000 O e Q0 = D00 - - 00 G = O 10 = LD
e e e e 0 = e e e e e 0 O O O 0O O 00000 0 O 2 e e)

2
m
-
UL
_|
Fil
H
14
18
&
1
3

-
-
B
1]
d
=
[
1

=
1]
=
()
-
(]
(L]
=
1]
3

[]
!
-
(]
_
A
-
1}
m
c
-
=
m
_
e
_
al
e
_
(]
A
I
w
[
=
[
<t

gy

[T
~M- -
= |
=1 -0 -~
Q& 8=
18
g
OTTITITI
A0l
LOoddoll
GG GGG
= (07 = 0
o <t <t < <t < <

13

MAP
DESCRIPTION

Background colours can very effectively be used to fill blocks of the
screen with different colours to define outline shapes. High resolution
or character plotting can then be used to put details on the outline.
This program shows how this can be done and to illustrate the
technique draws a map of North America with appropriate text
legends. The background colours are set by POKEing the correct
colour value into the colour attribute memory (this is 704 bytes long
and starts at location 22528). In this program only two outline colours
are used and for this reason the plotting is divided into two sections,
one for each colour. The display is built up from lines or single
characters of colour. The data for each line displayed is stored as
data statements and consists of sets of three values — line number,
column number and number of characters from that position to be
plotted continously on the line. If the display was to be plotted in
many different colours then an extra colour parameter should be
added to the data tables.

RUNNING THE PROGRAM

Since no parameters are input by the program simply type RUN and
watch the program display a map of North America on the screen
using different colours for each country.

PROGRAM STRUCTURE

100-160 fill the screen with cyan colour to act as a background to
the display

180 jump to border drawing subroutine at 1000

200-280 plot the map of USA in green using data from table lines
310-370

300-370 data table for drawing map of USA, note that the data is
stored as a sequence of three values: line, column and
length of block

500-570 plot the map of Mexico and Canada in white using data
from the table in lines 600-700

600-700 data table for plotting Mexico and Canada

900-960 put legends on map — note: make sure that the paper
colour for the text or high resolution is identical to that of
the background colour already plotted

1000-1060 border drawing subroutine

14

REM MHMAF

REM this program draws a cCo
ed map of MHMorth America

REHM

REM

REM =2t map background colo
S Ccdan

REM

FAFER S

FOR g9=1 TO 22

FRIHNT "

HEXT 9
REM
REM draw bkborder around =cCcre

REM

GO SUE laada

REH

REM draw the USA in g9reen
REHM

RERLD rr,= ., L

IF r=188 THEM GO TO 52a
LET p=22523+(rr*32) +=

FOR 9=1 TO L

FOKE p+9,32

HNE=XT 9

REH

SO ToO 21a

REH

REM 4data for plLotting USAH
REM

LATH 5,26,1,6,5%,4 ,6,25,3
cATAH V,5,14,7,24 ,3,5,4,16,5

CATH 9,4 ,17,9,22,4,1a ,4,21
CATAH 11,4 .,28,12.,4,28,15,5.,1

F
u

-
REROASO0-JNAEGDEE G0~ O- (PrELOU0NESE0N-JONEONERENDN-] -~JOd 0 SU0C -

Mo mMannmmaaA2INeE G WO WUNWEEENNDINNNNLDNDONE LRI RRERE RPRRRE

FRMNAAAAAASERRNaaa0n NG Qe EEED G0N E

1]

-

= ;5,19

cATA 15,656,177 ,16,18,15,17.,11
’ T = =

LATA 15.,1=2,3,15,22,2,19.,23,
1

CATAH 12@,1da, 1848

REM

REM draw Canada and MHMexicCo
i hite

REH

RERAL rr,= ., L

IF r=188 THEHM GO TO 900

LET p=22523+(rr*32) +=

FOR g9=1 TO L

FOKE pP+9.,56

HNE=XT 9

GO ToO S51@

REH

REM data for Canada and Hex

REH
CATAHA @,2,24,1,5,24

N A @RAEalnE SFf G0

=
- B

1]

T S S S = =D oo oo - J e M
D = G0 = @00 MO G = &S0 & -
FEASGANE2NERRSRGMN@2AE- & [0

PFREPRERRPRRE

16

CATA
1,6,9,

CATA
1,18,9
CATA
CATH
REM

REM p
RE M

FAFER
FRIMNT
FRIMNT
FAFER
PRIMT
STOP
REM

REM d
RE M

FLOT
CRAL
CRAL
CRAL
CRAL
RETUR

2,4,24 ,53,4,253,4,4 ,22,5
1,7,19,5 ,8§,28,3,9,21

15,6,4,17,6,1,17V,8,3,1
yZ,19,9,6, 28,9,6
21,9,7

108,188,138

Ut names on map

=
AT S.,12; "CAMACA"
ET 28 ,1a; "HEXICO"

AT 13.,14; "USA"Y

raw border subroutine
a,a

I M=
= -J-
== &

~ o= M
ne

=
)
=)
-

RAINBOW
DESCRIPTION

This program demonstrates how colours can be used with the high
resolution plotting commands plus some of the limitations of high
resolution colour. The display is a rainbow of four different coloured
semicircles — red, yellow, green and blue. Each coloured semicircle is
composed of three high resolution half circle plots. As the program
stands the display produced has the four arcs each with a different
colour, but notice that the gap between each arc is quite wide, try
reducing the width of this gap and the colours of each arc start to
break up. The gap can be reduced by changing the step value in line
200. The reason for this problem is simply that the colours are
defined on a character square basis, trying to display two high
resolution points of different colours in the same character space is
impossible, the result is that the colour of the first plotted point will be
changed to that of the second as soon as the second is plotted.

RUNNING THE PROGRAM

This program requires no input parameters, therefore simply enter
RUN and watch the computer draw a coloured rainbow on the
screen.

PROGRAM STRUCTURE

90 draw border around screen using subroutine at 500
110 coordinates of semicircle centre

120 start and end angle of semicircle

130 dot spacing in drawing semicircle

140-160 convert angles to radians

200 loop to draw four coloured arcs

210 get arc colour from data table

220 set to plot in that colour

240 loop to draw three lines in each arc

250-330 draw arc

410 colour data stored as colour values for each arc

500-560 border drawing subroutines

17

18

m
=

MME N SR EE0EW RS0 0-JIiEO D WNE S0 - EDDESE0 W)
EEAREE AAMAASAAAAAARAAR0N ANALASrARSGERRNENE S

mnmonnnm e QDN NONONNNDENNNNNE PRRRPRRPERRERE

REM RAIMEOL

EEH EEEEELE L L X EXEEEEEEETXTEEEE

REM program will draw a col
rainbow

REM pLDtt1ng.

REM draw bkborder around =scCcre
GO SUE Saa

REM =et conztants

LET ®xo0o=12d: LET 4Jo=5a
LET p2=1s50a

14159 /15
14159 -15@A
1415393 /15
d

raw fFfour Ccolou

REHM

FOR r=3@ TO @ STEFP 1@

REALD cC

IME C

REM

REM three Lines to each col

REM
FOR
LET
FOR
LET
LET
LET
LET
PLOT
ME =T
ME T
MEXT
REM
REM
REM

CATA
REM b

FLOT
CRAL
CRAL
CRAL
CRAL
RETURM

(]
Ll

STEF dp

Zng
PR

++ 0 0
oo

W T
W HOH

B EnE O O AT Epnununnnn

S SR B Bt R Y
W00k ok =+

—

For rainbkbow

c

ata
-
3

M=
M-
S o
L= &
==

wing subrouti

| M@ om O
=~ &

b O -
me

FAN
DESCRIPTION

This is the last program in the section on colour and it simply
produces a pretty changing and colourful pattern using high resolution
colour plotting. The pattern is built up from different coloured high
resolution lines and can be varied by changing the initial variable
values in line 110 or by inserting extra loops into the main display loop
— lines 140 to 210. The colour of each plotted line is set by random
values between 1 and 7 in lines 350-370. The lines are drawn by the
subroutine 400 to 510.

RUNNING THE PROGRAM

Since no parameters are input by the program, simply type RUN and
watch the pattern develop on the screen in constantly changing
colours.

PROGRAM STRUCTURE

50 set background colour

110 initialisation variables — change for new pattern

120 initialise random seed

130 set starting ink colour for first line

140-220 main display loop — each of the four sub loops in this

section draws a different part of the pattern, adds more
sections or change values to change patterns

300-350 set values for line draw subroutine
360-370 set new line drawing colour
400-510 line drawing subroutine

600-660 border drawing subroutine

20

21

apalalalarnile

m
=)

M & EMHGmmﬂmm#WMHGEmmﬂmmuPUMHGGEMNHEmmﬂmmmemmmmHﬂgg EENPWNH

o
AE0 AAEAAAEEENASEEAREEEAANCEAAEEERAaE-JNNEaEEE

m
TR T T L B R TR TR A L AR A AP et A1 (1111] (1] (1 Y Y Y ETEEVETRYRYRRRY ey

N
no

REM FAM

EEH EEEEELEELETE XL LR EFEEEEE
REM thisz program draws a
FEEM colLoured rotating fan
REHM

REM =et background colour
FPAFER

REM

REM draw border around scCcre

GO SUE s3a

REH

REM =etft up wariables
LET x=@: LET 4=8: LET q=25t:
Z=0a

RAMNCOMIZIE

IME 2

REM

REM main Loop

REH

FOR x=5 TO 258 STEF 4
G0 SUE S@d: HEXT =

FOR =% TO 172 STEFR 4
GO SUE Z@a: HNEXT Y4

FOR =x==2%5@ TO 5 S5TEF -4
GO SUE Z8a: HNEXT X

FOR =172 TO 5 5STEF -4
GO SUE 3I@a: HNEXT 4

GO ToO 14@

REH

FREM draw Line and =et ink C

REM

LET xb=25@-x: LET 4b=17a-4
LET xe=x: LET 4J4e=Y

GO SUE 4008

LET z=z+1: IF zZ:=q THEWN LET

LET q9=IKHT I[(RHLE*Sa)
LET c=IWHT I[(RHD*7)

IME ¢

RETURHM

REM

REHM

REHM

LET

LET

LET

LET

LET

FOR

LET

LET

FPLOT
HNE=T
RETURH

REH

FREM draw border around =cCre

REM
FLOT @,08
CRAL 255,08

o
-
o

E
(a¥a+b*xb)

STEFP 4

¥ ~CC 0o
~ENNNSED NN
++-~~T1
~——D040 Lo
o
C C.0

= ICER N xE o
(T -3

o gweEamm =

i m
£ L)
alalayal

CRAL & ,175
CRAL -255,a
CRAL &, -175
RETURH

23

24

NOILNTOS3d HOIH

25

HIGH RESOLUTION DISPLAYS

Any screen display, by the Spectrum, whether graphics or text, is
built up from small dots known as pixels. The screen is 256 pixels
wide and 176 pixels deep. The dots are formed as the electron beam
which scans the television tube turns off and on. When it is on it
excites the phosphor coating of the screen thereby generating a
bright point of light. In the normal text mode each character is made
up from 8 x 8 square of dots.

A section of memory, the display file, is used to store the state of
each dot on the screen. A ‘0’ bit in memory signifies that the dot is
displayed in the background colour and a ‘1’ that it is in the
foreground INK colour. In the text display mode the data for each
character is obtained by the system software from a character data
table in the operating system ROM. This is where the data for each of
the displayable characters is stored, or if user definable characters
have been created then the data is obtained from the RAM area
allocated to storing these characters.

The display file, a section of the memory, is used to store the state
of each dot on the screen. ‘0’ bit in memory signifies that the dot is
displayed in the background colour and ‘1’ that is in an 8 x 8 square
of dots, and the data on these 64 dots can thus be stored in 8 bytes
of memory, one byte for each row of dots. As the TV tube’s electron
beam scans from left to right repeatedly from top to bottom it builds
up the 32 characters in each row one row of dots at a time. the data
of each character is therefore not stored together in memory as eight
bytes but at intervals 32 bytes apart. The display file can thus be
divided into blocks of 256 bytes — this is the memory required to store
one character line of display. The full screen display is further divided
into four sections, the first block comprises lines 0 to 7, the second
lines 8 to 15, the third lines 16 to 23 and the fourth contains just line
24. The reason for this is associated with scrolling and the protection
of line 24 which is used for command displays.

Obviously one could display a point on the screen by using the
POKE command to set the required bit in the display file, but the
calculation of the required address makes this a slow and
cumbersome operation. This method would be employed if a
machine code was being used to generate the display, but in Basic it
is far easier to use one of the Basic commands provided. There are
four graphics commands in Basic:

26

PLOT x, y — this plots a single pixel at the specified x and y
coordinates.

DRAW x, y — a straight line is drawn from the last plotted point to a
point specified in the coordinate parameters following the DRAW
command. The problem with the DRAW command is that it is relative
to the last plotted point rather than using absolute coordinates. The
DRAW command thus obtains the absolute end coordinates of the
line by using the last plotted point as the beginning coordinates and
adding to these the relative offset coordinates following the DRAW
command. A further complication is that in order to determine
whether the end of the line is closer to the origin than the last plotted
point then the relative coordinates can be negative. For these
reasons most of the programmes in this book use a more flexible line
drawing subroutine.

CIRCLE x, y, r — this command draws a circle of radius r, and with
centre coordinates x, y.

POINT (x, y) — the POINT function will return a value of 1 if the pixel
at the specified coordinates is the ink colour and a O if it is the paper
colour.

Any of the above commands can be used in conjunction with the
INVERSE command to erase a dot, line or circle. The INVERSE
command simply sets the pixel to the paper colour thereby erasing it.
The command to erase a pixel is thus:

PLOT INVERSE 1;x, y
One point to note is that to erase a line drawn using the DRAW

command, the line must be erased by the DRAW INVERSE
command in the same direction as the line was originally drawn.

27

BORDER
DESCRIPTION

This simple program is probably one of the most frequently used
programs in this book. This is because putting a thin border around
the screen display area helps to neaten the display and draw the
eye’s attention to the text or display within the border. The routine is
very short and simply draws four lines, two horizontal and two
vertical. Starting at the bottom left hand corner of the screen, each
line having as its starting point the end of the previous line.

RUNNING THE PROGRAM

This program requires no input parameters, just type RUN and it will
draw a border around the screen.

28

ml o

1 REM EOQORCER

2 REM ¥ ¥ 2 XX F*EFFEFTEFEFTXTEEEF*
t
r
:

29

RECTANGLE 1
DESCRIPTION

This routine is a natural extension of the program BORDER. Instead
of just drawing a border around the screen, this routine will draw a
border or box of any size and at any location on the screen. The
program is in two sections, the first inputs the starting position of the
bottom left hand corner of the box plus its height and width. These
input variables are then checked to ensure that they are within the
limits of the screen display area, ie: that the user is not trying to draw
a box which extends over the edge of the screen. If the input
variables outside the limits then they are set to either the maximum or
minimum default values. The second part of the program starts at line
270 and draws the box. To make the display neater a border is drawn
around the screen display area by the subroutine at line 400.

RUNNING THE PROGRAM

This program requires the input of two pairs of parameters, the first
pair are the X and Y coordinates of the bottom left corner of the
rectangle. The second pair of values are the height and width of the
rectangle.

PROGRAM STRUCTURE

40-50 set colours

120 draw border around screen using subroutine at 500
160 input X and Y coordinates of bottom left corner

190 input height and width of rectangle

230-300 check that the rectangle lies within the limits of screen

400-470 draw rectangle
500-560 border drawing subroutine

30

31

o o |

E + | 1]

* m - S 1] L cC

* (] m Qe = - -

* m T ~owusd 0-d -

o m vl ol 4 Ml - nn o

ko C + il L muy-«ll = =L (]

= g o= - e A=y Il (I

oo (m] i m il L He A=

E cC _ ~C - mEC Il nwnnm m

E (1 P im - m R TY e e (T B c

I ET C — ol W m -
=* .Aacum B oL m + LA Ad-ZZF- =

G T l 0= +« SCou W o - im
W #* S | T <o Ywr gAnZ A7 _ ITT 1 0+ -
d¥ w o = ov= o+ CcCc W W - T
M+ —m o« 4O m vm A sl E —Zaum G
Z% OgCa B H ol i B Y o - AW IOFURFUNUWE S LR 1 B
T#* meau R+~ umm+ ===z I ITUNMII-~m o Wl T =M=
F#* A= =aloCc+ -0 U A" lldRERE+<«2nE s - InToEnNn-n |
O% vme P-me- peuxpgmoaad=ll - =~ R I R [T 1]
W+ mueaw Luficow CcCc L-mildddx7EAGou==8 10 o0& I &
C+ =20l CnydaldpbamMpuUmsE~~a~+ 4o (| c

1] i a a XX TIMEZLELC FEZE5E R3O

LITIIINOATY IITOAZIOTET IIOITODIX ZTOITXIdIR
W Z IO Tl Z e e e J i O 0 Coc i Wl
rroccrrHo o crrrHrcHrc CHHHHHHHHIICO OO0 0L O OO0
altvlalalalalalalalalalalalalialalalalalalalalalalalalalalolalalalalalolalayalalalalala)

O 0 =t 0 = O = 00D = 00 O O 00 = 0D - 00 0N &G O 00 = U000 M- & A Q0 00 = 0o
o e e e e e e e e e Q00O O O 000 O O O 00 = = b b = = = L0 O L 0L LD L

32

RECTANGLE 2
DESCRIPTION

This is a variation of the program RECTANGLE 1, the difference is
that it is the coordinates of the centre of the box which are input
rather than the bottom left coordinates. The two programs are
virtually identical except for the addition of lines 310 to 370 which
simply convert the centre coordinates to the bottom left coordinates.
Using the coordinates of the centre of a displayed shape is the
conventional method of positioning a shape on the screen.

RUNNING THE PROGRAM

This program requires the input of two pairs of parameters, the first
pair are the X and Y coordinates of the centre of the rectangle. The
second pair of values are the height and width of the rectangle.

PROGRAM STRUCTURE

40-50 set colours

120 draw border around screen using subroutine at 500

160 input X and Y coordinates of rectangle centre

190 input height and width of rectangle

230-300 check that the rectangle lies within the limits of screen

340-370 convert centre coordinates to bottom left corner co-
ordinates

400-470 draw rectangle
500-560 border drawing subroutine

33

34

o = an Wi

E + | 1 il al

* m L i L =+ c

* m e = - om -

m ' —oa~t = 0l + -

E m il O MW - [|| +]

ko C xI muy-«ll = =L o o

= g o= - A=y Il L L

oo (] il (ST B L 1 o S (] =

* C - e -~ msc I ywnnugaao m m

E (1 P m (] m Frlp¥pEnl iz oo« - c

I il C — ol W + T -
M+ a2 = i im + Ll AFZZFFF - =

G T il s+« oCou W W)W (I m
W #* S | L C+a YUy aAanZ AFZ ATT v« + 0l -
d¥ w o - um= o+ cCcCc W W m - - L
O+ —m- O UCm o A sElTITE ZZ+CO il m Sl
Z% OgCa a8 A - A DU - a2 CC (N o I i
T#* meau dE+TmmI+zzzx=zs I ITUUMFITwm idoo--m o Wl T -~
F* A= =allloo+ =~o L R et fl L o ¥ Sl molie I R A I e 1 B N W T s R N N T
O% vme+ P-me- pouvxomoad=ll - o~ COw-ZLxmnaud == =2 = =0 =0 ~
W+ muoq Luficow CcCc cemiddd @& ool llllogx=8 168 o0& &7
L+ =20glCnyladpbmamMpuUums~~a~++~~oUu2pg =D C (| c

1] i a a XX TIMEZLELC FEEEZEE ZEZE3:E3:0

LITIIINOATY IITOAZIOTET I FFFFZZEOIOOI ZOTIII-
W Z IOl Z Wl Zu e e b i i I e Ol Je e o e
rroccorrHocrdrreHreHrr CHHHHHHHAHII D JJ J OO0l oo Oall
aitivlafalalalalalalalalalalolalalalalalalalalaaialayalala)

O 0 =t 0 = O = 0D - 00 O e O = 00D = 000 N & O 00 = D000 = & QU0 = L0 = &= 000 < U
o e e e e e e e e e Q00O O O Q0 O O O 200000 0000 0000 <t g b b e < <k U0 LD LD LD L L LD

35

RECTANGLE 3
DESCRIPTION

A rectangle can also be generated from two sets of coordinate
points, these points being the two diagonally opposite corners of the
rectangle. It should be noted, however, that like the previous two
rectangle drawing routines this program will only draw a rectangle
with sides parallel to the X and Y axis.

RUNNING THE PROGRAM

This program requires the input of two pairs of parameters, the first
pair are the X and Y coordinates of the bottom left corner. The
second pair of values are the X and Y coordinates of the top right
corner of the rectangle.

PROGRAM STRUCTURE

40-50 set colours

120 draw border around screen using subroutine at 500
160 input X and Y coordinates of bottom left corner

190 input X and Y coordinates of top right corner

230-300 check that the rectangle lies within the limits of screen

400-470 draw rectangle
500-560 border drawing subroutine

36

37

¥ q

E []

* m = L) i L c

* (] C e = - -

m L —oou< = 0Ol +

E m] (] O MW - [||]

+ o c + il) mul-alll = 00— (]

= g o= - e A=y Il =l (I

oo (] il m + em el e ool =

* c - - L m=sc | I} mm m

E (1 P m - m = = il - c

¥ N+ =T - ol W JddFFT -
M+ a2 = (m LT I S | e | o W =

G T il + 0 = ad oDCcv W WEZZ 1 0o - B~ m
W #* S | L <o o+ oenZz 17 1 i Bl= -1 o
d¥ w o - ovw—= om cCc W W ITZE -~ -~ 1
M+ —m o« 4O m A EsIlZI2FFUMem ~ 1 =0 G
Z% OgCa B H ol i B Y o W o DWW ITcc =lm o &I -
T+ mau UE+~ydmI+~T ~x== I ITWNFFE-=m | Dl—-&ao -~
F* A= =aloCc+ ~oulu AU ++nil= Li0mn&u—n |
D% wme P-me pruxpoxaaxl - (ldddgu w5 == A =0 =0 ~
W+ mueaw Luficow Cco Lc-mijddd saayvyouxE—G 18 o0 I8
L =2TnRCTDTHIAd oAl umEs 0000 - o (| (1

1] i a a e e et | Bt | FEZE5E R3O

LITIIINOATY IITOAZIOTET IIOITODIX ZTOITXIdIR
W Z IO Tl Z e e e J i O 0 Coc i Wl
rroccrrHo o crrrHrcHrc CHHHHHHHHIICO OO0 0L O OO0
altvlalalalalalalalalalalalalialalalalalalalalalalalalalalolalalalalalolalayalalalalala)

O 0 =t 0 = O = 00D = 00 O O 00 = 0D - 00 0N &G O 00 = U000 M- & A Q0 00 = 0o
o e e e e e e e e e Q00O O O 000 O O O 00 = = b b = = = L0 O L 0L LD L

38

BARCHART
DESCRIPTION

This program shows one application for a routine to draw a variable
sized rectangle. The program draws a barchart using the data in the
data statements in lines 100-160. The program repeatedly draws
boxes of variable height until the data statement containing zero is
reached, whereupon the routine terminates. The X, Y and W values
are set as constants at the beginning of the program. The Y and W
values will stay constant but the X value is incremented by W for
each bar displayed. By changing the constants the position, size and
maximum number of bars displayed can be varied.

RUNNING THE PROGRAM
This program requires no input parameters, simply type RUN and it

will display a barchart on the screen using the values in the data
statements.

PROGRAM STRUCTURE

50 draw border around screen using subroutine at 500
80-90 set colours

110 position of start of first bar from left border edge
120 height above bottom border

130 border width

150 read bar height from data table

200-250 draw bar

270 calculate bottom left corner of next bar

340-420 data for bar heights table terminated by 999
500-560 border drawing subroutine

39

40

routi

-Cm
A
nm
o
+
Jrem
E-m
mmC
-cm
m e
oy
—mq
[

LE T
Lt Wi
o

GGG
=~ (])

1 REM BEBARARCHARART
2 REM ¥ %22 FFFF XX EFEFTETEEEFS

= REM

il 1] i il
(I - (EN W) (I
(W] - = m (]
i — O - i
4O r£m m
L —m o+ e =l L
c o m mm (m] c
a m+ AT = 1] -
(] L = + + (]
_ - m + [T+ _
m Mo - O mmm m
ey mm L g

_ 1] CuimL QA 1M A L
il - m - il LT il
L a +Tor T or & m L
(I (] 2 W - |1 L (I
o . cC O - Im m (] (] a1l
O f8o o o+ m |- 0 — o & -

@C [QPR | @h WE ig- J?El
= W [T M= ~1+«+0m Mmm B @& Mz Q-
m + el Mmoo = a2 sxEdd s 2REAUENDANMD I -0 0] -
- Mo all ITmnilgcMex=zG1800 amemnmiMdlddqd@D0me GOIE TEE
T JwEEwn==sn-=m 17 C=_Omaom L c

1] Ll o O oL p>x3=233 - IR INININININININIS x> E
= LYl aFZ I TOIIITCX XX FFFFFFFFEFEFEZ OODIIII-
W OUZo-n e ol IO J ool
 OoHQLCC] JesdCCHIOOAOOOOCE JOCCrOOOO0o000r AOOool

- O

B AEGAAMNE+AALGELNAAGANAALNANAAARANGAAREREAR HEGEEE
= WH-0mMEAO0 M= 00EA00 0 0E A0 N0r-0m&E—00& 0000 =0mn

woC i 1mlliiEEEEEE22233333333334445HEEEEEE
HE t E

41

BLOCK
DESCRIPTION

The POINT plot command is the most useful of the high resolution
commands and can be used in a wide range of applications. A very
simple application is shown in this program, it fills a rectangular block
of the screen with dots, the density of the dots being variable. This
can be used in a range of applications from the next program —
BARCHART, to simple shading of areas of the screen. By careful
use of ink and paper colour the creation of new colours — red dots on
a yellow background will at a distance give the appearance of an
orange colour.

RUNNING THE PROGRAM

The program requires the input of five variables. The first two are
input in line 110 they are the X and Y coordinates of the bottom left
corner of the block. The next two are input in line 120 and they are
the width of the block and the height of the block. The height and
width are both parallel to the Y and X coordinate axis of the screen, it
is impossible using this routine to draw a block at an angle to the
screen axis. The last variable is input in line 130 and is the spacing
between dots in the block, both vertical and horizontal. If the dot
spacing is 1 then a solid block of dots is drawn, a dot spacing of 2 will
put a space between each dot, and similarly for other dot spacing
values. Note all these values are the number of pixels, either from the
bottom left corner of the screen or over the specified distance
(remember one character space is 8 pixels high and 8 pixels wide).
To vary the block colours change the values in lines 60 and 70 of the
program.

PROGRAM STRUCTURE

60-70 set colours for plotting
90 draw border around screen using subroutine at 300
110-130 input parameters for block size and position

210-290 block drawing routine
300-360 border drawing subroutine

42

ssassssssssnas

43

n4g
1y

EEE &S
w

185

o G0 ol e o GG Gl PO PO O OO MM MM M e e 20 2
e EE000-JN0E N EEEI0NIT 0 =
FERANAANANA22RRSSRRRNNE~+ET G

44

REM EBLOCE

EEH EEEELTEFTXTEXTXETEEEEEEETEEEE
REM program to dAdrawm a recta
r

REM bBLOCE OFfF wWariable densa
REEM dots on the =Ccreen

REM

EEM =et cCcolours

IME @

FAFER +

REM draw border around scCcre

GO SUE a3

REM

REM input bLock drawing par
=

REHM

IMFOT =% .d9: REM bBottom Left
r coordinates

IMFUT w,h: REM width and he

IMFUT d=: REM dot =pacing

REM

REM draw bLOCEK

REM

LET =®=b

LET

LET 4

LET 4

FOR X

FOR 4

FPLOT

HNE=XT 4

MNE=XT X

GO TO 184

REM draw border

REH

FLOT @

CRAL 2

CRAL @
A
™

=0 nmom

L = (I T
LTy ol o T TS

CRAL
CRAL
RETUR

I MG
B -J-
== &

na

BARCHART
DESCRIPTION

The barchart is a very useful way of data and comparing two or more
sets of related data, and blocks of variable density dots make an
ideal way of displaying the bars and differentiating between different
sets of data. The example barchart used in this program is derived
from a data table (lines 130-155), but could just as easily have been
input from the keyboard, derived from calculations or retrieved from a
data storage device. There are three different sets of data in the
example which are differentiated by having a dot spacing respectively
of 1,2 and 3.

RUNNING THE PROGRAM
There are no input variables required by this program since the data
for generating the barchart is stored as data statements within the

program.

PROGRAM STRUCTURE

60-70 set colours for plotting
90 draw border around screen using subroutine at 400
130-170 data for generating the barchart, it is stored as bar

height in pixels followed by a dot density value this
determines the data set of the bar. In the example there
are three sets of data each having six values. The end
of the data table is signalled by putting O for each value.

210 the value of B sets the bottom left corner X coordinate
of each bar, change this value to move the chart across
the screen.

220-230 block drawing routine, note that in line 250 them bottom

Y axis start of the chart is set to 20 pixels up from the
bottom of the screen, to move the chart up or down the
screen change this value. Line 240 and 290 determine
the width of each bar the plotting is 10 pixels wide and
the start of the next bar is 12 pixels from the start of the
previous bar (this leaves a slight space between bars) to
vary the bar width change these values.
400-460 border drawing subroutine

45

srtsrsssmssssasEnanannn

m
a - T

NN RESEI00-JOMMNEQDD-EE@ED-] OOAEECQHD e 0-J-JO 0 f oGO =
ERAAAANEAT ARG GRNRNaNaNaNaE8 aaan anaGaEafa-anE S0 e

EREEEEREG MR 00N D S R S R A

REM BEBRRCHARART
EEH EEEEELE L L X EXEEEEEEETXTEEEE
REM program to draw a barch

RHEH Uszing9 wariable denszity
=

REM to differentiate betwee
FFerent

REM =et=s oOof data.

REM

REM =etft colours

IME @

FRAFER +

REH

REM draw border around =cCcre

REM
GO SUE 4008
REM

REM bBarch
REHM 4

at
REM foL
CATAH z2a
LATAH 22
CATH 2%
35
S
4
at

=1
'+

bar heig

density

E-\.-\.-\.I:I |.I'I

CATA
CATA
CATA
REM d

ro

CATA @,

REM

REM draw bBarchart

REM

LET b=1@: REM s=tart positio
FL sCcreen margin.

d
‘“THEM STOP

TO b+1@ STEP d
B TO h+2@ STEP 4
Y

PRRERRRO
e e o m ow o L [

W ORI ED o

oMo, mo
L | (Wil
[I

W - =0 -] o
ARG oW

SN@neno. o~
m &-

= T S T

= |
L
.
.
.
.
.
]
= |

L~ 1= CCdGd—+

by 4doukb

=
wxEqgn T
- oo

=
m
b
=
X

LET b=b+1l2: REM =et =tart o

=1 bar

SO ToO 22a

REM draw border

REHM

FLOT @,08

CRAL 255

CRAL @&, 1

CRAL -25
A, -
-

o

!

-

5,0
CRAL 175
RETUR

L

LINE
DESCRIPTION

Although the Spectrum command DRAW will draw a high resolution
line between two points on the screen it has several serious
drawbacks. Foremost of these drawbacks is that it uses relative
coordinates, these are not very easy to use in many graphics
applications. Another drawback is that is impossible to draw a line
with variable spacing between the dots. Both these problems are
overcome by using this program, although it has one shortcoming in
that since it is written in Basic it is rather slow. Most of the programs
in this book which require line drawing use this routine. Two versions
of this program are given, the first ‘LINE’ simply draws a line of
specified dot separation between two sets of coordinates. The
second is identical except that the variable R$ is input to determine if
the line is to be drawn or erased (the line is erased if R$ = E).

RUNNING THE PROGRAM

In the program ‘LINE’ there are five variables which are input by
program lines 100 to 130. The first two are input by line 100 and are
the X, Y coordinates of the beginning line. The second two variables
are the X and Y coordinates of the end of the line, and the last
variable is the spacing between the dots used to draw the line. The
program ‘LINE 2" has an extra variable input in line 120 this
determines whether the line is drawn or erased, if an ‘E’ is input the
the line will be erased, any other letter then the line will be drawn.

PROGRAM STRUCTURE

60-70 set colours

90 draw border around screen using subroutine at 400

100-130 input variables for start and end of line coordinates and
dot spacing

150-240 line drawing routine

400-460 border drawing subroutine

48

49

SN

1
neg
23

REM
REM
REM
REH

REM

rdinates

=

REM

LIME
EEEEELE L L X EXEEEEEEETXTEEEE

this program draws a Li
Eetween two =ets oOoFfF Coo

the spacing between the

dots used

X
00 00 00 =J ~J o o - -
12 O O o O) S O

=
m

TU I 11 B

N N L TR (V] (1] (1] 1] 1] S T Y Ry Sy ETRYRY R Ry,
0 G0 = 12 0 S G) N0 00~ 0 G100 0D
AEEEEENENEREEEEEEE R IENE =@

50

REM
REM
REH
REH
IrE.
FRAFE
REM
REM
REM
GO 35
REM

REM
REM
FPLOT
CRAL
CRAL
CRAL

is wariable.
zet colours

=
R 7

draw border

UE 4@

e drawing roudutine pa
E: REM cCcoordinate
of Line

e2: REM coordinate
=

s, |.|:|-\.
Ji o

REM dot s=pacing
dr

b
E
ip#p +9#%9)

STER ds=

I He——-— 0T
HEN NS gnn
Lo Ll I T T TR 1 -

+4+-~~T1
o

— "
[T

L
(=}
R
=
L i
=
u
=
=
G
=
q
=]
(=]
i

RO - o O (LT LS 1 1 I 1 8 KHKEJ

border drawing routine

REM LIMNE 2
EEH EEEELTEFTXTEXTXETEEEEEEETEEEE
18 REM this program draws or g
razes a Line
28 REHM between two =ets OF COO
rdinates
=8 REM the =pacing between the
dots uUused
REM 1= wariable.
REM
REM =s=et cCcolours
REH
IME @
FRAFER +
REM
REM draw border
REM
GO SUE 4008
REM

LM

ENE& M

X
00 00 00 =J ~J o o - -
& on]

drawing routine pa

=
m
'+
m
-

E: REM cCcoordinate
of Line

e2: REM coordinate
=

TU I 11 B

PRERRRERRNNNRPRPERRERERRERRERRERBRERERE B B

REM dot spacing
REM draw or erase

Line

-

oo

(p*p+9%9)

Wi oms =
ECOOr OTamm = HWe~mIg~m
++-~~11 1 .-

M G0 TO 195

L O T LT e [

4
GO ToO 2
FLOT IMNUVERSE 1;®.,4
HNE=XT 1
GO TO 184
REM
REM bBorder ddrawing routine
REH
FLOT @,
CRAL
CRAL
CRAL
CRAL
RETURM

=

&= &I
~ [~ M
| M=
= -J-
=~ &

apalalalalali el ialaiialniatgiaiuialiatnialo bati il o i)
r
m
—
mne

M f e SEI0EEMOm-J-JOOAn e Q=0 =0 &

RECTANGLE 4
DESCRIPTION

Whereas the programs ‘RECTANGLE 1 to RECTANGLE 3’ are only
able to draw rectangles with sides parallel to the X and Y axis of the
screen this program shows how to draw rectangles with sides which
are not parallel to the screen axis. This is simply done by using a
matrix of coordinates. Matrices are very important in graphics and an
understanding of the principles is essential. The coordinate matrix is
usually stored as data statements within the program and
subsequently placed in an array. The values in this array can be
manipulated mathematically thereby allowing the shape to be rotated,
scaled, or moved about the screen area, all these will be dealt with in
later sections of this book. In this program the values are simply used
to display the shape at the specified coordinates.

RUNNING THE PROGRAM

Since all the coordinate values are stored in data statements — line
210 and 220, there are no values to be input in the program.
However, to change the size or position of the rectangle it is
necessary to input new data values into this data statements. Five
coordinate values are required to draw the four lines of the rectangle,
the X component of these five coordinates is stored in line 210 and
the corresponding Y component in line 220. The best way to obtain
these coordinate values for a new rectangle is to draw the shape with
the correct scale and orientation onto graph paper and measure the
required values.

PROGRAM STRUCTURE

50-60 set colours

80 draw border around screen using subroutine at 600
110-180 load matrix data into arrays

210 data for X component of coordinates

220 data for Y component of coordinates

300-350 set variables for line draw subroutine

400-510 draw line. Note: dot spacing in 410 is set to 1
600-660 border drawing subroutine

52

REM RECTHMGLE 4
REM ¥ 2 £ %% FFF$F XX EFEFTXTEEEF*

REM program to draw a recta

3
In}

MNE PRSP E00-JOMNEODEESEN-JNNEONEENESE0-JO0EGDE D &S0 OO0~ =

REM u=zing matrix®x methods.

REM =s=et colours.

REM draw border around =scCre

REM GO SUE &2a
input data from 4data =t

m

o

monmmmnnnNeprprphppprpr bbb ORHONMMNMHNUONNDONRRRERERERRERAE D
m

FOR c=1 TO 5
READ micC,21)
HEXT ¢

REM data for
REM

nnninpw

=== £-

Brnnondol

NnMomoon

"]
3

| MrMEL Lor ATAMMDE M

drawing routine

EEH dot =pacing
E

(p#p +9#%9)

STEFR d=

L Rl I o T TR T 4

++ =~
o

— "

r
m
—
WX m=="0T0 -~
w2

Qe nExEqgnnpn
= WS E N O =g

m

- ME =
mne

drawing routine
FPLOT @,
CRAL 25
CRAL @,
CRAL -2
CRAL @,
RETURH

alalatalalalalalalajafalaialajalalaliiafalalalalalafalalalaiafialalalalalalalala=ga o B alayalalal s g Ty
T
(]
J

= -J-

54

POLYGON
DESCRIPTION

The only difference between this program and the previous program
‘RECTANGLE 4’ is the data used to draw the shape. The reason
being that the use of a coordinate matrix is not confined to
rectangles, it can be used to generate any required shape. In this
program the data will draw an irregularly shaped octagon. To change
the shape and its position simply change the data.

RUNNING THE PROGRAM

The coordinate data values are stored as data statements — lines 210
and 220, so now there are no values to be input when the program is
run. The size, shape or position on the screen of the shape can be
changed by changing the data values in the data statements. It could
be noted that when a shape is drawn the number of pairs of
coordinate values is one more than the number of lines in the shape.
The number of coordinate values used to draw the shape is stored as
the first data statement value — line 205. The coordinates are stored
as two sets of data, first all the X values and then in corresponding
order all the Y values. In the example the X coordinates are thus
stored in the data statement on line 210 and the Y values in line 220.

PROGRAM STRUCTURE

50-60 set colours

80 draw border around screen using subroutine at 600
110-180 load matrix data into arrays

205 number of coordinates in matrix data

210 data for X component of coordinates

220 data for Y component of coordinates

300-350 set variables for line draw subroutine

400-510 subroutine to draw line

600-660 border drawing subroutine

55

H: O
= 3

m

11]

T T L o o o o N A A T A T A T A TR LA LA A Lo (L S T E R EY R E YR T
Bl BB
FEOOOEEEOREREOEEREEOREREEEERFE- GNOROEEREANESEE GEEEE 0 S0

MNP EPEERO00-MIELDDEERO-JOMNENDEE- MEREEN-JOMNECNE R0 &N -1

REM FPOLYGOM 1
REM ¥ 2 £ %% FFF$F XX EFEFTXTEEEF*

REM program to dAdraw a poldg
REM with MW =i1dez uUu=z=ing matr

REM methods .
REM =et colours.

-
aw border around scCcre

m
= oTE

m
MZDTMDDD2I0ND 10T
() I

Ut data from data =t
)

("N

array.
EM number of =sides

mMmoHMmMMm~mm m
HHDNIEIWII =T
=
a2 Nn21~33 30 T

REM data for coordinates

CATAH 22,480,180 ,168, 15a, 1588,
46 ,2a

CATAHA 188,358,560 ,58,184a ,124a,1
29,148
REH
FOR
LET
LET
LET
LET
GO 5
HNE=XT
STOF
REH
REH
LET
LET
LET
LET
LET
LET
FOR
LET
LET
FPLOT
MNE =T

nnnnpEw

DU 30 3 L
aEUTULT o T

7]
3

| MM&C LCor ATaMmEe m

drawing routine
REM dot =pacing
E
E
(P *p+9%9)

STEFR d=

X == 0700 -~

| RMEC =g nnn

-rl_'l-l:"-_i

++=~Tr 0
bl I o T TR T

= WCXEEN O =
m

#

——"1

[Tl

~I- & =
e

drawing routine

F-J-

POLYGON 2
DESCRIPTION

To save having to work out the end of line coordinates for each line of
a polygon it is far easier, given a regular N sided polygon, to calculate
these values within the program. This is done by the program
POLYGON 2 which simply requires the centre of the polygon, the
radius, the angular offset and the number of sides to the polygon.
The program is configured to draw a series of polygons using data
from a data table. The five parameters required to draw each
polygon are then used to calculate a table of coordinates for each of
the lines in the polygon, these values are then stored in the array
m(n,2).

RUNNING THE PROGRAM

All the parameters required by the program are stored directly within
the program. The X and Y coordinates of the central axis around
which the shape is rotated is stored as the variables cx and cy. The
number of lines in the shape is stored as variable n, r is the radius of
the polygon and os is the angular offset. These values are stored as
data statements in lines 300 to 320 (each line of data statement
holds the data for one polygon). To change the polygon's shape,
orientation or position then change the values in the data statements,
to add extra polygons then add further lines of data statement values.

PROGRAM STRUCTURE

60-70 set colours

90 draw border around screen using subroutine at 800
140 get data from data statement for next polygon
160-170 matrix for line coordinates and angles

180-190 convert angles to radians

200-220 calculate angles for each corner and put in array
300-320 data for drawing three polygons

400-460 calculate line coordinates and put in array

480-550 draw polygon

610-720 line drawing subroutine

800-860 border drawing subroutine

58

¥ M o CcTm =
u.—.n _“_._ Ly | -“- —
* T | ms 0 —_ m
¥ .4 m o O = VLI
E S 1 T] L St C -~
+ - O = I mm - U
* 7 = L il m = = + m
* oo LTT | 1] 0l & o o 1]
G I S S = - = IR mnL ~-~ o oo - L
¥ oM o e ma T C - - =01 OoH Dl - o
¥ - - 0O _+] R mer - + (T - = + #* L
* T w M m (] o= == m ¥k A C m O o 1]
+ L N (I = - wmem o af -~ L. == 0 —— C T + -
0 m = U am C A% + INOE A +1 == m =[] - (v 1]
M+ + a = o m +Le E =& T ~ =~ =3 Ll _— = I * =
* L I 0 - m C - Aldcm AR -~ - CUd m- = Al m Ll (18 -
=% =E +< m - O oo o - == ¥ &S O nn Al o - -4+ - [Can- E
O#% m [48 C = o~ [0 Ad o O - Duuuul m e LR S Y o PP
M+ - £ m u Bloas 0l Ul gl T R S AT =@ & 1~~~ +
=% m o =0+~ ~+ ~~0lo ~ EEE =+t = E=ss=E0 & o —Age@Eoor O
d¥ o = m +« [~m oo m =cooilildo A& +« Axx CcCc o m Ahnnin = Nl nE s
O - 2 C Lo +m 2ill=—Tmplil—=udAA0] o === 00 W S O L I [| |
L+ o m m VEITDI-a um rsmmoum N ®EE EE M MEIED OO < TWoOr-——ax
vl L wm - 0O (I NINIE - e
LITICL IIryilorTr T EI-IIFEZXZIFFIE-=FFFEEXZCFREFRFEZECRRFRFE O ERIFFRFRFFEFCER
W ol WMWZTWonn WmdwdodHH Wl Qo ol @ o Lo b O o i b i i b b O b b b i O b b i i ol il il 2l
Crrcml CCCoHOCOOrOrr o cecdJooddldZ0o00ocrffL JJZ2 e JJ 1020 JJ 131 110w
] =
AQE =R EEEEE G GGG e GGG GGG GGG L0 L GGG LG L G GG S EE G0 S s GG GG A
O] 0 0 - 00 S 0 e 00 0 P 000 S e oS = 0 O S S e O L0 e e 00 S 0 0 S) e O L0 - 00
n - 11t1t1111111EE233334444444444444555555555555555550

| m m (o]

0 00 00 00 Q000 g -~J = J=J-J
0O G N0 = S SN0 0= &0
alalalalalariialoiatatala

LET Yd=db+i%Lyd

FLOT = .,4

NE=T 1

RETURH

REH

FEEM bBOorder plot routine
REM

FLOT @,08

CRAL 255,08
CRAL & ,17S
CRAL -255,a
CRAL &,-175
RETURH

RECTANGLE 5
DESCRIPTION

The problem with the programs RECTANGLE 1 to 3 is that they are
unable to draw a rectangle with sides which are not parallel to the
sides of the screen, program RECTANGLE 4 overcame this but
required the coordinates of all four corners. This program will draw
rectangles of any orientation, given the coordinates of two corners
and the length of one side, this is done using a simple calculation
based on Pythagoras Theorum to calculate a matrix of corner
coordinates.

RUNNING THE PROGRAM

The program requires the input of five parameter values. The first two
are the X and Y coordinates of the bottom left corner and next two
values are the coordinates of the bottom right corner. The last value
is the length of a side at right angles to the side described by the pair
of coordinates points.

PROGRAM STRUCTURE

50-60 set colours

80 draw border around screen using subroutine at 600
105 set up coordinate matrix array

110 input bottom left X, Y coordinates

120 input bottom right X, Y coordinates

130 input length of perpendicular side

140-295 calculate all corner coordinates of the rectangle
300-360 draw rectangle

400-510 line drawing subroutine

600-660 border drawing subroutine

62

m
=

D

m =MD NP
A R0 &GN e

e
EE)
o

N0 = 50 1= 0000 - O D T o 00 =0 0 00 e a5 S 0 00 = J 0T = G0 = 00 0= J o = GO0 =
alatalalalalalalalalalalalaliialalalajafalalalafiiaiialaialaialalalayalalalalaalalalalalal

a1 T T L B N o o o N o N Y A TR YA LA A LA LA LA A L T] T T e ey

REM RECTHHMGLE %S
EEH EEEEELE L L X EXEEEEEEETXTEEEE
REM program to draw a recta

REM g9iwvwen coordinates of tw
rhers=s
FEEM and Length of oaone =side.
REM
EEM =setft colours.
IME @
FAFER +
REM draw border around sScCre

REM GO SUE &2

REM input data
CIM mi(S,2

P#P+3%9)

+ +
£E
®
ok ok
[

+
——

S e e = mw ===~ | OTEMIM r|_'||_‘|
MNMopPPRERPREREEE =T

-
m
_|

oSS EE~~,07T

Ty YRy VTV TEYETEY V] (T
04+
o £=
= R Tel T

L (T [T [T 1

HnnnE oD RO —x
PR E ~CCCC X

++- -
M

1
5'd
2
-
o
r
r
H
1
1
1
1
]
]
1
1
1
1
P
o
C
C
C
C
()

E-—\.-—\.-—\.-—\._I
n on, e et

GO 5
MNE =T
GO T
REH
REH
LET
LET
LET
LET
LET
LET
FOR
LET
LET
FPLOT
NEXT
REM b
FPLOT
CRAL

nMmmoo
3
&

MEd Loy ATamMmE mE RES=S==

drawing routine

EEH dot spacing
b
(p*p+9%9)

STEFR d=

WL~~~ 0T0 ~20 CWLXwLxEn
[TH

LR I o T T 3

++ =~~~
o

= WS E N oS
=1
I\

ﬂ
m

[I

drawing routine

MG nE>gnno

(-

i m
£ L)
alalayal

CRAL & ,175
CRAL -255,a
CRAL &, -175
RETURH

65

CIRCLE
DESCRIPTION

Plotting an ordinary circle with the ZX Spectrum is remarkably easy,
using the built-in CIRCLE command, which allows you to specify the
central X and Y coordinates, and also the radius. This will then plot a
complete circle on the screen. However, for many applications we
will not want a full circle, although we will require full image of the
circle to be displayed. In other words, we want to be able to specify a
distance between the points plotted that make up the circumference
of the circle. The program CIRCLE does just that, by use of the
PLOT command to plot each individual dot of the circumference to a
specified separation. This is the variable DS in the program listing,
line 130.

RUNNING THE PROGRAM

A number of inputs are required to get the program going. In line 110
we input the X and Y coordinates of the centre of the circle, namely
XC and YC, followed in line 120 by the radius RA. Our fourth input is
the separation between the dots as mentioned earlier, that is the
variable DS in line 130. This dot separation is then converted in line
210 (by multiplying by Pl and dividing by 180) to form the STEP for
the FOR NEXT loop in line 230 which initiates the plotting process.
As we know, 2 Pl radians equal 360 degrees, and hence the
statement in line 230. Then we just calculate the distance of the dot
in terms of X and Y coordinates from the centre of the circle, and
PLOT the point. Line 300 then sends us back for another run and
another circle.

PROGRAM STRUCTURE

60-70 set colours

90 draw border around screen using subroutine at 400
110 input coordinates of circle centre

120 input circle radius

130 input dot separation

210-290 draw circle

300 back for another go

400-460 border drawing routine

66

67

REM CIRCLE
EEH EEEEELE L L X EXEEEEEEETXTEEEE
REM routine to ddraw a circl

SN

1

28 REM =pacing between the 4dot
= used
=2 REM to draw the Ccircle 15 W
ariable
REM
REM =et colours
REH
IME @
FRAFER +
REH
REM draw border
REM
GO SUE 4308
REM
REM i1input cCcircle drawing pPa
ters
IMFPUT =iC,dcC
Circle centre
IMFUT ra: RHEM Circle radius
IMPUT d=: REM dot =z=pacing
REM
REM Adraw circle
REM
LET d=s=d=s#3.14159-150A
LET
FOR TO 2%#3.14159 STEFR d
LET
LET
LET
LET

2

REM coordinate

n =

EREEEEREGOUNNNLN NOOLONR RS S
1]

X WMo

Zununu

SR SR T TR o Ry

REEM bBorder Adrawing routine
REHM

FLOT @,a

CRAL 255,08

CRAL & ,17%

CRAL -255,a

CRAL &, -175

RETURH

MNE WD REE0E00-JMOE W= EED N0 =2 G0 0 -J-J o oo
alalaralalalniatiialalaiaiolaloalalafilalilalodalgaliiafiulainialagi g

68

ELLIPSE
DESCRIPTION

The Spectrum is equipped with the CIRCLE command to facilitate
the drawing of a circle, but what it does not possess is a command,
to plot an ellipse. That is, a circle that is offset on two sides from the
central point in either the X or the Y direction. Using the routine we
developed in the program Circle, together with a couple of additions
to handle the elliptical effect, we can plot an ellipse, or indeed any
number of ellipses, with variable dot spacing. The offsets are
specified in line 140, and determine the degree of ellipse. The
variables OX and OY are used, and obviously if OX is zero we get an
ellipse in the Y direction, and vice versa. Naturally we can give values
to both of these to get a number of interesting effects.

RUNNING THE PROGRAM

In structure this is very similar to the Circle program earlier, but a
couple of major differences are worthy of note. In line 140 we are
asked to input the variables OX and OY to specify the degree of
ellipse. These are subsequently used in our ellipse drawing routine in
lines 240—250 to calculate precisely where our point is to be plotted.
The rest of the program, including the routine to specify the
separation of the dots (lines 210 and 230) is virtually the same.

PROGRAM STRUCTURE

60-70 set colours

90 draw border around screen using subroutine at 400
110 input coordinates of ellipse centre

120 input ellipse radius

130 input dot separation

140 input elliptical offsets in X and Y direction

210-290 draw ellipse

300 back for another go

400-460 border drawing routine

69

=y

70

REM ELIFSE

EEH EEEEELE L L X EXEEEEEEETXTEEEE
18 REM routine to draw an elLip

e uU=s1in4g
28 REH

= used
a8 REM

ariable
REM
REM =et colours

REH

IME @

FRAFER +

REH

REM draw border

REM

GO SUE 4308

REM

REM i1nput elipse drawing pPa

ters

IMNPUT HE JC: REM coordinate

elipse entre

IMNPUT ra FREM elipze radiu=z

IMPUT d=: REM dot s=pacing

IMPUT ox,04: REM eliptical

ts in ¥ and y axis

REM

REM draw e lLipse

REH

LET d=z=d=z+%353.14159-150a

LET r=ra

FOR p=a2 TO 2%#3.141%539 STEP d4d

REM
LET
LET
LET
LET
FLOT

LM

~+ InQ
o T

19 between tThe dot
=

w the elipsze 135 W

n =

o

EEEERERERGCIMMIMMNMLNLE NP RE-RPRE PR
im

(T | - 4
=
- IC XS
L+ 4k
w = oc)
nrnHDQO
Zmn

]

* %

g

[Tl

REM bBorder drawing routine
REM

FLOT @,a

CRAL 25
CRAL &,
CRAL -2
CRAL &,
RETURHM

MNP EE0E00-JOM £ DR ESEI0 - WO =2 G000 0 -J-J Mmoo -
REAAGANE2MEARRaN AN EAE-20 aNaN&NEEnEE

71

ARC 1
DESCRIPTION

The Spectrum command DRAW, whilst not being without uses,
suffers from a number of limitations. Like the CIRCLE command, you
can only draw complete, filled in lines. Also, whether we use it in
conjunction with the third parameter (other than X and Y coordinates
of the finishing point), namely the angle through which it must turn, or
not, we must always remember that DRAW will start off from the last
point plotted by CIRCLE, PLOT or the previous DRAW statement. In
order to draw an arc from anywhere to anywhere, and to be able to
have user-definable dot spacing, the routines in the program ARC 1
were developed.

RUNNING THE PROGRAM

A number of inputs are required. In line 110 we must specify XC and
YC, that is, the centre of the arc. Line 120 allows us to specify RA,
the arc radius, and line 130 lets us input the dot separation DS. Two
further inputs in line 140 contain the crux of the matter, and give us
that much needed flexibility over DRAW, by allowing us to specify the
start and end angles of the arc. Thus, we are not limited in where we
can start drawing. The drawing routine in lines 250 to 310 is similar to
the ones in earlier programs in this series.

PROGRAM STRUCTURE

60-70 set colours

90 draw border around screen using subroutine at 400
110 input coordinates of arc centre

120 input arc radius

130 input dot separation

140 input start and end angles for arc

210-290 draw arc

320 back for another go

400-460 border drawing routine

72

",

L

73

=4

w
o

mn m
n

BRREEEERBROOOODNNUNNNOONNRED B b
1]

O = G N0 = &S00 = S0 00 -J O = G = &S0 0 =0 S0 o-J-J Mmoo & —0C =
alalalalalaliialjialalaialafalalalalalalaliiolo alalobdo e Ralilaluiali s i g sy a g TR

74

REM HRC 1

EEH EEEEELE L L X EXEEEEEEETXTEEEE
REM routine to draw an arc

EEH zpacing between the dot
REM to draw the arc 13 warai

REM

REM =et colours
REM

IME @

FRAFER +

REH

FREM draw border
REM

GO SUE 408

REM

REM i1nput arc drawing pParam

IMPUT =iC,dcC REM coordinate
centre of arc

IMFUT ra: REHM arc radius
IMFUT d=: REM dot =pacing
IMPUT as,ae REM =tart and
ngles FfFor arc

REM

REM draw arc

REM
LET ds=
LET
LET
LET
FOR
LET
LET
LET
LET

m

I ST
= O T [LR
O T - T N 1 L e T [I |
W ek

[Tl i | Ty

A HOA sk

nZ
om
X
45
(W
N
=
)
&

REH

REM bBorder drawing rougtine
REM

FLOT @,08

CRAL 255 ,@a
CRAL @&,175S
CRAL -255,a
CRAL &, -175
RETURH

DISK 1
DESCRIPTION

When examining the program CIRCLE, you probably realised that if
you repeated the process again and again, but specifying a different
radius each time, it would be possible to build up a complete disk
rather than just a circle. This is certainly true, but the time taken
would be rather a long one, and you'd probably get fed up with
running through the program time after time. Consequently, the
program DISK 1 takes the drudgery out of the process by
incorporating a couple of new routines to do it all for you.

RUNNING THE PROGRAM

Again, we have to input a number of variables before we get to the
meat of the program. As before, line 110 allows us to specify the
coordinates of the disk centre, line 120 the disk radius, and line 130
the dot spacing. In drawing the disk however, we go through two
FOR NEXT loops rather than the usual one. The inner loop, lines 230
to 290, draws just one circle as we've seen before. The loop in line
220 and 230 then uses the previously specified dot separation to step
up the radius of the circle to draw another one, until finally we reach
the full radius originally input in line 120.

PROGRAM STRUCTURE

60-70 set colours

90 draw border around screen using subroutine at 400
110 input coordinates of disk centre

120 input disk radius

130 input dot separation

210-290 draw disk, incorporating:

230-290 draw circle, and

220, 300 step up radius and draw another one
320 back for another go

400-460 border drawing routine

75

76

N
m m

¥
w

REM COISK 1

EEH EEEEELE L L X EXEEEEEEETXTEEEE
REM routine to draw a disk
EEH zpacing between the dot
REM to draw the 4disk 1= war

REM

REM =et colours
REM

IME @

FRAFER +

REH

FREM draw border
REM

GO SUE 408

REM

REM i1nput 4disk drawing para

r=

m =

IMFUT =cCc,dcCc: REM coordinate
diszk centre

IMFUT ra: REM disk radius
IMFUT d=: REM dot =pacing
REM

REM draw disk

REM

LET d=d=s#3.14159-150A

FOR r=d=s TO ra STEF d=

REH
FOR

n
I
&
—
0
U
+
Ll
H
B
l_'l
1
1
o
_l
m
L
o

A

O Gl = S END EE0 0 -J IO W= EEI0W N0 =~ S0 o -J-J oo o LC =
alalalalalaiialiialalalaialalalalalalilalaiuieiinlalo Ao iugaliiaiuiati il ali iy P aLE a b I

PRRERERRRERWMWMIMNMNMNDOMND ~NOONNONDRERERE BT

LET
LET
LET
LET

[T T -
=
- WX
IC 4 4+ k%

W e

nnHO

Zm
mT

REH

FEEM bBorder Adrawing routine
REM

FLOT @,8
CRAL 255,
CRAL @&, 17
CRAL -255
CRAL &, -1
RETURH

DISK 2
DESCRIPTION

In the previous program Disk 1 a disk was constructed by repeatedly
drawing a circle of ever increasing radius centred around the same
spot. The one disadvantage of this is that, to draw a solid disk, we
have to draw an awful lot of circles, and this of course takes quite a
long time. In order to speed up the process the following program
introduces the DRAW command. As you may know, DRAW takes as
its starting point the last pointto be drawn using any one of the three
commands PLOT, CIRCLE, and DRAW itself. There is a third option,
that of specifying an angle to be drawn trough, but that need not
concern us here. By plotting points on the circumference of a circle,
we can use the DRAW command to draw a line from that point to a
point on the other side of the circle that has the same Y coordinate.
Thus the disk is built up from bottom to top by a series of lines.

RUNNING THE PROGRAM

The only inputs required in this program are the central X, Y
coordinates for the disk (XC and YC), and the radius RA. In lines 210
and 220 we calculate the start and end Y coordinates. In other words
the bottom and top of the disk. Lines 240 to 270 then calculate the
starting coordinates for the PLOT and DRAW commands, namely
XS, and in order to be able to use DRAW we also work out the end X
coordinate XE. Thus, in line 280 we PLOT a point on the left hand
side of the disk, and in 290 DRAW a horizontal line over to the right
hand edge. Note that line 290 should read DRAW XE, Y, and NOT
DRAW XE, 0. You can always try 0 and see what happens!

PROGRAM STRUCTURE

60-70 set colours

80 draw border using routine at 400

110 input central coordinates of disk

120 input radius of disk

210-220 calculate start and end Y coordinates
240-270 calculate start and end X coordinates
280-290 PLOT and DRAW the horizontal line
310 back for another go

400-460 border drawing subroutine

78

Fis)

o o

—*
MNEWUREEEOEED0-JNNEGDNEEE0N0 A0 -J-JmnM &L OFE- =

m =

PRhppppp GO0 OIONNREE 0=
alatalafalaliielijalalalalalalalalaliialaliialiiabdainialiialiiaiuiaaiiiolala Ly oAt i

80

a2 =

-

REM D ISK =2

REM ¥ 2 £ %% FFF$F XX EFEFTXTEEEF*

REM

REM routine to dAdraw a solid

REM u=zing the C[CRAL command

creazse

FEEM the 4diszk drawing speed

REM

REM =et colours
REM

IME @

FRAFER +

REH

FREM draw border
REM

GO SUE 408

REM

REM i1nput 4disk drawing para

=
IMFUT =cCc,dcCc: REM coordinate
r

s

diszk centre
IMFUT ra: REHM di:sk
REHM
REM draw disk
REM
LET 4s=4Cc-ra
LET 4de=
REM
FOR 4
LET cC
LET L
LET

H

LR (T
LU (iU

REH

REM bBorder ddrawing
REH

FLOT @,a

CRAL 255,08

CRAL & ,17S

CRAL -255,a

CRAL &, -175

RETURM

radius

routine

SEGMENT
DESCRIPTION

Although DRAW allows one to draw an arc, it does not allow one to
draw an arc with variable dot spacing. By drawing various circles to
variable dot spacing, a disk with the same dot spacing can be plotted.
Combining both of these routines resulted in the program Segment,
presented here. Using this program we can draw a disk sedment,
again with the spacing between the dots defined by an input (line
130), and moreover we can make that segment as large, or as small,
as we like. As you can see from the illustration, combining a number
of runs of the program enables us to link different disk segments
together.

RUNNING THE PROGRAM

As usual, line 110 lets us input the coordinates of the arc centre, 120
the arc radius, and 130 the spacing between the dots. In line 140 we
input the start and end angles for the arc. The program following is
then fairly straightforward. In lines 250 to 310 we plot just one arc,
using the PLOT command for each point of the arc. The outer FOR
NEXT loop, in lines 240 and 320, uses the dot separation to increase
the radius of the arc, and then the inner loop plot out another arc.
This continues until we reach the final radius of the arc, RA, as input
in line 120, which gives us our final arc and completes the segment.
By specifying a different dot spacing we can build up a whole series
of arcs joined onto each other.

PROGRAM STRUCTURE

60-70 set colours

90 draw border using routine at 400
110 input central coordinates of arc

120 input radius of arc

130 input dot spacing

140 input start and end angles for arc
240, 320 outer drawing routine, incorporating:
250-310 individual arc drawing routine

330 back for another go

400-460 border drawing subroutine

81

82

REM SEGHEMNT
EEH EEEELTEFTXTEXTXETEEEEEEETEEEE
1 REM routine to draw a 4disk
zegment
28 REM =z=pacing between the dot
= uUu=sed
=8 REM to draw the s=egament 1=
variable
REM
REM =et cCcolours
REH
IME @
FRAFER +
REH
FEEM draw border
REM
GO SUE 4308
REM
REM input arc drawing pParam

IMFUT ®c,dcCc: REM coordinate
centre

IMFUT ra: REM arc radius
IMPUT d=: REM dot s=pacing
IMPUT asz,ae: REM =tart an
ngles FfFor arc

REM

REM draw arc

REH
LET
LET
LET
FOR
FOR

LET
LET
LET
LET

LM

I

in m

d

m

PR RGEEODMNNMNND DOODUOONONREIRRE PR
o

L
LNl
o
[
m ok
]

noHO =% #*

=
* (4T

Wt Mo
Z Q0.

Znnun
L4+4+4 WD
W)

- - X

REM border ddrawing routine
REM

FLOT @,

CRAL 2
CRAL @
CRAL -
CRAL A
RETURM

O LMD = @ E00 G O EO0 -0 O G DO S S 00 GO N0 = S 00 o000 -J ~J 0 oo -
FRASAANE2NERRARRAE SSRRNRN S &N NEE S

PIECHART
DESCRIPTION

The culmination of all the plotting routines for circles, arcs, and disks
results in the program PIECHART. Of use in business, educational,
and indeed just about any computing environment, piecharts enable
us to show clearly and (quite strikingly) visually all manner of different
data. We mentioned when describing then program Segment, that by
building up various runs trough the program it was possible to have
different segments next to each other. This program takes the chore
out of that exercise, by assigning various variables first of all, and
then using DATA statements to generate the necessary information.
Obviously, this program will be of most use to you when using your
own data.

RUNNING THE PROGRAM

This program differs from the earlier Segment one by having no input
parameters. Instead, we define the variables XC and YC to be the
central coordinates in line 110, and the variable RA to be the radius in
line 120. Needless to say you can change these to suit your own
requirements. The data for making up the different arc segments is
contained in lines 500 to 560. In order, we have the dot separation,
the start angle for the segment, and the end angle. Again, these can
be whatever you require. By reading these in lines 130 and 140, we
then follow the segment plotting routine in lines 240 to 320. When line
150 detects a zero dot separation (as read in from line 540) the
program comes to a halt.

PROGRAM STRUCTURE

60-70 set colours

90 draw border using routine at 400

110 define coordinates of centre of piechart
120 define radius of piechart

130 READ dot spacing

140 READ start and end angles of segment
150 if spacing of zero, then STOP

210-320 segment drawing routine

330 back for more data

400-460 border drawing subroutine
500-540 data for piechart

84

85

G T Y 1 BT il -
G I R T N = W w ™
¥ u = = (] C o m =
¥ a4 o~ (I AMC ~+
oo o o e mCm =
+ 0 1 | o mee MK
* m m o U B GETT
* m + —+ m- G am
¥ = oC o+ m =g m M=
¥ m a4 M M+ Uy — sl W
E I N & mu.a o [-
¥ m o om + & T+ O+« M
* oL C vl L LN Fx OoZClF Cc WAdA
#* o nm a - L) m WwiZnwWam o —Afdma
* [- m rw Jdall = E TddLCm
- #* ool (] - o MICE mZ m = ==
L+ w - = - (] A W--alld w =000
T+ - O - o O A= Be - LanI v EFEFRE--
I+ - @M -m (i R Bof& m | o
% + .2 T ==t (I - I = M maTaugm
w+ o + M~ m + Nppllpyppma® m mililTom
H+ o m o= -0 Wy 2ummme _ g I
L+ « Z=wi+w w1 GE DI M =+ - Wi T O mamm-
m + + 1] il = M OdwnmTm
LITICIOCIIIYyAEY ZTXraFpchHITo TR
Lot o L o e L0 L ot L 52 2 e L e L O = e i i o
Crrcwmll CECocCcHOAOCCOIC~C I IO mHIICE JJJW L
o d m _ c
QPG G T G o G LG L0 L0 O R 0 0)
= 0= 0D = U0 e-r-0m mE = S S0 00 = L S S 0 07 =4 1
(I Mmoo A A A A0 00 0l 0l 0l
m C LC T c

il

c

-

-

i |

(]

_

m

c

=
—— =
oo m]
- [gl

L. S
nz gy g - -
OH (I sy - M- -—Adf
Qo= m [T ~M- - ~—RE -
*k++ 1 & T G- =[] 00E
[e |] (| [=1 -0 -~ - o om om o=
mmwmnmzov o Q& 187 <0fdm
A O o (1

FFFF F=ZZZ2Z2Z70 OOITTT

FFFFOXX ZTEXIXrOCOCCaOrFZFFFH-
L b T O e O O W @ I
A1 I ZZ0Crdaooorffaaddh
alalalalalafafalipfalialalofalabalipfaialalalal

10 = 00 S e O 00 NS G = O = D00 NS Q00 =
CU O O Qe 0 0 00 < <t =tk wd =f <f =k = LD WO LD LD L

86

ONILLO1d HdVdO

87

GRAPH
DESCRIPTION

The Spectrum can plot points on a screen that is 32 columns across
and 22 rows deep, giving us a total of 32 x 22 or 704 character
positions. Each of these character positions is made up of an 8 x 8
dot matrix, which means that we can plot points to a resolution of 256
in the X axis and 176 in the Y axis. The two programs GRAPH and
GRAPH 2 use the full resolution of the screen to plot respectively a
graph of SIN (X) and SIN (X) with COS (X), using the Spectrum
commands PLOT, and DEF FN to define the function to be plotted.
The programs are identical except for an additional routine in GRAPH
2 to plot COS (X), and a couple of lines to identify the function and
display a title.

RUNNING THE PROGRAM

The INPUTing of variables is not required in either program, as we
are simply taking the function a(x) to represent sin (x/30)*60 in the
program GRAPH, and in addition b(x) to represent cos (x/30)*60 in
the program GRAPH 2. These are defined in line 130 in the former
program, and lines 130-131 in the latter. It then runs trough lines 200
to 390 to plot out the actual function. These routines could obviously
be incorporated in further programs to plot different functions, just by
altering the definitions in lines 130-131.

PROGRAM STRUCTURE

60-70 set colours
90 draw border using subroutine at 400
130-131 define function(s) to be plotted

150-180 draw Y axis and label graph(s)
200-390 graph plotting routine
400-460 border drawing subroutine

88

GRAPH OF SINI(X)

NN N

b
%S IN (X) 4 A

) ise S 360

COS (X% %

Mo A

89

REM GRAFH

REM program to plLot the gra
F a fFunction

REHM

REM =et1 colours

REM

IME @

FPAFER 7

REM

REM draw border

REH

G0 SUE 424

REH

REM define function to ke p

0
T

NMONEELDLD MITPEEA+S0000-JOneEun -

ERAAEREN SN2 @@MEN GG & E & &0 &0 A& E O EE &SRO G0

merical walues 1in
=

d 0o scale the plLOot
ceaszonable dimensions

REHM

CEF FH a(x)l=5IKN (®%-/-3AQ) %52
REM

REM draw % axisz at A

REM

FLOT 1,385

CRAL 254 ,8

FRIWNT AT 1.,5;"GRAFPH OF SIKI

REH

REM pLOot g9raprh

REM

FOR =x=1 TO 235

LET 4=FM aix)]

FLOT ®=+1@,4+455

NE=T X

STOF

REH

REM draw border around =cCcre

REM
FPLOT @
CRAL 2
CRAL @
)
r

L
r
L

CRAL
CRAL
RETUR

N N N WY (V1] (1] (1 T T Ly Sy R TR RV R R Y. FE Y. Fi

MW= G e &0 o

90

0
T

DMEQONEES SOOEEWODEESD0NN-JENO0EECDHENLD MIEEA0000-JOdEOn =
EEAREEN SN2 NaNaE8 NeaaNENRrRO0@TEN~RNAN@&EEEE&E0 Q0N =

N N N W S YRR 1 (1] (1] (1] [T E Y U R [y S R R Y Sy TR Y. PRy, i

REM GRAFH =2

EEH EEEEELE L L X EXEEEEEEETXTEEEE
REM program to plLot the gra
F ftwo functions

REHM

REM =et1 colours

REM

IME @

FPAFER 7

REM

REM draw border

REH

G0 SUE 424

REH

REM define function to ke p

erical values 1in

Le the plLot
i0ns

= |

=

M (®2238) x50
S (x/730) x50
=

and Labkels

REM

FLOT =]

CRAL 254 ,@a

FRIMNT AT 12.,1;"a
Sea"

FEIMNT HT E,ilj:E

BT

IO
PREINT AT 1&.,4; oS =1
REM
REM pLOL graph
REM
FOR =®==1 TO 235
LET Y4=FKH aix)
FLOT ®=+1@,4+455
LET 4=FH bIix)
FLOT =41 ,4+435
MNEXT
STOaP
REM
REM draw border around =scCre
REH
FLOT @,
CRAL 255,
CRAL @ ,175
CRAL -255,a
CRAL &, -175%
RETURM

3D GRAPH
DESCRIPTION

Building on from the routines for plotting two dimensional functions,
we find that is relatively easy to design a program for plotting in three
dimensions. The two programs labelled 3D Graph do just that.
Although we are relying on the same Spectrum command PLOT, our
routine for plotting the function is, of necessity, rather more
complicated this time, as we are trying to emulate a three
dimensional image on what is, after all, a two dimensional screen. Of
special interest in this routine is the double IF statement in line 310,
which performs a straightforward RETURN depending on the values
of the variables P and Z. Two versions of the program are given:
these are identical apart from the definition of the function to be
plotted, which is in line 150.

RUNNING THE PROGRAM

No variables are input in this program, as our function is defined in
line 150, and the area to be plotted in is determined by the scale
given to X in line 220. This in turn determines the scale of Y to be
plotted, by line 260. Line 270, the start of the inner of our two plotting
loops, plots all the points on the Y axis for the value of X in the outer
loop, which commences at line 220. We then move onto the next
point on the X axis, and plot all the Y values there, and so on. By
changing the definition in line 150 we can plot out a whole series of
different functions.

PROGRAM STRUCTURE

60-70 set colours

90 draw border around screen using subroutine at 400
150 define function to be plotted

210-380 plotting routine

370-390 program termination

400-460 border drawing subroutine

92

TN
—::_//—”/ \\:_‘__\“—z
J\-\\—\—

—4—'_'-_'_‘__\-\-__

e e e e ——

93

MEL O

=15

EEE &0 AWM
I

REM
REM
REM
REH

oF
REH

REM
REM
REM
IME
FRAFE
REH

G0 =
REM
REM

Lotted

m

=

*

PRGN N WHUOME NO=NNNNOANNE =Rk Rr ORe

MME P SE000 OO0 H P EdE -0~ ONEQRDEEEI0 N PC =&
EANEAANGNA2Y8ARRAANACAAARA8NE0N & &80 &0

[(o]
N~

(il

REM
REM
Lter

REM
CEF

REM

REM
REM
REH
LET
FOR
LET
LET
LET
LET

FOR
LET
:l_l_l"l
IF =
GO 5

Fl

~

GO S
RETU
STOAaP
REM
REM
REHM
FLOT
CRAL
CRAL
CRAL
CRAL
RETU

=0 GRAFH
EEEEELE L L X EXEEEEEEETXTEEEE

this routine plots the
=
Function i1n 3 Adimensi0on

et Ccolours

=

R 7

draw border around =scCcre

UE 4@
define function to be p

the funct
c

changed
ing the of Lin

ion 15
ontents

FH a(zZ)=902xEx<F [(—-Z*zZ .50
CEF FH a(z)l =1a%#5IM (zZ -5

—

t g9raph

1 7O 1@ STEP 1

nnE& | m o

FEnnn
WRZr =G

*
H
Z
_|

(SR (1208 —-x %

0O -9l STERP -k
i?E+FH 3 (SR (®*x
'

M GO TO Z5a

Il ~Ca@NE LCHTO~¥X>x T
b HW

nNEXG&nm—-Jdnn

SUE =Z35a: IF

+0 H

UE 394
R

draw border

| M=

= I
R -J-

L
=

4
2

L

~J- &
mne

R

INTERPOLATE
DESCRIPTION

Determining a set of data is all very well, but it is the interpolation of
that data that produces, the all important results. One common
method of doing this is to take the data and turn it into points on a
graph, and then perform the interpolation between those points. The
program ,Interpolate® does that, by assuming that you already have
your data in the form of X, Y co—ordinates (here we store them as
data statements in line 180), and plotting the appropriate point out
within a defined area (lines 220 to 230 define the top and bottom of
the Y axis and left and right of the X axis), before finally ‘joining up’
the points in whatever form you desire (see Running the Program).
You could quite easily incorporate your own data into this program
simply by changing the data statements in line 180.

RUNNING THE PROGRAM

The main bulk of the work is done a) by the line 180, which stores the
data as X, Y co-ordinates, and b) line 200, which determines which
point we start at (here it is the first one), which one we finish at (here
it is the twelfth), and which points we interpolate between (here it is
every one, although by changing the variable SP in line 200 we could
easily take every other point, for instance). One we’ve calculated the
scaling factors in lines 410 to 490, and turned these into point
increments in lines 510 and 520, we plot the actual point in line 640,
and the line between each point by the routine in lines 670 - 730.

PROGRAM STRUCTURE

60-70 set colours

90 draw border around screen using routine at 1000
110-160 read and store the data

180 data stored as X, Y coordinate

200 determine start and finish points, and separation
220-230 determine position and dimensions of graph on screen
310-380 draw border round graph, and label graph

410-490 determine scaling factors

510-520 convert scaling factors to point increments

610-740 point and line drawing routine

1000-1060 border drawing routine

95

96

INTERPOLRTED GRAPH

1 REM IWNTERFOLATE
2 REM ¥ %22 FFFF XX EFEFTETEEEFS

Points =tored
in

to draw a graph

M-+)
Ecocih
M- e
Lt =
mm gl Qo
o-un+ C
O M.
oom+ -~

-

=)

Liuwl LL
WL+ L o L b o) O
Crc+~rCrrrfHOLrr

= m

NE GUAalgnE@ucE
— 0l (= im0 r-r-m

L T
m

1

max
LET =p

=l 3

12:

nd dimensions

1
LET d=

ColLours
draw border around =cCcre

initialize data

0 1 e

REM draw border around grap

REM

nNE NEeEnG
G- —ANNnE
s QA Q000 O O O QI 0D

en

-

& PRIMNT AT 2,7 "INTERPOLATELDL

=95 REH

|
.J...._l_u_
C®o
I_“_ -
I
[1
G~ -8}
G~ =0
nE+d0~-0
(= W o (Y
O+ | =
T o=« |
~Ee M=
niImn=—=x 10
| === 1l=_m
(e | S
W NS
-
2233 ol

EEINEWE

& O 0 = Lo r- 00
AL CAACTCTCDCA0DE

97

Factors

4808 REM calculate =cCcale

el e
i =
nmumn
(i DR B
L1 1 o | -
]
TN o e e
I L L L
(L1 g
Ll 11
& LLELL
(b) e [T RINIT
REUTITITIT
GEd FHHE
&& O
BB..—I.J..J..J..J.
AR cAH A
L | IO { e m B e -
Al I o el
I -0 0]
T =

Factors

-

Con R

(I 1

A
11

—
x h
™
L nl|
Hh

11
e

o

M

mni
m A

FHIL *LILOoLl|
WO b) ool o

)

I
(n
m
(I
m
!
(]
i
(n
z
w
c

LE L
W i
o

" = il
(| [
L [
o — vl
L= ~10
o~ W= mmn L
v ma = ~+ C
T mnH- ~.A -
L~ + - 0™~ Q0
g o —_— - [
o™ oLma 10l im
m I~ O=~= "=
~ 1 xm = -
e Th m 1=+ al
| P i | T
- ZF o= =
O=-n w - (]
F+— oIl~mt A
L A=~
Cxx=T+ ==~ =
= ~ax=ll-aHH -]
I o e N Rl | N | "~ T~ O
HED O IATTTIE ED L
=S N o ol
CHFOF OFFRFOXXE
Ol e O = W b
W JJi JHL J# 1 10220

—

GAAAAERANA+NRANANAGAAARAE~ARGEEAGE
U= or-nmmeE CEANMESE AN 0 M0~ NS0 E
<t =k =k =k =k o < =k = U0 -1 LD 0 DD oo o o A 0 e P - e

o

W L

CJJJLHHHHRZIODOTX @©J.l
&G

(R

<+ <

(i
=

98

AJONW3N OFdIA 3H1 ONIsSN

99

GRAPHICS CHARACTERS

There are sixteen special graphics symbols which can be displayed
on the Spectrum. They are what are known as quarter square
graphics, this means that each character space is divided into four
and the symbols are built up from one ore more of the quarters being
in the ink colour. These symbols are shown on the keyboard and are
accessible by first pressing the key marked GRAPHICS (note that
the cursor letter changes to ‘G’) then pressing one of the keys
bearing the appropriate graphics symbol. There are only eight keys
bearing the graphics symbol legend, the remaining eight symbols can
be obtained by pressing the shift key as well as the symbol key.

In addition to the sixteen quarter square graphics symbols there is
the facility to create up to 21 user defined graphics. As with the qurter
square symbols these are displayed using the GRAPHICS key
followedby one of the keys from A to U. When the machine is first
switched on these will contain just the corresponding alphabetical
letters. To get a user defined character it must first be designed and
entered into the correct eight bytes of a special 168 byte RAM
character generator at the top of memory. The best way of designing
the character is to use a character editor — such a program is
included in this section. The character editor produces a set of eight
values which determine the pattern of the character. If these values
are converted into binary form then the ‘1’ values! indicate that the
pixel is in ink colour and a ‘0’ that the pixel is in paper colour. Having
obtained the eight values for each character these values can be
placed in the RAM character generator, and used by another
program.

100

You cannot narmally PRINT or PLOT

an the botiom twae lines

Columng ———J-

An axample: this is

[the pixel (191,159)

e T L S - e F O L W 1 TN V- B T R 1] IR R TR L I S < B]
e~

B s [44 [z {40 [ar [E6 foa |72 Qe [=s = P BE D BE E HE THA AR E IZ5S

] e e] B I T AN k] B = X thad RkE RES] R R AL s (a1 407 217 u5h

Pixel x coordinates —— pou-

57

194

[T
~
o
=)

e

firt

5h

458

Pixel y coordinates ——— g

101

HI-RES CURSOR
DESCRIPTION

Many of the arcade games about at present require the movement of
some kind of ‘sight’ around the screen, to get you to the right position
before firing. Similarly, a routine to move a sight, or indeed a cursor
over the screen, would have many uses in plotting, design, and
graphic programs generally. The two programs here provide just
such a routine, but achieved in slightly different manners. What they
do have in common is the method of moving the cursor (here it is a
cross) about, which uses the keys 5, 6, 7 and 8 in the following way:

5+ »7
|
6

Thus, pressing the key 8 would move the cursor up, etc. This routine
lies in lines 210 to 260. The two programs differ in that a) the cursor
is designed differently in each one, and b) the first program erases
whatever screen contents the cursor passes over: the second one
doesn'’t.

RUNNING THE PROGRAM HI-RES CURSOR

Having drawn our border around the screen, the program positions
the cursor at the X, Y coordinate of 5,5; and sets the increment
between cursor movements (the variable S in line 120) to be 4. The
program then simply waits until you press the appropriate key,
increases or decreases X or Y accordingly, and then checks to see
whether you are still within the screen boundary. If you are, it erases
the previous cursor, draws a new one, and then awaits the pressing
of another key.

PROGRAM STRUCTURE FOR HI-RES CURSOR

60-70 set colours
90 draw border around screen using routine at 600
110-120 set up parameters

210-260 check for key press
310-340 check if within boundary

410-440 erase previous cursor
460-490 draw new cursor
510 back to check for key press

600-660 border drawing subroutine
102

RUNNING THE PROGRAM HI-RES CURSOR 2

This follows roughly the same lines as Hi-Res Cursor, although our
cursor is now defined in data statements contained in lines 150-170,
and stored in the array C(5,5). This ‘cursor’ can now be anything you
like, simply by changing the data statements. We plot the position of
the cursor in lines 610-680, using the Spectrum command INVERSE.
In other words, we replace paint dots by ink dots, and vice versa.
However, the point of this program is that we do NOT erase the
screen contents, so the routine from lines 410 to 480 erases the
cursor but then does an INVERSE on what has just gone, thus
restoring the original screen display. Before plotting the cursor again
we must save the screen contents into our array M(5,5), and this is
performed by the function in lines 510 to 550, using the Spectrum
command POINT. POINT tells us whether a pixel is paper or ink
colour, and we use this array again when going back to erase the
cursor and re-trace the screen contents.

PROGRAM STRUCTURE FOR HI-RES CURSOR 2

60-70 set colours

90 fill the entire screen with characters
105-110 set up parameters

120-170 define ‘cursor’ and read data statements

210-260 wait for appropriate key press
310-345 check if within boundary

410-480 erase previous cursor and restore screen contents
510-550 save screen contents

610-680 plot new cursor

910 go back and wait for another key to be pressed

103

104

ﬂ
m
=

—

—+ m
3
P& EI0 MO REE00m -J-JM oo pn
3

ﬂ
M0 W T e

m W In
n n
o m
m & RN Q- @nEm S0EEEEE & G0N -

3

CON O e oo o o o oo o o o o £ 60 0 GG GO EL)
1 150 000 00 = P O o 0 1 0) [= (R 1)
ENeeeaaleNeeeaNeNenael &

FREM HI-RES CURSOR

EEH FEFFFEFFFFIFEEFEEFEFR RS
REM program to maowvwe a hidh
ution curs=or abkout

REM the =creen under contiro
the kedboard.

REHM

REHM

REM =2t colours

IME @&

FPAFPER 7

REH

REM draw border around =cre
REM

GO sSUE sad

REHM

tion

LET ==4: REM cuUurszor mowvemen
crements

REH

REM input cursor mowvement F
egboard

REHM

IF IMEEY&%="" THEMK GO TO 218

LET xo=x: LET 4yo=y
IF IMEEY%="5" THERM LET x=x-

IF IMEKEY%="6&" THEMN LET 4=4-
IF IHMEEY%="7" THEKM LET 4=4+
IF IMEEY%="8" THEM LET ==x+

REM

REM Ccheck curzor within bou
REH

IF =®<45 THEMN LET Xx=%5

IF ®:258 THEM LET =®x=2500
IF 4«5 THEMN LET 4=%5

IF 4:17@ THEM LET 4=1708
REM

REM erase prewious CcUrsor
REH

FLOT IWHUVERSE 1;x®x0-2,40
CRALW IHNVERSE 14,0

FLOT IMUVERSE 1;®0,40-2
CRALW INUJUERSE 1,8 .,4

REM

REM pLOtLt new cCcursor

REM

FLOT ®x-2.,4
CRAL 4,8
FLOT =®.,4-2
CRAL @,4

REH

REM 4d0 again
REM

GO TO 21

105

@8 REM draw border around scre

=95 REH
EE@d RETURM

E O m (] +~ L.

E T i SO im - [T

= m + _ : m = +

¥ A4 C m + +« (i

T R w B L - = il

+ (N 1] (] [R =]

+ m cCn - nr = 1l il

* - m L ral (1] o >
o o ;- + H (VL I S S o

¥ =+T oo - 1 + o - =
L+ a2 aw = (I al-- o =
O% =03 1A s - _
n * | oo c .- mil o X (]
rC+ omc - - il | L oo H BEAAREG 1]
J% + @ ac o il | m (] e R T -
L+ LTy O - - ok = i REdAGEE -
oo g -~ (] W w - mom e == (]
m=#= mpumoa- O v () od £ ~200-.A A
W=+ —ygou o - = N - R " I
I+ mo O - TN 1) T = AR-HR&E8 O
I+ oQua g L = 1 S+ = =~==~=1 om
H+ - ragrm o o Il a Nc=10luou2aR&EAEE C-
I+ Pnthtn nEE - o M WA O ia
1] C = OFFFIODOTDTITI-
HHHH:HthHHHPHH TX IXFobwifdcTxxFFFFE HHbH
W+~ s ZT WY ool -cHOOW MWW T T T O ol
Crrr o+~ rCCHLIEX RFTHRLtLEDFFHHHDDDDDGHHEH
— e - C a2
AR OER-EURREESNEaNEXNENE - ARNENENENENEENE W
Al orf =Slnun-rrocinmn@&S o A 0nmnoe-nms =6
il] i (il rl 11P1511111111111112DEMW
= = - _ =

N m un

3

wonmnnnmmdmnn oo anne Annnne bbb Wb B b b GGG GG G
= 5 S0 00 = J 00O S 000 = S SN0 T = D0 = S S0 00 - O S0 = S S0 A DD =S E
ENENRE2SE M2 QNN QNN @@E0m @

21la IF IMKEY®%="" THEMW GO TO 210G
228 LET =xo=x: LET 4Jo=y
=238 IF IMKEY#%="5" THEKN LET H=x-

24 IF IMKEY$="&" THEMK LET 4=4-
258 IF IMKEY%="7" THEKN LET 4=4d+
26 IF IMKEY%="3" THEKN LET xH=x4+
=295 REH
REM cCcheck curzor within bou
REH

IF =® <45 THERMN LET x=%
IF ®:258 THEM LET =®x=250
IF 4«5 THEMN LET 4=%5
IF 4:17@ THEM LET 4=1708

REM

REM erase prewious CcUrsor
REM

FOR 1=-2 TO 2

FOR J=-2 TO 2

IF m{4g+3,1+3) =2 THEN GO TO

PLOT J+®0,1+4+40

GO TO 4778

FLOT IWNUVERSE 1; jJ+®0,1+4+40
MNE=XT .

HE=XT 1

REH

FREM =zawe =cCcreen contents
REH
FOR 1=-2 TO 2

FOR J=-2 TO =2

LET mi(i+3,1+3) =POINT (J+x,1

HNE=T .
HE=XT 1

REH

FREM pLOt new cCcurszor

REH

FOR 1i=-2 TO 2

FOR Jj=-2 TO =2

IF Ccl(J+3,1+3) =2 THEN GO TO

PLOT J+x,1+4d

SO ToO &7

FPLOT IWHUVERSE 1; +x%.,1+4d
HNEXT .

HE=XT 1

REM

REM 4d0 again

REM

GO TO 218

107

CHARACTER EDITOR
DESCRIPTION

To use the high resolution capabilities of the Spectrum to the full, we
need to know a little bit about the commands POKE, USR and
CHRS$. You'll find the relevant information in your ZX Spectrum Basic
Programming Book. Quickly, we can use CHR$(144) to CHR$(164)
for storing you own high resolution characters, and later these can be
accessed from the Spectrum keyboard by going into graphics mode
and pressing any of the keys A trough U. By using the program
Character Editor we can define our own character (character 1 will
later be the letter A, character 2 will be B, and so on), and you’ll see
a display of 8 numerical values on the screen when this is done. In
the program, line 1710 uses the USR function to return the address
of the first byte in memory for the user defined character which we
want to be represented by whatever letter: if we want A to represent
a character, in that line C would equal zero. Study both the listing and
the section on Running the Program carefully. Lines 1720 to 1740
then POKE the aforementioned 8 numerical values into memory, so
that (until we reset or turn the machine off) our new character is
stored.

RUNNING THE PROGRAM

After INPUTing a character number C, which can lie in the range 0
through 20, a border is drawn around the screen and the display grid
drawn in the middle. Using previous routines a high resolution cursor
is displayed, and again as before, pressing keys 5, 6, 7 or 8 moves
the cursor around the grid. At any of the squares on the grid, pressing
A will add a point to the display, pressing D will delete a point, and
pressing N will start everything up again. At any time when you've
pressing either A or D, our character data values are updated, and a
life size’ representation of the character displayed on the screen by
the line 1710 to 1800.

PROGRAM STRUCTURE

60-70 set colours

125 draw border around screen using subroutine at 2000
130-150 input character number

160 draw border around screen using subroutine at 2000
280 draw grid using subroutine at 1300

290 position subroutine at 555

310-392 await appropriate key press
108

410-445
510-550
710-730
740

910-930
940

1310-1450
1510-1680
1710-1750

2000-2060

check cursor within grid

draw cursor

add point to character

recalculate character value, print them out again and
redraw character using subroutine at 1500

delete point from character

recalculate character value, print them out again and
redraw character using subroutine at 1500

display grid, character values and character numbers
calculate character values and display them on screen
POKE new values into memory and display character
on screen

border drawing subroutine

109

NOEWYWDN
A0 =00

CHARACTER #

110

REM CHARRCTER ELCITOR
EEH EEEEELEE XL XTEXEETEEEES

LM

*EEEE

18 REM this program allows the

easzy creation and display

28 REM of uszer definabkle Cchara
cters.

=a REM

43 REM

S8 REM =et colours

=5 REM

28 IMHE @

a8 PAPER 7

S= REM

1898 REM input and szet up parame
ters

185 REM

11 LET ®=18: LET 4=&

128 0IM c (S5)

125 CLS ¢ G0 SUE zZaad

138 PRIWT AT 2,6 "Input charac
ter number ';

14 IMPUT cCc: PRINT <«

158 CLS

16 S0 SUE ZAdd

25 GO SUE 1Zaa

29 GO TO 554

S REM kegdboard i1nput

S5 REH

1l IF IWKEY$="'" THEW GO TO 31@
28 LET xo==x: LET 4Jo=d

=252 IF IMKEY%$="a' THEW G0 TO V@
()
9349 IF IHMEEY%="4d" THEKM S0 TO 9@
=58 IF IMKREY#%="5" THEMN LET X=x-
1: GO TO 438

S6@d IF IMKEY#%="6" THEN LET 4=4d+
1: S0 TO 498

7@ IF IWMKEEY$="7" THEMK LET 4=4-
l1: GO TO 498

=5 IF IMEEY$="3" THEM LET H=2+
1: GO TO 4302
ESEE IF IMEEY%="n" THEM S0 TO 1a
=92 GO TO 3aa

=95 REH

488 REM check curszor within g9ri
d

435 REH

41 IF =®<18 THEHNH LET ==10G

4=z IF =17V THEM LET ==17

4=z IF y<&6 THEM LET 4=E

44 IF 4g4:*1F THEMN LET 4=13

4395 REH

S REM Adraw cursor

25 REH

gl@ LET ®xc=x0%5: LET 4Jc=(21l-40)
*

=28 PLOT IWHVERSE 1l;®c+2.,4cC+4
sz LRALW IHUVERSE 1;4 .0

S48 PLOT IMUERSE 1;x®cCc+4,4dcC+2
=58 [bRALW INUVERSE 18,4

111

[I Y

A

=
e o ol G G G000 G G IS i+ i o =d =Jd -0 = Q&= = J oo onon on on

W-JOMMNELDNEEAENLD PETEAESENND B PEEEIDEED0-]0 O
EAANAMSAGAREE @A E@E O OO & &G G & & o

FRRERRPR R

B

BREG
M@0
EEEE

FCRPEREE
0 b
el @ (4)
CEAOOOERREAEEE &EEE-

FREPERERRERER PR
=J e dnednedn OO O oncn
5100 - J N 0 =) OO = G

REM

LET ®xc=x%35: LET JcCc=(0(21-4] %5
FPFLOT ®cCc+2,4d9cC+4

CRAL 4,8

FLOT ®cCc+4,49cCc+2

CRAL @a,4

GO TO 33

REM

REM add point to character
REM

LET g=x+22525+ (32%4)

IF FPEER (1l =1@ THEWM SO TO 3

IF PEEEK (g1 =5 THEWN G0 TO S

FOEE 9,108

LET p=a

GO SUE 15aa

GO TO a4

REM delete point From Cchara

LET q=x+22525+ (32%4]
IF PEEK (q1=5& THEWN GO TO 3

FOKE 9,56

LET p=1

GO SUE 15aa

GO TO a4

REM disz=play grid

FOR g9=54 TO 1258 STEPRP S
FLOT S@.,49

CRAL &4 ,8

HNEXT 49

FOR g9=5@ TO 144 STEF S
FLOT g.,&4

CRAL @ ,6564

HNE=XT 49

FOR g9=1 TO &

FRIHKNT AT q9+5,20; c (9]
HEXT 9

FRIHNT AT 2,5; "CHARRACTER #®

PRIMT cC

PRIMNT AT S5,5;CHR% (l1l44+C)
RETURM

REM calculate Ccharacter wal

LET Hw=7V-(x-1a]

LET zZ=2txWw

LET w=4-%5

IF p=1 THEM GO TO 154
LET cCi(w)=Civ]) +Z

GO TO 1&85@

REM

LET Ciw)l=Civw]) -=-Z

REH

FOR g9=1 TO 5

FRINT AT q9+%.,20;" "
FRINT AT q9+%.,2@,; c(9q)
HEXT 9

REM

LET ==U3SR CHR% (1444cC)
FOR g9=1 TO &

1735@a
174
175@a
150
2aaa
=AY

2RAs
2A1la
Z2az2a
Z2RA=Aa
24
2Aa5a
2Aasa

FOKE Q+(=-11 ,cC(q)

MNE =T

PEREIMNT AT 5,5 CHR®

RETUR

REM draw border around =scCcre

REM
FPLOT
CRAL
CRAL
CRAL
CRAL
RETUR

q
i

(ldd4+0C)

113

BIG CHARACTER
DESCRIPTION

Where the Spectrum scores over many of its rivals is that it has its
own built in, high resolution commands without having to add various
high resolution packs. The program Big Character displays the use of
just one of those commands, namely the PLOT command. This
enables us to plot points to the full resolution of the Spectrum, that is
256 pixels by 176 pixels. The routine shown here, in lines 220 to 270,
could be used in any program where we require a character that has
previously been defined with the use of data statements, to be
displayed on the screen at a specified central X, Y coordinate.

RUNNING THE PROGRAM

The data for our large character is stored in the data statements in
lines 1000 to 1080. The first two numbers define the size of the
character array which we will use to store the data: note that this is
dynamically dimensioned on reading that data. Here we are storing
the information in binary form: that is, using the digits 0 and 1 to
define whether a particular pixel is to be ‘lit' or ‘unlit’. If you hold the
book far enough away from you, you can probably see the character
actually drawn out by those data statements. Having stored all the
information in the array C(X,Y), we input the variables XC and YC to
define the central coordinate for displaying the character, and finally
the routine in lines 220 to 270 plots out the character on the screen.
Line 300 then sends us back to plot out another one, and so on.

PROGRAM STRUCTURE

60-70 set colours

90 draw border around screen using subroutine at 500
120-180 set up character array from data statements

210 input character centre coordinates

220-270 plot character on screen

300 back again for another go

500-560 border drawing subroutine
1000-1080 data statements for character

114

115

m generates
n4g
mmand, with

3
i
u

TR
mI
o o+
o
pe—
l OmoQl
i+
ALY mM O
Lmeom+
P T
m -

in an arrad.

1 REM BIG CHARRCTER
2 REM ¥ %22 FFFF XX EFEFTETEEEFS

o m

— 1] m
m C
- u

CoLours

SR

ol

i
m

draw border around =cCcre

b Ol T 1 I T T 1
Wit =+ W 0
Cr CvdrrHQOCT
1

GmECREEEENDE
(0=t 0 r- -0

= il =

o - — | - |

m T il o o et

= = +] i |

L (m] (5] -

m (] m O L |

L L - C -

(I m o | —

il - I O (] ™

+ - (L} _ —

(W] + 0l m -

m U T = —

N mu W _ =

im + -m [I~ il =

LC m - I} 1 L byl

ol i Lm e W -]

= - UL U (Y i | o Sl =

Booadu e o mmaon - 0] T 0l &

B o+ T - + ~-CHF -~] - — -

1] m - =2 o= WA A B = = ~&

ek Lo R om T ~u n m =0 -0l - o -

b wyy =—00hao—2a - U | I | e -~ T _ EOE ITRT A6
T LR R AT QA O =, c

1] m O O i n Uk e N 1

L ITI+ITIIOCII-<=~<ZXITmIovlIIrdX Oxx TX TOITITHFZF

WoWmuuHOoO MY sy Qo Jowy W I Eow @I

ool rZZ2cCafHOLLHOZZOETE CAOOO0OfCO0

I

(lalidaFgalalalalalalalalala iR alolalalalalal Lo et a ool i iyl

NMIME oAU+ NW0F-0mME aS—A 0 D0r-ameE & A0 - 0o e s

C 1riiiliiiiiEtEEeEEEEEES45nEEEEEEEEWW

1] . m o il

&

1ds CATA @8,80,8,1,0,8,8,8,1,8,8,

)

1aady DATAH 2,8,1,8,80,8,8,8,a,1,a,

)

1laads DATA @,1,8,8,0,8,8,8,8,8,1,

&

181ad 0ATAH 1,8,48,1,1,8,a8,1,1,a8.,.a,

1

116

laz2a
1a=a
14
1a85a
185a
la7a
lasa

CATA
CATA
CATA
CATA
CATA
CATA
CATA

117

MOVING CHARACTERS
DESCRIPTION

When displaying text on the screen, most people will think
conventionally and assume that all text has to be displayed in straight
lines, with all the letters being shown like the letters in this book. That
is, we simply move across and do not bother putting characters
sideways, upside down, or whatever. Normally this is of no great
importance, but there are occasions when it would be desireable, and
even necessary, to have letters displayed underneath each other,
diagonally sloping upwards, or indeed any way we wish. Take the
plotting of graphs, when we would like to label the axes properly,
perhaps following the slope of a curve for instance. This program,
incorporating routines from some of our earlier high resolution
programs, does just that.

RUNNING THE PROGRAM

Initially we input the variables X and Y to define the starting point for
our character, which is input in line 130 as the variable C$. The
movement increment, S, is defined in line 150, and the character C$
stored as an 8 x 8 array C(J,l) using the Spectrum POINT command,
in lines 155 to 180. The keyboard is then used to detect which way
you would like the character to be moved. This should be familiar to
you from earlier programs: pressing 5 to move left, 6 to move down
etc. More familiar routines from our high resolution cursor programs
follow, to erase the previous character position and restore the
screen, and to save the screen contents and plot the character in the
new position. When you're happy with the characters position,
pressing N will allow you to input a new one.

PROGRAM STRUCTURE

60-70 set colours

90 draw border around screen using routine at 800
110-180 input data and set up arrays

210-270 input character movement from keyboard

310-340 check character is within border

410-480 erase previous character position and restore screen
510-550 save screen contents at new character position
610—680 plot character at new position

700 go back for another go

800-860 border drawing subroutine

118

119

1

=

=

1a
and d
2
incre
=
mowe
4.
=a

0-J-Jnin
mN&E&Em

2n
=5
=15
95
1688
rrads=s
185

'*
oD MerPrPrPRPRPPRRPRFRPRRERRR PR

1 LI & G000 -J-Jmm oo & L ==

]

alalallpEaliialalolatnlaioiagalalainla

-r,
1

=248

=295

LG LG G G0 3 G
DEL=EE @
M@ No @

48

REHM HOWUIMKG CHHRHCTERS

EEH FEFFFEFFFFFEEFEEFEFRREEE
REM thi= program will mowe
izplLave ter

FREM wit rezolutian
ment, U
REM Ekey
ment
REHM

REM =et colours

REH

IME &

FPAFER +

REH

REM draw border around =cre

REM

GO SUE Saa

REM

REM input 4data and =z=etft uUup a

REH

CIM Cc(S,3): LDIHM misS,3)
REM

IMPUT = ,4d

IMPUT C%

FRIMNT AT 2@ ,1;C%

LET ==2

LET LET Wdr=S*(21-4]
FOR
FOR
LET
HNE =T
MNE =T
GO TO 5aa

REM

REM i1nput character movwemen
m kegyboard

REH

IF IMEKEY%="" THEM GO TO 218
LET xo=xf: LET 4Jo=df

IF IMEEY%="5" THEM LET =Ff=Xx

IF IMEEY%="6" THEM LET 4Ff=4
IF IMEKEY$="7" THEM LET 4Ff=4
IF IMEEY%="5" THERKN LET =Ff=x
IF IMEEY¥%="n" THEWMW =0 TO 12

REM
REM Ccheck character 1= with

ET
— 0
omInm

d
k
S 1
=T} control the

[-
H . — Il =™
Loy Sl

ODINT (045 ,1+5)

unds

REH

IF =f <5 THEM LET =f=5

IF =f 247 THEM LET =Ff==247
IF 4yf <3 THEM LET 4FfF=&5

IF 4f:1e7 THEM LET 4fF=1&7
REM

REM erase prewvwious characte
ition and resztore =s=Ccreen

0

B THEHWH GO TO 454
RSE 1; j+¥0,i1i+40

T
T
i1l
A
T
UE

11f+4H

nmn== H-n

[
w
BEEAAE
(U = o
<+

contents at
Ca+=F ,14+4dF

zNEEGE
W& =0

o il
= —
= i L
il o - 1]
c o
O + m
+ - - C
m e a
o - (u]
_ (M} e —
il + m
+ = =
(W] 1] .- _
m ITw - ol
- Em m
m mm + W =
L Gl-m 1 (u]]l
= aon - @ i] T A
F~—~=—&1w & =M=
+! Ll &= &=
u o L B o T 0l m =i -0l -
el = == H=2A = R
o R b | O (1
e el ol el ol el e H2 2130
=L OTIID O Oxxx T ZTOTITTITH
W cwWooe 1o Jon WAl 0w
ZZCCofLLHLOLEZZOE OCoOOOOlE
=
BRNE~NEEEEEEEEEE UG GG EE R
SUNME-AaGSAN N0 F- 0 & S 000 < 00
L L Ly 00 00 00 0 0 = 00 0000 0 00 000

) 1)

121

122

ONIHO13d1S Pue ONITVIS

123

SCALE 1
DESCRIPTION

The ability to scale a shape is one of the most useful in the
computer’s repertoire, and finds a home in many a program. For
instance, Computer Aided Design would not be where it is today
without this function. Unfortunately, the Spectrum does not have a
scaling command, and hence this routine. In its most simply form as
we present it here, scaling just involves taking an object (here we
have a rather simplistic view of a treel!), increasing the size of each
line that makes up the object, and plotting out our new drawing. What
this particular program suffers from is movement of the object as
new ones are plotted: in other words, our original design does not get
surrounded by larger ones, or itself surrounds smaller ones, but just
becomes part of a grand row of small, medium and large trees.

RUNNING THE PROGRAM

In line 110 we dimension our shape data arrays to contain 20
variables each. The data comes from the statements in lines 210 to
250, and as you can see the first number read is the number of sets
of data statements to come: in our case 4. Dimensioning to 20 is just
a precaution! in order, the data statements present the coordinates
X, Y of the start of one of the lines that make up the tree, and the
coordinates of the end of that line. Hence, four statements for our
four line drawing. The scaling factor S is then input in line 280: when
S = 1 we have the original size, a number less than 1 is smaller, and
a number greater than 1 gives us a larger image. Scaling factors are
then calculated in lines 310 to 360, and our new image plotted out in
lines 410 to 530, by drawing out each line in turn. Our useful variable
DS is used for dot spacing, and you can specify this to whatever you
like. As pointed our earlier, this program suffers from not having a
constant central coordinate.

PROGRAM STRUCTURE

60-70 set colours
90 draw border using routine at 800
110-120 set up shape and scaled shape data arrays

140-170 read data for shape
210-250 data for shape

280 input scaling factor
310-360 calculate scaling
410-530 plot each line in turn to specified data

124

600 go back for another go with a new scaling factor
800-860 border drawing subroutine

125

N4 LM — =
1o 1 ST GG

m

3
wnwom o-J-Jm
MEMm SN

PREEELNWUEHNHNUOWEMNDOONLDOOMNNDNDRERERE PRrERENDRERE PRIOPRRRED R
LM EE0NMENDEER00NMNENDEEE-JONELHNNENE PRERPAEE @

N e
B
=

EESMANASEARANAAVVLRRAANIREIQN@A-2-] OO-S@-JO0On @

REM SCHLE 1
REM ¥ 2 £ %% FFF$F XX EFEFTXTEEEF*

REHM

REM routine to change the =
of a =hape in

FREM the =hape 4data tablLe
REM

REHM

REM =2t colours

IHE @

FHFER 7

REH

REM draw border around =scre
REH

SO sSU0E Sad

REHM

REM =2t up and input 4data F
caling

REH

EEH zhape data arrads
CIM ¥ (2a): LIM gizad): LIM uw
CIM wi(2a)

"REM

REM =caled shape data arrad
REM

cIM a(z2a): bIM bi(2A): BIM C
CIM 4diz2a)

REH

REM =2t uUp =hape data array
REM
READ nlL: REM number of Line
shape
FOR i=1 TO nlL
READ 3 (i) ,9 (i), uli) wiil
MEXT i
REM shape data
REM
CATA 4
CATA 1
CATA 1
CATA 9
CATA 1
REM
IHPUT
RE M
REM d
REM
FOR «
LET a
LET b
C
d

- - -
G- E-

M scaling factor

— M W@

LET

SO0 @ I Pl

nnnn—= n

il
(I
(W]
u
c
s | I_“_
m
1] m o
- T m O
(ng _
* (18 O m
o Ll T
+ = _
o W= T w
E #* W =
n 8 _r-r or -
- + + o Gl
rr_“_-lr.lr - I_”_ B_._”_ J.—:.r
™ puuu (] =M=
oo =—=m m = Sl
minEma - n m = =0l -
[(O LI O [I~ R (1 ROE &
il B | O = c
o e e g L S
FFFIFFO== T TOIIIIl
W oy Wil
SdJL J I 2200 Coododll
REEEEREEEEEE W EEEEE
nmor-nmeS-AnaEme &—A0000 -0
=t ot o < < LD W0 w0 =00 S0 oaao g

w

127

SCALE 2
DESCRIPTION

Again here we are taking a shape, and scaling it in both X and Y
directions, but with the major fault of the previous program rectified.
This time we have a routine to correct the movement of the object as
it is scaled, and plot everything out from a common, constant X, Y
coordinate. Thus we have the same shape, expanded, in both X and
Y, or indeed contracted in X and Y, all centred on the same
coordinates. This new routine is quite a straightforward 7 line one
(lines 310 to 350). One other difference is that our object is this time
rather more exoting, being made up of six lines rather than just 4.
You can of course experiment with objects that are far more
complicated than this: just be careful about the data statements in
lines 210 to 255, and make sure you have all the X, Y coordinates
right, and more importantly in the right order.

RUNNING THE PROGRAM

As with Scale 1, we dimension our shape and scaled shape data
arrays (lines 110 to 120), read in the shape data (lines 140 to 170),
and give the data statements (lines 210 to 255). The scaling factor S
is input in line 280: as before a number greater than 1 means a larger
shape, and less than 1 means a smaller one. The illustration shown
ranges from S = 3 down to S = 0.1. The same routines as previously
used are here to perform the scaling and draw the shape. The only
new one is contained in lines 310 to 350, which calculates the central
coordinates for our larger (or smaller) object: these are the variables
CX and CY.

PROGRAM STRUCTURE

60-70 set colours
90 draw border using routine at 800
110-120 set up shape and scaled shape data arrays

140-170 read data for shape
210-255 data for shape

280 input scaling factor

310-350 calculate new central coordinates

410-460 calculate scaling

510-630 plot each line in turn to specified data

700 go back for another go with a new scaling factor

800-860 border drawing subroutine

128

S

N4 LM — =
1o 1 ST GG

m

3
wnwom o-J-Jm
MEMm SN

AREUNMNHNWEEHNHDUONDINOOONLDUOONNNDRERERE PRrEREDRERE PRIOPRRRED R
EEDNEEOUDEEE0NNNNEGHNDEEE-JONELHNNENE PRERPAEE @

Sp
H
=

NaM@i@Nagaiaag@i@a@aNaaa@Ianan—-@-] mi-8-Jmnn

REM SCHLE 2
REM ¥ 2 £ %% FFF$F XX EFEFTXTEEEF*

REM routine to change the =
of a =hape in

FREM the =hape 4data table
REM u=ing the shapes centre
REHM

REM =2t colours

IHE @

FHFER 7

REH

REM draw border around =scre
REH

SO sSU0E Sad

REHM

REM =2t up and input 4data F
caling

REH

EEH zhape data arrads
CIM ¥ (2a): LIM gizad): LIM uw
CIM wi(2a)

"REM

REM =caled shape data arrad
REM

cIM a(z2a): bIM bi(2A): BIM C
CIM 4diz2a)

REH

REM =z=et up =hape data array
REH

READ mL: REM number of Line
shape

FOR 1=1 T0O nlL

REARLD = (11 ,49 01701 ,001) ,% (1]
HE=T i

FEM =z=hape data

REH
CHTH &
CHTH 1@
CATH 14
CATH 17
CHTH 14
CHTH 1@
CHTH 7@
REH

IMFUT =: REM =caling9 rfactor
REH

REM find centre

REHM

LET cx=: LET cy=@a

FOR ¢
LET ¢
LET cC

MECH ¥ (C) +U 0

Y
ME®T ¢

=

Y

(]

)
g (Ccl+w (C)
LET ¢ L)
LET &
REM
REM 4

il

[

(]

1]}
TR c
£ o .
—— m
(NN RERE] — m m O
e e ” _u_.. [
o e e £ 1R o m
I o 1] L
XD e o F®m _
(ERNERN] il (NN, - - T
++++ m C mAapQ - r -
WD L | [= +f (] &
(RN NN M O —~—= -~ - 0 = -
immwmnn E wou~puouu [=M
e 2 oH==@4a0 ==3 0 = @D
(RN m ol iIl&Ema - nj m = -0 -
e L Hgg MW=l _ T I
moaum T Unore—=.ax O m (1

- FEEF 222320

FFFFxIZEZEEZAFFFFFFORFRFOX X EZEOITIIIH
WOl oy Juuou i w0 el o
AdddZ o JJJ 1 11 J 022000 ool
BEAEANENEAAEREEEEAEEEENE NEEEEEE
W= OmME =AU O 0mE =AU IEmE &A= 0
=t =t <t =t = <t 00 L0 L0 L L L L e L o e = P 00 0000 000 00 0

il

131

STRETCH 1
DESCRIPTION

Stretching, although on the surface the same thing as scaling, is in
fact a very different animal. Scaling merely producesa larger or
smaller image of our object, based either around the same or a
different central coordinate. Stretching, on the other hand, does not
necessarily change every line of our object to the same extent, but
ideally we do want to stick to the same central coordinates. You can
see in the illustrations here that we have a normal image, one
stretched in the X axis, and one stretched in the Y axis. With the
program being written the way that it has, you can combine stretching
in both X and Y axes, without having to use the same stretching
factor for each one.

RUNNING THE PROGRAM

Until we reach line 280 the program follows the same lines as our
earlier Scale 2 program. That is, we set up our shape and scaled
shape data arrays (lines 110 to 120), and read in the data in lines 210
to 255 by the routine in lines 140 and 170. You will note that we are
using the same object as last time, that is, a six sided figure. Line 280
lets us input the scaling factors SX and SY in the X and Y axes, and
these are later used in lines 410 and 460 to calculate the scaling and
stretching figures. Before and after that we find the central
coordinates of our object (lines 310 to 350), and actually plot the
figure out (lines 510 to 630) one line at time.

PROGRAM STRUCTURE

60-70 set colours
90 draw border using routine at 800
110-120 set up shape and scaled shape data arrays

140-170 read data for shape
210-255 data for shape

280 input scaling factor

310-350 calculate new central coordinates

410-460 calculate scaling

510-630 plot each line in turn to specified data

700 go back for another go with a new scaling factor

800-860 border drawing subroutine

132

<>

REM STRETCH 1
EEH EEEELTEFTXTEXTXETEEEEEEETEEEE
18 REM routine to stretch or C
hRange the =scale of a hape in
28 REM the =hape d 3 able. I
t

LM

t use=s the

=8 REM =hapes cCcen
rential x,% scCcaling
REM
EEM =et cCcolours
IME @
FRAFER +
REH
REM draw border around =cCre

REM

GO SUE Saa

REM

REM =et up and input 4data fF
caling

REH

FREM =hape 4data arrads

REH

CIM = (2a): DIM gi2a): OIM u
: DIM w (2a)

REM

REM =caled shape data arrad

REH

CIHM a i

CIM 4

REH

REM =et up =hape data array

REHM

REARLC nmL: REM number of Line

shape

FOR 1=1 T0O nlL

FREAD =011 ,9 (il ,001) ,% (1]

HEXT 1

FEM =z=hafpe data

REH

CATH &

CATH 1@

CHTH 14

CHTH 17

CHTH 14
16
Ta
=

=)
at
re
Fa

[N
)

m
=)

DO EELDUDDEESE00 0NNAENODEEE-JOIN ELOONEMNE PRrARPEESE S00m 0-J-Jmo

2a) : 0DIM biza): LIM C
(2a)

&
)

CATHA
CATHA
REM
IHPUT :
= in X and % Aa
REM

REM find centre

RE M

LET cx=@: LET cuy=@
FOR c=1 TO nl

LET cCcH=Ccx+x¥x (C) 4+ (C)
LET cy= gicy 4w (cC)

- BEEEE
P v @

3 RN el

I ARGk PpR
m =~ - SE-J&
NI pwO-- Q6
[l RN RN L

n & S0

caling fFa

NaN@i@u@ia@@nAa@af@uai@af@d I aman-=a-] Od=-g-Jhodnadanm Qoo
"

G GG GG W =R OOOnRooDDREEE PRrRrREDRPERE PRORRRERET R

135

iy il
I (I
(] (]
+! XNED i
il IR R c
| £ £ O A T
+ — m C
(W RR NN —_ m m O
T e e _u_.- [
c e | e e * 18 o m
m [I I | o W m
e | - | —_—t = (I
m EENRENN al uun n - - D
C — oL - ——#*k # W =
r cC++++ m C mAagn r-r r -
-~ WX L (I B o (] S
m (RN W O —= - .. 0 s -
(] [U T F vu ™~ ™puu (] =M
| ————— = H==Eory == m = = |
 NEN RN NN m ol il&Ema -~ 0] m = -0 -
(] == —=—1 (DT LI | =" (O | O O | ISR _ [e T el
m UmauT T Unom-—~=mxn O m (1
= EEEE 22330
I ICFFFFAEZZZCFFFRFFEHRFOXY EX ZOITTIF
U WOyl oy Jud oy WAool
L CchJdldd17oror JJ1 11110 J 10220000 Cooodoll
B NEAREAENENEEAEEAEHEAENARGAGNE NESGEELE
B G- 0mMEE=AC 00 0mEAMEmE S0 = i
=t it =t <t < =t = b = W L0 L L L0 L0 L0 L L L0 e 0 e e 0 000000 00 00 000

C

136

STRETCH 2
DESCRIPTION

The Stretch 1 program as described is an extremely useful one, but
alas it is not without limitations. Although we can stretch images in
both X and Y directions, one thing which we do not have control over
is the angle of stretching. At present, everything is going at ninety
degree angles. What if, as is very common in Computer Aided
Design, and indeed other fields, we want to stretch something at, say,
37 degrees to the X axis? The routine in lines 410 to 650 in this
program performs just that function. | will not go into the
mathematical detail here, many excellent books have been written on
the subject, but will simply say that it works!

RUNNING THE PROGRAM

As in previous programs, we first of all set up the shape and scaled
shape data arrays before reading in the actual data itself from lines
210 to 240. This time we revert to a much simpler shape, that of a
rectangle. In line 280 we again input the scaling factors in the X and Y
axes, and in line 290 we input AS, the angle of stretching. This is the
angle by which we will evaluate our shape above the X axis. In other
words, if AS is equal to 45 degrees, as it is in the illustration, the line
joining the two corners of the rectangle will be at 45 degrees to the X
axis. After calculating the centre of the newly formed shape, the
scaling, stretching and rotating routine in lines 410 to 650 comes into
effect. As you can see this is quite complicated, and | do not intend to
go into any detail. This book is designed to help you with graphics on
the Spectrum, not to give a thesis on mathematical theory!

RUNNING THE PROGRAM

60-70 set colours

90 draw border using routine at 1000

110-120 set up shape and scaled shape data arrays
140-170 read data for shape

210-240 shape data statements

280 input scaling factors in X and Y axis

285 input angle of rotation

286 convert degrees to radians

310-350 calculate centre coordinates

410-650 perform scaling, stretching and rotation calculations
710-830 draw new shape line by line

800 go back for another go

137

1000-1060 border drawing subroutine

138

139

REM STRETCH 2

18 REM routine to stretch or C
hange the =z=cale of

28 REM the =harp
t use=s the

=28 REM =s=hapes ¢
rential X,% scali

48 REM pLus an
on along which =t

4= REM plLace.

45 REH

=28 REM =et colours

2@ IME @

a8 PARPER 7

75 REM

S8 REM draw border aroudund =scCre

S5 REM

a@ SO SUE 19a9@

a5 REH

REM =et up and input data F
caling

REHM

REM =hape data arrads

REHM

CIM = (2681 : CIHM (238l : CIHM u
: DIM wi2a)

REH

REM =caled shape data array

REH

CIM a (28

: DIM 4102

REM

REM =et up shape data arrad

REM

REALD nlL: REM number of Line

Zhape

FOR i1=1 TO nl

READ ® (1) ,49 (1) ,0u(2) ,%w (1)

HNE=XT 1

REM =s=hape 4data

REM

CATH 4

CATH 1

CATAH 1
L
i

LM
wIT
w
-
m

S 3dIMm m

éj CIM Bi(2@): CBIM C

CATHA
CATA
REM

J
H
Z
T
[
-
1]
n
J
m -
4
1]
3
in}
—_
m
o
n
H
=
m

=
LET az=asz#%53.14159-15a
FEEM find centre

LET cx=@: LET c4y=0@a
FOR c=1 TO nL

LET cCH=CH+x [(C)+0(C)
CU=CY+4 (C] +w [C]

WWWLUNLA~ANNHNROOonDEREE PRrRrRDRFERE PRIOPRRRT R
MR EE00TO0N0NEQHNDEEE-JNAFENLHNNENE PRrERARE &
EESM@EO-- MRS N@SBNRRRIGA@AN-E-] OO-=S-Jmmnn s

S
0
i
=
m
_|

o

S EENE & D G0 0w - ~d-d-d =00 =0 =dmin o o v ananon

AR SNE2RSRRRNRAaRaNaaE G S-A-atfmE

M E GOSN EEI00-JOMEDNEERE0-] M &0 == EI0

PRRERERRERED B

=
m
-

L mm
[I Tl
(]|
o mn
‘o L -4
(1
nin
S
w33
_—ar

and =tretchi

| 3
e~
b

([l ol ||
|

-

-

=
m
4
-IC e
~I 1k
1
o
o

(a1 +91*%35IMH [
*5SIM (as)l+491xCas
0z (az) -g9+#SIH (a=z=

=2+ CX
M (as) +g9*xC0S (as

m u
*l-_h

|

n—

+Cd
—EH

cd
DE (a3=) +91%SIMH
*SIM (as) +491*xC05
05 (asz) -g+5IM (as

F
m
4
—CXE T Lo ¥
-

*lﬂ—.
* K P~ *®I
0 P ke X 0 ke
Q=M o

I_
m
4
oo
m
n -~
-

1 = 2+CK
F*SIM (as)l +g9*C205 (as

I H - m-—\.
H
I
-
M
-+
mn
-

an = Tnn
"_'Hl:l_i_i e

r
m
-
== 000" QoL O WL’
+ +

Tk | [T s [R IR L |

FLOT
NE =T
HNE=XT
SO ToO 258d: REHM do again

REHM

REM draw border around =cCre

REM

FLOT @,8

CRAL 255

CRAL @,1
-25
E_I_
B

S o L N T T Lo R TR 1

CRAL
CRAL
RETUR

141

142

ONIAOW Pue ONILVIOY

143

ROTATE
DESCRIPTION

In this section we introduce the concept of a transformation matrix. A
transformation matrix is essentially a set of equations which are
applied to a coordinate point in order to move it to the required
position. | shall not endeavour to derive these equations (there are
many excellent text books on the subject) simply show how they can
be wused to produce the required effects. The rotational
transformation matrix consists of four equations and these are
calculated in lines 250 to 280. Lines 290-300 use the values from this
matrix to calculate the new coordinates of the point.

Rotation requires the movement of a point in a circle around a fixed
axis on the screen. By making the point the end coordinate of a line,
a line or a shape can be rotated around this axis. The axis of rotation
can lie anywhere on the screen, it may even lie on the same
coordinates as the point to be rotated. In this program you will notice
that the small cross is being rotated in a clockwise direction around
an axis thereby describing a circle, note that the point erase — lines
310 to 317 — were removed to produce the diagram.
Counterclockwise rotation can be produced by using a negative angle
of rotation.

RUNNING THE PROGRAM

The program requires the input of five parameters. These five are the
X and Y coordinates of the centre of rotation, the X and Y
coordinates of the point to be rotated and the angle of rotation. The
angle of rotation is in degrees and is the angle between two lines
drawn from the centre of rotation to the O degree or three o’clock
position and from the centre to the new position. It should be noted
that the FOR NEXT loop in lines 235 and 410 are inserted to
generate a sequence of 360 rotational plot points, these should be
removed to plot a single rotation.

PROGRAM STRUCTURE

60-70 set colours

90 draw border around screen using subroutine at 500
110 input coordinates for centre of rotation

120 input coordinates for point to be plotted

130 input angle of rotation

150 set up array for rotation matrix

210 convert rotation angle from degrees to radians

144

215-220
225
230
235
240
250-280
290-300
310-317
330-400
410
500-560

initialise variables

plot point at centre of rotation

set start angle at 0

loop to plot 365 consecutive rotations
add angle of rotation to start angle
calculate rotational transform matrix
calculate new coordinate point position
erase previous rotated point position
plot new rotated point

loop to rotate again by the rotation angle
border drawing subroutine

145

n T
'm LR

m
3

L L I}
LM AMIRENNMWNREREREE & 00-JOMEQEIDERpREESEIDMO O &m0 m-J-Jomon &= e =

MNM2 N pWEENMWWEHH G ORI DOODNDREREeRE B PR

m
EEA QRRRE-JANE-JONE & SRRSO NTE-JARNEN@IEG-E@E0E0 G0 G GGG E &3 G0N0 -

N
o))

m .+

REM ROTHTE

EEH EEEELTEFTXTEXTXETEEEEEEETEEEE
REM this program rotates a
around

REM a central point on the
n

REM

REM

EEM =et cCcolours

IME @

FAFER +

REH

REM draw border around =scCre

REM

GO SUE Saa

REM

EEM input parameters

IMPUT ®cCc,dcCc: REM cCcoordinate
centre of rotation

IMFUT =p,d4p: REM coordinate
point to be rotated

IMFUT ar: REM angle of rota

CIM mii2,2]
REM
REM rotate point

REHM

LET ar=ar*Z.14159 150

LET xr=xp: LET J4r=4p

LET xxo=xr: LET 4Jo=dr

LET ®2p=—(HCc-=-¥Pl: LET 4Yp=-1y4
FPLOT ®cC.,.4c

LET r=a

FOR g9=1 TO 35

LET r=r+ar

LET m{l1,1)=C0O5 (1]

LET mi{(l,21=5SIMH (1]

LET mi(2,1)==-5IH (]

LET mi(2,21 =C0O0% (1]

LET x=xcCc4+xp*mil, 1) +upxmi2,1l
LET JU=dc+xp*mi(l,2) +dpxmi2,2
FLOT IMWVERSE 1;+®0-2.,40

CRAL IMNUVERSE 1;4.,0

FPLOT IMUERSE 1;#0,40-2

CRAL IMNUVERSE 1;8,4

FPLOT ®xr-2,4dr

CRAL 4,68

FPLOT %r,4r -2

CRAL &a.,4

LET xo=%r: LET yo=yr

LET =r=x: LET J4r =y

HE=T 19

GO TO 1a@

REM draw bkorder around =cre
FPLOT @,

CRAL 255,04

CRAL &,175%

=43 DRAL -255,a
=58 DRAL &, -175
S56@ RETURM

147

ROTATE 2
DESCRIPTION

In the same way that the program ROTATE rotate a point around a
fixed axis on the screen we can also rotate a line about a fixed axis.
This is not difficult since one is simply rotating two points — the two
end coordinates of the line. It should be noted that in this program the
line start and end coordinates are both input as relative coordinates.
A relative coordinate means that the coordinate is not the normal
screen coordinate but a value which is relative to the coordinate of
the axis point. If the axis is set at the absolute screen coordinates of
X =100 and Y = 80 then to have the start of the line at the absolute
screen coordinates of X = 150 and Y = 100 gives us a relative
coordinate value of X =50 and Y = 20. From this this we can see that
the relative coordinates are obtained by this calculation:

coordinate of point — axis coordinate

RUNNING THE PROGRAM

The program requires the input of seven parameters, they are as
follows. The X and Y coordinates of the central axis around which the
line is rotated. This is followed by the X and Y coordinates of the start
of the line and then the X and Y coordinates of the end of the line, all
four values being relative coordinates with respect to the centre of
rotation. The last parameter value is the angle of rotation, this is in
degrees and is the angle between two lines drawn from the centre of
rotation to the orginal dot position and from the centre to the new dot
position. Note that the FOR NEXT loop in lines 235 and 500 have
been inserted to generate a sequence of fifty rotations of the
increment angle. These should be removed to plot a single rotation.

PROGRAM STRUCTURE

60-70 set colours

90 draw border around screen using subroutine at 700
110 input coordinates for centre of rotation

120 input relative coordinates for start of line

125 input relative coordinates for end of line

130 input angle of rotation

150 set up array for rotation matrix

210 convert angle to radians

215 initialise variables

225 plot point at centre of rotation

148

230
235
240
250-280
290-340
360-460
500
700-760

set start angle at zero

loop to plot 50 consecutive rotation increments
add angle of rotation to start angle

calculate rotational transform matrix

calculate new coordinate point positions
routine to draw line between the two end points
loop to next rotation increment

border drawing subroutine

149

ML

150

LM

Line
2
SCree

m
3

A DO-JOOeEWEDEEEEDNA0 WO R0 0o RE00m --Jm 0
= A AaaaNaf@iaNaI® N -8l S0nesEEE

L W MO0 OOMNR R RrdRE P

(1Y Y T Y O
MNfF L1 M
ENE & @

B g GGG
B 0 0= @000 -J @
0006 R EEE

REM ROTHTE 2

EEH EEEELTEFTXTEXTXETEEEEEEETEEEE
REM this program rotates a
around

REM a central point on the
n

REM

REM

EEM =et cCcolours

IME @

FAFER +

REH

REM draw border around =scCre

REM

GO SUE Faa

REM

REM i1input parameters

IMPUT ®cCc,dcCc: REM cCcoordinate

centre of rotation

IMFUT =p,dp: REHM relatiwe L
tart coordinates

IMNFUT =®9,49: REHM relatiwe L
nd cCcoordinates

IMPUT ar REM angle of rota
CIM mii2,2]

REM

REM rotate Line

REH

LET ar=ar3.14159./150@
LET xr=xp: LET Jr=yp
PLOT #c,dc

LET rr=a

FOR zz=1 TO Z@

LET r=r+ar

LET mi(l1,1)=C0O5% (1

LET m{l,21=5SIH (1]

LET mi(2,1)l==-5IM (]

LET mi{2,21 =C0O5% (1]

LET x=xcCc+xp*mi(l,1)+dpxmi(2,1
LET U=dc+xp*mil,2) +upxmi2,2
LET =b==x: LET 4db=4

LET x=xc+xq*mi(l,1)+yqsmi2,1
LET JWU=dc+xq#mil,2) +dqxmi2,2
LET H2e=x: LET 4e=y

REH

REM draw Line

REHM

LET d==3

LET p=xe-xb

LET 9=4de-dJdkbt

LET rL=5SG0R (pxp+3%91

LET Lx=p~-rL

LET Ly=9.-rL

FOR 1= T0O rL STEF d=

LET H=xb+i*Lx

LET 4d=db+i*Ly

151

458 PLOT X .,d

458 HNEXT 1

S HEXT =

595 REH

Y08 REM ddraw border around scCre

REM

FPLOT @
CRAL 2
CRAL @
CRAL -
CRAL @
RETURH

R RN ENENENEN
O Gl = S
agalalalalagl)|

152

ROTATE 3
DESCRIPTION

In the same way that the program ROTATE 2 rotated a line around a
fixed axis on the screen we can also rotate a shape about a fixed
axis. This is not difficult since one is simply rotating a set of lines,
each line being specified by the two end coordinates of the line. The
data for the shape is stored in a shape table, this is stored in one of
three arrays. The other two arrays are used to store the data for the
rotated shape and the previous rotation — this is required by the
routine which erases the previous rotation. The data is stored as the
beginning X and Y coordinate of the line followed by the end X and Y
coordinates of the same line, these four values are then repeated for
each line in the shape. In this program the shape data is obtained
from a set of data statements — lines 710 to 740. The set of displays
which accompany this program show how by varying the centre of
rotation the shape is rotated in different ways, depending on whether
the rotational centre lies within the shape, directly on a line of axis
through the shape or to one side of the shape, also shown is that the
lines used to draw the shape can have a variable dot spacing.

RUNNING THE PROGRAM

All the parameters required by the program are stored directly within
the program. The X and Y coordinates of the central axis around
which the shape is rotated is stored as the variables xc and yc in line
255. The number of lines in the shape is stored as variable nl in line
240. The X and Y coordinates of the start and end of each line are
stored as data statements in lines 710 to 740. The last parameter
value is the angle of rotation, this is in degrees and is stored as the
variable ar in line 296.

Note: that the FOR NEXT loop in lines 300 and 620 have been
inserted to generate a sequence of fifty rotations of the increment
angle. These should be removed to plot a single rotation. When
plotting shapes with more than 20 lines then the size of the shape
data arrays should be increased accordingly.

PROGRAM STRUCTURE

60-70 set colours

90 draw border around screen using subroutine at 900
110 set up array for rotation matrix

120-150 matrix for original data shape

160-190 matrix for erased data shape

153

210-225
234-296
240
255
260-290
296
300
310
320-350
370-500
520
560-610
620
710-740
900-960

1000-1140
2000-2140

154

matrix for displayed data shape

initialise variables and constants

number of lines in data shape

plot point at centre of rotation

load coordinate data into original shape matrix
set start angle to zero

loop to plot 50 consecutive rotation increments
add angle of rotation to start angle

calculate rotational transform matrix

calculate new coordinate point positions

jump to routine to draw lines

put displayed shape data into erased shape matrix
loop to next rotation increment

shape table data

border drawing subroutine

subroutine to draw shape

subroutine to erase shape

rotate a 2 [

int on the =s=cCcreen.

ColLours

ram to
draw border around =cCcre

1 REM ROTHTE 3=
2 REM ¥ %22 FFFF XX EFEFTETEEEFS

=N

(] m =
L. T o
i oC
c m T -~
m m + = C—~=
| B - im m —
+ m m m] -)
L + 1] m ~MNC m
m e m il] + Il - - —
+ - al m L c o Ch+ & ™
m - (8 m im o 11 n m
T + m i L + odF- -
m L (18 1] 1] - - W -
- = i im cC 1] _] B
(] I m (m R d —“CcC~ w -
A c = I} 1] - E=LC L -
o m o A = -]
L T - o~ O m m am Buld -~xc - #
[. 1 +] A mm o, e, e = - T Bmp~10= 1m0 o
m m m -~ m G& &8 g Q8 A8 o A =% -~ C~O = m
Ls < 0 = ol) omo ol) v oI o +2m N hoe=gcloonon
m - [T e T e T T e Y 11 1 N B | B~ Pl R I
W m L E O =D 3> d EHM O+ T oooT- gm nHTannTa m
m N
L I I I I I NIy ITITIIYIIY TIFHFAIIXIFwmEEFZIEL
WOy cwHY Wy HHHAHMDW U HHDHA W WWHAAAD D S 30w G b b
HGHHGHHHDHHHDDHDDHHHDDHDDRHHDDDDHHDHLLPFHLHHLHLR
o R
NENE~MOFERNOFEENAEMONEENDEEEMOENENE - AR NEERE _&0F-00m
NmIEMAAE—AAA-ANI=NNNmOrr~0na@eE 000000 O=nmork-0 oo
|

Eriddddd A At e A e A e e e e e Q00000 O O 000000 O im0 Q000 O OO 0 - - Q0 0 0 O 0
e -

-

157

—
= m "= "=
e
miumimnin

- 2==2=

o

JOEE | I ITEE| | B A+ NHRE
1]

Nn++CEnn++CLxE- ~ MElpE

(T e N T - e o T O O 11

S=CEI W oOpmo =

S |
A
#*
=

Mnana
M=

O
==2<LC
A
*
=

M

S OCXA0TDTDoC = 0m3
nan

——=0 0NN ~~0umnmin

it B I I RNl i I R

nZ
mm
I
|
3

GO SUE 2000
REM

GO SUE 18
REM
FOR
LET
LET
LET
LET
HNEXT
HE=T a

STOF

REM

FREM =hape data

munn-

~Ink =
S ATOo 0
J3333
e

REM
CATA

m
(ala gy N N NN PN RN RN T R T R O OO IO RO T B o o e v S e e s s n In In in e ininininininninining e

PEEIDMOAEDLD RS S0 E) R S EWD N = ED 0 -J MO G = @0 W -J D0 e @0m-JOndoi & e e e a
alnlelnlalalalalololilmgalilalafalaliialiiialalalaialalalalalaialafalalafalalalalalalalafalalalafuiilalalalafa R o el gy

e

CATA
CATA
CATA
REM

REM draw border around scCcre

REM
FPLOT
CRAL
CRAL
CRAL
CRAL
RETU
REH
REH
REH
FOR
LET
LET

188,980,128, 134A
18a ,15a ,98, 134A
93,138,118, 13A
118, 13536a, 1908, 15a

S
=

L
=

L

w=
| M= N&
=)=

-~ NE

()

=

R

draw =hape

n=1 TO nlL
ds=1
P=q(nl-0inl

|
1} 1]]
ng ng Il
* o * (N8 Ty
o 1] o L =N
+ - + - =
—~ [Ul il —— [Wl e
C#* -t o CC#® et nl 1]
= = %k m - == =%k _]
o= e T C =HMHN- el
| == ++4 Ul Il == 44
P I O ~~-vL O~~~
C@M“CC W b cc@“socll®
=Nor ==omn vl A==nor ==
—ihnn®Eon - m —Allyg<NIlIlIE=M I
=l llll=xacE - HNylhll==llllIlHO.AaCT
g e . || C o CoOo-——wAxT = I
o o ol
FFHFFEFFOS SRR RO
Lod o L ol O b e 0 bl b o b e o i b o i e i i o
Sddde oo Jd 0 e J 10 JZZ 10T
alalalalalalalalalalalalifdalalalalalolalalabalafilalayal
f L0 = 000 e 0 00 00 S e O 00 = 00000 - 0000 e = O
BEEEHARAAAAAMGEARAAGEEGARESAAAAAA
el e L L L e L L E E N T R I L R R R R Rl p A Rl

159

MOVE
DESCRIPTION

The application of the transformation matrix can be expanded to
cover all manipulation of a shape, not just rotation, but also
movement (known as translation) and scaling. The primary purpose
of this program is to show how a shape can be moved about the
screen, but it also imbodies the capability of scaling and rotation. The
transformation matrix consists of six quotations. These equations are
stored in lines 3000 to 3100. Notice that equations 1 to 4 consist of
the rotational transform equation multiplied by a scaling factor,
equations 5 and 6 do the movement by adding an offset to the shape
position. The program can display any two dimensional shape. This
shape can be moved to any part of the screen, rotated trough 360
degrees and stretched in either X or Y axis or both.

RUNNING THE PROGRAM

There are no input parameter values since they are all within the
program as LET statements. There are six parameter values which
control the movement, rotation or scaling of the shape, these are set
in lines 120 to 160. Lines 120 and 130 contain the X and Y scaling
factors — full size = 1; half size = .5 etc. The rotational angle of the
shape is stored as the variable rz in line 140, note that since this
angle must be in radians it is multiplied by 3.14159/180. The
movement of the shape in the X and Y axis is stored in lines 150 and
160, and is the number of pixels in either direction from the original
coordinates stored in the shape table.

The object shape is stored in a shape table. This table consists
simply of the X and Y coordinates of the end of each line comprising
the shape. It should be noted that there are one more pair of
coordinates than there are lines in the shape, the number of lines in
the shape is stored as the variable np as the first value in the data
table. The data table is stored as data statements in lines 1110 to
1130. Try designing your own shapes using graph paper and then
entering the new values into the data statements.

PROGRAM STRUCTURE

90 draw border around screen using subroutine at 400
110 set up transform matrix array

120-130 X and Y scaling factors

140 angle of shape rotation in radians

160

150-160
210-260
400-460
1000-1050

1110-1130
2000-2080
3000-3100
4000-4070

5000-5220

X and Y axis movement of shape from initial position
main program execution loop

border drawing subroutine

load shape data into arrays — arrays X and Y contain the
original shape data — arrays U and V contain the
transformed shape data

data statements containing shape data — line 110
contains the number of lines in the shape

find the centre of the shape

perform transformation matrix calculations

performs the transformation on each coordinate point
within the shape table

draws the shape using the transformed data in the
arrays U and V, note lines 5120 and 5130 check that
the shape does not fall outside the screen area

161

o
JuINNLIDDN1Dn1n 103

iR

3

EEASOA0NRPRRPRRPASAATAAAAELEEEERLEDEGUNNMNUNONRRRrRRRE R~
alatalafnlalgialalalalgialalalalal=galafiilalalafalalalalimaalilalalaalalalijiayalalalalalaya i i atiie ool ala g o bRt n i

FLUMNPEE0EGNEEEOMNED e E@EMOTE M =S G0 O) N0 S0 o £ G = S @00 oo o £ 0) =

MPPpPPDRERPRrRRPRERERREREREHBP R RERE

MOUE
EEEEELE L L X EXEEEEEEETXTEEEE

1101
mmimim
IIIX

Program uUses matri

i+

or sCale

Ja=2T
In< e

=
¥ i
=
1

= 0
mz== ~+
J 0
=3
—

4
pe

o
(11}

o
mH
4
C 2 ~Asmbn b Co

con=stants, waria

T3 [T O o ce o
IoITET ITTTTH-T=m
=Sm Mo

11]
[QT il

LET
LET
LET
LET
REH
REHM
REM
GO 3
GO SuU
GO SuU
GO SuU
SO 54
STOF
REH
FREM bBorder Adrawing subrouti

REM

FPLOT
CRAL
CRAL
CRAL
CRAL
RETUR
REM 1
REM

A

1

1

SA¥5.14159 7158
-5

nnnunno e

M

M
3
n
-
u
i
-
11
=

Loop

1A
2RAAGA
SRAAG
4 A0
Saaa

mmmmm @ WX MWCX -~

| M= N&

R n-J-
w -l @
— M&

-
—+
(T8

152 Shape

~3 370 A&

"

M aqinp+1): DD
+11

DI
ne+l
;1

-—\.j{"
=T

- O0Xp
-

REM =hape d4data
REM

CATAH S
CATAH 128,
CATH 15@,
RETURH
REH

FEEM fFind centre of zhape
REHM

LET cx=@: LET c4y=0@a

FOR c=1 TO np

LET CH=Cx+¥ (C)

LET cd=cd+y (C)

Qa, 158,128,175 ,75
@,188,50,1aa,1aa

Ll

163

- m m

+ E -

m —_ PR e

= — | B |

H + +

C — - L — —

(] MK ~H C =l

o [[() -~ =

+ —_r— e - ~

m H + - e

= mwE o m m m

_ oH 1O = * ¥k

u] Quw =0 [A PR RS
b L I O o +txEmx il
1] S | | B | LT o T R o
oo C mur W vi cl I+ + m
cCC m I I I cC - . | T
S I —— - m Qoo o i

=T +~ AR 0] A0 - =—=u
[N - .- - - - = . = T ——— =
|| + A 0l MM Al o—O— m
U o e - o S | Il Rl £ o il W
Ul o mm mmMm mm [T T3 ~>=> -~ [T

- - a M2

XL I+FIFFIFFEIFEIIIORRR-F—-AXFIL
W b Dbl b b b b o o O L e L o L L
Ao odJJdodJe o JJdd+ 1+ 20
REEENE NEEEEEEEEEGSNEDEEEE AR &GN
mor-nm&E SA000=00r-0mEME Rt -0 ~0k-me
ialalalulaigalalalalalalalalalaiafulolalalaba laini oot fnia)
R R S I N T T P T T MR s s e s o el dhell s 0 B A 1)

LET 4Yb=w (9]
LET de=vwiq+1l

=255
175

P*p+0 %01
LET =
LET 4

b
E

[
*
*
H
H

e T S E P PR S

I TS ™p++

duEoo 000N

= & = k- -

Hunn=m:umnminigdx~r"

CL 0 e = = e 320 T r
el ol ol

FHFEFFFIRFE e

L D b e e 1l

A J JHHO ZZ (T

alalalaialaialalalalalal

wr-mnmaE-Aarma=ol

GIEEEAAAAAQINI0

IHRIN
. .
GG
<+
GG
= 1020 L L L L L L L L L L L L L

164

SAV1dSId d¢

165

THREE DIMENSIONAL SHAPE 1
DESCRIPTION

The application of the transformation matrix can be expanded further
to cover the generation of three dimensional shapes — it should be
noted that they are displayed two dimensionally but optically appear
to represent three dimensional objects. To do this simply requires the
addition of an extra axis — the Z axis — to the X and Y axis used in a
two dimensional matrix. The transformation matrix consists of sixteen
equations, they are stored in lines 3000 to 3190. | shall not attempt to
explain the mathematics, for those interested | would suggest one of
the text books on the subject — ‘Principles of Interactive Graphics’ by
Newman and Sproul.

RUNNING THE PROGRAM

There are no input parameter values since they are all within the
program as LET statements. There are nine parameter values which
control the movement, rotation or scaling of the shape, these are set
in lines 120 to 200. Lines 120 and 140 contain the X, Y and Z scaling
factors — full size = 1, half size = .5 etc. The rotational angle of the
shape in either one of the three axis are stored in lines 180 to 200,
note that since these angles must be in radians they are multiplied by
3.14159/180. The movement of the shape in the X, Y and Z axis is
stored in lines 150 to 170, and is the number of pixels in either
direction from the original coordinates stored in the shape table.

The object shape is stored in a shape table. This table consists of
two parts the first is simply of the X, Y and Z coordinates, of each
corner coordinate comprising the shape. The second part is a table of
connections of pairs of points between which a line should be drawn.
The number of edges in the shape is stored as the variable ‘ne’ and
the number of coordinate points between which the edges are
connected is stored as variable ‘np’. The coordinate table is stored as
data statements in lines 1210 to 1220, and the connection table in
lines 1310 to 1330.

PROGRAM STRUCTURE

70 draw border around screen using subroutine at 900
100-110 set up transform matrix arrays

120-140 X, Y and Z scaling factors

150-170 X, Y and Z axis movement of shape from initial position
180-200 angle of X, Y and Z axis rotation in radians

166

410-450
900-960
1000-1050

1200-1220

2000-2240
3000-3160
3200-3350
4000-4080

5000-5090

main program execution loop

border drawing subroutine

load shape data into arrays — array S contains the
coordinate table of the original shape — array E contains
the line connection data — array M contains the
transformed coordinate data

data statements containing coordinate shape data as X,
Y and Z for each corner point, note that the first three
values comprise the coordinates for point 1, the cond.
three for point 2 etc.

draw the shape

perform transformation matrix calculations

set up scaling and translation matrix

performs the transformation on each coordinate point
within the shape table

find centre of shape

167

REM S0 DRAWIMNG 1
REM ¥ 2 £ %% FFF$F XX EFEFTXTEEEF*

sional sha
ogram
position a
d

=

n
o

ﬂ
m
(AL TR
R
m
=

nm e

nd =cal
REM
different wiewin
REM

REM

REM draw border around scCcre

REH

G0 SUE 9@

REM

REM =et up constants, waria
and =
REM
oI
CIM
LET
LET
LET
LET
LET
LET
LET
LET
LET
REH
G0 =
G0 =
GO 3
GO SuU
GO SUBE
STOaP
REM
REM border Adrawing subrouti

REH
FPLOT
CRAL
CRAL
CRAL
CRAL
RETUR
REH

]
=

to giwve
= .

m
3

SIS MO E WD =SSN A G G0 E O LN =SS0 00 - @O = G0 = &0 o o -Jim mmg

F
alatalalalalalalalafalalalilafuialalaialalalipaaiiialalalalaialalalaaialalalaialalalali Ue ol ali] el

ﬂ
I

(IR E ok

¥3.14159 -150@
¥3.14159-150A
*353.14159 -15@
rogram Loop

Ll T O T 1 O

AT (=R [V T PP,

M
REAEE SRE

CCCE2ananmsninhigon [
RRARET

MMM W = R W -

()
()
(5
A
[

-
PRPEERERREOEEEEEED0OOODOOONONNEREEERNBRERRREBRERRES -
| = N
b O -
- ME
mne

A
m
i
"

itialisze =shape

mTm I FE|&EnE

[}
o Y
=R

J =2mw 33
-

VLT
N N P =T ¥
P
-
kO J0 TWT

m

FREREPPRRERERRPRE PR
~ =

169

0| = = — M KM = H Hu
a &R + [N L 1)
= &R m = e ZM= - |
m 0 0l EIE = Hw =1
C -~ - &l 11 n = =y~ *0
L T I < anEE E o H I OMNO ~
L 0 RN o (M =mnae — %
o0 o0l =110 1] 11} N1 1nl] - k ok o~ kO F— -
o = i m e - m (mimpni| + R -
o &oQ i 1] () o ol m | T [T S il -l
(] = & m = = - - E 1R ag E R L ey B o b
&0l m =i o 1T} OO0 = = = == =
+~ & - R () L o (ML o = Lk HZ
cC i @ C M=] (L o i oo - m m H =N~ nH
L I o s o WUe=~- =00l * XxnZZ0O0 U o o wm o oOoxH I
o & & -+ o m CcAlUlZ=>=>=> o i 1111 E 0O 0O 1&@0Z0vwyy G—*
o m - - - s ==l ===~ O0=- kT TF m | | nmnunHIm~=1 -
o a&@ v ol i D00 = w-Oaap-UUld - T T |1 oS —_—
H -~ @& o -~-- === 1T I1EN%-++ i 5 +! — 0l S#l*EHS e L
= & OOl . (=l = vy ssss-ouEonr D003 I T s T T
- =~ - = m o= NEmmwmm= o) 1 0E = e - - o od A0 N0 Qdim
= B A8 o AnNuE oo A ooyl b iQdAG86E AU o bl el et e e |
- - I T WD DMOAm = = T s I w m M MmMmM—M~m @qmC
TR TITT = HHHHTTTU = (]
rrrfp +--rrr+-+kkkrrr -+ FFFFFFFFFRFECRE Qx*—Frr I+ + FFFZF-F FHE+
L L L S L L o o L o G 2k i b b i i S e e e gy iy W ddH - il -
HHHD%D%HHHDDDHHRHFLLILLLLLLLLLLFLLIII Lo ol LLL%LHL d 1~
H
NENE & ~NANAAAANANANANAAAAAAANAANNAAANAAANAANE & & AfG~AHA 6o
MAE—ARNSNMAA—AUNENMSQAU000MRF0OE—N0=1N0F0ONE-A00a0E8 8- 0 O=0~0me- o=
AUO -UEUEAANAONDNNMAAARARARARAAAdAdddddddd0MUNNNTMNME G0 & AfANE+E O8 -~

A A A G e [A A A A A A e Q0O O O 000000 OO 00000 OO0 0 O O O O O G 0 Q0 Q00 e 20 = R = R e DD D= D

170

®]1 *C0OS (r
M (rz)
1 ¥C05S (rd

I Or
gl 5T
5 (rx

C P A
m ooon
- + + + =
5 —_ - - Il
[— 0 M -
|_“_ _“_ - - -
C - I -
m - - +! e o Tt o Tt w
A A AN m B R 1 |
m e e momom = s ed (1 1)
E A Q00 M i 4 gl mpd m -
o T T T C g ”u.n“.i. ”u.n“.i.”u.n“.i. - E
! mmm mmm Jmmm m o |] st ! o |
m ks ko _ 111 +O0+0+.0 R N
i XEX DI:h MHMH =M + L o~~~ JUtutouo+ +! (WP
GEAGEA O TV RTU TR T RTINS gl C oo =—JN—kN~ C ===
TR T T T T T T I (T [= R =N R R 0 W AU oo
AN D AU AU A AN o = oo Fuvivin ™™™
- e om, ow o = - ., o, - oo -, - om o= LTS TR N m e + + + _u_l_“_.;l
M=t + - eAcded QIO 000 <t .« nnn —Saaafma C fSepor- i
EEEEE W e e o s m o I e —k— k=TT 4 DN NNAauOUE
mmmmm wm 000 000 000 0000 o T =T E+E+E+« [% [@nAoT- xINE
= a1 M H HEJ - -
FFEEFEE ERRFERRFERRRFERFREIEECER R+ +- +XEEEERE R X R
L b i o o o i i o b G e o O o b b o i~ = = b o o S o i ol
dddddJerocdddor e dJldo e e JJJoe I oo Ju JJ 12 1 1 10
| - - -
GEAAAANGE+NGAAAAAARAAAAAARANANANAERANENANANEGANANARAAEREEEGEE
= 0 & m & AN 0 - 00N E A0 DS EE A o D= 0=0-= 0 &N E AN M= Do r-0me
A AA AN = OIOIOI O NI MM AAEAAAAAEROALG O NMMNMALNARAAREEEGEM
A= CTETEDC D DT CCC DT RO CTEDCVCND D CVEY DD ot kot ot of o o o ot e et st o W0 L)L LD L L0 L L LD L L

171

THREE DIMENSIONAL SHAPE 2
DESCRIPTION

This program is identical to the program THREE DIMENSIONAL
SHAPE 1 except that an additional subroutine has been added to
remove hidden lines. Hidden lines are those lines which lie out of
sight of the viewer and are hidden behind the front surfaces. By
removing these hidden lines the shape of the object becomes much
clearer. The subroutine which checks for hidden lines is located
between line numbers 6000 and 6140.

RUNNING THE PROGRAM

The parameters and data tables required by this program are the
same as those used for the program THREE DIMENSIONAL
SHAPE 1, consult this program for information. Note that the
connection table now describes object faces rather than lines.

PROGRAM STRUCTURE

Lines 1 to 5995 are identical to THREE DIMENSIONAL SHAPE 1,
consult for details.

6000-6140 subroutine to check for hidden surfaces

172

173

* m m il C al m -
* T i A (I o -
¥ 0 C = m- o - a —_
* [Y. B] | m (] c
¥ = .4 m OrC = = :
* mEs o L | "
#* CmAa O =T c ™ REGE O - =
¥ oLy + 0T = 1] Moo o i il 1]
¥ a0 LR (] - e O L -
¥ oo MUCC L. c R m im —_
G Y il S im im mmm c I c
i+ wocwmm o + s - Ul -
¥ = owcCccCc=E> (. i Al m = ol
O#% mypa2mmmo il c = vt m il - =
Z¥ Tl UE L (] A m — i | L vl
H #* LMo mmmil - o = = =0 m - s
Sk e Cow- (] M- aEEa Sl - - - -
T+ U Ooud-- 0 8 on ~~ * ok ck o B EEIEIE [& ~r- m oco oOc
k* o cO0=00 & o: <+ 1) LEE ARG ol ~[=1l o cC-~Cc | -
O O +« o + = m m = o0 e = A (U S) =0 m =l + M0 e - i
¥ +~ W Al m o =H=SAaannnnmmmnmim.a (I = -0 - o NN NEACE A=
O & CL=m>=LCa . b we === "M x DK I m0ooom (] GO&R T8F - opows—=-—— 1ln
M* m=+ou L O ovm mAaumpuuE+S s L =777 | L =~ CCCUE LC
m + A in I [F==32=2230 (]
LIl viuick LI ¥ I rIrirIkFFFFFFEFEFEET O IO0OIdDOII-EZEEEZFFEFZEZEZEZOT
o=l WUy wWolycuHHHAHDOD WU WUWOOOO0 R il iy dulddHHAH WO
X Cof-rfo O OCOOCCofCoooodd 11111110000 0NeEr Cooooofffe JJJodoOr i
(7] TR N /1 B,
A PIE AR G- E) GAG L G oy) G LT 50 3 G i 0) G S G G GG E S U E DR G GGG DG DG EEE GG GG
= Mmoo 0P 0muomE A=A S U000 mME S A0 O DS E S 00 = D0 S S 00 0= s = 0]
U m oA Ty C - 1111111111112444444589eEEEEEEEEEEEEEEEEiiiM
L C T uid il 1 C Ll e Ll L [B D Koy Ly

il = -
o &8 &
" I
m 0 0l
[- "
— 1@@
0l m & &
T A0 0)
w O -~ -~ m men~a-
- o 8 Q + =000
L. [N} = & im - m om om o= o=
= &l T =00l
il .-l.m_ - T T T T T
- cC i @ C MI<t0r-0m ol
e] - ol I | (] - e o, L
cc o & & - C<i0r-00m m
m o & moms g T MG menm o o L
o0w o @& v -nowme- |
—I—I T._ JBB -“_._ T T T T
L = & i o Ol=Auour- =
= L] - -~ - m om om omom im
ciilhpgys- -~ & A& o dnoidns o
e - - u C m
F O+ ITERI&E TIXITTTIT
XECECXXEZEF - - ZEXEXFFFFFFEFZE
Lt 2O L L O o L L OO O O L L
HFFHHHHHHD&D%RHHDDDDDDHHH
CARRAERDENE ~E -0 50 E GG EEE GG
0 =t L0000 = 00 S S e & O S0 S S e O = 0 &g

ArdeAAAAAQIOI0] S E T ETmmE
e A A A A AR A A A AAAAAAAA AN

- M H =
+- [-
m o =ZHM
(] = Hw
) 1 m = -~
<+ ol &G (i o H I
0l IR N] 0 om =]
1] 0} ol o * % -~ *O
- R oo + - =~ T =0
(W) o ol m m | I I S 6
- E (I8 ag E L L
m 1] (mim] - i T =
~~0 + - i o = [
A - - (i 11 (min - m W H o=
w o~ o~ AN * e | WAl | v o O w0
CUuuZ===> o 111 c 0 0 R0Z
= = =~ ==~ O40=- +*++TT " m | Il nmninH
=P I T~ ™p++ T ! = 0] Mo
dy ssss-auuE@3or 000NN - - - e
I NE Nl & s - - +! L I B~ [NS
o L T T O " O O | I T e oV 0 T I 1 Il 11 e ot el
T Re=T= Y o B el 1 W o LS | C uw m m mmm~
= XN D2
K+~ FFFFFFFFRFRIRE Ox*-FZLX Il + FHEZ
W e i o i O e e e e il Wl W WA
dIH 11111 J JHHHHO Z I o1 LLLﬁ
BEANAAAAAENANANANNANAREREEME NE & HEE -~
== OO0 ME A0 R-0ME—A00=3&mE & 0 -
GEAAAAANAAAAAAAAAAMMNNINIME <&HE & HEGEH
0 O o0 O o o O O O O o O O O OO O 00 e B e 0 = T T

175

(rz
(ry

®1 ¥C0O5
(rz)

r
#1 ¥C0O5

_H -

H
.”_.,l.
|
=1
*0
~
-Ir“+u
o —
T
-
=
HZ
mnH
I
&=
-
-J..J.“,H“
b
L1
==
mmCl
(W
-+
Wi~
d 1~
I
[
=
GG

®)1 *xC0OS (r
MNo(rz)
1205 (rd

I Or
gl 5T
S (rx

—

=

m

L

!

T

c

m
— ()
m - - -
C el
- "
- mmm
m ko
U o
L Do B Ko BT v
wiuwmnmn nmunn
— - L — -
S0+ D A0
- owomom o = - o=
M=ttt +_- Al
EEEEE ol +' L
mmmmm wm D00

=
FFHHEEIE ERHE
W i ol
JdddJeroccd4d
b

QEAAANGE«~NEEGE
= 0 M mE =00

A A A AN = QIO 0] 000
A~ PIEE W T = 00 CT T 00 I T00)

=

A0/

- o

Ul

T "

mmm
b b O

L

U
nmnn

—

A0

HHH
i
Jd4
GEE
o -
0 (0 0
I

=258 REH

—

= (U]

-, o=

10
mmm
i o
MMM

v
nmmnn

e

ity

- .o,

110

— e

00

S=98 LET
Soaa LET
-=1la@ LET

== REHM

LT B
ooon T
+ + + =
-_ - - Il
(s — 0 ™M -
“ - - -
- S -
+! bt W o et 1]
m s (N« DR A
— e 0] 0
.-_ = Tt =g = l_u_ .a
c (LN EREE e I i - B
m |] (el o o
_ 111 +O0+0+.0 L 0T =——
e 1 | + L e,—m— a4 + (W R Rl |
'+ C OO0 ®—-J—H~ N ol
nnn = ~ =~ = N0 e o W AN
— - _ _“— -.|__.l_.__”.l._ — T e % [I—_“—r.r.r.
A0 o === oo F viviw
- o= LTS Ul - " - " i - + + +
=t =t =t . A nnn Soaafa C mReAopooe
=== o Nl e —k—k—=kZ o« NN UNNNA
L0400 o T =DM E+E+E+ I “ QAo
| M H HMEJ -
ettt TP I T o ol ot B ol el et b SR T o o e
L o e O b o = = = b i i i S b L
Jddrrrrrpr J e J- A Z oo o J 4 4
GQEAANANANARSNEANERUERNGERNRNARREEE
=N EMEE A0 = 0= 0= == 0 0EE 0 0
ONNDMNMERAAAARAALRLROGNMNREAAREEE
(A0 0D <t ot =t b b of of ot b o e b o DL DL L LD

=
L S —_ E
ToTn ~ME
% o k- (]
e J.u._.n_.l_._
A0l 00— 1)
e e m, m, J._u_l_H_
oA 47
11 =~ ==0lu
—_—— g
MeAfl—=— ~+0
===l
mToTm o O
kAN =+ T
== |
R g e g
e |
e e] e
nmwmmnmnaopi
el QU A e T
Looroos~ [
- =2
FexFFFEFERE X
o L O L L b b b e bl
LL&HLLLLLLLIHH
NENERAE ~& ~GAAaAEGE DG
BINERE AN -0 0mME@—A0M &
MIARAAA-A-ARAREAAAAAN
L0 L2000

cCheck

FOR =1 ToO =
LET]E fdgl=mj,e(F,L1L,211-mI(,j,
digl=mij,e(f,2,111-miJ,

REM
FOR fF=1 TO nf¥f

=3
q
r

REM

FREM hidden =suUurface

177

THREE DIMENSIONAL SHAPE 3
DESCRIPTION

This program is identical to the program THREE DIMENSIONAL
SHAPE 1 except that additional subroutines have been added to
remove hidden lines, and to shade the faces of the displayed
surfaces in respect of incedent light coming from above in the Y axis.
By shading the surfaces the viewer becomes fully aware of the shape
of the three dimensional object as well as adding realism to the
display.

RUNNING THE PROGRAM

The parameters and data tables required by this program are the
same as those used for the program THREE DIMENSIONAL
SHAPE 2, consult this program for infomation.

PROGRAM STRUCTURE

Lines 1 to 5995 are identical to THREE DIMENSIONAL SHAPE 1,
consult for details.

6000-6140 subroutine to check for hidden surfaces
7000-7330 shade the displayed surfaces

178

179

m m ac o J- L il m -
* I (1] I T T + _ - +
¥ g C > @M= m+ o — = |
* [ST R C C] m (]
— .4 M OC W A = -
* mE+ oy oJOm T A
¥ CMa O =T WA o c e Gaf G o -
¥ gw-nm + 0m MU = | 1] oo 1] il
E A0 yidm = 0O (] + e O nl
¥ oo MUCL A O - C T M e m im
¥ Co <A T im m m nm c L
M* WoCcYumm o ' + nuwwms -]}
¥ = oWCCE> IO = (. 1] - m =
O%F cay-Aa2mmMmmo m (] il C ==t m il
T TMarldgL F =+ T (] A m _]
H #* Lmovmmgyg Qo' - - ! == =] T -
=% P+ CO- v o MM eQREEE Iy - -
T+ o oWda- A M 0 B oo o~ ko EEREGEE -] T m (R
L+ Do cOz=z0d0 Twv C B o - rrr BEE SREEE ol -~ - (i
O 0 +« o + A = m M =~~~ o sl e = U S AU =10 T Sl + O=ti0 -
¥ + W C-AQ - £ m < =SS Ennnnnmnmunmim-aA (1 = -0l - A TN
(i CLmM>=C0 LC (] - 0 we =————®THM=xITH =7 m000monwn (] gGoE IR C oo
M+ m=z+od +C +C U T O owqm mAauvmgnuHE++ o =770 A C -~ CCCw
m = A - . il o P |
T T T T 11 I el r XL T TIMNmEEIrIrFFFFFEFFEFEE O TOIDITFEZEEZEZFFEFZE
W nld-das W7o Wy WogyoclHAHAADODOWHY WU OO000 W w00 O O L o ot ol il H
T Corf-rCo Cod CCC COCCnmfOOOO0ddddd 111 1OO000NecE Cloooolfcce 11140
(17 TR S T 1| I m m
QPG A R G- o« DA NEREaNAERNRFRRAAAAAAAANANNAEANE NARAGEGNERNEEEE
0] Mem Do =00n o0& 0nr-0MaEE—A00tnamE S« 000 o me & 0] f -
a moA vi onm C -~ 1111111111112444444589EEEEEEEEEEEEEEE%
o C T wid A 0 il 4 c el =

i - -
(VLI o [
—_ + & A
C m] 0l
= [= "
il — L B
- o Ta e
" TR AL)
- o O - -~ m men~a-
- - o & & + = Or-r00 -
C L. [N} - [m - o om om o= om
- ke &0l o -0
.u._ il = E " e T T T T
- = - cC i @ C Ci=ti0r-unm o
0 T 1 el - [(] - T e o om iR
- E ~ CCH o & & -+ (i i0r-0m m
- — = o & m o gl oM me meoms o e L
cao Oc OO0 o ag v al=Aunome- |
J._“ —I - —I—I —:._ - BB _“_._ e s e T]
- = F = & i o =Aunoue- =
cMl == == T - -~ - o om om omom m
== Npmcihllagg«~ -~ & GO& o DO o
uE *C el - e rC =,
(] o TETE CTTITTTT
I T ol T Y R I e o] o o
HH WO OO o @ & & @ CE @O L L
DDHFHHFFHHHHHREED%HHHDDDDDDHHH
CAAAANSAAAERNDENE ~& -0 EDE G & E DG
L0 e L e L0 e 00T S e 0 O S0 S0 S O 0 LD S)
BEAdAAdAAAAAAQIN O] =00 &S0 CT AT 0T CTE M MG

- H
- _
im —
GG =
= el w
-+ i pr gy C 0
1l eI o 0
| v oo - *
- o el il + -
o o (ol m o
- * 0o oo = -
o w D0 = =
—~= + (o oo O

AQO -~~~ o w o0 = w
o o~ AN #* ADZZ0O0 v 0
cCuul=>=>>x o == cC (]
= =l o o dIO L W = m n
Qe TANAN . e QW G - -
=== 1 IC%%p-++ ITI] + =
Wy ssse-ouior D0 M- -
I NE Nz &z e - + =~
AN DO TN IARE - a0 a =
WEZA X D MO T -~ = r 2 T e I m

= e e ol ol 1
F- FEFEFEFERFEDEE Oxx FEL I
EEFEEEEEEEEEEDEEFFFFLEEDEEE bl
SR J L J JHHHHLQ Z 200 @
QENAAARAMARARAALAARAARARARAAINEG NG
M=t =t DOF-0ME—AUD DOF-DNMEANN4GG0E0 G-
QEAAARAGERAAAAAAAAAAAQ QIO T MME X6 G
U0 O O O 0 00 O 0 0 O 0 O O QO Qg D 2 1)

181

(rz

(rad) #5IM

Saz2ad LET ai(l.,2)=C05

~ M H. = o C e
- = - L m | B | |
ZN= = | = (. + *+ +
H ol |1 NN | [P - .
= —ul *0O ONu (s — O M
I OHND ~0 w0 m (u] woEm
= - ~ % *—=0 C 1 I
b I I L xS A0 A0 AN m - 00— 0
I o - - LHx m T T -~ B E N]
= L~ LHC = o= (i el QIO 07M | e T T
=z L ¥k HZ Z~ o= mmm mmm mmm m P 1) E s e oo))
H w—in-= mnH H min m hokk kil ok okk _ (I +ao+0+0 -
(LU I e w0 S XHE® DIIIH MHKW DN * 0O e Ututudt !
1R0OZ0w g—=% 1—-0 QAGE wn nmuu v e e C oo ®—~J—HM~ C
mmunHImMm~=1N (|| I |] nmmmwmn inmnn muwnw nwimn nun = =~ = A0 N ol
.J.-J.-lr_._“_.lr — —_— .J.H.J. — - L — - — - — - — - _ _“_ 1-.!-.—_”.“_ _— T e, S [
MDAk Z0N o HND <0<t 2= 00 A0 0 A0 o == oo
R e o - - " l._._ﬂ_l. - om owm omom e - om o - oo, - oo, - om, o LT TR L T
A W e *r Mdgdsd <o AdA 00 00 g - = nhnn 000/ (s
e e] e I ittt R | [PR IR TRy,
MMM=M~mM MM MWNM mMMmmMmom @»m 000 000 000 000 o T I EHE+HE+ [-
= () - = - M M HF2I
FFEZFok R+ F-F FEFRRIE EFRRIRFRERRRFERRRFEEZEOTRRRER -+ +XFEEE
A~ W~ W b i o = o i e b e G ot B o B i B b o o o2 ol o] o ol - - - L o o
LLL%LHL Jd~ L%L JddddfrorJddedJlde JdJe d oo o 10 J= 0] 0 Z 0 (000
I e - - -
BEA~GHEZ G- A0 AARAAGNAALNEGAERAAAMARAAAARANANANEAANENENEUREN S
O=N~0mr- 0om= S+ U0=nomE mE—AU0D0r-0me—A00N04DENE @A S0 =10=r--080 85
GEANG+E QA& ~dd-d 1iiillELEEEEEEEEEESSSSSSEEEEEEEBEEEbEbEbBEEBE%
LU T o T e S L e T L T e D T R T R TR T TR T TR B e o i dh i B o B Bk s s o TN) e

= = = - o
I = E E - -~ & = 0l
- c . oo ~ & e
Lu X G i el [T Eal =
_ Y B =
i = [(ENEREE L RPS | = -

i [N} - - I 11 = ==0Jim - -
= m [PER —_—— e ol ol
I LT ot bl _“.”_-.I__.l_._.,l..,l. J.u__.n_”_ = -
o ~-- . @ oW =il - e
(NI R i | LT - - mTmTm - - —r it
P = = nm Ccfe *HFANlE+ S oo
W Qi ocoo = = == | W m o~ -
JEEES e c Q0s &£ nMdssaol c < 0
Fuowmwr ™™ o R] === 1 &%} N
- +++ oo L. - - oA T E =
Bepo- 10N m e mmwmnmnmnmnmo® m I
nmnmnnmnhaou qa = ~— —=2AQAANN T T - A 10l
LAar- XJINE £ “"2u T cooroosa o ow - -

= = -~ - Ef

FEFkEX b FEEEEE -~ X KFEEER |
(L0 2 L L L L 0 L o L 0 L o L L L L L
LFLLLHLLLHHHHFFLLL&HLLLLLLLIHHHHHLUL
GEHANAARAAANANAERE -4 -FAAAAAAAAAANANE ~&
AN UO-0MENEEAN - - 0F-0NE 004G ME &A1
GEHANAARGANNIALGAAA-A-GAAARAAddAdANIMARE ~&
1420 L L L 2 L L L 0 00 o o 00 0 e = e e -

U Mo ow o ow ok W W w
- | - - = 10 | i | 1
Mmoo+ A 0 Moo
E - E E E I W w w
I % | | | =L I I
-~ o~ - o~k - F R
- + A A =~ L - m oM
- = - - - 4= ol - . .
o - = = = = T | | |
- ok E T T T o e
i 4Z3 3 o
e . = = e _ (I [
¥ U ow oW ow - dAddUANIIo O @
- - .- =z==z=34FZ Z Z
Moo A 0 0 E “SSwse @O T @
= @ = = = @ SAjf<unoEm
E M = = = W ool =M M~ W
| Il Il Il Il | nnmnnmnmmel = = L]
M A < W oo o Ao nnl I I
a2 1
FEFFEE FRFRFRE
Al W e~y DL L L
~d-d d-d=d~-1 Jddd1 11 1JHH H H
=R -E &8 ~E A - AARREREEE NG T
A A~ A0 P00 TS O 00 D00 0 100w 0

=& AR A R GAARdddddAdAdAAdTnATDAT
S TR VTR NP VPR VR T N ST N S N N (N

183

-]
M
[N
)

R L RN R N R N ENENEN LN L
L0 G G N G MO PO PO 1 M
BUNE & no-JhE0e
RRAA & AR @

184

LET
LET
LET
LET

o o o o

IF u:=-.353 AMND Uvu<-=.1 THEHM LET
IF u:—-.1 ANCE uvu<.1 THEMN LET

IF uzx.l AMNDE wv<i.Z THERN

IF u:>.3 AND U<.5S THERH

IF u:>.5S AMND u<.7? THERM

IF u:.?7 AWMND u<.9 THEM

IF uv.9 THEM LET d=s=1

FOR 1=1 TO wl STEF d=

FOR q9=1 TO w2 STEF d=

LET ®=m(l,e (F,1,11)+1%rl+9=*
LET d=mi(2,e (F,1,11)+1%r=2+9%
FLOT = .,4

HEXT 9

HE=XT 1

RETURHM

THREE DIMENSIONAL SHAPE 4
DESCRIPTION

Perspective is that property of viewing an object which makes
objects appear smaller the further away they are from the viewer.
When looking down a long pole the pole appears to be tapered, but
our understanding of the real world tells us that this is not so. Thus to
add realism to a three dimensional computer display it is often
desirable to add perpective to the display, this program is identical to
the program THREE DIMENSIONAL SHAPE 1 except that an
additional subroutine has been added to remove hidden lines, and the
drawing routine has been modified to incorporate the perspective
algorithm.

RUNNING THE PROGRAM

The parameters and data tables required by this program are the
same as those used for the program THREE DIMENSIONAL
SHAPE 2, consult this program for infomation.

PROGRAM STRUCTURE

Lines 1 to 5995 are identical to THREE DIMENSIONAL SHAPE 1,
consult for details, except for the following:

2000-2240 shape drawing routine incorporating perspective

algorithm in lines 2030 to 2045
6000-6140 subroutine to check for hidden surfaces

185

186

HETTM MmO
MmO =
LMo mmmil
o+ + Cow-
i O Q-
[W (LB £ W
L0 +« o o+
+ i CAd
CL=m>=LCa
m=+oOu +C
m + A
T urCcT+
Wo=aldo
c
]
—

1 REM 30 CDRAWIMNG 4
2 REM ¥ %22 FFFF XX EFEFTETEEEFS

L
w
14
1

43 R

T il im '
i [- +
| i - -
im il im (]
- - -
o L 4
1] C ™ (n 8 -
- a 1] GE&E O 1
T i + W00 o
[C e = m
i im im T c
el +! M = -
L vl Wi m =

+ il = e m
o L (] =<3 m -
(TLI T (] A O m
=E 0 e s LEIEEEE
L. 0 B ooan —~- R M) OGS EE [
o+ & om < Adg 0N kEE QRGER o

U= m M =~~~ | | AdAAA AN 10 T
o m < =S=MmEannmnmnnnnin-aA (1
Lo - b ww ————xIMx=ITHK=IHoD0o0o0nn (]
+in T O omm aldumumun++ <L =777 A

- i i
X X IIMmIEIrIrIrFFFFFFFEFEE Oxx
Wold WO cwHHHAD Wl o0 wid
I C oCOfCcofooodddd I At

L
G DO L0 G) oy LS 0 e 05 G S G G G) 55 GG G A D)
WD = 00 ot S e e e 0 00 =g L0 = 00 0 S S e Q0 = S NS

N = c
il il A

il
(n
m
L
]}
il -
U (il
-1 -
(] 1y] - - -
gy ~r- m LC o
~M-Un - - C ~C
= | + 0=tin e -
=1 =0 - R | I I O i Wl LY
GO IAFT C oyw-———
L =~ CCCvilE
F=Z2Z3230
IOOICITIFEZEEZXZFFFEZEEZEXE
W e OO O L] i il HH H W
ChoOoorcfrc J 1 Jadal
Iilapalalayaialilalipalalafalayala)
50 e 00 0 L0000 S S e O LD D)

—= dAdddddddddd ANl S g G S S NO0mMm MmO OIMEE QAR GEGE G

e L e e L R b

187

| - = o)
LI B w "
— L I o |
n m 0 0l | —
_” - - _ ..I_
3 — T I o =
— 0l T a8 a o -
Ul = - ol Aol (]
- w o -~ -~ m men~a- i -
- - o & & + 0000 + =
_“ L. [N} - & m - w om om o= o= - —
et &0l o 0ol = .,
.u._ ol ' E = e T e T T .J.H_
= e cC o m cC M<tmr-0m w)
(WY R |1 o - & (] - m m om e, L o =M
cC~ cCcel o & & -« =ar-0m m (1
- - T R s -
oc Q0w n @ o al«=oue- v O -11)
—I —I—I - —:._ - EE _u_._ T T T T —I.,|._H_
=~ - =~ & il Anowme- = wiT
[il = L= b T - - =~ - m om om om om m Il
LTI il | I (T = & A& o Anoidns oo e
c bl 1) - - ou I =0
(] [LRI CTTCITITITTO
CITxIrT i F EEXEYFFFFFHFEZEE IO
o wida o HUTERTRUUUTTTIIIIUUY Wop
LSl HHD&D%HHHDDDDDDHHH (1 T |
GARMARAANANE ~& ~NENARAARAEMNE wNEE
AN O NDIeaER—AR00EaMEA-AUN3N0ENE =

SAmi3,wa2)l =38

=

(R

) R
=+ 0 0 &3
0l ol g
0l 1 0l 0f
- m (il

C o ol
e~~~ E L (]
= =0l o 1] o0

O==>= + - i
[I (il 1] (mim
A0l * =nZ 200

T et ('l e 1111
Wssses OO0 L L e)
Ikt =wm CO-mappUW
oy~ | IE~p++ T
Looo—ou@or O00WWN-

Ennmms Tl & = llr-
Nodpaoum T Izl ig«dEE
L B (et 1 o W o USRI
= w e

FFEFFFFFRFRFEORE

L L L b o b O e b e e
HlJdJd 11 1 11 J JHHHH
lalalalalalalalafalalalalabalalafla

SN =t - U0 00T E Q) = 0 =00 & =000 -
Ardded A A A AU U EUEAONINIAINNOE-AGEGE~AR~AARRARAAAAAAAAAA AN U OIM
A A A A A AAAG A A A A A A A A A A A A Q= 000 0 O S0 0 SO O 000 O O O 000 O O O 0 22 00 O Q0 oo Qg g

=

SBEE REM =et tranzformation matr

SEEE REM

188

(rz

(ra) *COs
(rg) #5IM

S@lad LET ai(l,1)=C05

-

(rz

S@az2d LET ail.,2)=C05

frdg)
1 ¥ (=-5STIH
(rz)
#1C0O5% (rzZ
ftrz)
#1¥CO3 (ry

SIH
=)
[
5
1
™

| GOZ0 -
nmmwnHImN~=1

-J..J..J._._”_.J. —_

S#l*Emﬁ
AN =00l

mmm= m-~—m

=
FEFZE -
W HM =W
JdJmd
+
QARG ~GHE
(=) — 0w~
QARG MNE+E

H
Er.
|
=1l
0
~
l|r“+"
e —
=
-
=
HZ
mH
(1)
&=+
-
-J.-J.UHH
b o
e
==
mmC
(]
-+
Wi~
d 1~
K
] .
mm-=
GG

(r
(rzl
(ry

1 ¥C035

—

=

m

LS

P

T

C

m
— ([
m [
C L lals
o "
= mmm
m i o
E oA
GERE@EA 0 ul
mimwmnnmn nmmnn
— - L — -
S0 D AN
- owom om o ol - .o,
M=ttt +_- A
EEEEE 0l +' et
mmmmm wm D000

=
FFHHEIE IR
L b i = i
JdddJerocd14d
b

GEAAANE«NEEE
= U0 ME mE =00

A A AN = Q0 0]

~ IO w0 =)= P W WD = ETET TR 0 R

=

A0l

- em owm

i
mmm
b b o
inm

v
nnn

—

A0

=

AU}

- owm -

LT
mmm
ko
MMM

v
mnmmnn

.

=AU}

x M
R
nmunn

—

A0

- oo

(R ER N

L] |
111

- - -

oo

- om o=

AU

—_

Ul
nmninu
P

= e

(1,1 +49t
(1,21 +4t
(1L,3) +4t

—_

-0~ 10—
e k) 0]
= gt gt =

il el g §

T e T S " f—"

+04+04+0
g+ ua+u+
e T o P
e WG] N

e e T T

o o ol

00 000
E+EHEY [T
H N HNFEJ

FHEFER+-+F+XEE

W i
i
=G

Wi~~~ W
(o o | O i = o

- b -

ENEANEUERE @0

BeAAN NS = = 10=-= 00
OOAIAIMINIMEAEARAAERRLE 05 OE MM
TR TR T T RES B B i s B o o i e d b d ks B o

189

-I.- -I.- —
& = = e -
I = = i —_—— . 3
- i (I ToOl~~E
al - - * k% -0l o'f
—l I - - PRg—— s] J.u._.n_.u_._
L z T N L TR BTy
] ~ o~ e el
] = 1 L= 4T
M s [N} - - I 11 =0
o = im . e ——— AT
o | [—_ = A= ~ =0
L 0T =—e L oo === =l
+ (WL L EL a0 e g £ TTOTME—""0
c bCc-~--~ n crfl—m kkk | g5+7
o W AN ooo == G =
U == CECEE Cc O0Os = U= && oL
Fuviviwp ™™ ua R Il === R
T + 4+ + Loe) —_ oo |-
C G-Hpmoo Innin m - nmnnmmnmosE
o nmnnnmnaa A nmin— — =AU IAET 0T
- Ao XTIMIE £ U T Loooroo=sa~ [T
F =1 -~ ~F =2
P o Vo) ol ol ol ol ol ol e Y 1 i el e ol ol ol ol el ol O
L L L2l b D b L i 2 O L L b i e
HHLFLLLHLLLHHHHFFLLL&HLLLLLLLIHH
GNAAANAAAARANANEEE ~E 55 & E GG &R
50 S8 e O L0 = 0 S S S e O 0 e e e L - 00 TS))
GEAAANAAAARMNMNMARAAA-A-ARAAEAAAAAN
L7 L L2 L L Ly L L Ly Lt o 0 o

190

INDEX

Arc 1 72
Attribute Memory 10
Barchart 39, 45
Big Character 114
Block 42
Border 28
Cad b
Character Editor 108
Circle 66
Colour Commands 6
Colour Ram 10
Computer Art 5
Disk 1 75
Disk 2 78
Ellipse 69
Fan 20
Graph 88
Graph 2 91
Graphics Characters 100
Hidden Lines 173
High Resolution 26
High Resolution Com-

mands 26
Hi-Res Cursor 102
Hi-Res Cursor 2 106
Interpolate 95
Line 48
Line 2 51

Map 14
Move 160
Moving Characters 118
Perspective 186
Piechart 84
Polygon 1 55
Rainbow 17
Random Colours 12
Rectangle 1 30
Rectangle 2 33
Rectangle 3 26
Rectangle 4 52
Rectangle 5 62
Rotate 144
Rotate 2 148
Rotate 3 153
Screen Map 101
Scale 1 124
Scale 2 128
Segment 81
Shading 179
Stretch 1 132
Stretch 2 137
Three Dimension Graph __ 92
Three Dimension 1 166
Three Dimension 2 173
Three Dimension 3 179
Three Dimension 4 186

191

SPECTRUM
GRAPHICS

The Programmes in this book are
available on two cassettes only
from Duckworth at £7.95 the set.

Please supply, post-free,.......... set(s) of cassettes
of the Programmes in SPECTRUM GRAPHICS.

I enclose a cheque for £........coccceievenniannnn.

Name . T e

--

..

ALY
o

DUCKWORTH

The Old Piano Factory
43 Gloucester Crescent
London NW 1

