Tim Hartnell .. Dilwyn Jones

£ Rebok o Nidia

Gor o
Wnmmy 3 Qootoley

e I}M_,(1917

/

Programming
your

ZX SPECTRUM

Tim Hartnell o Dilwyn Jones

Foreword:

Your first hours with your ZX Spectrum can be bewildering.
Once you've run through the sample programs given in the
manual, you're likely to think: “Yes, but now what?"” This
book is intended to answer that question. It will take you
through programming the Spectrum from first principles,
right up to quite sophisticated programming techniques.

And while you're entering the programs, zapping aliens and
asteroids all over the place, you'll discover that you're actually
learning a lot about programming, and about computers in
general — all without any effort at all.

This book is intended to be a tool, to be worked through with
your computer turned on beside you. Its value will be greatly
diminished if you simply try to read through the programs.
itd be best if you enter each program as you come 1o it,
leaving no alien unzapped. That way, you'll gain the
maximum benefit from the book, and youll be a
programming whiz before you know where you are.

Time to get underway. Plug in your Spectrum, turn on your
TV, and let’s get going.

Tim Hartnell,'London
Dilwyn Jones, Bangor, Gwynedd

the UK by;

First published i
Interfaco.

ns,
811 Kensington High Street,
BNP.

Copytight © Hartnel, Jones 1982.
Firstprinting July 1982.
Second printing, amended version Nov. 1982.

“Third printing July 1984.

ISBN 0 907563 19 8

The programs in this book have been included for thei instructional value. They
have boen tested with care, but are ot guaranteed for any particular purpose.
While overy care has been taken, the publishers cannot be held responsibie for any
running mistakes which may 0ccur

ALL RIGHTS RESERVED

y of
text— except for private study by the purchaser of this volume, without the prior
wiiten permission of the copyright holder.

Reproduction n any form or for any purpose is forbidden.

Books published by Interface Publications are distributed in the UK by WHS
Distriby John's House, East Stroet, Lo 196) andin
Australia and New Zealand by PITMAN PUBLISHING. Any queies regarding the
contents of this volume should be directed by mal to Interface Publications, 9-11
Kensington High Strest, London W8 5NP.

“This book is dedicated to s

“Typeset and Printed in England by Commercil Colour Press, London E7.

4

Using the keyboard

Although, at first sight, the Spectrum keyboard can look
bewildering, it is not very difficult to master, so long as you
proceed carefully in the early stages.

The two most important keys are the shift keys CAPS SHIFT
(bottom left-hand corner) and SYMBOL SHIFT (second key
from the right-hand end of the bottom row of keys). Find
them now.

The colours of these keys indicate one of their uses. Turn on
your Spectrum, hold down the CAPS SHIFT key then press
any of the keys with letters of the alphabet on them. You'll
see that you get the capital letter version of that key. CAPS
SHIFT also triggers the words in white above keys 1 to 4.
Hold down CAPS SHIFT, then press the 2 key. Now, press
any of the alphabet keys, and you'll see they come out as
capitals. The use of TRUE VIDEO and INVERSE VIDEO is
discussed in the section on graphics.

Moving away from the white SHIFT key, let’s look now at the
red one, SYMBOL SHIFT. Hold it down, and press any key at
all (except ENTER, BREAK SPACE or CAPS SHIFT). You'll
see you get the little red symbols (like the upward arrow on
the H key) from the key.

Next, press any alphabet key, without holding down a SHIFT
key. You'll see you get the white word (IF, NEXT, DIM and
the like). These are Keywords and are the first words in a line
of program, which we wil discuss shortly.

You get the green words above the keys by pressing down
both SHIFT keys at once, then letting them go and touching
the key. For example, hold down both SHIFT keys, let them
go, and touch the D key. The word DATA (the word-above
the key) will appear.

The red words below each key are obtained by pressing both
SHIFT keys at once, then letting go of the white one, but
continuing to press on the red one, touch a key. This will get

5

you the word BRIGHT from the B key, ATTR from the L key,
and VERIFY from the R key.

This covers everything except for EDIT, ENTER, GRAPHICS
and DELETE.

EDIT — You use this to modify a line of program. Moving the
cursor (a greater than, >, sign) then pressing the 1/EDIT key
while holding down the CAPS SHIFT key, will bring the line
to be edited to the bottom of the screen. The 5 and 8 keys will
then move you along the line in the direction of the arrow
heads shown above those keys.

ENTER — You press this key after typing a line of program at
the bottom of the screen, o get it to move up into the main
body of program at the top of the screen. It is also used after
a word like RUN has been entered, to get the computer to
execute the command.

GRAPHICS — If you hold down the CAPS SHIFT, then press
the 9 key, you will see the cursor turn into a G. Now, press
the number keys, and see what appears on the screen. Hold
down CAPS SHIFT, and press them again, and you'll see you
get the ‘opposite’ of the graphic you got without using CAPS
SHIFT. The second use of the GRAPHICS mode, for
user-defining keys, is described in a later section in the book.

DELETE — This s, as its name implies, a ‘rub out' key. Hold
down the CAPS SHIFT key, then press the 0, and the line
you are working on will be rubbed out, element by element.
You can take your finger off the CAPS SHIFT, once the
DELETE is auto-repeating, and it will continue to rub out for
you.

Do not worry if this description — which we've made as
simple and clear as we can — does not immediately open up
the mysteries of the keyboard to you. Using your Spectrum,
and finding each thing on the keyboard as you need it, will
eventually lead you to the point where using the keyboard will
become second nature.

The PRINT statement

PRINT is probably the most-used command in BASIC. It is
the commanc h allows the computer to communicate
with you. Type the following line into your Spectrum, and
then press ENTER:

PRINT 5

You'll see that the computer obediently prints the number
five. You can use the PRINT command to make your
computer act as a calculator. Enter the following, and then
press ENTER:

PRINT 5-3
When you press ENTER, you'll see it prints up the correct
result. This ‘direct calculation mode’ can work out problems
as complex as you wish. Try the following, remembering to
press ENTER after you've done 5o to make the computer act
on what you've typed in:

PRINT SQR (8 + 1)

‘This asks the computer to PRINT the square root (that's what
SQR means) of the sum of the numbers in brackets, that is,
the square root of nine. If your computer is functioning
churreclly, you should — of course — have got an answer of
three.

So you can see that PRINT can be used in the direct mode to
print out numbers, and the results of calculations. It can also
print out words. Engage CAPS LOCK by holding down the
white ‘CAPS SHIFT” key, then pressing the 2 key. This will
make the computer print in capital letters. Try the following,
then press ENTER:

PRINT HI THERE

Instead of happily printing HI THERE, the computer comes
up with what is called an error message. In this case, the error
message reads “2 variable not found”. If you want the
computer to print out words, the words must be enclosed

7

within quote marks. Enter and run (that is, press ENTER after
typing it in) the following:

PRINT “HI THERE"

You'll see the words HI THERE appear at the top of the
scre

n.

To recap quickly. Simply med as a command, typing PRINT
243 will tell the computer to print out the result of that
‘addition. Entering PRINT “WORDS" will get the computer to
print out everything which is within the quote marks.

first,
Computers use programs, and it is now time to write our first,
simple program. Enter and run this pepair When you RUN
this, which you do by pressing the R key, then pressing
ENTER, you should see a print out similar to that which is
below the program listing.

g gﬁqéﬂggﬁﬂf; %gER DEMONSTRAT

°3a BRINT 1
L8 ERINT Frnzs 1s ThE Enp”

THIS IS A DEMONSTRATION
5

Fuis 1s THE ENO

While we have this program in the computer, let's learn a little
more about programs. Enter the word LIST (which you do by
pressing the K key), then press ENTER. You'll see the
orograry listing comes back. Notice that every line starts with
mber. The first line, in this case numbered 10, starts
it the word REM. REM is computer talk for ‘remark', ,and is
used in a program when you want to explain what is going on
within that program, or what a program is (as in this case), so
that when you return to it later, you'll know what is going on.
The computer ignores REM statements when it comes to
them.

A REM statement is made up of a line number, then the word
REM, and some text. The message which follows the word
REM can be made up from anym'ng you like — letters,
numbers, punctuation marks, graphics or spaces — although
itis best to keep the messages as brief and clear as you can.
Although anything typed after the word REM is ignored by
the computer when it is running a program, a REM line still
uses up memory.

REM statements are often like the following:

10 REM THIS WORKS OUT THE SCORE
10 REM FIND THE ANGLE

There is no reason why there should be just one REM
statement, but if the commentary you wish to add to a
particular line of a program is one which may take up more
than one line of text, it is important to place the word REM at
the beginning of each new line. For exampl

6

REM THE MULTIPLICATION ROUTINE IN
WHICH

70 REM THE TWO VARIABLES A AND B
80 REM ARE MULTIPLIED TOGETHER

So long as each REMark line starts with the word REM, the
computer will ignore the text that follows on that line
(although the complete program listing, REMs and all, will be
printed on the screen if a LIST is requested).

Now, let’s have a look at editing. Type in the number 10,
then press ENTER. Line 10 has disappeared. It is very easy
1o get rid of lines you don’t want in a computer, just by typing
in the relevant line number, then pressing ENTER.

1032 PRINT “THIS IS A DEHONSTRAT
32 PRINT 1

i@ PRINT 2
S& FRINT "THIS IS THE EnD"
Add 10 REM, then press ENTER.

9

You'll recall, from the times you've pressed LIST while
working through this section, that LIST is the BASIC
command which we use to get the computer to print out the
whole of the program it is currently holding. All the lines in
the program are LISTed in numerical order, rather than the
order in which they were entered into the computer. That is,
the computer automatically sorts its lines into order. Enter the
following, and then press ENTER.

15 PRINT “THIS IS A NEWLINE”

You'll see, in the next program, that the new line (15)
automatically moves into its correct position within the
listing.

1@ REM
IS PRINT “THIS IS B NEUWLINE"
32 PRINT "THIS IS A DEFONSTRAT
3@ PRINT 1

@ PRINT 2

S@ PRINT “THIS IS THE END"

As youve no doubt realised, the RUN command is used to
start the computer operating on a program which you have
entered into the computer, either by typing it in, or by loading
a program in from cassette. The computer executes all the
in its memory, starting from the lowest number,
and working through in order. Various commands can make
the computer loop back on itself, but in essence, the
computer works through a program in line number order,
unless told to do otherwise.

If you want the program to stop at a particular point, you can
use — naturally enough — a command called STOP. Enter 25
STOP (from the A key, after holding down the red SHIFT),
then press ENTER, then run the program. It will print out:

THIS IS A NEWLINE
THIS IS A DEMONSTRATION

Then, at the bottom of the screen, will be the message 9
STOP statement, 25:1 which means a STOP was executed,
the first command in line 25.

10

We'll return to look at PRINT in le more detail in a
moment, but there is one more command I'd like to introduce
at this moment. The command NEW will erase any program
from the computer’s memory, and should always be used to
remove anything from the memory before you start writing a
new program. If you don't do this, and you use different line
numbers for the second program, you'll find the lines may
well be interwoven with the lines from the old program. The
EW command is brutal, and final, causing the computer to
dramatically forget everything you had typed in, or loaded in
om tape.

Try it now on your computer. Type in NEW (from the A key),
press ENTER, then press LIST and press ENTER again. You'll
find, not unexpectedy, that no listing appears. Try LIST 10,
and you'll get the same nothing result.

PRINT formatting and TAB

o continue our exploration of the PRINT command, engage
CAPS LOCK as before, then enter and run the next program.

REM PRINT F
REM P ORMATS

EE0BGNADDE
55565555555

Follow this explanation carefully, and you should learn a lot
about its pri . You can
then use what you've leamed to arrange output of your own
programs as you wish, I'll go through the program line by
line:

10 title, REM statement

20-50 Each of these words PRINT, with nothing
following, prints a blank line, moving the next print
position down a line. This explains the gap at the
top of the screen, when you run the program,
before anything s printed.

60 This prints the word HI and then, leaving a
space, prints the number 60, so you know which
line it comes from.

70 The comma (red SHIFT the comma,, near the
bottom right hand corner of the keyboard), as you
can see, moves the start of the line halfway across
the screen.

80 This allows the numbers 1 and 2 to be printed
close together. Note that even if there is a space
between the numbers in the program (as in PRINT
1 2), the computer will still print them as 12.

90 This line uses commas between the numbers to
ensure that they will be printed in separate halves of
the screen.

100 The comma at the beginning of the line moves

the 1 halfway across the screen, just as the word HI
was moved in line 70.

110 The semicolon between the numbers ensures that
they are printed hard up against each other, just as
they were in line 80.

You can use the comma and semicolon within PRINT
statements to control the output to produce the screen
display you need. Clear the program with NEW, then enter
and run the next series of programs, to produce a number of
effects.

The first program, called PRINT TWO, simply prints the
numbers one to 10 down the side of the screen. The next
one (PRINT TWO-B) prints them hard up against each
other. PRINT TWO—C prints them in neat little columns, and
PRINT TWO-D prints out the numbers, again from one to
10, with a singles space between them.

10 REM print two
29 FoR J=1'To 28
Int i

50 PR

40 NEXT

1@ REM print two -
20 For J=1 70 1o b

PRINT |
18 NEXT

10 REM print two - ¢
22 rog d=1To 10

Se PRINT .,

19 NEXT 4

1@ REM print twc - d
2@ FOR j=1 70 10

32 PRINT ;™ 3
i@ NEXT

The use of TAB

TAB (for tabulate) is a command which can usefully be
combined with PRINT. It moves the PRINT position across
the number of spaces specified following the number. Enter
programs PRINT TWO—E and PRINT TWO—F and see the
effect of the TAB command in these.

1e
e
Se
i

1@
28 F
3a

k)

The next program TABULATOR ROCKET RANGE, shows

effectively the TAB command can be used. Enter, and
RUN it, then retum to this book for a discussion on the
important lines within it.

BORD
FOR j=i@ TQ 1 STEP -1
8 DRINY Thp & Ni

REM Tabulatlor rocket range
DIM a%iS,S)
#i; INK ;.
FOR a=1 10 J
BEEP .02,53%y
=
FGR 21 To §
READ a8
LET a$(b)=qs
NEXT

riasir

v'nrg%xvm'n
L
A

~DHZ

~ DO

=

~ D
o

1Rt

2

3 ég],

¢
¢
¢
¢
«
«
'
¢
¢
¢
¢
¢
«
«
i
I
¢
(
It
«
i 1EEN
«
I
¢
s
0
¢
¢
¢
¢
<
<
«
«
¢
«
¢
It
I
I
¢
«

The most useful lines for this discussion are 120 and 190, as
these make use of TAB in printing. Line 120 behaves as
follows:
it This prints a left-hand bracket, hard up against
the left-hand edge of the screen.

TABQ q is a number between one and 25 (chosen in line

0) wi termines how many spaces across the
PRINT position will move.

15

INKr This determines which colour each pair of the
rocket is printed.

A$(This determines which part of the rocket will be
printed. It uses elements of the string array, A$,
which were assigned by the READ loop in 71 to 74.
Don't worry about these at this stage, we'll look at
them in detail later in the book.

INK@ This turns the INK colour back to black

(30) After the part of the rocket on that line has been
printed, the PRINT position moves across to the
31st position on the line, where)" is printed, to
put a border down the right-side of the screen.

Now let's look at line 190:

Line 190 is within the loop starting at line 180 and ervdlng at
line 200. PRINT ")"; TAB 30; s a “)" on the
left-hand side of the screen, then moves across to the :!m
position (using TAB 30) to put a)" on the right-hand side.
Line 190 is used a random number of times (determined by
the q which was selected in line 90) to place a random
number of blank print lines between successive ‘rockets’ to
space them out. Line 140 (POKE 23692,—1) ensures the
program does not keep stopping to ask ‘scroll?’.

SAVEing programs

You may wish to keep a permanent copy of TABULATOR
ROCKET RANGE. You can SAVE programs by typing in the
program, connecting up your cassette recorder as shown in
‘the manual, then typing in SAVE followed bv the name of the
program within quote ‘marks. In this case, | suggest you use
the name ROCKET, so you would type in SAVE “ROCKET""
Turn your cassette recorder on to record, after connecting it
up as shown in the manual, and then press the ENTER key.

We suggest you make a habit of saving each program three
times in a row on C—12 or C~15 (i.e. computer) cassette,

16

and that you only put one program on each side of a tape.
Label the tape clearly with the loan name (i.6. with ROCKET
in this case). Although it may seem wasteful o use up the
whole side of a cassette with just one program, recorded
(hrb.ﬂ times, the frustration you will save yourself by not
having to search through tape after tape for a program you
‘want .will more than compensate for using more cassettes
than is strictly necessary. The program is recorded three
times just in case the tape gets damaged at some point, or
You accidentally erase part of the program, or — as
‘sometimes happens — one recording of the program refuses
to load properly.

You should clean the recorder’s heads frequently, using
liquid, not a tape cleaner ribbon in a cassette, to ensure the
clearest possible signal is put onto the tape.

VERIFY, MERGE

Once you have a program on tape, you can check that it
correctly SAVEd, before you wipe the program from within
the computer.

You save by, for example, typing in SAVE “PROGRAM”,
then turning your tape recorder onto record, then pressing
any key. Rewind the tape, then enter VERIFY “PROGRAM”,
press ENTER and rerun the tape. If allis well, the name of the
program will appear, and the @ OK message will appear on
the screen. You know then that the program has been
successfully SAVE.

Itis possible to load a new program into the computer while
an old one is still there. The two programs will combine. If the
two programs have any identical line numbers, the line from
the newest program will overide that of the old. Here's an
example. We entered this program, SAVE it, then NEWed
the comput i

1@ REM TEST PROGRAM ONE
2@ REM LINE 2@
3@ REM LINE 3@
4@ REM LINE 2@

Then, this program was written. MERGE “ONE" was typed in
(“ONE” was the name under which we have saved the first
program) and then the recorder was played.

§ REM PROGRAM TUWO
1S REM LINE 185

25 REM LINE 25
35 REM LINE 35

Within a few seconds, we had this program in the computer.

REM PROGRAM TUO
REM TEST PROGRAM ONE

A

25
=

£OODLRE
SUSASUSN

P

mi

=

P

i

Z

i

38
REM LINE 4@

MERGE is a very useful way to take advantage of special
routines, such as RENUMBER, which you can load in after
writing another program if you like. It is worth ensuring that
your routines have high line numbers (say above 9000)
and the lower ones are used for the program. This ensures
you will not have problems with overwritten lines.

Getting programs back into the computer can prove difficult
at times. If you have LOAD problems then try the following
tips:

(i) Disconnect the lead not in use from both the
computer and the cassette recorder.

(i) Try operating the cassette recorder from batteries.

(il Try moving the computer and the cassette recorder
further apart, as well as the T.V. if you can.

(iv) Change the volume setting on the cassette recorder
since some cassettes may have a higher output
than others. Try changing the tone control settings,

18

in particular turn up the treble or turn down the
bass.

(v} Make sure your leads have not broken or cracked,

or a solder joint come loose.

(vi) This sounds silly, but make sure your plugs are in
the correct hole! You may find it useful to stick
labels on top of the computer above the sockets to
tell you which one is which so that you don’t have
to peer round the back to look every time.

Now, let’s return to TAB

We can only use TAB with a single number after the word.
Remember, TAB A will move the start of the PRINT position
A-+1 spaces across a line. You can have the word PRINT
followed by AT, and two numbers, such as PRINT AT 10, 6;
which will move the PRINT position seven spaces across, and
11 down. The top left-hand comner of the screen is zero, zero,
so PRINT AT 0, 0; indicates that the printing will begin in
the top left-hand comer of the screen. The left-hand side of
the screen is numbered 0, while the right-hand side is 31.
The screen is 32 characters wide, so the position furthest to
the right is numbered 31.

PRINT AT

The following program, SQUASH, uses PRINT AT Y, X to
position a ball (line 620) and a bat (line 150). You use the “Z""
and “M"" keys to move the slide (the bat) at the bottom of the
screen right and left respectively. The program keeps track of
how long you keep the ball in flight, and gives you a score at
the end based on this time. Pressing any key at the end of the
game will give you a new game.

This listing may well look pretty horrifying at the moment.
nce you've working through this book, you may
wish to come back to programs like this, and try and work out

19

what each section of the program is doing. You'll be

surprised to see how much of it you can decipher.
12 REN sou)
1S REM ﬁ:’;!k PRDGRQM BY

0 SUB 598
28 Ren°RGuE BaT wiTH z Anp M

K
LET HOUEBALL =SS0

8% LET Sevup-see

28 1=482

Srzzx
72 DEN FEIAEIIISAZlincmemenT
118 LET RER I G as=n THEN GO

SUB MOUEBAT
yEBALI

158 ER Yt ®BY52; mwk 2;B8

1ée o TO

258 REM sxszrrrzzir

302 REM xx) up

528 BRI 1@; INK 1;

340 PRINT m Tuo,m, INK 1.
°9

I
AP 19,2118; 33

i20 DB INCREAERTIAESTENT (RO

1

438 RETURN

250 Frrgzsressrescices

age REH %% MOUE BAT 3

LABe IF As="HM" BND B=18 THEN RET

RS0 IF A$="I' AND B=0 THEN RETU

510 IF As="M THEN LET B=B+l

539 IF A§="z" THEN LET B=5-1

N
Sie Ren- Frrazrssssssesrrss
SE@ REM ¥¥s MOUE BALL 3
57@ PRINT AT _1i+Y,11+X
§80 IF Lix>1s OR (kS Then LeT
-L: BEEP .01.5@

20

S99 IE Miv>s OR MY @ T
rARENAY S HEN LET

T X
€10 LET ¥=
228 BRINT AT 11sv.11+x; INK €D
832 IF ¥ <8 THEN RETURN
625 PRINT AT 6,7: K

27> SEoRe T8 idioRe;not .PARER

1 FZe"AND’ RBS (S-xx <=2 THE

&3@
N_RETURN
® INK 7; PAPER

@
580 BEEP .21.G: BEEP .01,50-
EER . 01,80-6

N
69@ REM LETTER IN QUOTE MARKS
IN LINE' 700 1S AN M.

ENTERED AFTER GETTING
INTO GRAPHICS HODE
7@@ LET
238 ;ggw 81, heh
PN EE
72@ READ N
738 POKE USR “M"+H,N
zie)

780 READ
799 POKE USR “B“+H.N
580 NEXT
R 2

000 . BIN 20011
200, E1i 11100,BIN 261111110,5
IN 601111118,BIN 081111113,5IN 0
2111100.5IN_ 6000100
1218 DATA BIN 11111111.51IN 00111
102,BIN ©0011000,5IN 06111100,51
N eilliee,BIN ©1111110,BIN @1411
110,BIN 21111211

SCORE Is S152

-

Colours and
graphics

The Spectrum i equipped with powerful graphics commands
which you can use to greatly enhance your programs. The
commands are simple to use, and capable of producing a
wide range of effects.

There are three things you can control with the colour
command: the border, around the main display area
(accessed by the command BORDER), the main display area
itself (known as the PAPER) and the colour in which printing
is carried out (the INK).

i i nt black and white
There are eight colours available (if you cou
as colours) and these are numbered from zero to seven. The
colours, and their corresponding numbers, are:

0 — black

1 — blue

2 — red

3 — magenta (purple)

4 — green

5 — cyan (pale bluey-green)
— yellow

7 — white

The lower the number, the darker the colour. On a black .r:‘d
white set, the lower numbers are closer to black, the higher
numbers to white.

i (Il have white
When you first turn your Spectrum on, you'll
PAPERY ‘a white BORDER and black INK. That is, the screen
is completely white, and any program you enter appears in
black.

in two ways. The.
The INK and PAPER colours can be used in
first is “globally’. That is, if a line in the program says FAPE!:
6, followed by CLS (clear screen), the entire backgroun

22

(thatis, the area within the border) will turn yellow. Similarly,
the program line INK 2 will ensure that all printing from that
point on appears in RED.

The colours can also be used ‘locally’. If you enter PRINT INK
1; PAPER 7; “’HI THERE' im will pri

ill print the words

ip. The same local
control is possible within INPUT statements. If you want a

string input, you could enter INPUT (INK 2; PAPER 6; “What
is your name”); a$ and the question would be printed in red
on a little yellow strip.

Let's try out the colour commands now, by entering the
following program:
20 REM COLOUR DEMONSTRATION
32 FOR B=0 TO 7
1.3 T9 7

Se FRINT AT 10,10; “BORDER ™
TAD 10 "PAPER ";BiTAB 10 " INK

130 NEXT B

This goes through all the combinations of BORDER, PAPER
and INK. As you'll see, it takes quite a long time to run (there
are 8'8*8 possible combinations), although several of the
possible combinations are not very effective (white INK on
Wwhite PAPER with a white BORDER is not particularly easy to
read!) Certain other groups are just unattractive. Other
groups of colour which you'll see as the program runs are,
however, very effective indeed, and it is worth keeping a pen
and paper nearby when running this program to take a note
of the best-looking groups of BORDER, INK and PAPER.

The clear screen line (70 CLS) is needed to make the paper
colour ‘global’. With it, the PAPER only changes underneath
the words being printed. Try the program again, without line
46. INK commands used within a program and automatically

global if on a separate line followed by CLS, are automatically
local if coupled directly with a PRINT or INPUT statement. A
global INK command (such as INK 2 to get all red printing) is.
not changed by a local INK command (such as PRINT INK 1;
“test”) as the INK colour reverts to the one which was
globally defined as soon as a PRINT statement without an
INK parameter appears in the program.

Run the next program now, which shows how effectively the
colours can mix when they are chosen randomly.

& REM pyramid
7 REM @ Hughes, Hartnell
10 BORDER 7

S CL

ET t=t+b
nzs TO s+bx2-2
e °R T,n; INK INT (RND#
105 BORDER INT (RND6) +1
110 NEXT n
i L-1

130 LET b=b-1

140 LET s=s31

18@ IF_p>@ THEN GO TO 8@

1SS BORDER

150 GO TO 180
The program draws a pyramid of littie coloured blocks. The
BORDER flashes alarmingly all through the program, and
finally (lined 156) turns blue. Line 160, which just calls itself,
is designed to suppress the ‘OK’ report code which would
otherwise spoil the display. You get out of the program by
pressing BREAK.

The little black square at the end of line 100 is available
directly from the keyboard by getting into the GRAPHICS
mode (white SHIFT key, then press key 9) and then pressing
the 8 key, still holding down the white SHIFT key. Inverses of
other characters are available by simply pressing the INV.
VIDEO (white SHIFT key, then the 4 key). You revert to what
is called TRUE VIDEO, by pressing the white SHIFT key, and
the 3 key. The black background behind inverse letters turns
into the INK colour, and the letters themselves turn into the

24

PAPER colour, which can look most effective,
. ost eff
program demonstrates: s U et

1S PAPER S
24 B3
9=1 ToO
32 INR Anpars *°°

I
ie PAPES
E R_RND 7

BORDE!
SORDER AND7

SRND £3; "R
N

it the program expects you to guess a code of four colours,

the game. Enter and run the

game, then return to
for an explanation of the colour and graphics c: sl i
which are used in it. 4y

1@ REM_COLOUR CODE
Za POKE_236@s, ie@
3@ DIN C(d)

QUR*™
CODE. YDU HAUE 1@ &

IT. I CHOOSE FROM T

ige FOR €=1_TO &
110 _BRINT ZAS 44C; INK @;€;;"
>3 JINK G el

NEXT' C
‘" ALL 4 COLOURS ARE
9! *'" PRESS ANY KEY TO
8 4Ea
NT. ;
& FOR'C=7 78’8’
ok INK B.C;">"; INK C
298
NT -
R i
SAEE I3V =INT (RNDaE) 31

= 720 POKE 20682, -1
228 LET 23 vt (Rapssy a2 738 ERINT2BATVou uanT ANoTHE
I 26@ LET 2 L
= 735 PRINT ENTER ¥ OR NI
] ‘iETc‘qu:é(ziNTgENTgne';g 2s@ 728 CEF"hal20d TER kT oy
Ss@ IF giZ-1 TH 7 i,
GO To 242 7S@ IF CODE A$¢>CODE "N“ THEN B
388 FoR%ita T8 187 POkE*Saees, - URD i
RINT INK @; "ENTER GUESS NU :27905'“335” NK_RND26; TAB RND ¥
Z8e POKE’ Szesz
b = 5@ FOR_H=
FOR 9=1 TO 32: PRINT CHRS Z32 rog n=l

z=1
#INT (A-10)
gz e I AM THINKING OF R 4-COLOUR
= >
2228 NEZ CODE. YOU MAVE 18 GOES TO SUESS
de@ LET B=0: = o
ii8 Fom 221 bl pm i o IT. I CHOOSE FROM THESE COLOURS
R 2 3oy
B=8+1; BEEP .2,B#1S 2 35
138 LET 8%i%a 3,m
88 PEA z21 10 o S22
$58 T et =a_THEN co TO S22 835
£88 T2RH21 18 & Then oo To =2 ALL 4 COLOURS ARE DIFFERENT.
i i .2,60-B#1S
Sie LEr RNGe BRI 8.0 . PRESS ANY KEY TO BEGIN...
s =
S5e '}Eﬁ?-ru ToHl(T,STE =3 Line 20 (POKE 23609, 100) changes the rate of ‘click’
Si8 PRINT_INK i i when you press a key into a beep, to act as positive feedback
B2 NK ;

when you press a key. We tend to use this all the time, and
find it very useful when programming. Line 60 sets the INK
and BORDER black (0) and the PAPER white (7). The
routine from lines 100 to 120 print out the six colours
(printing a blob of each colour) in a diagonal line, with the
numbers next to the colours they refer to. Line 150 waits
until any key is pressed before continuing.

830 IF B¢>4 THEN NEXT 8
g DE_uAs “;
S PRINT THE CODE UAs

TN
558 FOR H=1 TOQ 109: NeXT The routine from 220 to 300 picks the colours, m:
£7e Fom 7= 78 4, ot sure that all four are different. Line 210, meanwhil

TO S@: NEXT
S9@ BEEP .2,T#1@: PRINT INK CiT

EXT T i
298 PGATHLL To s0: BEER .@1,H:
H

moved the print position down one (using the apostraphe
from the 7 key, accessed with the red SHIFT key), and lines
180 to 200 have printed the six colours across the top of
the screen, together with the numbers which refer to them.

27

Line 310 starts the loop to give 10 guesses. The second half
of line 310 (POKE 23692, — 1) ensures that if the screen is
ever filled, it will automatically scroll, without requiring a
response to the question “scroll?”” which you often otherwise
get at the bottom of the screen. Along with the key press
beep, we also use this ‘automatic scroll’ POKE frequently.

Line 320 asks for the guess to be entered, and once it has
(line 330), uses the backspace (CHRS 8) 32 times to back
over the line requesting the entry of the guess. Line 340
overprints this with blanks. This means that the line ENTER
GUESS 2 is erased, but previous guesses (and the colour
code at the top) are not, 50 you can look at previous guesses
to help you work out your answer. You enter your guess, by
the way, by entering a four-digit number, using the colour
code given at the top of the screen. That is, to enter BLUE,
just press 1.

The routine from lines 350 to 390 strip the number you have
entered down to four separate digits, the variables for blacks
(B) and whites (W) are set to zero in line 400, and then the
guess is compared with the four-digit code the computer has
thought of, giving little beeps for ‘whites' or ‘blacks’ as it
finds them. If you are right, the program tells you. If you are
not, and you have not used up your 10 guesses, you are told
of the digits of the right colour in the right position (blacks)
and of the right colour in the wrong position (whites) and
given another guess.

You will know that you can use PRINT AT 3, 6; “TEST" to
print the word TEST four lines down, and starting seven
spaces across. The control character CHR$ 22 behaves like
PRINT AT, but with a difference. To get the same result as
PRINT AT 3,6; “TEST” you need to enter PRINT CHR$ 22
+ CHR$ 3 + CHR$ 6; “TEST". However, because the
Spectrum allows concatenation (the adding together of
strings), you can add all these CHR$'s to equal one string.
This can be quite useful, if you wish to specify a particular
PRINT AT location several times in a program. Run the next
program, and you'll see this working.

10 LET a$=CHR$ 22+CHR$ 4+CHR$
20 PRINT a$; "TEST"

TAB can be emulated by preceding CHR$ n, where n is the
number of spaces (plus one) you wish to start printing on a
line, with CHR$ 23. Run the next program to see this in
action. However, as CHR$ 23 really expects to be followed by
two numbers (n and m, which has the same effect as PRINT
TAB n + 256*m), you can precede the information within the
quote marks with a space, or a dummy letter (X in our
example), which will not be printed. Run the next program,
and you'll see that instead of printing XTEST right down the
screen, it will simply print TEST.

1@ LET a$=CHR$ 23+CHRS &
20 PRINT ag;" 2
3¢ co To 28° *TT°T

At the start of this section, we discussed the eight colours,
and looked at how these could be used for the information
which is printed (INK), the background (PAPER) or the
border (BORDER). The information printed can be modified
by the use of two additional commands — BRIGHT and
FLASH. The following routine shows these in action. Enter
and run it, then retur to the book for a brief discussion on
these two new statements.

40 BRINT IMK 4: " NOR
4 INT BRIGHT 1

Although the effect of FLASHING is impossible to miss, you
may need to look a little more closely to see the effect of
BRIGHT. Once you have run this program, look at the word

BRIGHT, just under NORMAL near the top of the screen.
You'll see this is a different shade of green. The white on
green (the sixth line down on the screen) shows the effect of
BRIGHT more clearly. Compare the ‘lightness’ of the word
BRIGHT here with the word FLASHING just above it. With
the non-FLASHING words printed in green on red (a pretty
awful combination), you'll see that the ‘bright’ word is
somewhat easier to read than is the ‘normal’ one.

Although the numbers zero to seven have been explained for
INK, PAPER and BORDER, other numbers can be used.
Using 8 (as in PAPER 8) means that no matter which is
printed at this point, the colour will remain unchanged. This is
not particularly useful in ordinary programming, but the
number 9 can be quite effective.

‘9" means contrast, and ensures that if you are printing on a
light background, will print the words in black, and in white
on a dark background, somewhat like the way the colour of
an INPUT statement changes, depending on the BORDER
colour. The next program shows this in action, printing
randomly-generated letters of the alphabet, in random
positions on the screen, against a randomly chosen PAPER
colour. Run the program for a while to see this, and then
return to the book for our next useful graphics command.

8@ PREER RND
cLS -

INK 3
116 BRINT AT BuDH

ND £20. R i
(ES+INT (mNOx3€))] i

120
iSe o 7o @

iie PRINT AT RND$20 RND*30; OUE
R1:CHR$ (SS+INT (RND*28));

The word OVER is very useful, and can produce some very
odd effects. You will have noticed an apparently useless line
at the end of the previous program. Using the edit control,
put line 140 in place of line 110, and change the 32 at the
end of line 100 into 300. You'll notice, from time to time,
that letters are printed on top of a letter which had previously
been printed in that position. The OVER command means

30

that the new letter does not wipe out the one below it, but
simply compliments it, ‘subtracting’ one from the other to
form a new shape. This allows us to build up some characters
of our own. Enter and run the next program to create some of
your own. It is very hard to predict the effect of ‘addi
various letters in this way. For example, a small “o” and a
sl.‘v:’?ll “w'" combine to produce what appears to be a capital

i2 QUER 1
8 et aree, o

A L ER"
gg INPUT L %

S@ PRINT AT G,GiR%;CHRS &;
NEXT & " kil

You'll remember we discussed the way CHR$ 22 and CHR$
23 could be used to replace PRINT AT and TAB, and the way

g. The same can
be done with the other commands. The control characters,
and the commands they replace, are: CHRS$ 16 - INK; CHR$
17 - PAPER; CHRS$ 18 - FLASH; CHR$ 19 - BRIGHT; CHR$.
20 - INVERSE; CHR$ 21 - OVER. These are followed by the
character which corresponds to the colour required. These
can, as we said, be added, as the next program shows.

2@ INPUT PAPER 6. INK 1; “ENTER
K 25 ENTER @ COLOUR
4@ INPUT FLASH 1, BRIGHT 1; IN
ST R
F 17+4CHRS PAPERQQ! SRR
3@ PRINT AT 10,10;AR$%

Line 60 in this program could also, of course, be added into
the string, A$. Perhaps you might like to try to do this as an
exercise.

Additional control characters are explained in the manual,
where there is a table giving a complete description of the
various effects available from the top row of the keyboard.

31

If you want to see how effective the colour can be, even from
asimple program, enter and run the next routine. If the beeps
drive you mad, delete lines 90 and 100. If you want the
picture to build up more quickly, change the 7 at the end of
line 40 into a 6, so that white blobs are not printed.

1@ PAPER 7: BORDER @: CLS

2@ LET A=RND:i@

3@ LET B=RND#16

43 ERInT AT A.B: INK Z;

] 248 B E

= 7@ PRINT AT 21-R,31-B.; INK (.
28 PRINT AT R,31-8; INK Z; "B
3@ IF RND>RND THEN GO TO 2@

1@@ BEEP RND./3@,RND#*5@-RND#58

112 GO TO 2@

When you've run this for a while, modify it to read as follows.

18 PAPER 7: BORDER @:
28 LET A=RND:1@ a9
25 LET F=RND
S8
4@ LET Z=RNDX8
S0 PRINT AT_A.5
HT 15 INK Zi B

8@ £ L4
HT 1; INK
AES AT R ENT n"rzK 2 -B; FLASH F
P 2
TBRT o FLASH Fi B

5@ _PRINT AT
zenT 47 TNzl
Se IF RND>RND THEN GO TO 28
120 SEEP_RND.3@,RND*62-RND*60
iia 60 TO 2@

You'll see this has BRIGHTened each blob, and added a
random FLASH to each circuit of the program. BRIGHT and
FLASH understand 1 as on (so FLASH 1 turns it on) and 0 as
off (so FLASH 0 tums it off). FLASH and BRIGHT, like
various other commands, do not INT a random number, but
round it up.or down to the nearest whole number (where the
INT of a positive number is always the nearest whole number
below the number plus fraction), so the effect of line 25 in
program nine b is to turn the FLASH on for some loops of the
program, and off for others. You can see this is so by
changing the RND in line 25 to a 1, then runi or a whi

32

then a 0 and running it for a while. Finally, you may like to
modify the program to become the next program, ‘Greek
alphabet soup’, a name you will understand once you've seen
the program running. This final version recaps many of the
points we've discussed so far in this section of the book.

7 REM _GREEK ALPHABET SOUP
18 PAFEE 7- BORI =
38 [E5TA.Anoltarch o obe
5% GuER
33 LET B=RNDx16
4@ LET Z=RND27
45 LET B8=CHAS (65:anDs28)
_S@ PRINT AT A,B; BRIGHT 1. INK
8@ PRINT AT 21-R,B;; ;
58 eRz 21-A,8;; BRIGHT 1,
@ PRINT AT 21-A,31-8; BRIGHT

Rt A
ING Z. RS AT R.31-B; BRIGHT 1.
fazeiiro oo

PLOT

The PLOT commands allow very high resolution graphics, as
can be seen by running the programs ‘Galaxy’ and ‘Solid
Sine'. Once you've run ‘Solid Sine’, you'll notice that while
the dot resolution is 256 x 192, the colour resolution is only
32 x 22. In effect, the colour is mapped onto the PLOTted
screen. Despite this lack of resolution in the colour, very
effective high resolution designs can still be created.

38 BEeRtsn L

o
3@ LET ca2S5: LET d:jl.?gL5
ae ¢
a

70 PLOT a,b: PLOT a.d-b
a

35 INK_RND:7
102 GO TO se

33

ie REM
REM

¢}
Fosn OB aSTERLSSY yoe
32 PLOT INK RND#6;x#3+38,3%(n+

n
10@ BEEP .1,x: NEXT x

You can prove how effective the graphics can be by entering
and running the next program — Broken Glass — wi

then the BORDER (line 50) and the INK colours (line 60) are
chosen at random. Line 70 checks to ensure that these are
different. If they are not, a new INK colour is chosen. The
screen is cleared (line 100) and a pair of coordinates are
chosen randomly. A point is plotted in the centre of the

out how long its line has to be, and at what angle, but it
needs to be given a starting point. This starting point is given
in this program by using PLOT.

&
ti, Ruston 1982
RND#&1
RND#71
0 TO 8@

[}

(RND#256) -128
(RND#172) -85

W oc.d
14S BEEP .@1,RNDsi@@-s@
ZF RNDSRI82 THEN &0 To 11@

e

35

The DRAW command draws lines when the word DRAW is
followed by two numbers. These numbers are the PLOT
coordinate of the finishing point of the line. If you add a third
number, the DRAW command will draw part of a circle,
the third number specifying an angle to be turned through.
The program — ‘Broken Curves’ — which is the same as
“Broken Glass', except for the end of line 140, draws a sort

windswept version of Broken Glass, by turning the line
through P1/2 radians as it is plotted.

10 REM Broken curves
20 RI Hartnell, Ruston 1982

o
Ll
T
D
ks
o
&

i
86 LET BoINT (RND:77

78 IF _a=p THEN GO TO e
g2 Bor

108 b8

1le LET c=INT (RND:2S6) -128

120 LET d=INT_(RND#172) -

13@ PLOT 128,

14® DRAW c,d.PI/ 2

145 BEEP .01.RND100-50

150 IF RND>@.01S THEN GO TO 110
i8@ RUN

18 5By Eraasnosvres
ging tour
20 REM Hartn ll Ruston 1982
30 PRPEg
SO LET a =INT IRNDIBJ
60 LET INT _(RND
70 IF a-b THEN GO TD &0
[0
100 ELS
110 LET c=INT (RND*256) —1?8
}g. LET d-INTa(RND*l.?E)

132 TETRN338:8 L THE
> N T
148 pRAW g
ias {63 RNBr100-50
188 1 xv= anm 215 THEN GO TO 11@

CIRCLE

There is still another graphics command, CIRCLE, which —
as you might expect — draws circles. The program ‘Tunnel
Vision' sets a pale blue background, and white PAPER, then
draws a series of circles in a random colour, around a centre
point which changes a little from circle to circle, of a random
radius. The first number after the word CIRCLE is the
x-coordinate of the centre, the second number is the
y-coordinate, and the third number is the radius.

ac 0108 851
52 0L 09 NIHL Tacrand Jf aar

i ar Q
4R MO dex Sad MO S0s NN T @PT
B _1X3N SET
T-aNY+ONNH+ 6= (IT =T
T-adNY+JNY+ X=X 137 -39
X+d’s+h-d L0774 T
A-d’s+x+d 1074 @aT

Fd
-
.
-
“
*
X
1
o
.
=]
o)
("

STIQ (4 YISHS I aNd+
V13uraen ‘hREY u:..wﬂﬂwommm
138135531 HWAN

BT DL
V@SFINY "OBS/ @S ONY QMWW as

B.'Zxany ¥WNI ‘g2'etr 18

TLFANY HIdHd CLFONY H
uorsia pue ﬂr—:owﬂmwu W.m

ac m.r \..Wm.ma.v
i il B S
TEFANYH L T+SEONY NNI INISd Mm.w.

OUIP UISZIOF
$9019 F3JN010) wopueyd me Md
LEQNY HIdHL S

‘aq ueo wnnoads a8yl jo soiydesb ayy aAndaye
MOy 81ensuowep 03 sweiboid 8iow BWIoS a1k 818y ‘Ajjeuly

8¢

NY 3L
@2 0L 09 N3IHL £8°>adNd dT @9
@S 0L 09 NIHL SS7<anNd_dI @s
BC-@SEINS P/ aNY d339 aF
Z#ANY-TE 7 $IE AN
H-ZC’T HINO {OFANY MNI NUHT @S
92878287 1071d S&
SO¥ANY ‘22— ANH-Z ¥ INH+ 28 AT ¥ ONY—
QT*aNY+2ET O¥ANH YNI 3ITOHID 8%
¥1Em WOPUERJ YirTm HIH ST
UOTSTA 13UUNL HWIH OT

ag oi_02 @s
2C-@aTEaNy €/ aNy 4339 ev
©72 N3IHL 26° cand JdI ac
SOFANY’ Z-aNY- ¥ NS SE AT # NG
| emeBREISST IS s aauss &
o GoTsTA 13UUNL H3IY BT

#CER/ATT+EA ()
8 d3LS

AT L2 S

N

SQQEFEE _187d @2

TEEFER @TT4LC)
04 I=f Hod @3

LT o

=l

iy

String art

The program, written by Jeremy Ruston, bounces two balls
around the screen (X,Y and L,M), and then draws lines
between them. An extra feature is that new velocities are
cchosen every so often — so making the balls bounce at points.
other than the sides of the screen. To remove this feature,
delete line 116.

Line Description
5 Sets the colours to be black on a white background.
This line is needed since you might run the program
with different colours in effect.
10 Chooses a random x-coordinate for the first ball.

20 Chooses a random y-coordinate for the first ball.

30 Chooses a random x-coordinate for the second ball.

40 Chooses a random y-coordinate for the second ball.

50 Initializes the variables required for choosing velocities
for the balls.

60 Defines a decent random number generator.

100Calls the subroutine at line 1000. This subroutine
chooses random velocities for the balls.

110Just showing offl

116The variable ‘num’ holds the number of steps that will

fore new vels

1161f ‘num’ reaches zero, it
velocities. The routine at 1000 also chooses a new
value of ‘num’.

120 Moves to x,y.

130 Joins x,y to L,M.

140 If adding the x-coordinate of the first ball to its
velocity would take it off any edge of the screen,
reverse the direction of movement, by negating the
velocity.

150 See 140.

160 See 140.

170 See 140.

180 Adds the velocities of the first ball to its coordinates.

190 And the same for the second ball.

200 Showing off again.

210 Generate a random number between 0 and 199
inclusive.

a2

220 If the number is one, then RUN, so clearing the

reen and creating a new pattern.

230 Otherwise, draw the next line in sequence.

1000 Makes the X velocity of the first ball be a random
number in the range —V to +V.

1010 See 1000.

1020 See 1000.

1030 See 1000.

1040 Chooses a random value for ‘num’. Notice that num
is not allowed to be zero.

1050 Returns to the main program.

You can make the lines farther or closer from each other
by altering the values of U and V in line

It s interesting to alter the DRAW statement in line 130 to
draw a curve — but beware of drawing off the screen, and
creating an error!

ET

40 LET m=INT (RND#1

@ CET uzis! BT it

S2 DEF FN r(x)=INT (RND#x)

a3

b id

144

NHL3IH @SOT

NNd N3IHL T
(3@} 4 Nd=1U0l 1377 @TE
ISTIHL TIINN W3IH ees
pru=w {37 I3+1=1 LIT @ST
g+ A=A L3I €+X=X LIFT VST

21 NIHL ©>P+W HO SLTP+W JdI BLT
71 NIHL 9>2+1 YO SSES<I+1 A @971
377 N3HL ©29+f U0 S2T<9+R d4I ST
3T NIHL 9re+X HQ SSS<e+X A @PT

A-W7X-1 MEEd @ET
A°X 107d BT
@e@T ans 09 NIWL @=wnu JI STT

YOOI InNs 09 Bvertr

You may like to modify the program to use another central
point for the pattern other than the actual centre of the
screen. Try removing the OVER references, and increasing

the STEP size in the two FOR statements
50 to about 4. This will give you truer Moi
because of the comparitively low resolution of the
Spectrum screen, the effect is not so good as that
obtained with, say, the BBC computer.

the close proximity of the dots drawn.

PAPER ©: INK 7: BORDER ©:

1
LS e
Bsal
B BN He gt Palisith .
S REM BuidscesdiSuiion. o
1@ FOR_x=80 TO 25S
20 PLOT x.0
30 DRAW OUVER 1;25S-x%2,1785
40 NEXT
Moire patterns o
82
This program draws Moire patterns. The program works by 38

drawing a series of lines from the centre of the screen to
‘each point on the edge of it. As these lines are drawn with
OVER set, you get the effect shown below.
PAPER @: CLS_: BORDER @
FOR_X=2 70 255

B0

s
1@

2e

30

@

se

€@ PLOT @,Y

7@ DRAW OQUER 1;255,175-vs2
8@ NEXT _Y: REM . Ruston
85 LET S5=RND+.S i
9@ FOR _X=255 70 @ STEP -5
10@ PLOT X.@
11@ DAAW OUER 1,255-X32,17S
128 NEXT X e
132 FOR_Y=a TO 17S STEP
132 PLOT @Y
152 DRAW OUER 1,255,175-v#2
1ee e
185 PRAUSE 2
17

1&

a2
INK_RND#7: PAPER 9: CLS
&0 TO as

lines 10 and
patterns, but

Colour with this program does not bode well, because of

H4B85178
2@@ IF N+C>2SS OR
Teia iF os0s17s o
220 IF P+E>255 OR
@+F217S

S REM Spinning tri
S REM & veremy mui
FEYEY

NEXT X
L+R<@ THEN
MiBi@ THEN
N»C<@ THEN
©+D@ THEN
P+E<® THEN
B+F <R THEN

POINT

POINT behaves to PLOT as SCREENS does to PRINT AT.
That is, you can use POINT to determine the presence or
otherwise of a PLOTed dot at a specific location.

Here is a simple program to demonstrate this, which scatters
some PLOTSs about at random, then checks them at random.
Each time POINT (see line 70) finds a PLOT at the position it
is checking, it BEEPS to let you know it has found one. You
should get a ‘success rate’ of around 1%.

If POINT (x,y) equals one then there is a PLOTted point at
that position. If it does not, POINT (x,y) equals zero. Try
running the above program with the A loop running to
1000, and the G loop to 10000. Your success rate
should be around 10 times higher than the first run (i.e.
around 10%). Why is that so?

The printer

There are ich are us
the printer — LLIST, LPRINT and COPY.

LUST — This dumps the entire program listing on to
the printer.

a9

command also behaves like PRINT,

ing to the printer rather than to the screen. It
can be used in the direct mode, such as LPRINT
““HI THERE", or within a program, such as 10
LPRINT “THE ANSWER IS ”; A

COPY — This copies the entire contents of the screen,
after a program has been run, to the printer.
Because the printer cannot represent colours, or
dark PAPER colours and lighter INKS, the copy
on the printout may be considerably less
impressive than the picture you have on your
screen. Experiment with use of the INVERSE
command on a local basis to enhance the
printouts.

LPRINT

Random numbers

Random numbers are very useful for games playing. Let's
examine the production of random numbers, and use them in
a few simple programs.

The computer allows you to generate two floating point
random numbers beween zero and one.

Enter and run the following to see a range of numbers
zero and one:

1@ PRINT RND
2@ B0 TO 1@

You'll get a list of numbers something like this:

You'll find that random integers are often of far more use
than are these numbers between zero and one. To do this,
enter a statement like INT(RND *30) +1. Run this program.
You're likely to get a series of numbers such as those
following the program.

10 REM randoa integers
2@ LET A=INT (RND100) +1
3@ PRINT TAB 8;A

i G0 TO 20

OANOADASNOE HODLH

D0

HABLUOIHO DDA ROt

The computer takes the number in brackets (known as the
argument of the function) and selects numbers at random
between one and that number. To get negative random
numbers, just put a minus sign in front of the word INT. Try
that, and run it again, to get a result like thi

-97 -88
-88 78
-42 -s@

. -88 -8@
-48 -6
g1 -61
-63 -3
-42 -1s
-86 -46
52 -87
&) -25

51

You can use the random number generator for any
application where you need to emulate a random activity in
the real world, like the distribution of weeds in a garden, the
spread of clouds in the sky, or the result of rolling dice. The
next program emulates the roll of a six-sided die. Enter and
run it a few times.

1@ REM ¥DICE ROL

2@ PRINT "NOU NRNY TZHES HILL

3@ PRINT “I ROLL THE DIE?"

i@ INPUT A

S@ CLS

5@ PRI ESULT OF ROLLING™, "
THE DIE ", A, TIMES"

7@ FOR B=i TO A

LET C=INT (RND#6) +1
2@ PRINT ,C
1@8@ NEXT B

RESULT OF ROLLING
THE DIE 6 TIMES

PILEILE

Bull fight

Here’s a very simple game which shows the random number
generator in action. The game is not really much of a game,
but entering and running it is well worthwhile. Once you've
played a few rounds of the game return to this book for a
discussion of the program. You should be pleasantly
surprised at how much you have already learned.

You are a matador. The bull will charge you 10 times. You
select a number between one and three, and the bull does the
same. So long as the numbers are different, you survive that

. If the bull picks the same number, the game is over.
Yolare given a score at the end.

52

32 REM BULLEIGHT
2@ SC @
38 FoR 859"F53%a
NT AT 4,4 INK 2; “THE BuS

Ry
B8 PRINT “THE 4; INK 1;" £
MOUEHENT (1 T aiee il
78 INPU

1P 1 "0r A3 THEN co To 7@
LET Baxny (RNDa2isd

BE\ IF R=R THEN JO 220
i2@_ PR, N'T 'TRB ‘4 INK ‘-; “you AR
E_SAFE MO INK 25
13@ anapsu nun oo
I"EK P INK 2; “THE Sl &
E\.SB PRIN'T ‘4 INK 4 “¥YOU PICKED
ig@ FOR H=1 TOQ 1@
17@ BEEF .1,RND#S@-ANDsS@
18@ NEXT H
i8@ CLS
200 NEXT @

TO 232
238 BRINT #%%uk 2 vvou saue FRT
LED AS"."A MATADOR

230 FOR T=1 TO S@: BEEP .@S,AND
*S@: MNEXT T

248 PRINT ¢ INK 2; “YOU SCORED
sie@s (G-

THE BULL IS CHARRGING
UHICH MOUEMENT (1 TO 337

YOU HAUE FAILED AS

A MATADOR

how the apostraphe (') in lines 120, 140, 150, 220
and 240 (available on the 7 key) is used to move the PRINT
line down.

Let's go through the program line by line:
10 REM statement title.
20 Sets the variable SCORE to equal zero. We'll be
discussing variables shortly.

53

30 Starts the FOR/NEXT loop to count the 10
goes. FOR/NEXT loops are discussed a little later
the book.

40 Prints out that the bullis charging.

60 Asks the player to enter a number between one
and three.

70 Accepts the number from the player.

80 Checks to see if the number lies between one

and three, and if it does not, goes back to line
70 to accept another input from the player.

90 Sets B equal to the bull's number, a number
chosen at random between one and three.
100 compares the player’s number (A} with the bull's

number (B) and if they are the same, send:
action to line 220 to tell you you have failed as a

matador.

120 Tells the player he or she has survived that move.

130 Changes BORDER colour.

140 Tells the player the bull’s number.

150 Reminds player of his or her number.

160-180 Puts in a short delay, with music, before next
round.

190 Clears the screen.

200 Goes back for the next round.

210 If the player has survived 10 rounds, goes to
print out the score.

220 This is the failure message, if A and B were
found to be equal in line 100.

230 Delay loop, with music.

240 Prints out the score.

Reading through this explanation a couple of times, and

you quite a bit more about programming. There are a number

of specific commands which we will look at in more detail,
but you're probably starting to pick up quite a bit at this
stage.

Variables

You will have noticed in the previous program that letters
were used to represent numbers. The letter A was assigned
(in line 70) to a number between one and three and B was
assigned in the same way in line 90. The letters A and B in
this program are called variables.

There are two types of variables: numeric and string
(alphanumeric).

Almost any combination of letters and numbers can be used
as a variable, so long as it begins with a letter, and there are

2SMUDGE and 1D7 are not.Numeric variables, letters or
ations of letters and numbers beginning with a letter,
are simple to use. You can assign a variable of this type to any
number within the computer's numerical range. The

m ignores spaces within variable names, and does
not distinguish between small and capital letters (so a$ s the.
same as A).

By the way, as you probably know, the computer uses
scientific notation to display large numbers, with the number
as a single digit and up to eight decimal places, followed by
the letter E (for exponentiation) and the power of ten to
which the number is to be multiplied. Enter and run the
following demonstration which shows the variable A in use,
being assigned to a number which is being multiplied
repeatedly by 10, and then printed.

19 REM SCIENTIFIC NOTATION

2@ LET R=1334

3@ FRINT &

4@ LET_A=16:A

Se 66 To 38

iTE34E+S

1.224E+8

1.234E+22

Nule that after the number has eight digits (12340000) it

rinted as a number, a decimal point, more numbers after
4 cocrma point, the letter E and a power of 10. Try and
predict how long this. e will run until it exceeds the
maximum number possible on the computer, then run it until
it crashes to see if you were ngm

Looking at the listing tells us another couple of things about
variables. The variable is assigned by just entering the name
of the variable (in this case, A), preceded by the word LET,

and followed by an equals sign, and the value which we want
assigned to the variable. If we said LET A =99, then following
this with PRINT A would produce 99. Line 40 looks a little
odd. The ast tands for multiply in BASIC. Line 40
seems 10 be sa) hal A is equal to 10 times itself, which
—in terms of standard arithmetic — is not true. This is,
however, the way the assignment (LET) statement is used
BASIC.

56

String variables
String vnnables are a letter, followed by a dollar sign. Enter
ET A$ = ', press ENTER then PRINT A$, ENTER,
will give you NELLO You can put anything, including
numbers, symbols, punctuation marks and letters within the
quote marks, to be assigned to a string variable. A series of
letters and whatever, within quote marks in this way, is
known as a string.

Crlckets

Ther stange to say, a corelation between the
lsmpsrature and the number of times a cricket chirps each
. The following program which shows long variable
names in action, converts the number of chirps per minute
into the temperature, in degrees Fahrenheit. Enter and runita
few times. Note that the variable chirp is set equal initially to
80 in line 20. This is converted into the variable temperature
in line 30, and this latter variable is used in the PRINT
statement in line 40. The variable chirp is incremeneted by a
random number between one and seven in line 60, there is a
short delay (lines 70 and 80) and then the program returns.
to line 30 to go through the whole process again. It will run
for a long, long time (until you exceed the highest possible
number the computer can cope with) if you do not interrupt
its running with the BREAK key.

THE TEMPERATURE IS 62
UHEN THERE ARE 87 CHIRPS

THE TEMPERATURE IS 63
WHEN THERE ARE 9@ CHIRPS

TEMPERATURE IS 63
HEN THERE ARE 32 CHIRPS

THE TEMPERATURE IS B4
UHEN THERE ARE 96 CHIRPS

THE TEMPERATURE IS 55
UHEN THERE RRE 98 CHIRPS

57

12 REM chire
20 LET CHiRb=ge oo h1ER

LET TERPERATURE=INT ((CHIRP
4@ PRINT_'"THE TEMPERATURE IS
5 URE

SUREN THERE gRE i IN

o
LET bnxnp.chxnp HIRT” tRnp e

28 RER
9@ POKE 23692.-1
18@ GO TO 30

Although it takes a little longer to type in long variable names,
these have a clear advantage over use of names like A, B and
C2. You know, without having to refer back, what each
variable represents. Here is another program which uses two
variable names to help make it clear what is going on. Enter
and run this.

22 REM ## UARIABLES 3%

2 Wg="THE NUMBER IS "
3@ CET NUMBER=3

S8 PRINT U$, NUMBER
86 PRINT - "THE SGUARE OF";NUMB

70 PRINT TAB 5; IS5 "; NUMBERENU
82 PRINT ““AND THE SBUARE ROOT
Q@ PRINT “IS ";SOR (NUMBERY

To summarise:

@ Numeric variable — This can have any name, so long as it
mm with a letter and does not contain punctuation or

. Slﬂnn variable — This is a letter followed by a dollar sign,
which is assigned to anything within quote marks. All
variables are assigned by use of a LET statement, followed
by the name of the variable, an equals sign, and then the
value to be assigned to the variable.

INPUT

The INPUT statement is used to get information from a user
while a program is actually running. The computer stops.
for an entry
of some kind from the keyboard before it will continue with
the execution of the program.

Enter and run the following, which shows numeric INPUTS in
action. The program will wait for you to enter one number,
then press ENTER, then wait for another number. After you
have pressed ENTER again, it will print the sum of the two
numbers.

10 REM x% in
TN T NPYY e

This is OK so far as it goes, but you would not have knowr

3 ave n
what to do when you ran the program unless you had read it
in this book. There is a simple way to rectify this, by
programming in user prompts. The preceding program can
easily be rewritten so that the user has no doubt as to what he.
or she is meant to

1@ REM %% input s
2@ INPUT "Give me a number ";x

I
4@ INPUT “And ancther "y

59

Running this shows that the computer prints up the words
within the quote marks, then waits for the input.

Note that many of the commands used to control PRINT
output can be used with INPUT, as can be seen in the next
program.

Combat

5 REM_#x Combat sz
& Poke 20823, ie0

INK §/3;"60 R
Enter a numb

i (L1

&; 1; 8¢
re7
35%a
ZINTC (BNDx10) 11,
£35, TR i
8s FoR m=1 TO 6. 61,35
: d
"2w":rx¥n THEN GO TO 11@
100
178 IF 2=k THEN LET ccorgescore
+1: PRINT AT 14,6; INK 4;"Uell d
-

14@ IF acyb THEN PRINT 87 14,8

INK @ FLASH 1;“Bad Luck
15 ﬁ AT 15,65 INK 2;"The s
core

“iscor
268 IF storess THEN Go TO 250
i7e For t=1 TO

2
1ée BEEP .@1,2%t: BEEP .01,20-t
: NEXT

190 CLS

20@ NEXT J %
21@ PRINT BRIGHT 1; INK 2;'The
game is

228 PRINT. n.nan 1; BRIGHT 1; In
K_2;"8nd you enly Scor tore
238 Your riiing
$399, BR300 Ladt ASTER

240

250 PRIN‘T ZNK RNI H ;
Basé"‘/eg L D¥6; FLASH 1;TRA
aas o ey BEEP .@1.RND#%
27& PR!N’T INK \RND*6; FLASH 1;TR
B_8; "You

286 POKE 23592.—1

290 GO TO 25

Go number 1

Your number is 3
The score is @
Bad tuck

In COMBAT, you select a number between one and ten. The
computer selects up to four numbers between one and ten. If
any of them is the same as yours, your score is increased
one. If you get a score of five, within your 20 goes, you win.
If not, you fail and get a percentage rating. Once you've run
the program, come back to the book to go through
- Although the program is fairly trivial, running it,
following through the explanation will incroase your
knowledge of several aspects of BASIC, and — of
course —shows INPUT i

10
15 Sum the master FOR/NEXT loop to count your
20 Printathe go number.

61

30 Accepts the input for variable A, using J to set
the colour.

40 Checks that the input is legal.

50 Prints out the number chosen, and the score.

Note that PRINT statements may be ‘chained" in
this way, with semi-colons and the use of AT or
TAB.

60-100 Generates up to four numbers. After each
number is generated (line 70), it is printed (line
80), there is some sound (line 85), and checked
against the player’s number (line 90).

110 Score is increased by one if the guess was
correct and the program prints WELL DONE.
140 Prints BAD LUCK if the guess is incorrect

150 rints the score.
170180 Short delay with BEEPs before next move.
190 Clears the screen.

200 The end of the master FOR/NEXT loop.
210-240 End of game, if you lose.

250290 End of game, if you win.

Compound Interest

This next program to show the INPUT statement in action
agai Iso shows the use of explicit name riables,
which make it easier to understand what is going on. You
may well want to save this program on cassette, as it has a
degree of practical application.

REM SIMPLE AND COMPOUND
18 INTE!

29 BEM . tuk 10TAB 6 PRINCIPA
L7 4o’ TRAUT THK 2,TAB 6; " INTEREST
L <8B ¢ "FOR HOW

Fhp 177 ubnzgﬁﬁbfj'?ga?é +5

62

20 POKI
132 POKE 23802

ET CDNPDUND INT
IPAL ¥ (1+INTI - uae;pnxnc
140 " E+TNTEREST 2100, 41 1

z100
SINT (100x (EGMPOUND

ase NT.
+ GonPOUND; 1-2.'5*2-’,, BERENPLESTAE 27

<
m
D
o
]
2z

W PO
- 9RO

BORD

3

BRED0 NGOG
1
a
)
o
a

s
S
by
S
4
a4
S:
&
e
4
3

ORDORDe - s

ore
e
0
05!
u
a
a5

This program works out compound and simple interest, for a

principal and interest rate you determine, over the number of
years you decide. The example uses a principal of $100, at
8.25% over 12 years.

To stop a program during a string INPUT (BREAK does not

perate during INPUTs), use cursor left (SHIFT 5) or
RUBOUT (SHIFT 0) to get the cursor out of the quotes, then
type in STOP (SHIFT A) followed by NEWLINE. If you are in
a numeric INPUT without quotes, just type STOP (SHIFT A)
Iollo:;d by ENTER. In both cases the program stops with
repor

It is useful to be able to reject invalid INPUTS, before they
cause a program to crash.

If you invite a user to have another go, analyse his or her repl
as follows: i

SS5 INPUT “DO YOU WANT ANOTHER
B8Ze"£R%Rs 122 =owe THEN RUN

There s a law somewhere that says the user will respond by
pressing only ENTER — leaving you with a null INPUT. So
there’s no such thing as R$ (1) — it does not exist, as the
computer will very quickly tell you in the form of an error
report!

Here is one method of preventing this:

(1)
§§' 2RPUTE480 vou wanT AnoTHER

826 &E’Rsx--v" THEN RUN

Because R$ has previously been DIMensioned, it will have to
consist of one character, no matter what is entered. If only.
ENTER is pressed then R$ will be a space since that is what is
placed in RS after DIM and a null INPUT will not change it. If
the INPUT is several characters long, then there is only room
in R$ for the first character. If this character is 'Y" then the
program il RUN for another go. This method has the
advantage that if the user enters a very long reply such as
“YES PLEASE NICE KIND COMPUTER, | WOULD LIKE
VERY MUCH TO HAVE ANOTHER GO AT YOUR GREAT
GAME PROGRAM" (very uniikelyl), there is no need to store
it all in memory. It is also very useful if you GO TO or do
nothing that would CLEAR the variables, thus storing the
ent unnecessarily. The second method is more
conventional and uses one program line less than the

ious routine, although it does place the entire reply
unnecessarily in memory:

ggg gﬁgu'? Eé’ﬂ YOU WANT RANOTHER
®B8%s " iF*cope Re=cODE "y THEN RU
N

The program explains itself really — if the first chﬂmnsr ol
the reply has a CODE that is the same as the CODE of
is Y) then the program RUNs again. Null INPUTS are m«:w

64

as meaning the user does not want to play again, since
merely pressing NEWLINE gives the empty string and the
CODE of the empty string is 0 like a space.

Checking the first letter of a user’s INPUT is fairly easy as
you've just seen. It becomes a bit more difficult when you
want to check an entire INPUT, e.g. to see if the user has
entered any punctuation marks or has included letters in a
numeric INPUT. Let us ook at alphabetic INPUTS first. The
relational operators <,>,> =,< =y>< are very useful in
this case. Take the case of an INPUT where a word is strictly
required and nothing else must be entered.

10 INPUT Ag

1S IF A$="" THEN GO TO 10

28 fom A=1 To LEN Ag

i gL RGN $(AI > ZY T
HEN 60 TO 10

INPUT string character by character and if a character is
found which is not a letter then you are instructed to enter the
string once again because the program jumps back to line
10. As it stands, the program will not allow spaces between
words.

Change line 30 like this to allow spaces:

IF (AsiM) " _OR A% (A) 3
Avp A A EIT CRLARERD 1y

You can easily extend this idea to allow punctuation marks,
lettersand spacu if you like (i.e. numbers, keywords,
symbols et not allowed) by extending the idea in line
30. Only. sllghlly more difficult is detecting a given word in
an INPUT, e.g. if you had a line at the tail end of a program
inviting the user to have another go at the program and if the
lied ““YES" then the program re-ran. It is a fairly
to put the INPUT in a loop and slide the word
along like this:

7@1@ INPUT "ANOTHER BO?_*;A%
7222 FOR P=1 TO LEN A
7050 IF PAS(A TO A+2)=

Ul
7@4@ NEXT A
STOP

2
YES" THEN

If you entered “YES” or “YES PLEASE" the program will
re-run as required. If a word whose length is less than the
length of the search word (except the empty string) is
INPUTed then this will cause an error because of line 7030
which expects the INPUT to be at least equal to the search
‘word. The empty string is alright because then LEN A$ is o,
making line 7020 FOR A 1 TO 0, so the string is totally
bypassed, and the problem does not arise. Try also entering
“YESTERDAY"' — the routine reruns because it has detected
the three letters “YES". What is needed is a routine that
detects if the character on either of those three letter
anything other than a letter. We need to be careful doing this
because we cannot examine the character before and after
the three letters “YES" if they occur at the beginning or at
the end of an INPUT because they do not exist and to
attempt to examine them would cause a subscript error.
There follows a routine which makes allowances for this, by
adding dummy characters at the start and end of A$.

7212 INPUT “ANQTHER GO7 ;RS
7215 LET AS$="_"3+A%+"

Fi LEN A$-:
793@ IC AL(R TO Hi2) "YE<~ Ane T
AS(A-1) ("A" DR A${A-1)> ND
raséﬁos\ <"A" OR AS(A¥3}

724e NEXT A
7052 STOf

The routine allows all lengths of INPUT up to the maximum
length that a string may be. If you want to change the search
word in a program then it may be worth assigning it to a
variable or having an INPUT somewhere in the program for
the search word. You will have to make the following
modifications to the routine to use a different search word:

7@1@ INPUT “ENTER SEARCH WORD";S

7@2@ INPUT “ENTER SENTENCE";A$
Ppap LET R$=" "IREI"

66

HEN RUN
7@20 NEXT A

If the routine is a bit too long then provided you are using the
same search word every time then you can avoid using 5§
and LS and spell out the search word in full every time it is
used, and replace all references to LS with the length of the
search word. See the example using “YES" above.

Lel L look at another type of INPUT that is commonly

d in games — both grid type games and board games —
that s an INPUT involving coordinates as you would find on
SR For instance you might have a board laid out like

12345

A
B
c
D

E

The coordinates are usually entared in the form of a letter
followed by a imber e.g. C3 if you are referring to one
saars s 1 & Huee the Horkde typa of game or C3B4 if you
are using from-to coordintes in a board game such as
draughts. If you have decided that the coordinates are to be
entered in the form of a letter followed by a number then the
chances are thet sooner or later somsone wil ~ e

enter the i |he
wrong mder and foul up lhs program. This mulms
automatically detect if the two characters of a coordinate
have been entered in the wrong order and sort them out. It

67

applies to the board layout above and to modify it for other
ranges of characters, simply change the characters in quotes
in lines 30 and 40. Line 50 has merely been included so
that you can see the effect of the routine if any.

The routine is very quick to RUN. It is a very difficult routine
1o crash but I'm sure some clever reader will find a way. If you
do find a way of beating the routine then modify the routine
to prevent that error happening again.

The routine for a four character coordinate is somewhat more
complex. The idea of this INPUT is that you can enter the
number of the square you are moving from and the square
you are moving fo in one go, e.g. E3D4 would mean that you

moved a piece from square E3 to square D4. Let us first of all
arrange the letters and numbers into order.

28 ¥ LEN g;u THEN GO TO 10
38 SE) 17 AND Ag(1) (=1S

Note that you can shorten these two routines by using the
DIM command. In the first program you can add

5 DIM A$(2)

and delete lines 20 and 25. For the second program add
5 DIM A$(4)

and delete lines 20 and 30. What both versions achieve is to
ensure that the string A$ is neither shorter nor longer than the
required length. If you enter an INPUT which is longer than
four characters in the second routine, then the rest are
ignored. If shorter than four characters then spaces are added
if you have line 5 added (then rejected in line 60) or rejected
in line 20 if you are using the unmodified version. Having
sorted out the letters and numbers let us look at sorting out
legal and illegal moves. You will need to look at the example
board a couple of pages back for this. Suppose we have
uncrowned draughts piece on square E3. We need to work
out the legal moves from there. An uncrowned draughts
piece can only move one square forward in a diagonal
direction. The square it may end up on are D2 or D4. Before
reading on, can you work out the relationship between the
coordinates?

Since the piece can only move forward one square at a time,
it has to end up on a square whose letter is nlpmbunurlv
nearest to E. Now on your computer, the CODEs of letters
that follow each other alphabetically step up or down by 1, so
that the CODE of D is 1 less than the CODE of E. Therefore if

number of the from square must be 1 greater or 1 less than
the number of the fo square, so we end up with:

SCODE A1) <> CODE A% () +
;%8R ™ n:np: $R3 (2L ACODE Ag(dva)
OR_ (CODE) =CODE A$(4)-1) TH
=N ee PO 16

Obviously you will need to adapt these routines to suit your
programs and they are only intended to show you the basis of
routines that you may like to incorporate into your programs.
They also help to demonstrate the approach you need to take
to solve problems of this kind. For what it's worth, we
suggest you try to follow these guidelines:

[

‘what you want

Work out exactly what is permitted, and some of

the things which are not allowed (e.g. the empty

string). b

(i) How can you prevent these happening, or reject

them when they do happen?

(iv) Quickly work out in your head whether your
routine does what you think it will by using it
with a couple of examples.

(v) I you are happy with your routine enter it into
the computer and try it out with some permitted
values or characters to check whether msm isa
bug that prevents these values being er
When happy with this, try out the roume wuh all
sorts of INPUTS (for example, try entering a
non-existent coordinate such as F9 in the
routines above). You are now ready for the most
important test.

(vi) Let a friend loose on the routine with orders to

make a fool of the routine. The above routines

do have a fallacy but I'm not telling you what it
—that's an exercise for you.

Finally, let's look at numeric INPUTs. Clear the computer
with NEW and enter the following:

1@ INFUT B
2e o TO 1@

RUN this little program and see if you can cause it to crash in
any way; it shouldn't be too difficult. Try entering a letter; try
entering STOP; try entering a number t0o large or too small
for the computer to handle; or try entering a keyword or
arithmetic sign such as “+""

Arithmetic signs cause the computer to display a syntax error
marker, although it does not stop the program. Keywords
and symbols also cause this to happen, although letters cause
the program to stop with error code 2, which means that an
undefined variable has been used. Variable? Yes — when you

70

enter a letter in response to a numeric INPUT the computer
thinks you're entering a variable and this can sometimes be
very useful. With the same program, enter 1 on the first
INPUT, then enter A the second time, and it is accepted!
What the computer has done is look up the value of A and
assigned it to A — in other words it hasn't changed the value
al A. Now enter STOP. The program stops on an error

essage. Now try typing in PRINT A, and you get the
alkbar 1, 50 the program has stopped before updating the
value of A. In fact if you do manage to crash a numeric
INPUT then in general the computer retains the previous
vulue of the variable. Not that it's all that useful, but under
circumstances if you do manage to restart the
progmm then the variable does have a value.

The easiest way to get around these problems is to use string
INPUTS and evaluate using VAL. Tr

18 INeuT B

20 LET A=UAL As
Se PRI

16 285G Fe

You should find this quite easy to crash, and many things true
of numeric INPUTSs seem to happen with this little routine.
H , the advantage of this method is that it does not
crash unul you apply VAL if there is an error. You can process
the string before applying VAL after INPUTing it and spot or
rrors before they crash — that is you can process
the string. The thing to remember is that VAL can work with
anything numeric, not just numbers. Try the following:

PRINT VAL “RND"

PRINT VAL “SGN —7"

PRINT VAL “A*2" (this only works if you have
_ previously defined A of course)

PRINT VAL “COS1"

Undefined variable names are the curse of VAL, along with
non-numeric statements or keywords or symbols. These have
to be weeded out before you can apply VAL. The easiest case

7

s that where only numeric INPUTS are allowed and you can
do that like this:

N RE
3@ IF A% (F) ¢ DR AS(F) > 8" T

S@ LET A=

&2 PRINT A
Can you see straight away what would defeat the routine?
Our old friend the empty string of course, which would make
the loop FOR F = 1 TO 0, 50 it would be totally bypassed
and useless so you have to add 15 IF A$=""" THEN GO TO
10. The routine makes you enter the number again if you
have entered anything but numbers. You can extend the idea
to permit arithmetic symbols and variable names if you like,
but there is so little use for it it hardly seems worthwhile.

3@ IF (AS(F) <
AND (A IF) >+
THEN GO TO 1@

OR_AS$ ()2
"TAND R$ R

This allows you to enter addition symbols and exponentiation
symbols. To permit additional functions then simply add
them within the second set of brackets linked together by
AND. This is not terribly useful but you may find a use for it
some day.

We'll be looking at VAL and other string-processing functions
in detail a little later in the book, but for now, we need to
examine commands which lie at the heart of the computer’s
power to “think’.

GO TO

One important ability in programming is to be able to branch
to different parts of the program during execution. Without
this, the program would always run from the lowest line
number to the highest, and then stop. One statement which
allows you to move around the program at will is GO TO. The
GO TO statement consists of a line number followed by the
word GO TO and another line number, or followed by a
calculation (such as GO TO 2*X, or GO TO 200+340).

If the computer came across 140 GO TO 190, it would jump
immediately from line number 140 to line 190. This is called
an unconditional branch. That is, it is a jump that does not
depend on the existence of any condi . Once at line 190,
the program continues to execute in order, until it comes to
the end, or comes to another line directing it somewhers else,

You can use GO TO to produce programs which run almost
for ever. These can be quite effective, especially at the end of
a game. Run the following to see this in action:

1@ PRINT INK RNDs5;

wan. .
20 POKE 23692, -1
3@ BEEP .@1,RND¥50
4@ GO TO 1@

.You have

73

IF....THEN GO TO

The IF statement has a similar function to GO TO, but it will
only reroute the program IF certain conditions are fulfilled.
This creates a conditional branch. The IF/THEN statement is.

up of a line number followed by the words
IF/THEN/GO TO separated by a relationship which must be
determined before leaving the line. These are six relation
operators which can be used to compare two variables.
These are:

= equalto
> greater than
< less than

>< notequal to
> = greater than or equal to
< = less than or equal to

These operators are used to connect the IF....THEN
statements to form the condition to be determined.

Here's an example: 70 IF Z> = 10 THEN GO TO 100

This will be read by the computer to mean IF the value of the
variable Z is greater than, or equal to, 10 THEN the program
will branch to line 100. If Z is less than 10, the program will
continue normal execution, with line 80.

This gives the computer decision-making power, the real
source of a computer's apparent abi

As you've probably discoveréd, the computer isn't indecisive.
(unless you tell it to be), it makes a firm decision every time
whether or not to do something. What it actually does

depends on what you tel it to do, usually after the word
THEN in the Ilna Let's illustrate this with a simple program to
print out the number you have just entered in words instead

INPUT INK RND#S; “Enter a nu
a

to
IFa=1 ‘mEN PRINT “one:

HEN PRINT “two"
3-‘ENEN PRINT “three"

El
ES

Wi
&
™

You need not be limited to one condition between the IF &
THEN. To take the example above, suppose you were allowed to
go home at five o'clock only if you'd finished your work:

IF it's five o’clock AND you've finished your work THEN go home.
When you want to join two or more condition expressions such as
“you've finished your work”, you can use three connecting words
to join the expressions. These are AND, OR and NOT. If you have
conditional expression with AND joining the two parts, then the
computer only does something if both parts are true. If it's five
o'clock but you haven't finished your work then you are not
entitled to go home, for example.

To illustrate TRUE and FALSE, try this program:

12 INPUT &

2@ INPUT b
DB IF &=1 AND b=1 THEN PRINT
rue”

48 GO TO 1@

Try entering different values and see the results. Try changing the
values in line 30 to see what effect this has. Make a note of your
answers until you understand what's going on.

Let's look at OR. Think of OR along the lines of IF it’s five o'clock
OR the boss says you can leave early THEN go home—that is do
something when one of the alternatives s true. More correctly, do
something when at least one of the alternatives is true, because it
does not matter how many are true (they may all be) as long as at
least one is true. So you go home at five o'clock anyway, but you
may-also go home when the boss says you may — either fact
entitles you to go home. Try experimenting with this program in
the same way as you experimented with the previous program.

10 INPUT a

20 INPUT b

3@ IF a=1 OR b=1 THEN PRINT "t
rue®

40 GO TO 1@

The last word is NOT. It doesn't join expressions like the other two,
but changes their meanings. Study this:

IF NOT the manager has said you can go home THEN stay at work.

This means that unless you've been told that you may go home you
must stay at work. What happens is that the computer looks at the
expression and decides that if it isn't true then it does something
(for this purpose ignore the NOT for deciding what is true and what
isn't). Thatis, IF NOT ... THEN is true when whatever follows
NOT is false. Something is done only when a condition is not met.
Try this:

10 INPUT a
20 INPUT b
3@ IF ac>b THEN PRINT “true"
2@ GO TO 10

is may you at first, butif i ith the valu
of A and B you will notice a pattern of results which illustrate the
workings of NOT.

You may have noticed that we have used the = symbol in all the
examples so far. Remember, this is only one of six relational
perators. Here is the list again of the six used on your computer:

< islessthan.

> isgreater than.

< = isless than or equal to.

> = is greater than or equal to.

<> isnot equal to (or is anything other than).
= equals, isthe same as.

Change the programs so that you use all of these RELATIONAL
OPERATORS. Play around with the programs until you find

able to predict what happens each time. Try combinations.
of AND, OR & NOT and see in which order they are worked out.

76

See if you can work out how to change the result by putting
brackets around expressions. Note that this will not in every case,
50 if a certain expression gives problems, leave it and try another
‘one. This order of evaluation is called priorities, and is dealt with in
detail later in this book.

We can apply conditional expressions to strings as well as.
numbers.

i@ INPUT a$
£, 2@ IF 3$GTFRED BLOGES™ THEN N
RUN this program to see what happens. The first time you RUN it,
enter the name FRED BLOGGS in capital letters. The program
comes to a halt normally. Pretty unexciting. RUN it again and this
time try entering your own name (if your name happens to be
FRED BLOGGS then enter somebody else’s name). This time the
program will self-destruct because of the NEW in line 20. If you
substitute your name or a code number for FRED BLOGGS then
you will have a program that will only work for you or those that
know the code, and self-destructs if anyone else attempts to use it.

Let us now look at values in conditional expressions. First of all
we'll use the relational operators. You will find that true is
represented by 1 and faise by 0.

12 INPUT &

2@ INPUT

3@ LET x=(a=b)
4@ PRINT

Se G0 TO 1@

You don't actually need the brackets in line 30 but they help to
. i , b

either @ or 1 — which one depends on the values you enter. Try this
using all six of the relational operators and make a note of the
results. You should get either a 0 or a 1 every time I
think that this s a bit restrictive. In fact since this value of 0 or 1 can
be considered as a number, you can manipulate it as you would
any number. The best way of manipulating the number is by

77

multiplying, since this will change true values but not false values
(anything multiplied by @ is 0). Try changing the program to this:

Ofora i for
a true expression. The point of all this is that these values of
conditional expressions are numbers and can be treated as
numbers and this is very useful. There follows a simple game
program, BLOB CATCHER, to illustrate the use of what we've just
been discussing.

10 REM :BLOB CATCHER:

3 an 322 7o

42 PRINT AT 10, F2r0; INK ur2i0

REXAT

£QR c=ze To 1 sTee
INT 5,3; INK &; PAPER

a;sFLRsn 1 T gl T8 SCORE »

80 LET A=INT (RND£3) +1
RINT AT 9,

g@i 2#A; FLASH 1; IN
100 For H=3 TQ 24

iie BEEP .21 SooH

128 LET A%

& YHEN 60 TO 170

130 IF RS>
NEXT "H

LET B=G-1
178 LET S=S+(A$=STR$ A) *A
PRINT AT 9,2%R;"

PAPER
SCORE »
rr_asn 1 _INK

1, °THAT s AL

The idea of the game is to press the same key as the number under
the moving blob, for instance if the blob lands on 3 then you must
press the 3 key, and you will score the number, in this case three i
fed to your score. The number of attempts you have left
continuously displayed on screen as is your score. Line 170 is the.

78

one we're interested in at the moment. Here if STR$ A (the value of
A converted to a string 5o that it can be compared with the kav
pressed) is the same as the key pressed then the logical value is 1

because the expression is true. Whatever the value, it is multiplied
by the value of A. If 0 then the score does not change. If 1 then the
score changes by 1 * A, in other words by A. The score is counted
by the variable S. The number of attempts left is counted by F.

Let us now move to look at values in conditional expressions
involving the logical operations AND, OR & NOT. X AND Y have
the value (X if Y is true/non-zero

(0if Y is false/zero.

X & Y can be expressions like X = 2 or Y = 2 * B. One common
application is movement.

cursor-arrow keys to control movement on-scre
of moving an object left or right along the scree

Y 9 the
. This is one way

10 LET
2@ IF énxns» S" AND X>1 THEN
20 IF INKEY$="S" AND X<30 THEN
40 PRINT AT 21.X; INK 2;"W":iRT

23.%;
to Ta ze

This moves a red blob two columns at a time along the bottom row
of the screen. You can do the same thing with:

1 LET x=15
X=X- (INKEY$="5" AND X>1
wauxm(zvs &Y AND X (30) ¥2
PRINT AT 21,X; INK 2:"H";

Ox
sé Ga To ze

Or with:

i@ LET
38 LET XZ¥S (2 ano ani
NDTX21X 4 (2 AND INKEY

3@
240 PRINT AT 21,X; INK 2;"W";AT
236%E0 7o 20

9

‘The point
iin brackets take the value of the number before the first AND if all
the expressions after the AND are true. Compare these with X
AAND Y which we have just discussed. Here X is a number (2 in this
case) and not an expression. You can think of line 20 above as:

20LETX = X — (2if the “5" key is pressed and if the value of X is

greater than 1, otherwise 0) + (2 if the “8" key is pressed and the

value of X is less than 30, otherwise 0)

You might think why go to these complications to do something
that could be done equally well by a series of IF... . THEN lines.

following OR is false (he or she is 14 or younger) then the
expression takes the value before the OR. This number can also be
avariable if you like. On its own this routine does not have much to
offer against:
30 IF AGE < =14 THEN LET FARE = FARE *0.5

However, if you had several categories of fares on offer then the
method using OR can be extended to evaluate all the categories on
one line.

‘NOT X' takes the value of 01 the ml-m:m Xis true and the value 1
false.

The answer is that used properly and in the right
you can replace several program lines by one long conditional
expression thus saving memory and possibly making the program.
RUN faster. In addition when you become more familiar with these.
conditional expressions you will find that sometimes they can
actually clarify listings over a long set of IF... THEN statements.

Let's now look at OR in operation.

X OR Y has the value (1 if Y is non-zero/true
(X if Y is zero/false

Suppose a conductor on a bus wanted a program to let him know
‘what fare to charge a schoolchild, and that the age limit for these
reduced fares was 14.

INPUT “Ent L
28 INBUT -Eniar face Fagere
30 LET fare=fare16.5 BB agesr1

4
4@ PRINT “The fare is ";fare

Lines 10 & 20 ask you to enter the normal adult fare and the age of
the passenger/commuter. Now then, to understand this a bit
‘easier, let us convert it to plainer English:

LET FARE = FARE * (0.5 unless his or her age is over 14)

If the expression following OR in brackets is true, then the
expression in brackets has the value 1. However, n the expression

of example:
B ReAt
gs PRINT a;TAB 4;b;TRE 8,NOT &

=5
42 GO TO 10

What you will see on the screen are the two numbers you entered
in lines 10 & 20, folkmedhy 0 ora 1. From the resuits you get,
see if you can work relationships between A
produce which value m third column. Try other relational
operators in place of = in line 30 to:-

Finally, let us look at two interesting little oddities. First, consider
this line:

T8 IECERL YHEN IF be3 THEN,RRS.
Ttrue

It's to all intents and purposes the same as

19 IF 3=1 AND b=2 THEN PRINT
true

i There is i in
nmmmnn memory. R by

wil crash with report 2. However, if the fist part of the other

version is false then the program skips over the remainder of the
line. You may be able to find an application for this.

‘The second oddity is not really an oddity, more something that is
missed by many people. Try these programs:

i@ INPUT_a
2@ IF a THEN PRINT a
1@ INPUT a
2@ IF NOT a THEN PRINT a

i prog: there are no.
relational operators for comparing A with anything. Here,
however, the value of A is considered to be true if it is not zero, or
zero if you use NOT. with everything else in this section,
experiment with the examples until you understand exactly what
each routine does. You will find that these statements can be very
powerful programming facilties, and your programming can be
greatly improved as a result.

You can use IF/THEN GO TO to terminate a ‘win condition’
message after a certain number of cycles. Enter and run the
following

28 BRINT Pvou n

“You have won
30 LET x=xii
1o IF x<25 THEN 5O TO =20

This will ensure that YOU HAVE WON is printed out a limited
number of times.

As you've seen, IF/THEN is not just used to branch to new lines.
NEW the program, and enter the following. You'll see it has a
similar effect, although the IF. ... is not just sending the program
10 a line number.

2@ LET x=x+1
B8 37 wimS THEN PRINY “You hav
won

42 co’'TO 20

This program is not as useful as the other one, as it will not
terminate even when it has finished printing out YOU HAVE WON.
You can easily discover this by running it, then pressing BREAK,
and then PRINT X, ENTER.

It is perhaps worth mentioning that the computer is a fairly
dogmatic creature. If you specify that a program branch is to be

e only if the value of Z, for example, is equal to 6, the program
ill continue in a ding loop if 2 equal to6, no
matter how close it is (like 5.999999). If you think the value might
be fractionally different from the one you want as a condition for
branching, make sure you specify that the relational operator
should be, say, greater than 5.5, or greater than or equal t0 5.9,
rather than just equal to 6.

200000000BO .
22002000000 . .
2000000000 .

IF/THEN/ELSE e .

Many dialects of BASIC include an ELSE option, used in the
statement IF. . . THEN. . .ELSE. There is no such function in
our computer's BASIC, but its logic can be used to emulate
this.

The IF.... THEN. . .ELSE is a very useful variation on IF. The
computer can be programmed to do something if the
condition being tested for is found to be true, and something
else, other than just go to the next line, if the condition is
found to be false.

ou can use the following substitution for
IF...THEN...ELSE to produce some esting
graphs. You simply enter the function you would like graphed
in line 60. This is not the most efficient method of
programming on the computers, but it is useful as a means of
onsirating the IF. .. THEN. . .ELSE substitution. As the
rogram runs, it evaluates K each 60.
Line 70 looks at the value of K and prints a zero if K is greater
than or equal to point five, and a full stop if K is less than
0.5. This is the same as a line reading IF K is greater than or
equal to point five print "0 ELSE print “.”. Each of e
other graphs uses different values for K, as generated by i
60, The condition tostod for in line 70 alsa varies. Run the
samples given, using your own choice of graphics symbol in
line 70, and then create a few of your own. It is likely that
you'll have to change the scaling for certain functions.

10 REM Graph plotter
28 FOR y=12'70 “ie STER -1 }
3o IF yi>ie AND Y<>-18 AND u>-
THEN P
ERINT u;
£8 FBA X-Yi0"To i
K=y=xsx7237 i
7@ BRINT (8" AND Kk>=.5) (.

"

g.7.s 81008

84

e

18
2 H
8 8
: :
B 8
5 s
: 3
3 2
: :
: i
2
: !
3 2
S
S
.
-8
-
-ie
s
58 58
AND AND
Try
13 graph.
:
s
¢
4
:
2
1
2
:
-
:
3
-5

s g
i Sx

98 ERInT AR s e

ANB KB

4

FOR/NEXT loops

FOR/NEXT loops are additional useful parts of your BASIC
working tools on the computer. It makes sense to study them
now, because the last series of programs relied heavily on
two FOR/NEXT loops, the Y loop which started at line 20
and ended at 100, and the X loop which ran from line 50 to
line 80. Because these are slightly more complex than the
simplest FOR/NEXT loops, we'll leave the discussion of those
alone for the time being.

/
A FOR/NEXT loop is made up of two statements used to

control a series of cycles of a part of a program. FOR begins
the loop, specifying how many times the loop is to be
executed, and the NEXT statement occurs at the end of the
sequence, returning the program to the statement line
followed the one containing the FOR command.

FOR statements are made up of the line number, following by
the FOR, a numeric variable (a single letter), an equals sign, a
numeric expression (a number, or a previously assigned
numeric variable), the word TO and finally, another numeric
expression (the number of the previously assigned numeric
variable) which is different from the first one. That may sound
incredibly complicated, but it is really quite simple.

The FOR line reads:

100 FOR J = 170 100

The NEXT line, which terminates the loop, is of the form:
200 NEXT J

The NEXT statement then, is made up from a line number,
the word NEXT, and the variable set as the control in the FOR

programming which is being repeated is to stop. When the
value of the control variable (J) reaches the value set in the
FOR statement (the second numeric variable set in the FOR

88

statement), the program passes through the Ioop for the final
time and then continues with the line following the one
containing the word NEXT.

Enter and run this example:

a=1_TO 1@
38 FRIN? TRE eiSiTAR Biaza
3@ NEXT a

POOONE G0

®
»
8
®

The control variable is A, and line 20 prints out A and A
squared. Note that the limits of the control loop are stated
explicitly in line 10 (1 TO 10).

Look at this next example:

1@ LET a=5
£ 8 o,
2: IF’R!NT-THH 4;C;TRB B;crs10;TH

B 14;csa
£o' NEXT ©

- ol s
8 9.8 1.2
sl bt Y 3
&8 @9.8 1.8
S a8 18
e 1 H
3 e
8 18 28
§¢ 12 8%
16 1.6 2.2

Note that in this program the limits of the FOR/NEXT loop
are two variables, A and B, which have been previously

defined. You will find there are many programs where you
will want a limited FOR/NEXT loop, with the limits being a
result of things that have occurred elsewhere in the program.

Nested loops

As you've just seen, a FOR/NEXT loop allows us to alter the
value of one variable (by a count of one in the cases we've
studied), to repeat a programmed series of events a specified
number of times. Now, suppose there were two or more
variables to be operated upon. In this case, you would need
1o vary both values. This can be done quite simply by nesting
loops, in which one loop, controlled by one set of FOR/NEXT
statements, operates within another set.

Enter and run the following program, which nests a B loop
within an A loop.

1@ REM Nested Loops
3@ FOR a=1 JO 12
=1 T0_i2
S@ PRINT TRE &;b;" times
i S¥b

When you run this, you'll see it prints out the multiplication
table, from 1 x 1,0 12 x 12. Part of the run is:

e
e

pmnn EZSm

AGDE RO
1
s
oot

s S is 25
& S iz 3@
Z Siis 35
8 S is 4@
] 5 is 45

In this program, the control variable A stays at one, wi
loop controlled by B runs from one to 12. After the PRINT
(line 70) the control variable A increases by one, and the B
loop runs through again, this time with the A equal to two,
and 50 on, until the B loop has run through with the A equal
to 12. There is no reason why you should have only two
nested loops.

Itis vital that the control variables of nested loops be in the
correct order, that is, the first loop begun is the last one to
end. Try swapping lines 60 and 90 of this program, and see
what happens.

This is part of the output, obviously not what was required.

times
times
times

times
times
times

2
3
“+
S times
s
7
8
o times

13 is 26

14
1s

is
is
is
is
is
is
iz

12 times 21 is 21
11 times 22 is 242
12 times 23 is 276

Use the same variable for as many. purposes as you can,
especially when you use FOR/NEXT loops. Don't use another
letter as the name for a second FOR/NEXT loop if you've
already finished with a previous one as this wastes memory.

o1

STEP

For this next discussion, we need the program TABULATOR
ROCKET RANGE which was introduced earlier.

The important lines for our discussion at this point are 30,
40 and 70. You'll see when you run the program that this
causes the numbers 10 down to 1 to appear on the screen.
The word STEP (in line 30) after the 1 controls this. Change
the —1 following the word STEP to —2, and see what
happens. If no STEP is specified, the computer assumes you
want a positive STEP of 1, which is what has been needed in
the earlier examples in this section.

The STEP command, then, is used within a FOR/NEXT loop
10 allow the user to specify the value of the increment (or
decrement) of the control variable. The STEP does not have
to be a whole number, although you must ensure — if the

statement is lower than the number before the TO — that the
STEP is negative. Try the following examples:

10 FOR a=100 TO 1 STEP -12.5
20 PRINT TAB 82
3@ NEXT a

QR =12 TQ 1 STEP -@.178

In a FOR/NEXT loop, STEP does not have to be a whole

number; it may be a fraction, decimal, the result of a

calculation and does not have to hit the limit value of the loop

exactly. It carries on looping as long as it is less than or equal

to the limit. You cannot easily change the value of STEP

during the course of a loop. If the limit value has already been
then the loop will be totally bypassed:

10 FORF = 1T00
X"

You may be able to use this idea to prevent loops being
executed if certain conditions exist, e.g. if you didn’t want a
black line to be drawn if X was equal to 6:

1000 FOR F = (X = 6) * 33 TO 31
1010 PRINT CHRS$ 143;
1020 NEXT F

The test for whether the limit value has been exceeded is
made at the line containing the FOR statement. An
interesting experiment is to try a STEP value of 0. The
control variable is never incremented and so the loop never
ends! You can jump out of FOR/NEXT loops without any
problems, but you cannot jump into a loop unless the control
variable has already been set up (effectively if you've used
that loop before). In a FOR/NEXT loop, the loop jumps from
NEXT to the line following the FOR statement. Some
versions of BASIC allow you to omit the variable after NEXT
and the most recent control variable is then incremented; you
must specify the control variable on your computer.

GOSUB and RETURN

A subroutine is a block of program within a larger program
which performs one specific task. The main program is
executed, line by line, until the subroutine is called, by the
GOSUB command. The computer goes to the specified
number, works through in line order from that point, until it
hits the word RETURN. This is the signal for the computer to
return to the main program, to the fine after the one which
sent it to the subroutine.

A subroutine is useful if a particular set of calculations has to
be carried out a numbar m times within a program, and at
different places the program. For example, in a
financial program, Aibird may be a number of tax calculations
10 be carried out at different points rogram.
Whenever this need arises, the program e told 1o sosua

and it stays in this subroutine until it hits the word RETURN,

when it returns to the line after the GOSUB command.

A subroutine is written exactly like the main program, except
that it is a program within a program, and is bounded by two
lines, one containing the GOSUB and the other the RETURN
line. The GOSUB command is made up from a line number,
followed by the word GOSUB, and another line number. The
line 40 GOSUB 100 tells the computer to branch to line
100 and continue executing the program in order, just as if
line 40 had said GOTO 100. However, when the program
reaches a line containing the word RETURN, the action
reverts to the main program, at the line number which follows
the one containing the GOSUB statement (in this case, the
first line number after 40).

A simple example, showing GOSUB and RETURN, follows.
Enter and run it a few times, then come back to the book for a
discussion on

Your number is 234
2837<RUBPES 1 8¥%ss
Your number is

squar

23,75
23.76 squared iS S©4.S375

Your number is 4
sauared is 16

Your number is 33
33 squared is 1@89

10 REM_GOSUB /RET
20 POKE 23808, 100, E5

1)
b
S
m
o
nZe
[
=
o
13
=
£

48 GO SUB_1
Se Go To 3
S@ REM Sui
100 PRINT
138 BRINT A
1280 RETURN

Line 30 asks you to enter a number, then line 40 transfers
control to the subroutine starting at line 100. The required
calculations are carried out, and the results of them printed,
within the subroutine, then line 120 returns control to the
line after the one which sent control to the subroutine, that is
line 50. As line 50 is a GOTO, action goes back to line 30,
where a new number is requested, and the whole merry
dance begins again.

Enter and run tha following program, which pits two
a each other in a race, to see a subroutine
ng a litle more interesting than in the

preceding program.

1@ REM _cOSUB_RACE
1s PaPER ORDER 5: CLS

2" LET co) tn 26

PAPER &; FLASH 1: BR
I8 L PeBhelTER uEhs T e o

110 IF X=18 THEN LET HUMAN=HUMA
pi AT X, HAUMAN; INK 2; R
HUMAN (2 THEN PRINT AT ©,08;
65 FiRsH 1; vHUMAN WINS®

12@ RETURN

There are two ‘submarines’ on the screen. The top one is the
computer’s, and the bottom one belongs to you. You just
press RUN, then ENTER, and the submarines move across
the screen from right to left. When one or the other reaches
the side, the program stops, printing out COMPUTER WINS
or HUMAN WINS, as the case may be.

Note that A$, the submarine, extends over more than one
line. Just keep pressing SPACE over and over again once
you've put in the ‘periscope’ part of the picture. Note also
that there is a space after the end of the submarine. This is
vital, as you'll discover if you leave it out.

Sound

The BEEP command on the Spectrum can be used to
enhance your programs, adding appropriate noises when
aliens are zapped, balls bounce off walls, or you manage to
defeat the computer in a game of skill.

Although it may appear at first sight that a single-voice, fairly
quiet sound chunnel which stops all other computer action

ited, it can still be used to add a
surprising degree i e your programs.

g
&

We have connected a small extension speaker to our
Spectrum, plugging it into the EAR socket. Although this
does not increase the volume very much, having a second
source for the sound definitely improves its effectiveness.

The BEEP command (both SHIFT keys, then the red SHIFT
key held down as you press Z) has two parameters (that is, it

06

has two numbers after the word BEEP). The first number is
the length of the note it plays, and the second number is its
pitch.

You'll get an idea of the kind of noises it can make by running.
this ‘Random music’ routine:

S REM Random music
ig BEEP RND/R':I;/B,RND*BB—SE
15 BEEP _RND/RND./2, =
E - e
BB BnoErine % /3 ,RND#130-65
:a g‘E‘éP RND.

/RND /2, RI -1
S@ GO To 1@ Ao s

u

The result of using BEEP within a loop, or a couple of loops,
can be very interesting, as this demonstration shows:

18 REM LDOPI)

20 FOR Aocea Fo e51C

$2 COB S-.21 70 .03 srep o1
448 BEER.B P B, RsI0sd: BE

se'NEXT B

6@ NEXT A

Randomly produced BEEPs, if held within limits, can also be
interesting:

12 LET PITCH=INT (RNDz24}

, 2% LET DURATION= (a7 A EdTa
38 sE=p puraTION PITCH
i BND2=.7 THEN @0 To S

&8 &K ™

As you know from your manual, certain pitch numbers
produce certain notes, with — for example — zero for Middle
C, 12 for the C an octave above it, and —3 for two notes
below it. The next program turns your ZX Spectrum into a
‘vibraphone’ in which you use the bottom row of keys to
produce the notes (in the key of C):C (Z key), DIX), E(C),
F(V), G(B), A(N), B(M), C(K). The notes will continue to
sound so long as you hold the key down.

o7

AN
= NKEY.
256785 ASSE Fren co To

iy 5 Ty s 4%
47 % (A=66) +3% (A=76

5
.94.5
o A g i se
80 GO

Once you've mastered that, you can add a little colour to go
along with the pitch of the notes, with this variation (line 70
has been added to the preceding program).

1@ REM PT.
28 CEY RIZBBe 1w Evs
3@ IF A<G6 OR A>S8 THEN Ga TO

=12# (A=75) +24# (A =3321 »

(R:E?) 0;! fﬂ’BS) +7% (A=662) +2% (H=7B
R,

KEvS:>"7 THEW GO TQ 5@

S8 ECRiEn n'“ PAFER Bs2: CLS
8@ GO TO 20

If you find playing the Spectrum vibraphone too much work,
you can get the computer to do it all. As you'll see from the
DATA line, the ‘well-tempered Spectrum’ uses the natural
scale of C.

ell-tempered
10 REW The well-teaper
2@ DIM B(8)

FOR B=1 70 &
i@ READ f(B)
EXT

(RND=8) +
ThRE 24T a5 20

M, A ()

g2 ¢ ;go;.w THEN GO SUB 110

108 BATA @.8.039,53.56,4.98,7.02
,s’gﬂ,_:a.ae 2

138 [ET 838D s zr=um A e r2c

1s BEEP 1
38 pAUSE 2
3o

You will see many examples of use of BEEP in the programs
in this book, and these should give you ideas of sounds which
Yyou can add to your own programs.

The final program in this section shows a program in which
the sound is an important ingredient, and not just an
afterthought. In this variation of SIMON, the computer picks
a number between one and four, and puts it on the screen,
with a relevant BEEP and a burst of colour. You have to press
the same number. The computer will then repeat its first
number, and add a second one. You have to repeat both
numbers, in sequence. If the computer selects the same
number twice in a row, you have to press it twice, taking your
finger off the key briefly before doing so. You win the game if
you manage to remember a sequence of seven digits
correctly.

1 REM

@ To 7
32 PRINT AT 10,10;"Please stan

-
3§ BoRoeR BNDa?
35=3%5+5TRS (INT (RND#4)

4S PAUSE S
a

o

SS BORDER_RND#7
s@ vaua; 22-%

A
a

138 FER e x

122 TPRREED T Teew co To 12

128 L tS=INKEYS,
8¢ IF Il' CODE t$=@ THEN GO TO 123

145 BEEP .04
148 IF CODE
=N Go_To_ 308
147 PRAUSE 7
142 cLS

@ NEXT b
§S_IF x=7 THEN PRINT “rou_win!
BORDER RND37: PAPER RND#7: GO

LET x=x4+1
PRUSE S@
G0 _TO

;2.5
1335630 (astb)) TH

DOOUEOREL -

PRINT “You scored ";x-1
BORDER_RND $7

PRPER RND*7

cLs

BEEP _.Q@2,RND:30

GO To 320

£O0RRE~NOMmO
5UBEE56US |

DEFining functions

This feature allows you to DEFine functions within a
program, which you can then call ‘whenever you need to
‘while running the program. DEF FN can save space as well as
time, as complex calculations can be defined with a short
name, and called up at will by use of this name.

There are four things in the statement which define the
function:

® The word DEF.

@ The name of the function, which consists of the
letters FN, followed by the name (a letter if it is a
numerical function, a letter and a $ if it is a string
function).

® The argument of the function which follows the

name, in brackets.
@ The formula, using the argument, for working out
the function.
This sounds a lot more complicated than it is in practice. Look
at this program.

100

12 REM DEFINE A_FUNCTION
2@ DEF FN_A(2) =:
6 Ihpur zo 2 =Z*Z

3 3

i@ PRINT Z

58 &o'vo 3™ AP
i3

1336

23.78 S64.s376
1111 1234321
oy 1938
3 113e2s
11 121

Line 20 defines a function A, with the a
e rgument Z as being Z
auare. Then, whenever the program comes across FNAZ)
ill square the value assigned to the variabl o
this in the demonstration. B =

In the next program — BAT — a function is defined in li
The function gets the square root of the uiff:r;nh:
between the square of two variables, and in the routine 120
to 210, uses the value H (see line 130) to determine the
printing positions of the dots which will draw up the bat.

28 REN 8%
38 REM SHOwING pEF FN
4@ LET

S@ LET @=17

EF F; A IB) =S@R -
RS SombEns
PRINT AT P.0; -

IF L¢11 THEN
BRINT Ink BomT) 36180 o

SR BLH0E DG
5550555558 585855:

MR b s s

101

DIM and arrays

The DIM statement is used to set up a /ist which you can
easily access. You may find it necessary, in some programs,
1o refer to elements of a long list of numbers, such as if you
INPUT a quantity of DATA, and you wish to use it in a certain
way, such as PRINTing it in order or magnitude.

An array is a set of memory spaces reserved in the computer,
and referred to by the name of the array, and by a subscript.
To produce an array to hold three elements, you enter DIM
A(3) which creates spaces for an array called A. To hold four
elements, you enter DIM_B(4).

Enter and run the following program which should make it a
little easier to understand.

1@ REM #*ARRAYS DEMO*:
22 3R A1 To 4

30 [EF BiA)LINT (RND3S) 1
s@ NEXT A

&@ FOR A=l TO &

102

70 FRINT TAB 6;"B(“;A;") IS
B (A)

8@ NEXT A
B(1) IS &
Bi2) IS 9
B(3) IS 7
B4} IS 1

As you can see from line 20 of the program you've just run,
the computer needs you to DIMension an array before you
can use it, with a DIM statement. The DIM statement is
made up of a line number followed by the word DIM, and the
name of the array, with the size of the array enclosed in
brackets.

The amays we've been talking about so far are
one-dimensional arrays, suitable for such things as holding a

of numbers. However, you can have arrays of more than
one dimension. These arrays are called, reasonably enough,
multi-dimensional arrays, and are set up with a DIM
command having more than one subscript. Enter and run the
following program:

18 REM MULTI-DIMENSIONAL
REM AY S

3@ DIM Bid,)

42 FOR B=1 TO 4

S8 FOR C=1 TO &

@ LET A(B,C}=INT (RND#9)#+1
@ _PRINT “A{";B;",";C; "3 I8 ;
NEXT 8

PRINT AT 16,18;71 2 3 4~
PRINT

FOR B=1 TO 4

PRINT_TAB 13,8, TAB 1S;R 8,1
TSR, Tt M fb:@);" YRR

BiEubh
"
o
WA

#DL=INT (RND3S) +1

B RA(B,C
25 B 7@ PRINT "Ai%; k2
At3,1) IS @ Is_";A(8,C,D}
1R R BESE
Ai3,4) IS 8 38 NEXT 8
Ai4,1) IS 7
S §
Ai4)4) IS 1 M (111 13
et i
19874 £1.2,1) IS
23 3 468 1.2,2) 18
39823 1,2,3) 18
$47881 (1i311) I8
i i
Firstly the elements of the array will be filed with numbers A(ai3:3) I
between one and nine, and these are printed out by line 70 (i1lz 18
50 you can see what is held by each element of the array. The)
little table printed beside them shows how the elements of (2)2)3) Is
the array are organised. Any element can be accessed by (2:2151 15
giving its coordinates within the array. If this is so, element 3, (2:33) IS
(3) should lie where the two threes intersect, i.e. on the (21351 Is
number 2. You'll see from looking above in our sample run 3:1:4) I
that, in fact, A(3,3) does equal 2. £3:1.5) Is
I
DIMensioning an array consumes memory, so do not set up. i3,2,8) IS
an array larger than you need. The number of elements in an (3081 18
array is the first number within the brackets, multiplied by the Ai3:58:8 318
second number. Therefore, the array A (4,4) has 16 (4x4)
elements. You can see from our sample run that this is so. Increase the number of dimensions to five, as in our next
example, and although it is only A(2,2,2,2,2), there are now

There is no reason why you should not have arrays with more # 32 (2"272°2+2*2) elements.

than two dimensions, except for the fact that they can ol 4 Bl
quickly become quite difficult to handle, and the number of Afla a3 a) 382
elements rockets quite alarmingly. Here is a program to a:1/i/8/8/1) 15 £
DIMension and fill a three-dimensional array. Although the ey 8e
array is only A(3,3,3), you can see the number of elements is AIEITLE 18 S
p 3 oM i
quits lerge (3°373), RAi1,2/1/2,2) I8 &
A1.3/3/1/1) I3 ¢

AM1.2/2/1.8) IS 2

12 REM MULTI-DIMENSIONAL g(l.ﬂ.ﬂ'a.ll IS 4
2@ REM RAYS 1.,2,2,2,2) Is 9
3@ DIM A(23,3,3) A(2)1]1)1,1 IS 6
i@ FOR B=1'T0 3 Ri2/1,1,1,8) IS 4
S@ FOR €=1 TO 3 AM211,1.8/1) IS §
S5 FOR D=1 TO 3 A(2,1,1,2,8) Is 7

3
&

a2,1,2,1,4) I8 1
AR2,1,2,1,8 I8 7
R(2,1,2,2,1) IS 3
Ri2.1.2.2!2) I3 &
AR,2,3,1,1) 18 &
AM2,2,1,1,2) IS 2
1@ REM MULTI-DIMENSIONAL
20 REM ARRAYS
3@ DIN AiR,2.2,2,&
i@ FOR B=1'T& 2
S@ FOR C=1 TO 2
&2 FOR D=1 TO 2
BrEEiRt
9@ LET H(B C D‘EIF\ =INT (RND*2

ig:
A

Code-breaker

Here is the game CODE-BREAKER to show a single-

dimensional .ruy in use. The game is simple to play. The

‘computer ‘thinks of' a four-digit nnmbsr, and you have ten

gum(owofknm A correct digit ir mewrungpomkm
a ‘whi

‘within inthe
correct position gives you a “black
18 REM CODE-BREAKER
20 DIN
28 B 843
48 PRINT - PAPER 2i INK &)
a
Ainbe
“to di
diffe

8@ PRINT PAPER 2; INK 6;
to bepin. ..
90 PAUSI
100 CLS
iie LET (RND#3) +1
58 [29 RN
D¥9) #1: BEE
P, .8, Ct
140’ Fol
ise 1F 3 =E723 FHEN G0 TO 130
ise
128 Fo ®: BEEP_1
225G
200 PR APER 1. INK 7:TAB 8&;
“Enter gu:s 4385 L
18 INI
LET A1
g7 & fexmr (n
* tAr10)
LET A tAs1@)
NEXT
LET B=0
LET u=0
FOR Z=1 4
IF c(z) (Z) THEN GO TO 35
LET B=B BEEP .02,
LET B= 02,1018
NEXT
TRReTE 2 ThEN co To
| 400
FOR_J=1
IF C(2Z) >6(J) THEN GO TO 3%

LET Wsu+l: BEEP .02,
NEXT i

2:R1; " SCORED “;

h RRINT 87
440 P INK 2,0, DHITE

45@ IF W¢>1 THEN PRINT “S%;

48@ PRINT
470, IF Bas THEN PRINT “You gues

430 ‘The “code was

2125085, ;TS fRtSy e

107

String arrays
You can also have string arrays, which are very similar to
numeric arrays. Enter and run the following program to see
the string array in practice, entering four words (each
followed by ENTER), when prompted.

1@ REM STRING

20 DIM AS(4,102)

3¢ rom B=1 0 4

Is “;A$iB

IS URSTE
I3 ENGLAND

Although the second number in the DIM statement (in this
case 10) has to be as long as the longest string you intend to
enter, you only need to specify the first element (as in line
70) to get the full string to print out.

Note that the main difference between a string array and a
numeric array is the dollar sign immediately following the
letter. This tells the computer the name refers to a string.

Here's a string sort program to show string arrays in use. As
set up, and as demonstrated in the sample run, the program

for five words. To adapt it for more, change the 5 in
lines 20, 50, and 40 to the number of words you need to
sort.

1@ REM STRING SORT
M Vs (5. 10)

110 IF B>G THEN GO TO_190
5389 IF US(B)>U$(Z) THEN GO TO 1
130 LET ze=z4

18@ LET U%(Z) =u% (B)
ize U% (B) =0
18@ GO _TO 130

200 LET 6=6-1
210 IF G>@ THEN GO TO 90

INER
RANSACK
RANDOM

RANSACK

String handling
Our discussion of string arrays leads us neatly into strings,
and string handling. As you've probably realised by now, a
string is a collection of alphanumeric characters within quote
marks (including symbols and spaces, if desired). It is
;ned to a variable whose name is a letter, followed by a
dollar sign. Strings are assigned in much the same way as are
numeric variables, by a statement of the form LET A$ =
“HI".

There are a number of very useful string functions, which can

be used for manipulation of strings, and for extracting parts

of the strings. The functions are:

CODE Xxs —This gives the character code of the first
character in X$, so if X$ equalled MICRO,
CODE X$ would give 77.

109

CHR$ 77 We can check to see if, in fact, 77 is the code
of the first letter of X$ (i.e., if it is the code of
M) by asking the computer to PRINT CHR$
77. This gives an M. In effect, CHRS$ is the
opposite of CODE, and turns a code back into

a character.

X$(TO 3) —This gives a string containing the n left
most characters of X8, so X$ (TO 3) will give
“MIC"".

LEN X$ —This function gives the length of a string, so
using our string, X8, of “MICRO", we get
LEN X$ of 5.

Xs(ntom) —This string function produces a string from

X$ which lies between characters n and m,
starting from character number n. X$ (2 TO 4)
gives “ICR".

X$(3 TO) —This function is the opposite, as may be
expected, of X$ (to n), and gives the n
rightmost characters in the string. X$ (3 TO)
gives “CRO".

STR$ A —This turns a variable A into a string, so if the
variable was 234, the string version would be
234" This may not seem to be much use,
but allows certain manipulation of numbers
when they are strings which would be

difficult in their numeric form. We
look at STR$ in more detail shortly.

VAL X$ —This is the ‘opposite’ of STR$ A and takes
the numeric value of the string and turns it
into a number. Thus VAL X$, where X$
equals 22 +34", would return 56.

Here is a printout from the computer showing the string
functions in operation.

18 PRINT “LET x8
2@ LET xs="HICR
32 BRINT™'CODE Xs=';CoDE X8
$8 BRINT ICHRS 77s-:ceng 77
S@ PRINT "X8$(3 TO)27, X833 To

8@ PRINT "X$(TO 2) %1 TO 3

4

10

-

235 M e o

55

23+
WAL X$="; U
ALET X=3a®
RINT “LET X$=STR$ X"
TR X
8=, X8

LET X$="HICRO™
CODE X$=77

BpppRRE b
D AOVEED -0
56565565

Using LEN

If you wish to PRINT a certain number of a particular

character, for example if you want to draw a line of *—"
characters for underlining, then here are two methods.
Obviously, different headings will be of different lengths, so
you need to know how many characters to PRINT. If you're
printing a string, such as A$, you use the function LEN to tell
you the length of A$, hence this is the amount of characters
to PRINT.

(1) 10 FOR A

170 LEN A$
20 PRINT “—";

Line 40 moves the PRINT position to the next line ready to
continue. Omit it if you do not need it. The next method is a
lot faster and uses only one program line.

11

i

2

The only disadvantage is that you need to specify how many
characters are required in quotes even though they may never
be printed. Thatis, you need to know the longest that A$ can
possibly be so that you can put that many characters in the
string constant in quotes after PRINT.

Using STR$

STR$ is a very useful and often neglected function. As we
mentioned a few pages ago, it converts a number into its
string equivalent, as it would appear when PRINTed on the
screen. Try this program:

2.

206 PRINT STRS 2
1.3

40 PRINT STRE (12

56 PRINT 9EL

8@ PRINT STR$ 9E1S

You should get these results:
2

2

@.33333333

233333333
E+15

SE+1§

‘We can learn a lot from these examples. Firstly, the string
generated by STR$ is the same as you would get if you
PRINTed the number on the screen. Secondly, numbers of
less than 1 are assigned to a string with a zero before the
decimal point, providing the first digit after the decimal point
isa by 0 (i.e. the number is equal to or greater than
0.1 and less than 1) and there may be up to eight digits after
the decimal point, although there may be less if all are not

1z

required. So there may be up to ten characters in the entire
string. However, if the number to which STRS is applied has
more than 8 digits after the decimal point, it is rounded off to
8 decimal places, e.g. STR$ 333333339 is 0.33333334"".
STR$ is also capable of generating scientific notation (which
you'll recall, we discussed earlier) such as 9E + 15. Note that
although the computer accepts 9E15, STR$ assigns it as 9E
+ 15 — that is, the exponent part is always signed. Very
small_numbers, e.g. 0.000009 are assigned thus: STRS
0.00000009 is “9E-7”. When using STRS, it is often
‘wise to limit the values of the number so that STR$ does not
begin to use scientific notation, which will cause problems.

You are by now almost certainly thinking: fine, but what can
you do with it?

The main use is to convert numbers to strings so that we can
apply the computer's string handiing facilities for formatting
or rounding off to a given number of decimal places or other
purposes for where you need to be able to assess a number
digit by digit. Here are a few examples of the application of
STR$.

(i) Lining up decimal points. Suppose you had a list of
numbers to print. Try this program:

i@ LET a=RND
28 BRInpTRNO*i0@
3@ LET a=azi@

4@ GO TO 2@

You should get something like this:

3.581543

85.81543

8581.543

28815, 43

858154.3

85818543

85315430

It would be much more legible and readable if we could line
up the decimal point and this is often very useful. Try this
routine:

79.025269
730125265

75025
290252
7902526.5
ET 3=RND*100
28 BRINT TRB 1S-LEN STR$ INT a
LET_a=2x10
36 56'+8728

i iing out so that the decimal points appear
Emﬁmr 9 ©lsetul for a chart o list of numbers
where you may wish to quickly compare several numbcr:‘;
Can you see how the program works? Suppose the value of
was 69.433594. What the program does is take the
part of A (INT A, which is 69), converts this to a string (STR$
INT A) then measures the length of this string (LEN STR$. IN{
A) which in this case is 2. It then uses this number to 1
out how far back across the screen to start PRINTing the
value of A. Note how this is done:

TAB 15 — LEN STR$ INT A

i he decimal
This means that 15 is how far across the screen
point is placed, and then it counts back by the number of
digits in STR$ INT A.

i It is often
i) PRINT to a given number of decimal places. _
(mm ry to PRINT to, say, three decimal places, You will
remember that the above example printed numbers with all
the digits known. We can use STR$ to regulate how many
numbers are PRINTed after the decimal point. Consider this
routine:

18331483

14

10
28
22

THEN LET as="@

v+3%
25 LET b=LEN STRS INT iR
B 1S-b;

L 2%

27 NT TAl (a5+17 . AND
BELEN 2%) +7@@R7Y (TO hadd

3@ L 2%

i2 GO TO 2@
This will PRINT to three decimal places, adding both leadi
zeros (0 at a beginning) and trailing zeros (@ at end) if
required. To get it to PRINT to Z decimal places, make the
following changes to line 27; add as many spaces to A$ as the
number of decimal places you require (i.e. Z zeros), and you
should make the slicer statement (TO B + 1 + 2).

Here is a line by line explanation:

Line 10 sets the value of A to start off with.

Line 20 converts A to a string

Line 22 adds a zero before the first digit if it is a decimal point.
Unfortunately, the STR$ function is not uniform in its action
in that it sometimes supplies a leading zero for numbers less
than 1 and sometimes doesn’t, depending on whether the
first digit after the decimal point is 0. Therefore it is a simple
matter to check if a zero is required or not — if the first
character is a decimal point, add a zero.

Line 25 makes B equal to the number of digits in the integral
part of the number we're PRINTing by measuring the length
of the integral part of the string AS. It is necessary to use VAL
As rather than A because the computer may have an anomaly
between the last digit of the value of A and A$ as set up by
STR$, which may in the odd case cause a problem.

Line 27 which spaces the PRINT position as in (i) above, then
sets about PRINTing A$ to 3 decimal places. First of all, A$ is
PRINTed completed, then a decimal point is added if A$
already represents a whole number and enough zeros to
make up three decimal places. You may be wondering why
add 4 to B — surely we're PRINTing to three decimal places?
Remember the decimal point — that's an extra character. For
the purpose of the slicing statement, the part before is treated

15

as one long string provided it is all in brackets. All we've done

is add characters to pad out A$ to at least three decimal

places, then PRINT up to 3 digits after the decimal point. This
i ot round off the thi i

(i) Saving memory. It is often possible to save memory by
using strings to hold numbers, instead of numeric variables
and decode them later using VAL. You can store the number
in a string variable using STR$:

LET A$ = STR$(1024)

and decode them later as required using VAL:

PRINT VAL A$

You will often find that you use up more memory in
converting numbers in this fashion than you would in using

proper numeric var but sometimes this method can
work wonders.

Try applying VAL to an expression like “ATN 1 x4". It works,
and i facility. Y

ity.
of a numeric variable in quotes and provided it has previously
been defined or assigned, it will be successfully evaluated. In
fact VAL can be applied to all sorts of numeric expressions,
and is sometimes used in place of DEF FN.

It may also be useful if you wish to generate random numbers
several times in a program. At the start of the program have a
statement line LET A$ = “RND * 6" and every time you want
a random number you would type LET R = VAL A$.

116

INKEY$

You do not need to press ENTER after pressing a key when
INKEY$ is used, as our next program makes clear.

Try the following. Enter a number from one to nine, by
pressing the key of that number, and you'll see it print out
YOU PRESSED 6, YOU PRESSED 1 and so on. Touch the
zero key to end, and it will print out YOU PRESSED 0 and
then stop.

18 BEM s% INKEVS DEMO %z

i '.Erussf'gsusva
S@ PRINT ~YOU PRESSED “;
88 IF RE--0- ThEm Sree oY

7@ Go TO 20

YOU PRESSED
YOU PRESSED

b2

=

<

0.

D:

imi

0

1

Jul

ot
SOUAANNGONAYNG

YOU PRESSED

The nexj program — PREDICTION — also uses INKEYS. In
this game, you have to try and anticipate the number (from
one to nine) the computer will think of next. The computer’s
number is shown on the screen near the middle, and the
lowest number is the score. The lower the score at the end
(when you manage to successfully predict the computer’s
number), the better. The screen will stay blank until you press
a key. The words “THE SCORE IS" will flash off and on.

540

YOUR NUMBER IS 4

MY NUMBER IS 1
THE SCORE IS 1

1@ BEM sspREDICTION:S

58 L

se PRUSE 1

22 .:xngzgln INK _BND*7.
pzn’ & xmys’an WOMBER IS "iPS

.e2,8
28 LET 8%t oS SRiBi e
PARER BT ﬂr’;v“uﬁé'zn I8 Hrusit
4By INK BHDST
RINT AT l& BRX

P
wnpgn)
THE _Scoh ﬁ i@

IF_Ws=AS$ THEN BEEF .21 ,RND*
:%‘Bun TD'Ass

G0 To Se
The next program — MAZE MAKER — also shows INKEY$ in
action. Using the A", 2", “K"" and “M" keys, you have to

mmlmtwnﬁommebmmlof(hcndcomanomewp
right-hand one, without crossing any of the little white
squares. Note that no path through is guaranteed, and there
s no mechanism for checking that you don't cheat. At the
end, the number of ‘moves’ it took you is printed on the
board.

19 gy saweze ke

38 REM To gn¥ﬁg'rg§ﬂg_°:m.4

£8 REN [EFT Ao corier To ThE

28 REm ToP RIo

7@ BORDER 2: PAPER 7: CLS : BR

se LET s=0
5@ FOR Y=1 TO 704
208 LET T=INT (RND:3)
PRINT INK (RND:5+13; ("W

o 12er s e« ThND Teaas]

120
13@ PRINT AT ©.@;" “;AT 1.@;"
140 LET X=30: LET Y=19

15@ LET M=X

168 LET N=Y.

138 BRINT AT v.x; INK 2; "
188 LET S=Si1

$=INKEY $
THEN GO TO 190
AND Y38 THEN LET
22@ IF A%="Z" AND Y <20 THEN LET
23@ IF A$="K" AND X(31 THEN LET
242 IF A$="M" AND X>@ THEN LET

250 IF X=@ AND Y=0 THEN GO TO 2

280 PRINT AT _10,1@; FLASH 1; BR
goe BRINT - TAE a, TLASH 1
IGHT 1i"IT TOOK YOU P
Note in line 110 how use is made of computer's logi
methods of evaluation. This line ensures that if T (generated
in the previous line) is zero, a solid square is printed, and a
blank space is generated if T is greater than zero. This is a
t way of emulating the IF/THEN/ELSE
command available on some other computers. This
technique, and similar ones, are discussed in greater detail
elsewhere in the book.

If you want a time limit on user responses, use this method.
Suppose the user had only a few seconds to decide whether
or not to have another game. If he or she was too slow
deciding then the program stopped: For the purpose of this
routine suppose the user had to press R for a re-run:

1@ FOR F=1 TO_12@
FHEn o To e

H
6@ PRINT “RE-RUN"
® RUN

Alternatively, you can make use of the frame counter, for
timing inputs or anything else.

To use the frame counter use this routine to first set the
timer:

POKE 23673, 255

POKE 23672, 255

and to use its value at any time use:

LET T = (256 * PEEK 23673 + PEEK 23672)/50

This will give you a fairly accurate readout in seconds if you
PRINT T. Remember that PAUSE and BEEP use the frame
counter so it cannot be used for timing if you are using
PAUSE or BEEP in your program. Try this, for a printout in
seconds.

10 POKE 23673,255

2@ POKE 23872 355

38 LET =(256+PEER 23673+PEER
3872) /! i
BO%RPAINT AT @0t

Se o To 3@ ;

/And this for a digital clock:
L Clock
18 BELDLOL I ABIE"S. cue

nter hours “ih
BV cemier 2ouith.

ET
=" 58e72.2:
ggﬁz 23672’ 255

o -un -mé “ERENT o

IETSNa0’ veti
PRINT s,
T-3ir (casespEEK 20875+

LET
558-27750

120

Z8«ETa3298: 2339 ;m(z aswa ass
1180 IF m=6@ LET

182 IF h=13 THEN LET h=1
220 G0 TO 11

If you wish to time accurately, without resetting 23673 and
23672 back to zero over and over again, refer to the PEEK and
POKE section, a little later in the book.

READ/DATA/RESTORE

READ and DATA are very convenient ways of accessing
information within a program, and are relatively simple to
use. Enter and run the following program, which shows
READ and DATA in action, and then return to the book for an
explanation of how it works.

10 REM READ/DATA

20 REM sssskzssszs
3@ REM READ THE DATA
40 REM ssxssssis:s
5@ D 55

82 FOR A=1 TO S
70 READ B(A) ¢
8@ NEXT A

90 REM $¥s s s

18@ REM READ IT BACK
110 REM f¥sss¥sszzs
180 FOR £=5 TO 1 STEP -
132 PRINT B(

220 c

1Se DATA 13.35241,88,2,199999

RUN

Z
i

139933
2

88
55281
13 Vi

In_line 70, the computer comes across the instruction
READ.... Whenever it finds a READ instruction, it goes to
the first item following the word DATA, and READS that, in

121

this case, into an array. The DATA items can be ai
the program (although it is useful to keep them Illrlv close 2
the READ statement which refers to them).

Return to the program TABULATOR ROCKET RANGE which
we used earlier in this book.

In mﬂm program in this section, the DATA s numbers, und
these a to numerical variables
array). "In TABULATOR ROCKET RANGE, the DATA s
strings (line 220) and these are assigned in turn to the string
variables A$ and then printed out in line 120, through the
loop labelled ‘rocket’. There is a third word which goes with
READ and DATA — RESTORE. This tells the computer to go
b.ck 1o the start of the list of DATA and start READing from
in. Here is another showing
DATA in the form of strings, and illustrating RESTORE in
action.

RItL WET oIE KICL
WET

In this program, there are only three items of DATA, so
RESTORE rmust ‘operate once the three have been read. Line
80 ensures that this occurs every time the three are read
while running through the A loop from 1 to 21. Notice that
string DATA must be enclosed within quote marks.

122

As you have seen, a READ command is used within a line to
assign values les from a seq

within a DATA statement. Each item of DATA is separated
from others by a comma. A READ statement is made up of a
line number, followed by the word READ, and the variable
names which are to be assigned to the variables taken from
the DATA line.

When a program comes to a READ statement, it will — as we
pointed out — move to the first DATA statement, no matter
where it is in the program. The first value of the DATA
statement will be assigned to the first variable in the READ
statement. Apart from reading a DATA statement, the
computer takes no notice of it, and will treat it as a REM
statement. Move line 150 up to line 25, and run the
preceding program again. You'll see that (a) the computer
ignores line 25, and (b) still READs it successfully.

Even if the DATA is scattered all over the program, the
computer will seek it out, as the following program shows.
1@ REM _READ/DATA
2@ DATA_“HI“,7
3. DIM B$(21,4)
g D. Z ﬂl)
70 REHD B lﬁ) 2 lﬁl
2@ IF 3. ' (A23) = THEN RESTO
85 DATA “GOSH"
90 NEXT A
95 DATAR S6&, BDB f
13@ FOR C=1
;:g PRINT BGIC) ,ZIC)
ise N!XT C
It is important to ensure that you have enough DATA items
for the number of times you tell the computer to READ.
Delete line 145 in the above program, and run it again. You
will get the error message “E OUT OF DATA, 70:1” where
the computer had read two items of numeric DATA, then
was unable to find a third because RESTORE had not yet
been evoked.

Remember that although it is not essential to have the DATA
items near the READ lines which are looking for them, it will

123

probably make your programs easier to understand if they are
held in this manner. It also makes it easier to know which
lines to alter if you are working on a program.

User-defined
graphics

One of the most exciting features on the ZX Spectrum is the
facility for defining your own graphics. It is simple to do so,
and allows you to tailor the visual output of your program to
your own wishes. In this chapter, we'll develop a greatly
simplified form of the arcade game ‘Pacman’, to show the
user-defined graphics in action. Our game will be called
DOTMAN, and will consist of a single ‘Pacman’ creature who
s trying to escape a single ‘Ghost’, while at the same time
trying to eat as many dots as possible.

Graphics are defined on an eight by eight grid, like the
following:

select any key, from A to U, and impose our own
on that key, 5o whenever it is selected, instead of
printing the letter, it will print our own graphic. Although —
of course — you lose graphics when you turn the computer
off, they are not effected by NEW, so you can NEW a
program, and still have your graphics available for a
subsequent game.

124

You change the contents of the graphics of a key by a short
POKE loop. Here's an example. If you wanted a diamond
shape to appear every time you pressed the CAPS SHIFT and
GRAPHICS, so the cursor was a G, then pressed the A, you
would proceed as follows.

First, on your grid (and there are several of them at the end of
this chapter, which you could photocopy to get a number of
them for future use), we draw the pattern we want to create.
A diamond could look like this:

LT
1

We POKE it into place using a series of eight DATA
statements, in which a zero equals a blank little square, and a
one equals a filled-in square. The top line of this diamond
shape is then represented by 00001000, an eight-digit
binary number. The second line of the diamond is
00010100. Compare this with the black squares on our
diagram. We indicate to the computer that the number we
are using is a binary one, by preceding the number in the.
DATA statement with BIN, which is available from the B key.
Here is the ‘diamond creating’ routine in full:

1@ REM DIAMOND

20 FOR J=@ TQ 7

Se READ

10 POKE USR "A"+J.0
5@ NEXT J

6@ PRINT A"

7@ _DATA BIN 20001000,BIN 00010
100,BIN 00100010,5IN 2ie00001,B1
N 26100010,5IN 00010100,5IN 0000
1000,BIN 06020000

Note that the A in line 60 is an A achieved after we have
gone into the graphics mode. Run the program, and even the
Adin the listing changes, so that line 60 now looks like this

6@ PRINT "o

There is no doubt that we have created quite a passable
diamond shape, as the printout shows:

28 23
g

You may have realised that the leading zeroes in the DATA
items were redundant. However, we prefer to leave them in,
just because it makes it much easier to check up on the
elements within the DATA line if something goes wrong.
Let's try for a different shape. Enter the following DATA
statement, and then run it to see what you get:

70 DATR BIN ©2118000,5IN 91110

BIN ©111111@,5IN ©183i1111,BT
N 16011111,BIN D001i0010,5IN 6001
2010,B5IN 00020000

This was intended to be an elephant, and it worked pretty
well as you can see on your screen.

RARRRRRRARRRERZER
RARRRRRRR rERRER
Let's get down to creating our ‘Pacman’ game, DOTMAN.
We follow the process of getting a program to work, before
defining the graphics characters which are part of the
program. This ensures that the program itself becomes the
portant thing, not the graphics which will be used init. It is
perfectly possible to see a whole program working, just using
letters, before deciding exactly what each letter will
represent.

Our game will be fairly simple. On a 14 x 14 grid, there will be
one DOTMAN, who will be under our control, a GHOST
under the control of the computer, and a series of dots which
can be eaten by the DOTMAN. A few walls will be on the grid

126

(a maze) and neither the GHOST nor the DOTMAN can get
through those.

At the end of the book, in the section called ‘Improving your
programs’, itis suggested that you map out the major parts of
the program before you begin, so the structure of the
program is clear, even before you begin working on the
program. If you follow through the process we'll describe,
you'll see how useful this can be.

Dotman

For DOTMAN, the program structure will be as follows:

1- 999: Send action to parts of the program to start

7000-7999: Print maze
8000-8999: Initialise variables

Once this program is underway, it will loop from 1000
through to 3999 (or whichever is the highest ‘GHOST moves’
number) over and over again, until the GHOST gets the
DOTMAN, at which time the program will proceed to line
4000 for the end of game routine.

Let's write the first control routines:

1P GO SUBR seed
2 220
3@ 50 508 Seen \
42 B0 SUS Seed \

L1
D
O
o
o
Ll
~y

This is all that is needed at this point. And, as we're going to
write the whole game before defining the DOTMAN and the
GHOST, we can add 6999 RETURN and 5999 RETURN right

127

, and get on with buildlng the maze, after we have
Gefined tha varsbles, GA fa the position of. the GHOST
across, GD the ‘down’ conrdlnate of the GHOST. EGA and
EGD are the variables to ‘erase’ the GHOST when it moves.
Similarly, DD and DA are for DOTMAN across and down,
and EDD and EDA for erasing.

We put in the maze, and the routines to move the DOTMAN
and the GHOST, and our program looks like this:

1
S Sue Zeoe
38 88 Sue Soce
33 REn move dotma
1898 REN 28YRan°i30carnic B.cuD
15 seow
INT AT EDD,EDA;
1838 PRINT BT BE.BS Rz .
1938 LET £pD-DD; 'LET E0A-D onsae
1@4a I IKEY § = THEN
THEN' IF SDESEN mo,ng &8
1885 NKE THEN In g;;‘n
ToEN I8
Tede it K IF K EL
I
xEEENLzT Bo=00-1 i
1878 IF THEN IF DD<d
JhpeN e scnssn; (Dg_r_:ﬂgms %
S5 2 THEN GO TO loea
e
@
®
@

128

7252 PRINT
7as@ NEXT @

ERINT AT 2,7; “xuxx
7esm PRINT AT 5,81 ¥AF 2,10, vx

7090 PRINT AT 4,5; "X'";AT ,11;"

102 PRINT AT §,3; "XXXX“; .95
7aee. AT 5.9,
§.8;

780
&3]

1@.3;

FEer
12!8
‘CRrIseLES

DR=@

If you run this, you'll see we have a version of the program
which works, after a fashion. It s pretty dull, at the moment,
but do not be disheartened. You'll be pleasantly surprised at
how good it looks when we finish. It can be improved very
simply, even at this point by adding

7065 INVERSE 1
7165 INVERSE 0

INVERSE works somewhat like BRIGHT and FLASH, one
means on, zero means off. Run the program again, and see
the effect INVERSE has had on the walls of the maze. This
lifts it immediately, doesn't it. There must be four DOTMEN,
one facing each direction, so that the mouth points the way
the DOTMAN is moving. This is why the variable A$, which is
the DOTMAN, is changed at the ends of lines 1040 to
1070.

Add the following, to define the DOTMEN:

129

REM DEFINE DOTHMEN
2838 FoR JSoTHS B

A0 @
2858 Eéﬁ sk B0
Sese 4%

A BIN 90111128, 8IN @
$93%e TR Ta311200 BT 1iiiepea 81
N 1ii1ledd,BIN 11111102.8IN
1111,BIN 09111102
sasp’FoR Js@ T 7
s828 POKE UsR “Cad.@
2 11

A BIN 29111102 BIN 111
$18°aTN Beiilili,BIN @da1111i BT
N obe@1111,RIN @@111111,BIN
111@,BIN @é11iiea
R
= ¥
§i%8 POKE UsR "D sul@
5lie

BIN p@1iiice BIN 21111

$13%63R 22311200 AL 11133431083
N 14110111,BIN 1i1@0111,BIN @
201d,5IN @iedoeld
Sice’rom Je TG 7
£33 BSRE Usr "E"su.0
$19@ NEXT o
5200 DATA BIN 21000012, 5IN 21200
@i, BIN 111g0111,BIN 11121111 8%
N 242331131,8 4131233,83In 8413
1112.8IN 0061 g

We sketched a number of possible DOTMAN figures, before
deciding on the one labelled B. This diagram was rotated to
get the BIN numbers for the four figures.

Add some colour, by inserting INK 2 in line 1030. This will
print red DOTMEN. INK 1, in line 2010 will tun the
GHOST, when he's complete, blue.

Here are our working sketches for the GHOST.

The GHOST we finally ended up with is a close cousin of the
one on the left in the diagram. Although it does not look
particularly promising here, it worked quite well on the
screen. You'll probably find, from time to time, that you will
want to modify the final graphic when you see it on the
screen, and you'll find it fairly easy to work directly from the.
screen, soon learning which bits of the DATA statement to
change. Anyway, here’s our final version of DOTMAN,
complete with a few screen printouts. As is often the case,
the printouts really don’t do justice to the appearance of the.
game. You're sure to enjoy playing it, and working out ways
to improve it, and make it more like the arcade game.

One change you might like to make is to add a routine to
generate a random maze (by putting X's at random on the
grid in the 7000 subroutine). As well as this, you can let
the DOTMAN and the GHOST start at random positions
the maze. A “highest score’ feature could also add interest.

SCORE IS @

SCORE IS 9428

SCORE IS 47140

SCORE IS 105422

END OF GRME

12 GO SuB aeead
2@ GO SuB 7eed
3@ GO SuB Se
ig GO SUB ceed
1908 REM move dotman
1910 REH dotman is Srarnic 8.C.0
ig2@ PRINT AT EDD EDA;"
18228 ¢ SEREENS (85, DAY THEN
LET SCORE=SCORE+2357
1830 PRINT AT DO(DR; INK 2,98
SCORE Is 21213 bl L4
1235
1pie HEN IF DR
THEN (DD, DRI} £3
THEN ET_As="€"
| igsa THEN IF DR@
THEN

(DD, DA-1) <> "X T

133

LET Rs="3"
HENo"5E TRRECHL7T THEN 17 ,0eae.
THEN I_Fr' SgﬂggN? pp-1,DR)
?gg LE ="8" THEM F DD-\SS
THEN IF SCRE N$ (DD*1, Dﬂ“(.‘,
P e g
198 IF:RN F>l. N 8D I8

CORE.
ST_IS BRAPHIC ©
EéN?”ST e85, 288 "k anp e

AT 6D, GA; INK_1; "R"
Seis eaThT AT 20,08 INCALSL

402@
p=GD: LET EGA=GA i
E81E" R monson, LT o
Y8D_THEN 1F SCREENS (G
3 A_THEN IF SCREENS (&
e

Sco

R, @

AR
559
Gl
L1

()

0
Mo
&
o
c
0
o

b A AL
X
B

OKE USR "C"+u,@

A BIN 20111100 8T
N @@111111,BIN 22l
1111, BIN 201111118
IN 26111100

ERD @
OKE USR "D"+d,@

XT o

A BIN @211112@,5IN 21111
.3 11, BIN 18111111,8T
N

BRRRRRD CROREEE B

b
b

Bk HESEENE. GEEDTRI 5
P gl

10
2
¥y
S
1
1
1
&
7
3
3
2
)
@
1
1
2
3
4
S
)
1
1

SZE AR ZE AN Z)

DREHDZ
H8Z30

1i120111,8IN oded
21@

BOEH
BHEZ
BZk

a

et

FOR J=2 To 7
READ
POKE USR “E"+d,0

o
DATR BIN 21220012 8IN @
BIN 11120111 BIN 1il@i1i
112233,8IN 14113111, 8IN
,anleexiale

REM DEFINE GHOST
R a=e To 7

SRODID
DO GEEEEEDEA BEOS5
0. z

e
i

POKE USR “G"+.,0

o
DATA BIN @@11ieee,SIn 2111
I fgeiea e AR eI 0000
BIN 121@ield i

BEM BUILD MAZE
FOR G=
EGR 8I1

2
38 FRIN INIDRND
794@ NEXT H i

NN NI Z R D O D ZSA A0
)

SDOS0E OUEDHGHIDL BRRkS

P

N 2
2
1
5.
X}
2
H
2
]
T
=
oND 0 P

=)
it
1]
-1
)
3:
ot
£44
59
3.
Ef
e
nig

g18@ REM sﬁnpgxr B IN 8112
RETURR

Clearing a part of
the display

This is a useful subroutine that enables you to clear any
number of lines from the bottom of the screen. It enables the

to be kept on the top few lines of the display
during the game, or the score or other special instructions
may be kept on-screen while everything else is cleared. The.
subroutine should be called by GOSUB 8010.

S21@ INPUT “How Many Lines to be
cleared? ;¢
2028 IF c«@ DR ¢>21 THEN @0 TO 8

232 FOR f=21 TO 21-c STEF -1
Se4d PRINT AT F,@;"
Q5@ NEXT
S2E@ PRINT AT F+1,@;
RETURN

Line 8010 asks how many lines you want to clear, starting
from line 21 at the bottom of the screen and working upwards
— it looks quite impressive. The INPUT statement is not
jot-proofed; you may like to experiment with this yourself.
The statement in line 8060 moves the PRINT position to the
start of the part of the screen you've just cleared.

Screen scrolling in
BASI

Machine code programs are easily written to block-load large
chunks of memory from one location to another to enable, for
instance, the screen to be block-loaded in certain directions.
BASIC as a rule is usually too slow to enable this to be done.
The only method that can be realistically used to scroll the

137

screen is to store an image of the screen in a string array and
PRINT this. Here are four example programs that enable the
entire screen to be scrolled up, down, left or right.

These routines are noticeably slower than the command
SCROLL, especially the left and right scrolls because those
are PRINTed one line at a time.

Upward scroll

S REM Upward scroll
2o 04

DIM a% (7
NPUT ' 2

I

@ PRINT e.,2; ag
40 LET as=as(33 TO 14"
@ GO TO 3@

Downward scroll

S REM Downuward scroit
i@ si7@4)
20 £
38 @,0;a8
ie

“ragi TO 8721
se

Leftward scroll

S REM Leftua

18 DIy 58 (v64fY ot
£,
@ FOR f=1 TO'6%3

STEP 22
1) =asirs1 TO

® LET asif 1O Fad
FA313 3

6@ NEXT f
7@ G0 TO 3@

138

Rightward scroll

REM Rightward scratt
12 DIN a$i704)
2@ INPUT 2
3@ BRINT AT, i3
4@ FOR r=1 TQ 873
Se LET as(f 70O f*
To_r+3@
8@ NEXT f
7@ GO TO 3a

Saving lines at
screen edges

The easiest way to accomplish this s to use the string slicing
facility to “SCROLL" certain parts of the string only. First of
all, the upward scroll. L is the number of lines NOT to be
scrolled.

1@ DIM as(7@4)
22 INPUT 2%

)
c0 TC 3@

Next the downward scroll. L is the number of lines not to be
scrolled at the bottom of the screen.

1@ DIM a%(704)

20 INPUT a%

35 INPUT L

30 PRINT AT _0.0;2%

20 LET as(10 7ba-Ls32) ="

TO 7@4-(L+1) £32)
S0 GO T 38

veagt

The same technique can be applied to the sideways scrolls,
but since these are slow enough already it hardly seem:

139

worthwhile. You can extend this idea to permit lines in any
part of the screen to be kept stationary while those above
and/or below are scrolled, simply by modifying the string
slicing, but if you require complex arithmetic to work this out
then you may slow the routine down excessively.

Another technique you can apply to these routines is
“wraparound” whereby anything disappearing off any edge
promptly reappears on the opposite edge. Here's how to do
this with an upward scroll:-

12 DIM as(704)

2@ INPUT a

298 PRINT AT @.0:a%

4@ LET 2$=23(33 70)s28(TO 02

Se G0 To 2@

And a downward scroll with wraparound:-

2,0;a
16 CET 1etas(875°F0 1 rasc To &
Se 60 TO 3@

A leftward scroll with wraparound:-

1@ DIM a8 (704)
INPUT &

20

3@ PRINT 2.2 a8

i@ FOR f=1 TO'673 STEP 32

S ET asif TO f+31)=asif+1 TO
F+31) $28(F)

S8 NEXT f

79 B0 TO 9@

For a rightward scroll with wraparound, change line 50 to:-
S@ LET ag(f TO 7+31)=ag(f+31)+

as(r TO F+d@)

Finally, remember: instead of using PRINT to place anything

on screen, use LET A$(X) =“X", since anything you PRINT

is not scrolled — only the contents of the array A$ appear on
screen.

140

Moving graphics

The theory behind moving graphics is that first we draw a
character in one position for a short time, then erase it and
draw it in another position. Variables are used to remember
the position of the character. Let us look at an example
program which we can draw up from this ““theory’’:

i@ LET x
22

2

&

2
s

This is not a very good program — the black blob seems to
flash on and off as it moves across the screen and the
program stops with an error report when the blob reaches the
right-hand side of the screen. What has happened is that X
was the variable that told the computer how far across the
screen it should PRINT the black blob, and if the number is
greater than 31 then your computer cannot PRINT since the
limits of the screen are from @ to 31, and any attempts to use
anumber greater than 31 would place the blob off the screen
to the right, either in your television speaker or your living
room or wherever. Now the Spectrum, being a rather clever
le machine, decides that this is not on, so it stops the
program and tells you what went wrong, so that you can
correct it. Let us do this. The easiest way is to arrange that if
the value of X goes outside the permitted range then the
program automatically changes it to a suitable value. One
way in which this can be done is to add a line like:

48 IF x>31 THEN LET x=2

But since we already have a line saying LET X = 0 in line 10
then we could do the same thing by sending the program
back to line 10, like this:

45 IF x3>31 THEN GO TO 10

‘This technique is used rather a lo prooans sending a
program back to the ing reset some
variables to their starting values. In this sxampla both
methods achieve the same results, but you may come across
certain programs where only one is suitable, or one method is.
better than the other.

The next step is to improve the flashing display. One way to
do this is to make sure the blob is displayed for longer than it
Try this

20 LET x=0
20 BRINT AT_S,x; “E"

30 FOR f=1 T0'1b

4@ NEXT f

S@ PRINT AT S,x:" *

LET x=x+1

IF x331 THEN LET x=0
50 To 20

29O
O990;

Seems to work rather well, but in most programs there are
other computations to be carried out which will slow down
the program, and the time-wasting loop of lines 30 & 40 will
slow things down unnecessarily, so this is not a very good
approach. Let us try to reduce the flashing by reducing the
time between the space being PRINTed and the blob being
PRINTed. Try this program:

E=
20 IF x351 THEN LET x=f

50 PRINT AT 5.p; SETS
€0 GO TO 20

See how much smoother thi

Here, X is the variable that remembers the current position of
the blob. P remembers the previous position so that it may be.
erased by drawing a pe el Line 10 makes X start off
with a value of e 20 determines the value of P by
making it equal to X bofore X s increased in value in line 30.

This can be any amount of increase — try changing the
number after the + sign to see the effect. It appears to move

142

faster, and that can be advantageous or disadvantageous.
Stay with 1 after the + sign for now.

The action of line 40 is to ensure that when the blob has
reached the right-hand side of the screen it is sent back to the.
left-hand side of the screen by resetting X to 0. This ensures,
a constant supply of blobs for us! Line 50 does all the
PRINTing — note how two AT functions can be placed on
Lol joined by a semi-colon. We can also do ma
same with TAB incidentally. Try writing these
upame lines like this to see if it makes any difference to «ho

S@ PRINT AT 5.pi
85 PRINT AT Sixi

We can shorten the program by one line by changing line 30
to:

30 LET x=x+1 AND X <31

The way in which this line works is rather complex, and is
more fully explained sections on conditional
statements. Simplified, it means “if X is less than 31 then add
1 to the value of X, but if X is not less than 31 then make X
zero”. Now. delete line 40 (the one we've made redundant)
and renumber nicely in steps of 10 and we end up with this

g LET x=2
30 LET X=X+l AND x (31

INT 5.x%;
43 BB 2%

You may have noticed that the space is PRINTed one column
behind the blob all the time, and therefore it may be possible
ace)(]" and dispense with
the variable P altogether. Thio. doss make the cisplay
smoother, but it causes problems when it gets to the end of
the line and you need an extra line to clear this position. To
see what we mean, try this program:

143

12 LET x=0

22 L 241 RAND xgao
3@ PRINT AT S,

4@ GO TO 20

See what we mean? Every time a new blob shoots across the
screen the old one stays on the right of the screen. Let us add
a facility to erase these blobs:

1@ LET x=o

20 LET X=x+1 AND x 3

3@ PRINT AT S.x;" W

.35 IF x=0 THEN PRINT AT 5,51;"

42 GO To 20

Again we can use AND to shorten the program a little:-

LET x
LET X
.32 FRINT
IND X

42 G0 T

Lk
2955

Line 35 in the first program and the second part of line 30 in
the second ensure that a space is only PRINTed if the blob
has reached the end of its travel. Here is another way of doing
this, using the control variable of a FOR/NEXT loop instead
of the conventional variable X. This method uses slightly less
memory and is slightly faster to run.

1@ FOR x=0 TO 38
PRINT AT S,x;"

Another way to use this method is to have PRINT AT
5,31;"(space)[]" outside the FOR/NEXT loop. This has the
advantage that the computer does not have to examine the
conditional expression so often, so the program runs
considerably faster:

10 FOR x=0 TO 30
20 PRINT AT 5.X;"

= x
4@ PRINT 6T 5,31;" *
se G0 TO 1@

So we've ended up with a routine that is quite fast running
and economical in memory usage.We've also seen some
the problems of developing this kind of program. The
examples we've seen so far deal with constant movement
across the screen. We will also require to move characters
about the screen, possibly with control of this movement
from the keyboard, so that the operator may control the
movement. To do this, we first need to return to INKEY$, a
very useful aid for moving graphics. If you've read the earlier
section, you'll recall that INKEY$ is the character which
corresponds to the key being pressed on the keyboard. If you
press K, then INKEYS is “K’ or INKEY$ =“k". If you aren’t
pressing anything on the keyboard, INKEY$ becomes the
empty string, or ", (INKEY$ cannot be “(space)” because
pressing SPACE acts as BREAK when a program is running
and stops a BASIC program.) We will look now at some other
ways in which we can use INKEY$, because it is a powerful
and extremely useful function for moving graphics. Most
arcade games require you to press buttons, flick switches or
manipulate joysticks. Your computer does not have these
(unless you buy or build an add-on board), so all control has
to be done through the keyboard.

To control movement on the screen, certain keys have
advantages over others because of their layout. For instance,
take the Z and the M keys on the bottom row of the
keyboard. They can be used to move left (2) or right (M), to
control left/right movement on screen, e.g. in an invaders
type of game. Their advantage is that they are logically
placed, making them convenient to use. One disadvantage is
that the M is near to the BREAK key so that you may
accidentally stop the program in a frenzied hurry to avoid
being bombed by the Green Menace.

If you want to control left/right/up/down movement (e.g. to
move the cursor in the word-processor program near the
back of this book) then the 5,6,7,8 keys are a better choice

145

since they have arrows pointing in the four directions printed
on the keys. They are next to each other for convenience of
use and they are not dangerously near BREAK.

The most common way of using INKEY$ in a moving
graphics program (be it games or serious applications) is to
put it in a conditional statement to control the value of a
variable. For example:

IF INKEY$ = “8" THEN LET X = X + 1

Here, one is added to the value of X if the 8 key is bei

ey is bein
pressed, but X stays the same if no key is being pressed, or 4
key other than 8 is being pressed. Having done this, the
variable can be used to control, for example, where to PRINT
on the screen, for example:

PRINT AT 5,X;"[]"

If we adopt the convention of X being the horizontal position
across the screen and Y being the vertical position on the
screen, then the bigger the value of X, the further to the right
s ;:m screen the character is PRINTed and the bigger the
value of Y the further down the screen th i

L e character is

So knowing this we can write a short program to control the
nu_;v-m:m k;f a character (e.g. an asterisk) on the screen
using the keys 5,6,7 & 8 (the keys with arrows printi

them) like thi SRt

102 IF INKEY$="S" THEN LET x=x-
11@ IF INKEY$="8" THEM LET x=x+
128 IF INKEY$="7" THEN LET y=y-
108 IF INKEY$="6" THEM LET y=ys
14@ PRINT AT . x; “"

e

Before we can RUN this program we need to define X and Y
'g will happen. Add these lines to the program:

1@ LET x
2@ LET

We can now RUN the program. What we get is an asterisk
PRINTed at the top left corner of the screen, and the program
stops after line 140. To prevent this happening we can add a
line like:

202 GO TO 102

This ensures that the computer carries on doing the task over
and over again. RUN the program and try pressing the 5,6,7,8
keys one at a time. You will see that as the asterisk moves it
leaves behind a trail of asterisks. Keep going to the edge of
the screen and keep pressing the keys. Strange things begin
to happen. If you go off the bottom of the screen or off the
right-hand side of the screen the program stops with an error
message. This is because the value of X has gone greater
than 31 or the value of Y has gone greater than 21, and as a
consequence the computer is being asked to PRINT outside
the screen boundaries, and this of course it cannot do.

lowever, if you try to move past the top of the screen or the
left-hand edge of the screen then even stranger things begin
to happen — the asterisk starts to travel in the opposite
direction! It's not that we’ve broken the computer or anything
like that, there is a simple explanation. When the value of X or
Y is negative (as happens when you try to go off the top or
the left-hand side of the screen) then PRINT ignores the —
sign (it takes the ABS value if you like), and so it apparently.
causes some keys to change functions! Not very useful to say
the least, since you then have to take the asterisk back to the
screen boundaries to restore normal operation. What we
need is a method whereby if the asterisk gets to the edge of
the screen it stops and will not attempt to go outside the
screen line.

The easiest method is to prevent X and Y taking values which
causes these problems. The values which are permissible are
X: 0 to 31 and 1o 21. Here's how to do this. Change
lines 100, 110, 120 and 130 like

147

1

100 IF INKEY$="S" AND x>0 THEN

LET x=x-1

110" IF INKEY$="8" AND x<31 THEN
ET X=x+1

ize x; INKEVS="7" AND y>0 THEN

y=y-

130" IF INKEY$="6" AND y <21 THEN

LET v=us2

This makes the asterisk stay on the screen properly, but we
still have the problem that a trail of asterisks is set up as the
asterisk moves. This is because we have no facility to erase
the old position of the asterisk when it moves. The best way
to do this is to use a second set of variables to remember the
old position of the character, and if it's different to the new
position PRINT a space in the old position.

To do this add these lines:

5
138 I 3

18, 3 L2352X OR b¢d>y THEN PRINT
202 GO To s@

The program you have in the computer should now be:

AND x30 THEN
AND x <31 THEN
AND 430 THEN
AND y (21 THEN
135 IF a6>x OR bi>y THEN PRINT

AT b,a
148'PRINT AT y,x;"s"
20@ 6o To Se

We ic design of a movis i i
When we get around to designing a game around this routine
we may have to alter some details or change the order of
statements but the principles involved will be similar. As we

148

did earlier we may also be able to shorten the routine
somewhat, for example:

»
SaumE
rr

OHOSESD
o

Gk

-

g
b b
o5
Do

INT AT Y.X;"#"
2o GO TO 3@

This version occupies nearly M|;v :‘v;a:;"" ;\:gmlzr; |'u; m
the previous version. You coul n h
line 335 inte one conditional statement, since neither Pﬁm_ls

ment is required unless the asterisk has moved. 7
means we can delete line 140. Here is how to change line
135:

INT
43X _OR bty THEN PR
L R TR

i tage is that while
mber to delete line 140. The disadvant t
m 5 more bytes of memory, when the pmqrﬂ;lc:‘rs:
RUN the asterisk does not actually appear on screer i
moved. So it may be better not to do this unless you ai
desperate for memory.

SCREENS$ and scrolling

Let us now look at another facnny ‘which is useful in moving
graphics programs, scrol rolling, which can be done
automatically by including the lne POKE 23692,~1, moves
everything in the display up one line and if there was anything
printed on the top line of the display ther lost.

The next program — ROAD RUNNER — shows scrolling in
action again to produce moving graphics. In this program you
are attemmlng o drive a long line of little ‘cars’ down a
twis turning track of red asterisks. Your controls are “2"
and "M which move you left and right respectively.

Lines 80 and 99 moves the track randomly, making sure
that it does not stray off the edge of the screen. Line 110
prints the ‘car’, which is scrolled up (as is the track), by
130 and 140.

Line 160 introduces a new Spectrum function SCREEN$
‘which returns information as to the state of the screen at the
location which is specified following the word SCREENS. In
line 160, the computer uses SCREEN$ to look at the
character cell just in front of where the last ‘car’ was printed.

I it finds an asterisk there, it knows the car is about to crash,

so sends action to line 200, where the YOU HAVE
CRASHED routine begins.

12 REM ROAD RUNNER
20 LeT

£28
-w 65" 05 280
LET 8

sm LET KIr mmpszy
LET A=A-(K=1 AND A>11+(K=@
ANDORS4)
188 REM NEXT LINE conTAINS A

118 PRINT BT Foxe 1‘ 1
i2e PRINT AT aé ik et ¥ e
BoRsEL e

13@ PR

138 FORE 20es2,-1: mRINT

150

1Se_PRINT INK &; PAPER 2;AT 0,1
ni;asggn{cgssn§ Y +1,X-23 =080 TH
FY28 L EF XDX—IINKEY$=
*lse LET TeTs1

ise 6o _TO @ i U

HE 3 Nau have Erashed!?
8,10, FLaSn 1 BRI

5220 PR%"I mr;mr-ﬁ ARER 5, You

@1, RND %26 -RND #20

1b

©0110116,5IN 0011
3% 81 aeammaés
@,5IN ©0110118.BIN @0

IN @
211100,

Here are a few other programs to illustrate ‘moving graphics’
ideas we've discussed.

Red arrow

The object of this game is to fire, by pressing any key except
BREAK, when the RED ARROW flies over your base, and be
rewarded with a hit if you succeed. You have only a limited
number of shots, so try to score as many hits as possible
before the game stops.

Here is the listi

S REM Line 1@ co
REM, grapm‘u El
Go sie seg

647

D *

IE hiaczsd The

RBH Graphic N ED TD i
RINT

=2
. AND L4 THEN
IF xnn:v-u *“ THEM LET m=h+

128 BRYlr et yv.ze; »
158 Go Yo o YA

14@ LET h=h+1

iS@ FOR f=1 TO 3@

188 PRINT X
z=170 ‘oagéa nnbn
1,3 —:lil PRINT AT

18@ PRINT AT 4,11; PARER 7; INK

GO TO 40
208 rom j-a'to 7
S50 PGRE UsR “A"+j.a
3
238 FOR o To
Ap G

588 BSRE O
269 £o ISR "BU4J.q

3e@ POKE Gsk “er4i.a

]
FOR Jj=@
ol
NEXT 3 ikt

ATA BIN e
S G T A
IN_ 11beacea it g

TR BIN gllilili (BIN 1311311

N 22202 , BIN 11102
IN OBIIQBBD BIN 00
110@, BIN eéeau:m%’&ﬁ“g soa

AR SIN 2o0a1cas o1y 10020
2iezecie a1y @ai.

020, BIN 10000100 B1H Ab0R

3

LI LA TATR T
So-gaRthEas
L)

D

g
5
070
I9D:
o

526 L DZO
50
5

S8 805 S
OOH D

=1,70 72
581,9/27 BEEP .@1,42-9

»,,ppz,
gasgeasal
LT ghg?g\
E%EO BZ:
zﬁnn

I

Line 10 sets up the main part of the display, the parts that do
not move during the program. H is the variable that
remembers the amount of hits you have scored and M the
amount of misses (shots without hitting the U.F.0.) and both
are initially set to zero. Line 40 sets the Y coordinate of the
ARROW to a value from 7 to 13 at random. PRINT takes the
value of number if one of
not an integer, so RND * 6 + 7 can be from 7 to 13. This
gives the position of the ARROW up the screen. The main
loop for uormonlng the flight of the ARROW across the
screen t line 50. @ is the starting position, 19 the
end pomion. Lln- 60 checks if you've used up your shots,
then sends the program to line 1000 if you have. Line 80
PRINTs the ARROW. Note how it erases the old position by
PRINT'ng a space one position behind the ARROW (i ts
is position). Line 90 checks if a key is being pressed
Bndl f the ARROW is directly above the base, then it sends
the action to the HIT routine at line 140. This adds one to the
number of hits scored and provides an explosive-looking
display at the point where the craft was
program to line 40 again to supply another one. However, if
a key was pressed and the ARROW was not above the base,
then one is added to the number of misses. If the ARROW
reaches the end of its travel, the program falls out of the
FOR/NEXT loop and line 120 erases the final position of the
craft then line 130 sends the program back to line 40 to set
up a new one.

Garbage gobbler

The object of this game is to clear up garbage which appears
on the screen as magenta shapes. You control the “‘gobbler’
with the keys 5,6,7, & 8, movement being in the direction of
the arrows printed on the keys. You eat the garbage by
running over it. You are given a limited time, and you are told
‘how many items of garbage you collected. The Ioav in lines
40 to 60 set up the garbage in random positions.

g REM_cAREAG

REM_cA £ COBBLER
REM ganp_)l-gxcs M IN 50

AT RND#16+3.RND*26+4;

To seo

- (INKEYS§="7"
23 Lsr‘x.i &ﬁ" N et
REC N KEYS$='5" AND X>2
% 248 T hen Ler
Y
S b SCOREI AT & 26,0: " T1 5??':
@ IF'ATTR (v,X)=43 THEN BEEP

REM Ganpnxc D.IN 180
BRINT S SRRV TN

Yy e

mp x
~'r‘gafmmum-um
105 S5
;e
i
%

INK BN
z D nE

oR

8997
wg_(.mzh

DEEOTDI
5968800
b
m
o

POKE USR “M“+A.@
321geie1 BIn o101

DAT!
BIN 10100151 BIN 0io1
ngiaxob 6 130101 510 061

OORLID
LI

BRERRZERR
DO

5

2

D

o

FETTIN

78
© POKE USR “D"
@ NEXT A hisidr

98_DAT: N 00011111, BIN 21331
2% TN 31711100, 51N 11111000,51
%hammaé m 11111@@0 BIN @111
20 2 Pnpzn &: cLs

LET SCoRE=0

Now we can explain how to find out what is on the screen, so
the computer knows the ‘gobbler’ is about to run over

something. This facility will be used time and time again in
programs. The vital function is ATTR which, as you can see
from lines 130 and 140, is similar in form to PRINT AT.
Lines 130 and 140 check the attributes of the character
square Y, X before the ‘gobbler’ is printed there. If it finds a
value of 49, it knows the square contains garbage, and so the
time and score is updated. The number actually produced by
ATTR depends on whether the character is FLASHING or
not, whether it is BRIGHT or not, and the colours of the INK
and PAPER at the posi

n.

Because ATTR is a little difficult to use, it is best to set up a
small routine to print out the results of ATTR before you
finally decide what value you want to test for. The ‘absence’
of a value produced when the ‘gobbler’ moves over a blank
background is not recommended; instead of this, test for the
pm-m of a particular value. We did this when writing this
ram, by having line 140 blank at first, and line 130
readlng PRINT AT 0,0; ATTR(Y,X), then watching what
happened when the ‘gobbler’ was about the land on a
garbage square. We recommend you follow this method.

String manipulation

Finally, there is one other method of producing moving
graphics in BASIC h is not used very often — through
the use of strings. Strings may be PRINTed very rapidly, and
the computer's comprehensive string slicing facilities
(discussed earlier in the book) mean that we have at our
disposal a powerful tool. The basic method is to assign a
character or string array large ‘enough to cover the area of
screen used for movement and PRINT the array at a certain
location. To simulate movement we can either PRINT
different parts of the array or change the contents of the
Ery

(1) PRINT different parts of the string in order. Try this short
program:

10 DIM Ag(32)

20 LET AS(1)3="4+"

5@ FOR A=32 TO 1 STEP -1

4@ PRINT AT 20,0,A%(A TG) +A$(
$0 NEXT A

60 GO TO 30

Can you see why it is necessary to have line 30 count
backwards from 32 to 17 What would happen if line 30
counted from 1 to 32 (30 FOR A = 1 TO 32)? Draw on a
piece of paper (or use the printer if you have one) every step
the program will take to make up the display. Note the high
speed possible, and how the previous position is erased and
the new position PRINTed in one go. An interesting effect
may be obtained by changing line 20 to 20 INPUT A$ and

ind in shop windows for advertising
though this is not the kind of effect one would
normally encounter.

This méthod of producing moving graphics from strings is
very useful because it does not alter the contents of
strings/arrays, but rather only displays them in a different
order, so the information may be retrieved easily at any time.
It can be used for a shop window display like the one below.

156

2@ INPUT “ENTER YOUR MESSAGE;
30 IF_Ag="" THEN GO TO 20

R B=1 TO LEN A$+33
38 FRINT AT 8,8; ¢

Y

© 88°LEr s=s_(s anp INKEY§="F A
ND ~ INKEY $= "0

DS Ir T INKEY $=TR" THEN GO SUB 1
42
ie@ FOR A=1 TO &
158 NEXT B
13e GO To

i@ NEXT A
188 RETURN

it does is ask you to enter a display message, then after
ﬂ: been entered, the message begins to appear from ld'm
right of the screen and moves to the left and eventu av:],l
disappears to the left, whereupon the sequence begmsb .
over again. The rotating sequence begins at a slow speed :v
can be speeded up by pressing the F key or slowed down
pressing the D key. The fastest speed is very fast, the gom;;
s very slow. You can “freeze" the display for a short time
pressing the A key. You can stop the program at any time by
pressing BREAK.

i at the computer has enough memory available
:r::m‘:.;:w the size o the message i imited by the size of
the largest array the computer can handle in theory. In

however, if you fill the screen with the message
when eiteing it (.. it is more than 24 rows of 32 characters
long) and subsequent characters entered have (0 be entored
bind because they wil seem o be below the screen — try t
1o see what | mean. Warning — you'll end up with a ti
finger!

jins to appear from the right of the screen
et saner f o way dowr, and s slong the scroen
towards the left. Once it has disappeared past the ldh-hnrﬁ
side of the screen it reappears as before and repeats the cycl

157

over and over again. The speed may be varied as described.
The display is frozen as described.

Line 70 is fairly complex: to prevent changing the contents
of string A$, the entire contents in the first pair of brackets
are treated as one long string consisting of thirty two spaces
followed by the message string A, followed in turn by
another thirty two spaces. The slicer in the second pair of
brackets selects which parts of this long string are PRINTed.
Note that A$ still retains its own identity. Whichever parts are
selected, the string PRINTed is always 32 characters long.

As it stands, the program has no facility for you to change the
message once it is running — you have to use BREAK then
RUN the program once again. One way of providing this
facility is to add this line, so that on pressing “1” (EDIT) the
program restarts automatically:

85 IF INKEY$="1% THEN RUN

(2) Move the elements of the array around. Try t

program:

10 DIM ag(32)
20 FOR a=1 TO 32

‘This method gives us great flexibility. We can handle strings
quickly and ufﬁmmly with the computer’s string handling
ery useful for storing information

ince,
and the speed with which they may be PRINTed makes them
an attractive method for producing displays. The main
disadvantage is that it is wasteful of memory since the
information is held in both the display file and the arrays
involved, possibly in the program area as well. Here is a
moving display program which relies on information in the
strings PRINTed.

158

The program is called BASIC Invaders because it's a version
of the arcade game written in BASIC. It is very simplified of
necessity and is included for the purpose of demonstrating
the use of strings for moving display purposes. A row of
invaders descends the screen towards you. You can move
left or right using the 5 & 8 keys respectively. You fire up at
the invaders by pressing the 7 key. If you are directly under an
invader it disappears and is destroyed.

There are seven waves of i

(RND32)

INT AT Sg12; INK X8 PAP
pnn_nsu 1; BRIGHT 1, WAVE
o §Biars 0 srer 2
138 [B% RoR.(TnREvs=rs» AND x<2
SHLUTENE XS
AT B.@; INK RND:2. A
280507 InB 20X R RER IR R

136 Qr DEsBi THEN GO ¥p 200+ (80
B

;. THEN BEEP .01
L3" THEN LET Hg
er e.e s

22@ PRINT AT 20,C;"
NEXT D

159

48 BT

6o To 240

L xNuggzasaggg$'§§3Zb"pnpgn RiysA
EP .01,RND¥5@: GO TO 260

REM Make'i
FoR Uae%ra"y9ers
READ ©

POKE USR “F*
22 NEXT J Fead

DATA BIN 00
o 111110

BIN
0711170, BIN 06011108, 81
IN 1 BIN

51
8 Y000
Do, BIN 0iod00e1 ottt’ iee
40 REN Hake. bos
3%@ FoRr U=a 710
328 BSRE 8sm
MR
328 M o eiiaiin
1121110 BIN 01111
110,BIN o
A1e.8IN @ BIN 01111110 81
2011, 5IN

aiihaSeiey

0811, BIN
géa:loax 82R 1668000
410 RETURN

The program is very wasteful of memory. No attempt has
been made to conserve memory, and you may be able to
speed it up with some minor modifications. The two strings
of interest are A$ and BS. BS is merely set up to 32 spaces
and is used to prevent typing in “(32 spaces)” at various
points in the program. A$ is the string that represents the
raets: 1 initially set to 32 elements, the number of
characters in one line of display. Line 40 sets the initial state
of the characters and can be any combination of spaces and
graphic — and should consist of 32 characters. X is the
variable that controls your position and its value is altered in
line 110. Line 120 performs the main PRINTing, updating
the invaders display and your position.

Line 130 compares the invaders with a string of 32 spaces
(BS$) and if it finds invaders (i.e. it

it either causes a jump to the next wave of invaders or if
you're already on the last wave it causes a jump to the victory
message at line 260. Line 150 is of particular interest, since
it scans the string for the character above you in the invader

160

display, and if it finds an invader there, it converts it to a
space. This is only done if the 7 key is pressed.

The rest of the program is mainly concerned with timing of
100ps and sorting out the different waves of invaders.

If you're storing the entire screen in a string array (or a part of
the screen involving lines above or below each other), then
you can use two different methods using different types of
array. Consider the case of the full 22 by 32 screen. You will
require a 22 by 32 element string array and this may be
accomplished by either

(1) using a two-dimensional array, set up with the statement
DIM A$(22,32).You can then use the PRINT AT coordinates
access " ing the array

with 1, PRINT coordinates with 0. For example, to PRINT
AT Y,X;CHR$ T you would say LET AS(Y + 1,X + 1) =
CHR$ T. The problem with this method is that a lengthy
PRINT statement is required to place the entire array on the

ie. PRINT AT 0,0;A8(1),A$(2),A%(3). ...
‘AS(21),A8(22). However, since the main reason for using an
array for printing is the ease of access of information, this is

actually dealing with. Take the example of a game of
draughts. We would need the entire board on screen at the
start of the game, and we need to be able to examine the
board in its entirety; however, when it comes to PRINTing

moves we need only PRINT the parts of the array which are
changed by a move — the part of the array from which the
piece was moved, the part to which it is moved to and
possibly a part of the array where an uppming piece was
captured.

(2) Use a single dimension array with 704 elements for the 22
by 32 display, set up by the statement DIM A$(704). This
can be treated like a memory mapped screen and may be
PRINTed in one go by the statement PRINT AT 0;0;A$ and
is very fast to execute. The elements are easily accessed. To

move a character on screen we have to move it about in the

161

array in a manner which makes it move satisfactorily on
screen. To understand how to do this we have to understand
the layout of the array on the screen. Here is a diagram:

x| ¢ 1 2 29 38 31

W) (1) [0) S S 800 [0 [as02)

w809 o0 1o U3 te) [astss) |ascen)

P e e e

WD) [8(58) [4859) | (##(126) [m2D)| e (220)

‘The diagram shows a fragment from the top of the screen. Y

H
x
A
kS
z
z
8
i
H
i
Qe
S
2
2
z
z
3
<

Can you see how the Y,X; coordinates can be related to the
subscripts of A$? There are 32 elements of A$ in each line of
the display. The X coordinates start off at 0 whereas the
array subscripts start at 1. So Y,X corresponds to AS$(Y*
32+X+1). When moving a character it can go to one of
eight locations all around it, as shown in the diagram below:

Now suppose the invader is at A$(A). Here is a chart showing

how much there difference is beween subscripts of the.
lements ing the iti all sides (how

much to add to the old subscript to make it the new one).

Direction [How much to|
of movement | add to A
1 -32
2 -31
3 1
a4 33
5 32
6 31
7 -1
8 -33

Shifted INKEY$

Atthis stage we have to be careful not to go beyond the limits
of the array, as we would when using PRINT, to avoid
crashing the program with a subscript error. We can use the.
cursor keys to control vertical movement and horizontal
movement, and use the SHIFTed cursor keys for diagonal
movement. Here is a short program which moves a blot
around the screen under cursor control to illustrate how this
may be done.

Pressing SHIFT-5, SHIFT-6, SHIFT-7, SHIFT-8 moves you
45° clockwise to the direction of the arrows on the keys. The
5,6,7.8 keys by themselves cause movement in the direction
of the arrows. This program does not have the facility to
prevent subscript errors occuring due to moving outside
the boundaries of the array.

The reason why SHIFT-5, SHIFT-6, SHIFT-7, SHIFT-8 have
been represented by CHR$ 8, CHR$ 10, CHR$ 11 and CHR$ 9
is that they cannot be entered directly from the keyboard
(they act as cursor control if you try), so the easiest way to
get them in is by means of CHRS.

It should be emphasised that the use of strings to create
moving graphics is limited to those applications where speed
is not of great importance, rather than applications where the
access of information is important but speed of graphics is
important but not of highest priority. An example is « hoard
game such as draughts where pieces move occasionally but it
is necessary to have rapid access to the information.

Introduction to
arithmetic on the
computer

Have a quick glance at this section before you read it in detail.
You may well find it has no new information for you. If this is
the case, feel free to turn to the next section.

the ions in BASIC
well known to you by now. They are multiply (%), divide (/),
subract (), add (+) and raise to the power (1 — SHIFT H).
The computer follows a strict priority for operations.

164

The term priority refers to the order in which expressions are
evaluated. The computer may not evaluate everything
order in which they are printed on the screen. For example
n in brackets
ith the same

leaving out brackets may cause the computer to refuse to do
anything because of a syntax error). We formalise this by
giving each operation a priority, a number between 1 & 16.

The operations with highest priority are evaluated first, and
operations with equal priority are evaulated in order from left
toright. In effect, the computer looks at the expression, and
finds the part with the highest priority and says to itself:
“Wait a minute fellers, there's something with a higher
priority than you over there — I'll come back to you in a
minute when it's your turn.”

Operation Priority
0 16
SUBSCRIPTING/SLICING 12
ALL FUNCTIONS 1
+ 10
— (negation) 9
: 8
/ 8
6
~ (substraction) 6
=< 5
NOT a
AND 3
OR 2

Note that a number is assumed to be positive unless it
preceded by a minus sign. Similarly, unless a decimal point
appears with a number, the computer will assume it is an
integer. Although you can use decimal points when working
the computer, commas are not allowed. The use of
scientific notation for very large and very small numbers was
explained in the section on variables. Refer back to that if you
need a reminder on how this works.

165

The BASIC on this computer works fairly quickly, as can be
seen by running the following programs. The first program in
this section works out arithmetic. progressions. You m
enter the first term, the common difference, and the number
of terms, and the computer will produce the information for
you very rapidly.

1@ REM Arithmetic progression
RINT “I will woerk out for

arithmetic progressi
e g

PRINT "information Hou give
PRINT ‘“Enter the rifst ter

the common diff
meny terms?"
INT (termss.S)

-1
; PAPER @; "Arith
Terw number”

Firsts(Ladirs)
unt g
TAB 4;w;TAR

AL OV DO

WM i b
SEREREEEDE!

n
"o

How many terms?

Arithmetic progression

BREOONOOA DN
5
5
I
o

RS
o

The sum is 3699

As you can see, the program also works out the sum of the
terms.

Prime numbers

Prime numbers are very easy to determine.

1@ REM prime numbers
PRINT “Enter the value of t

30 PRINT " maximum prime numbe

that wou want”
2
Kl=a
3 LB Z =g
IF 3¢a TrEN 0 0 2
9@ LET z(d)=5: LET ki=d
LET iz=8
11@ LET iz=izs2
12@ IF_iz>a THEN GO TO 200
135 LET jo=3
136 LET éx=iz.z{ip)
140 IF ex=INT ex THEN GO_TO ii@
180 I =xczljo) THEN 6O TO 130
=jD 3.

130
180 LET k1=¥1+1: LET zfk11=52

180 GO TO_11@
208 PDK! 23892, -1
ma 'RINT “The prime numbers up
.age BRINT TRB 47, INK 2, PAPER &
F'Ei e no “D
c
2858 PRINT TRB ‘, t,zln
260 EXT

Enter the value of the
maximum prime number
hat You want
is
The pri to 18
v e

VOIOARGUPTD

‘The mathematical ability of the computer can also, of course,

be turned to produce other kinds of information.

Statistics

This next program, a series of statistical routines, can easily
be broken down into four shorter programs.

The four programs are:

Arithmetic mean - This is simply the average of a set of
numbers.
Geometricmean - The geometric mean is the nth root

of the product of the numbers,
where n is the total number of
numbers entered.

168

Harmonic mean - The harmonic mean is derived from
the reciprocals of the entered
numbers.

Factorial - A factorial s the progrmn AT(A
=1)* (A-2)*(A down to

“@0%(1), whers Atk i teger
entered in fine 4030. As this only
works with integers, line 4040
changes any non-integer entry into
an integer.

The routine from line 9000 presents a menu of choices.
Note the use of GOTO A*1000 in line 9130. This is a
shorthand way of saying

IF A = 1 THEN GOTO 1000
2 THEN GOTO 2000
3 THEN GOTO 3000
4 THEN GOTO 4000

You can often make use of this technique in menu-driven
programs.

20 Go TO 20
88 REw guote rmnxs YITHIN

FRO TH!
$£88 Ren SRTHIIE AL
1”‘8 “ENTER THE N\JHBERS Yo

msa PRINT TAB S;"TO AVERAGE FOR
530 “ENTER “E” TO END YOU
IF @%="" THEN GO
N c0.TO 1120

1ies

1110 1

1120 ‘' UTHE ARITHMETIC MER
N IS TOTAL /COUNT

};gg TO 900!

200@ REM nznnnnié** 5““““
£858 SRt UERREE en

it B tih UHB[RS Yo

169

283@ PRINT ™
2830 PRINT “TO USE TO FIND GEOME
2048 PRINT “ENTER “E” TO END YOU

o0 LET ToTAL=1
12_353 INPUT 0$: IF 9%="" THEN GO

287@ IF 0$="E" THEN GO TO 2120

gwg EoKe 25855211 PRINT
2138 PRINT °THE GEOMETRIC MEAN
I3 7 TOTAL® (1/COUNT
To 2000
500D REM fssffRsserissiszsiiiik
@ IC HEAN
2918 ERINT “HARHONIC HEGN-
3838 ERINT THE NUMBERS YO
§936,ERINT "TO USE TO FIND HARMG
384@ PRINT “ENTER "E” TO END YOU
Sese INPUT O$: IF G$="" THEN GO
e o$="E g8 To 3120
R P
3858 DBY raTac m.ru/u;u. 0%
3988 LET_COUNT=COUNT

2136 6o 1o o
138 7 7%The narHoNTC MEAN I

NTER AN ‘InTEGER -
483@ INPUT NUM: IF NUM>=34 THEN

Haee

NUM =TI

ig8 Lep pui=oT

5856 Ler AzAsp” NUM

4080 NEXT B

ki\‘g?ulﬁgnr {“THE FACTORIAL OF .
530@ REM EFEEE R R R EFEEFREERE R

seoe ps’,x’r_.q "SELECT THE PROGRAM
291@ PRINT ‘"1 - RRITHMETIC MEAN

NT “2 - GEOMETRI/ &
883@ PRINT "3 - annunxccngssn

4 RIR
29850 PRI o &
2060 LET Ht=INKE€g i PRI

10

2@7e_IF A%$c"1" OR A$>"S" THEN GO

FEEEREEFEEE
2130 GO TO

it can perform far more complex tasks. This program, for
example, calculates the mean, standard deviation, standard
error of the mean and variance of up to 20 frequency
distributions with up to 240 items
ignificant difference between any two

calculate

Ar1000

ch. It can

y
frequency distributions with the help of Student’s T-test.

12 T-TEST

12 REN Tohoerren EROM A
PROGRAN BY ALLAN NORL X!

i3 REM BY BLUND

23 BEH Xieae

22 B Niger’

24 DIM H(20)

26 DIM S(2@)

28 DIM E(2@)

3@ DIM U(2@)

32 DIM G(20)

11@ PRINT ~THIS PROGRAM CALCULA
TES_THE MEAN™

115 PRINT
118 PRINT

LS50 oN_ ™
148 PRINT

.STANDARD DEVIATION,

STANDARD ERROR AND™
UARIANCE FOR A NUMBE

FREGUENCY DISTRIBUTI
(MAXIMUM 20 DISTRIBU
AND STUDENTS T-TEST

“EUALUATE IF THERE IS
“A SIGNIFICANT DIFFER
“BETUEEN ANY TWO OF T
“FREQUENCY DISTRIBUTI

0 YOU WANT THE RESU
“THE DISPLAY (D) OR A
“THE PRINTER (P)"

m

FREQUENCY DISTRIBUTI

PRINT "HOW MANY ITEMS OF DA
INPUT N

252 PRINT

ET N(B) =N
s1

295 CL

30@ LET $1=514+X

31@ LET S2=82:X#x

32@ LET X(I) =X

33@ NEXT I

34@ LET M(G)=S1/N

345 LET U(G) =((52-512S1/N) / IN-1
3se $(6) =SOR U (G)

362 E (61 =S (G) /SOR (N}

382 NT “DO YOU UANT THE DATA
BRI ? YN

ase UT 08

se0 ©8="N" THEN GOTO_ss@

405 PRINT "FREQUENCY DISTRISUTT
ON N G

410 @=0+1

417 LET K=0
422 FOR I=1 TO N
488 PRINT AT RoKiIi-: X eIy
438, 18 Is2e=INT (I/22) THEN LET
431 IF K>21 AND LE="P" THEN COP
IF K>21 THEN GOSUB 3000
S IF K351 TUEN BT Re-roae
IF I20-INT (I/20) THEN LET
LET n=Rei
i R=R

IF U$="P" THEN COPY
B0SUB s@ee
IF G<M THEN GOTO 20@

172

"
""F;gBUENBY DISTRIBUTI

“NUMBER OF DATA = “j

“MEAN = “;M(I)

“STANDARD DEVUIATION =
7e3 B
770 PRINT "STANDARD ERROR = “;E
(I

INT

;;g :gINT UARIANCE = ;ven
276 IF Ug: " THEN COPY
277 GOSUB 30
780 NE)I(:_‘_
138 EEEY 00 vou umnr TovesTe
81@ INPUT 0%
815 CLS

N"_THEN_GOTO_i20@
TEST BETWEEN TWO D

SoLeLO000n
0ODBNIBOAG
POARBUSASAS

PRINT "DF=";D
BRINT "=

201 THEN GOTQ, 998
P<@.001 e

PRINT “P(@.@1 2

THEN GOT:
oTHEN eoTo 1e10

@.25 NS.*
THEN COPY

106! 4
iee2 PRINT “DO YOU WANT TO TEST

1085 PRINT 4

1258 ERINT ,DISTRIBUTIONS? Y/N

1075 £Ls

iese IF © 'g THEN GOTO 1200
NT, OU_UANT.

CE MORE™, T rREOUEREy ST R I BNEEY

122@ IF ©s="Y" THEN COTO

1230 55%3 CoiexrTHE ENDReizT
2gpe _REM cALCULATES TouALue,
YBLUE (EROBABICITY
BEgRedgrneAEE 2,, AND OF = nLGe
2e2

S LET,

2838 TF Toa T

2828 LEv oaran- 80T 2210

2952 TE Ui, THEN coTo 2100
2

2(14
218@ _LET P=.
1189055247 Tob0d.

e
21se IF U
3188 It 21, THEN soTO 2218

3288 BT
FRESS ‘:XNT AT 21,9 “TO CONTINUE
32@4 IF INKEY$<¢>"C" THEN GOTD a@

3838 EERur
5838 SFop™

174

Species
The final program in this section uses the computer to
simulate the life cycles of two speci
upon the other, and to graph the
relailonshln between the two species
I equation. You enter the starting nopu\a(lons, as
betw one and five. Fracti and
it is fascinating to enter a very low population for one of the
animals, and a high one for the other, and watch the two
evolve. When the program has run through a specified

relationship will then be graphed, on top of the existing
graph, so you can build up a number of graphs showing the
effects of different starting populations for the predator and
its prey.

S BORDER 2: PAPER &: CLS
e
) AOG MANY OF SPECIES
ongs iR 1O, SITL

IF X<1 OR X»S THEMN

STEP .S
“'pecxes ore.
S ANT

N T BRX\?"T

T
3 Specie
s _two: i FLASH 1: snmm‘ TEEER
n e INT (Y ¥1@@@@) 5
2 LET X=x+(23X-2axEy) #2,01
LEL Y ovafyavoshy) sacet
S A RE s

2

o

2

S BEER LOF,I+T
@ NEXT Z

@ LET X=RND#*5
@ LET_Y=RND#6
&2 G0 TO 5@

Functions

The computer’s dialect of BASIC, in common with other
BASICs, contains a number of pre-programmed functions
which you can use in a program, or in the direct mode. The
following discussion includes a program which uses a
e ed function’ to draw a picture of a bat!

General functions:

ABS — This function, ABSolute, gives the value of X,
ignoring the sign, so that if X was — 10, ABS(X)
would be 10. Similarly, if X was 10, ABS(X) is
still 10.

The INT function gives the whole number, or
INTeger part of a number, giving the largest
number which is not greater than X. If X was 2.42,
INT(X) would be 2.

INT

INT rounds off numbers to the next lowest whole number,
©.9.INT2.2is2, INT2.9is 2, INT 2 is 2 and so on. A frequent
requirement is to round off numbers to the nearest whole
number, so that 2.6 becomes 3, etc. (some commands do
this automatically, e.g. PRINT AT, POKE). This is quite easy
to do. Suppose the number to be rounded off is A. If we first
add 0.5 to A, then apply INT, the answer will be the nearest
‘whole number. If as an example, A was 2.6 and we wished to
round off to the nearest whole number: PRINT INT
(2.6 +0.5) would give 3 whereas PRINT INT (2.3+0.5)
would give 2. PRINT INT (2.5 +0.5) is rounded up to 3.

It is often necessary when doing monetary calculations to
have answers to two decimal places to resemble dollars and
cents values. This routine does this. It also inserts a 0 before
the decimal point if the answer is less than $1.00. Enter the
amount as A in line 10, in units of dollars, but do not enter
the $ symbol — that will be added by the routine in line 50.

A
38 IEF' Relarhs (v cmszemse.s
!/égE)IF A$(1)="." THEN LET A @,

"*38 LET B-LEN A%-LEN STRS INT U
48 eT AZ=AS+(".00" AND B=0) +{
“@t AND B=:
2 PRINT “$";A%
6@ G0 TO
11.245
bl
Ly
333,888
2.9393
2 909
RND — This is used to generate a RaNDom number. RND
gives a random number between zero and one.
SGN — This function returns the SIGN of the variable in

brackets, the SIGN of the argument as this
variable is known. If X equals 20, that is, X ||1u

positive number, SGN(X)=1. SGN(-20) 4
SGN(0)=0.
TAB — As pointed out earlier in the book this is the

TABulating function, which moves the PRINT
position across the line the number of spaces
indicated by the argument of the function. Thus,
PRINT TAB(6); “$" will print the $ at the seventh
position across from the left-hand edge, while
PRINT TAB(13);$"" will print it 14 spaces across.
The direction down the screen can also be
specified, by adding a second argument after a
comma within the brackets. Thus, PRINT
TAB(4,9);$" will print a dollar sign five spaces
down, and ten across. TAB reduces a number
modulo 32, meaning that the argument of
{number after) TAB can be larger than 31; it will
be reduced to a number in the range 0 to 31 and
the PRINT position moves on the same line unless
this would involve backspacing in which case it
‘moves onto the next line. This modulo business
means is that the argument of TAB is divided by

17

32 (the number of columns per line on a screen)
and the remainder taken. You may be able to take
advantage of this when the PRINT spacing is
determined by calculation since you do not have
to ensure that the number falls in the range 0 to
31.

EXP — This function gives the value of e raised to the
power of the argument, so PRINT EXP 5 will give

148.41316.

LN — LN X yields the natural logarithm to base e, so
PRINT LN 5 gives 1.6094379.

SQR — This function yields the SQuare Root of a
number, so when X is five, PRINT SQR X gives
2.236068.

Trigonometrical

functions:

SIN — This gives the SINE of an angle in radians. SIN 5
yields —0.95892428.

COS — Yields the COSine of an angl radians. PRINT
COS X where X equals five gives 0.28366219.

TAN — Produces the TANgent of angle X in radians.

(The computer measures angles in radians. Pl radians equals
180 degrees).

The RANDOMIZE function works as follows:

“The number you place after the word RANDOMIZE is stored
in the system variables after being rounded off to the nearest
whole number. If you just enter RANDOMIZE or
RANDOMIZED then it is given the value of the frame counter.
‘This value is not affected by CLEAR or RUN, but is reset to 0
by NEW, as it is at switch-on. It changes every time you use
RND.

Converting other
Basics

A wealth of computer programs written in BASIC can be
found in a variety of books and computing magazines, but as
all versions of BASIC differ to some extent, it is unlikely that a
program written to run on another computer will work on
your computer without some change. The extent and nature
of these changes will depend greatly on the structure of the
particular program and how it handles data, but it is possible
to give some general guidance on things to look for when
approaching the task of converting a “foreign” program to
run on your computer.

Integer Arithmetic

In general, always add the function INT before a division in a
program designed for a computer with integer arithmetic.
You may require brackets around the division so that INT
works only on the result of that division.

DIM

Some BASIC allow you to write several DIM statements on
one line such as DIM A$(9), BS(8), C$(7). You will have to
replace this by individual DIM statements on separate
program lines. If the program calls for arrays with names that
are more than one letter long, then these have to be replaced
by single letter names like A$ or B. If you do not have enough
letters available then you may be able to declare additional
dimensions to the existing ones for a certain array and use the
extra dimension to replace an amay. Beware of zero
subscripts.

179

GET, GET$

This is a function that reads characters or values from keys
pressed on the keyboard. It takes various forms on various
computers, but in general it waits until a key is pressed before
it goes on, assigning either the character corresponding to
the key pressed or the code of that character to a variable.
For example, GET A$ or LET A$=GET$. You could do this
on your computer:

100@ LET ag=INKEYS
iele IF ag="" THEN GO TO 1000

This would return the character corresponding to the key
pressed on the keyboard. If the function was to return the
CODE (which will probably be written as ASC) of the
character then use this routine:

1000 LET as:
pie IF

T
ile5e FRI

INKEYS

ag="" THEN 60 To 1000
3=CODE a§

NT a

Slightly different is the version that returns a numeric value
rather than a character code. It is necessary to ensure that the
character read from the keyboard is in the range “0” to “9"
so that we can apply VAL to convert the character to a
number. Here's one way:

108@ LET a$=INKEYS$

1910 IF as$c'@" OR a$:"S" THEN GO
TO 1200

1020 LET a=UAL 2§

1e3e PRINT a

You may also come across a version of INKEY$ which allows
a time limit to be specified for an user response, e.g.

100 LET A$ = INKEY$(X)

where X specifies the time limit. This can be converted in two
ways, either as:
10 LET x=5@
100 PAUSE x
11@ LET a$=INKEYS
or as follows, demonstrated in a simple game:

REM ENGAGE CAPS_LOCK FIRST

16 DEY BYStiRs TINT (RNDX38) 1C

SP5p BRINT AT 10,0 "SUICKLY, PRE
“%oo'FéR aze To_iew
12 SET 35 INENEN o To 240

T

VAL

If the argument of VAL does not form a valid numerical
argument, you get an error report. Other BASICs return 0.

SET, RESET

These are used to make a particular screen point white or
black. Replace with a PLOT/OVER/PRINT AT.

ELSE

This is an extension to the IF. .. THEN conditional statement
and allows more than one outcome depending on whether
the conditional statement is true or false. It may be replaced
by two conditional expressions on your computer. For
example:

20 IF X=1 THEN LET Y=7 ELSE GOTO 80

may be replaced by:

20 IF X=1 THEN LET Y=7
21 IF X<> 1 THEN GOTO 80

If the action of ELSE is to assign one of several alternative
values to a variable then it can be replaced on one line, e.g.

50 IF X=1 THEN LET Y=7 ELSE LET Y=8
may be replaced by:
50 LET Y=(7 AND X=1) + (8 AND X<>1)

Certain expressions such as the one above may be replaced
by even shorter forms such as:

50 LET Y=7 + (1 AND X <>1)
No general guideline can be given since the method used will
g .

vary to example — the give an
idea of what to expect.

You may come across a statement where the action
performed by ELSE is itself conditional:

10 IF X=1 THEN LET Y =1 ELSE IF X=5 THEN GOTO
100

This will need to be rewritten as either:-

10 IF X =1 THEN LET Y,
11 IF X<> 1 THEN IF X=5 THEN GOTO 100
182

or-

10 IF X=1 THEN LET Y=1'
11 IF X<> 1 AND X=5 THEN GOTO 100

Again you may meet all sorts of conditional ELSEs, and the
Spectrum versions will depend on the variation encountered.

REPEAT....UNTIL

This is a loop that performs an operation continuously ending
only when a specified condition is met. Its use is so wide it i
difficult to specify a universal method of conversion to ZX
BASIC, probably the best being the IF...THEN GOTO
conditional statement. Here is an example:

19 PRINT “"ENTER YES OR NO™

2@ REPEAT

3@ INPUT A%
4@ UNTIL A$="YES" OR A$="NO"

may be replaced by:

18 INPUT ERsC es g 0o con
i.t;) zND 2a$<>"NQ” THEN G

AND aB<>"n
o To 1a

REPEAT....UNTIL structures are generally far more
complex than this example, and it may be necessary to find a
means of conversion other than IF...THEN GOTO. For
example, where the value of a variable is the determining
factor, a FOR/NEXT loop may sometimes be used. However,
the possibility of using an IF...THEN GOTO conditional
statement should always be considered and is sometimes the
only acceptable method of conversion.

188

Undefined
variables

If you attempt to use a variable before it has been defined or
assigned in a program, then some computers will return a
value of 0. You get an error report on your computer if the
variable has not previously been assigned. So all variables
must have been assigned when using programs on your
computer which use variables.

Matrices

Some BASICs have matrix functions which perform
operations on arrays. Your computer does not have these
functions, so you will have to perform the operations on array
elements individually, possibly by means of a loop.

18 DIM X (¥)
28 DIM P (Y)
38 MAT X=P

This particular example can be replaced by:

1@ LET n=o

2@ DIM X (¥)

3@ DIM p iyl

3@ LET n=ni+l

5@ IF nc<y THEN 6O TO 4@

PROC, ENDPROC

This is a method of using subroutines to do certa
procedures in such a way that among other things makes
programs and listings easier to understand and read (it is
called structured programming by some). It enables
subroutines to be used specifically to do certain things and it
is like a subroutine in many ways, but with the important
exception that it is called by a name rather than by its line
numbers. Take this example, which prints the score on the
screen: —

100 PROCscore

1000 DEF PROCscore
1010 PRINT “SCORE =
1020 ENDPROC

ENDPROC is in a way r to RETURN in that the
procedure comes to an end and the program resumes from
the line after the one which called the procedure, in this case
the line after line 100. The name of the procedure is not
used in your computer's version, although it can be adapted
for the purpose as the second example Sinclair version will
show. The simplest method of conversion to ZX BASIC is for
line 100 to GOSUB line 1000, possibly with a REM
statement somewhere in the subroutine to identify it, and end
the subroutine with a RETURN command.

109 GoSUB 1200

1008 REM SCORE SUBROUT INE
1218 PRINT "SCORE=";S
1220 RETURN

If you want to retain the procedure/subroutine naming
facility you can use a variable of the same name as the PROC
name assigned during the course of the program before the
subroutine is called, and use this variable as the destination
for the GOSUB command. You could include a REM
statement in ine to identify the subroutine and tie
it up with the variable name used. It is useful to use inverse

185

characters in these REM statements so that they stand out
from the rest of the listing text. So you can make your
programs seem fairly structured.

LET SCORE-12e0
Gosus score

REM SCORE _SUBROUT.
PRINT "SCoREZ; 8 INE
RETURN

Although PROCs may be complex, an ordinary subroutine is
the best method of conversion to your BASIC using
GOSUB/RETURN.

INSTR(A$,B$)

This is a function that looks to see if there is a copy of B$ in
A$, and if there is it tells you where the copy starts. For
instance, if B$ was “PUT" and A$ was “COMPUTER" then
the value of INSTR(A$,BS) would be 4 because the part of A$
which held the letters “PUT" started at the fourth element of
A$. If the function does not find a copy of B$ in A$, the
INSTR(AS$,B$) has a value of 0. A special routine has to be
written to provide this function on your computer.

Here is one method of converting this function to run on the
Spectrum:

HAERY P
INSTR (A%, B$) =3

INSTR (A%, B&) =1

186

10 REM -- LET Y=INSTR(A$,B%) -=
20 INPUT A

3@ INPUT

30 PRI s

@ Gi
100@ REM SUBROUTINE FOR ~INSTR’
LET Y=o

=
@ IF LEN A$=0 OR LEN E$=8 OR
LEN B§:LEN A$ THEN RETURN
10: OR Y=, BELl
laa@ IF As (Y $T
HEN Ul

RET!
1950 NEXT Y
108@ LET Y=o
107@ RETURN
Note that if you want to detect whole words rather than just
strings then you will have to examine A$ for space or
punctuation marks that signify the start and end of words.
The routine above just finds matching strings, so that if you
wanted to find the word CAT in a phrase containing the word
CATASTROPHIC, this would trigger on the first three letters
of CATASTROPHIC. However, users of INSTR usually have
this problem so the program will cater for this anyway!

DIV

DIV gives the whole number part of the result of a division,
for example, 17 DIV 5 gives 3. INT can be applied to the result
of the division on your computer. So A DIV B on the
Spectrum would be INT (A/B).

MOD gives the remainder of a division, e.g. 17 MOD 6 is 2. A
MOD B is A — (INT (A/B*B) on the Spectrum. Note that
TAB carries out its own MOD action (modulo 32) on your
computer.

TAB

Some computers may have two arguments to the TAB
function, which is used to space out along the screen. This
use of TAB conforms to your computer's use of AT. For
example, TAB (X,Y) on some computers would cor

to AT Y,X; on your machine. The X and Y coordinates may
be in reverse order on some computers.

Degrees and radians
Your Spectrum deals with trigonometrical functions in
radians by this expression:

LET RADIANS = (Pl * DEGREES)/180
and radians may be converted to degrees by:

LET DEGREES = (180 * RADIANS)/PI

Base 10 logarithms

As your computer works in natural logs, to base e, if you
need logs base 10 for any reason, these may be found using
the expression:

LET LOGBASE10 (X) = (LN(X)/(LN(10))

You could use this to find logs (any base), suppose you
wanted the log base B of X:

LET LOGBASEB (X) = (LN(X))/(LN(B))

188

%

The percentage symbol is generally used to specify an integer
wvariable, e.g. A%. These are usually used to save memory or
because they can be processed faster than conventional
variables. In general, there is no harm to using an ordinary
variable, althougii you should be wary of these integer
variables being ass 3ned as the result of a division as they

ically truncawe the quotient to its value. In this
case use LET A = INT (A/2) for example to “integerise” the
result of the division.

?

On most computers the symbol ? is used as an abbreviation
for the command PRINT.

PEEK and POKE

These two commands are very powerful instructions that
enable you to do things with your computer that you might
not be able to do otherwise. Let us start by defining the two
terms PEEK and POKE.

(1) PEEK m gives us the numbers stored at address m in

memory.

(2) POKE m,n puts number n into memory at address m.
accepted, it erases what used to be there.

The term address needs explaining. A computer like yours
thinks and remembers in numbers, not words as people do.
Certain patterns of numbers make parts of the computer do
specific things. This is called a program. Now the computer

189

needs a way to hold all these numbers so that they are
remembered until needed and can then be looked at, and
once their values and patterns are known, the computer can
decide what t's going to do.

Certain patterns of numbers may make the computer PRINT
something on the screen, add two numbers together or
maybe crash if the pattem of numbers makes it try to do
something it can't or shouldn’t.

The computer can't just stuff the numbers anywhere — this.
would cause chaos if it didn’t know where to look next. So
there is a method used whereby everything can be neatly
organised.

Imagine you wanted to display a message in public and you
had the words written on little placards with hooks on, ready
for all ocourrences, so that you could display any message
simply by hanging up the right set of placards. For example, if
play this message:

“BEWARE ROAD WORKS" we need these placards:

1 i i

BEWARE s ROAD and WORKS

We need a board on which to hang up these words. If we
start with the first hook by hanging the first placard there and
proceed along the board, we end up with a fairly neat sign:

1 @ T 4 s
BEUARE]

The pegs on the board tell us where each word is hung. This
makes a good comparison with your computer’s memory.
There are 651536 places where we can “hang” numbers on
‘the Spectrum, but these are split up for various uses, and you
or the computer can do various things with these. These
“pegs” or locations or whatever you want to call them are
actually referred to as addresses (the home of each number if

). However, if the Spectrum has a number it wants to
store, it can't just stuff it anywhere because it might upset
what's already there.

One way you've already used POKE is to create user-defined
graphics. These are POKEG into addresses starting at 32600
on a 16K Spectrum.

If we look at the first peg (PEEK 1) we find the word BEWARE
there. If we look at the second peg (PEEK 2) we find the word
ROAD there, and 5o on. Can you see the analogy? Remember
that the computer would use numbers rather than words, but
the idea the same. Similarly, we can char,ce the words
on the pegs quite easily by using POKE to stuff a new numi
where another number used to be. We could do something
like POKE peg 2, BUILDING which would put the word
BUILDING on the second peg of the notice, and so change its
entire meaning. The great secret about PEEK and POKE is not
what they do — it's how to use them. It all very well finding
what number is in which address or stuffing a new number
into a particular address, but how can you make use of this in
a program and how do you know where to PEEK and POKE.
The answer is, mainly by experience and reading through
other people’s programs, although you will find that as your
Kknowledge of computers increases, you will find you think up
new ways to use PEEK and POKE. Before we look at
examples, a brief reminder of how to write/type PEEK &
POKE statements.

PEEK m. m is the address which we're looking into. m is a
number from O to 65560 or m can be the result of a
calculation. POKE m,n. m is an address to which the new
number is to be placed, as with PEEK. It is written between
the word POKE and the comma. The number after the

191

comma, n, is the number to be placed in address m, and can
be a number from 0 to 255 or the result of a calculation
provided it is a number from 0 to 255. You can actually make
n a negative value from 0 to —255, but this is rarely done
and is not very useful anyway.

Let us now look at some examples of PEEK and POKE in use.
(1) REM statements

Many programs rely on information held in REM statements
in the first line of a BASIC program on the computer. This is
because it is easy to access and is very economical on
memory. The important point is that the address of the first
character after the word REM in the first line of a program is
23760. So if you had the program:

1 REM ABCDEF
2 PRINT PEEK 23760

it would print the number 65 on the screen. This is the CODE
of the character A, so address 23760 has the value of 65.

You can easily change this value by POKEing a new value into
760. For example, to change A to a Z, look up the CODE
of 2, which is 90, and POKE this into 23760:

POKE 23760, 90

Or it could have been written as POKE 23760, CODE “Z""
‘which works just as well. The next address, 23761 stores the
B, 23762 stores the C and so on.

The technique of PEEKing/POKEing into REM statements
was of great importance for the storage of machi
programs on the ZX81.

Although it can still be used, the manual (in the section called
“Using Machine Code’) explains a way of reserving memory,
and POKEing machine code into the reserved area.

(2) Using the timer

The timer is contained in addresses 23672, 23673 and 23674
and it simply counts the number of frames sent to the T.V.
You can PEEK and POKE into these addresses.

Reset the counter to zero by these statements:

POKE 23674, 255
POKE 23673, 255
POKE 23672, 255

And to read its value, use this expression:
65636* PEEK 23674 + PEEK 23672 + 256° PEEK 23673

This gives us an answer in frames, and since 50 frames are
sent to the T.V. every second (60 in the US), we need to
divide by 50 (or 60) to get an answer in seconds, like this:

LETTIME = (65536 *PEEK 23674 + PEEK 23672 + 256" PEEK.
23673)/50

Here is a program to provide a stopwatch:

S PDKE 23874.255
1@ POKE 23673,255
2,255

@ e ={8SSUBLPEER 23574+
PEEK ZRE72+2564PEEN 20670) /5@

@ PRINT AT 11,34 INT Tlines1d

§0’co To 3@

The INT In line 40 is added to prevent fractions of a second
less than a tenth being printed. This stopwatch keeps fairly
accurate time because the frame counter is controlled by
special hardware, 5o unless the program deliberately forces it
10 do otherwise
runs and keeps
frame counter allows timing for nearly four days. If you want
a readout in minutes and seconds then use this routine

193

3674

ne 82
81 ¥6@

Business Uses

The compuwr can be used for a number of small business
applications. A wide variety of programs are commercially
svaiilblo to exploit the large potential of the computer. In this
section, we'll look at some simple practical application
programs for your Sinclair machine.

The first one is for money manipulation. James Walsh has
written a program to calculate compound interest. The user
prompts are clear, and easy to follow.

i ?BLLET Ag="Year Interest
e
108 INPLT Number 0837
1l@ BRINT “Cei est
12e pf ‘9!.’5"
i3e ¥ EY ¥
is@ ";’Q
ise fhedrs
PIN
ise
ize
ige
ity ngrn#uns%ms JINT (Us.S
& i L 1
1TAB 19; 8" INT Rt
28@ NE! N
270 PRINT “"Total=$"; INT (T3.5)
29@ Int es MiING
JSie Qriginal amount=3";
32@ PRINT AT @.,@;A.
S e
=1t £1@@) *T
35@ LET T=(IN-1@2) #T+7T
360 RETURN

Word processing

This word processor program will make text
before you print it — and gives you

mistakes, using a free-moving cursor. You ents

10 17 lines deep) as a single string, X$. When
textin, you press ENTER, and the computer
words to ensure that none of them are split at
line.

A menu appears with three options: 1 — correct’

LPRINT the text; and 3 — to start again. If yo
1o correct the text, it will reappear on the

the words “ENTER 1 TO RETURN TO MENU"

After LPRINTing, you are shown a fur
SIS oo wha Yhels phesre et
LPRINT again, or to terminate the run.

ig BEM uonp PROCESSOR
28 NTER TEXT"
28 TRAUT x5

32 LET X$=X$i"

35
35 E5%sus 1000
4S5 GO _SUB 1000
S@ PRINT X
L@ PRINT ““ENTER 1 TO CORR

TO LPRINT. &
ram‘ asaIN”
188 I Bia THEN
196 IF 522 THEN 88"ro so000
120 Ir 9a1 THEN GO TO 2000

1200 REM STOPS WORDS SPLITTING
101® LET N=1i
192e GO_SUB 1ise
1238 LET N=N#33
i2i@ IF N»=LEN_X$_THEN RETURN
1045 REM SINGLE SPRACE I

NEXT LINE
1050 IF X$iN) "UTHEN @0 TO 118
iess

REM SINGLE SPACE IN
NEXT LINE

%B7$ IF X$iN)=" " THEN G0 TO 120
1e8 =2
i22@ GQ_sSUB 118
1185 REM SIY':‘JE;E SF‘REE In
éilﬁ IF X$(N)>" " THEN GO TO 1@s
3122 FOR N=N TO Nid-1
1125 REM SINGLE SPRACE IN

NEXT L INE
ilgs l)_ET X$=X$(1 TO NI+" “+X$IN+
114@ NEXT N
1158 GO_TO 1@3@
%és;ﬁ LET X$=X${1 TO N-1)+X$(N+1
1i7@ GO TO i122@
118@ LET N=N-1
1i9@ RETURN
2002 REM # CORRECTIONS =
2e1e Cl
aﬁsaugn:m “ENTER 1 TQ RETURN TO
203@ LET A=i: LET L=LEM X
2032 LET Z$=Rs$(1) i
2038 PRINT AT 2,8, Xs
2882 SET ORI e ne Then
lé%gs“;?’%NNEY! 6" AND TH
EN _LET R=R+32 T

AND R>1 THEN
AND A>32 THEN

© THEN @0 TD_72
THEN G0 SUB 3

PRINT AT 1,@;R;" ";X8(A ;"

A
INKEY.

3eea
ToE
3eld

S
INPUT INK 2; FLASH 1. BRIGH
Enter letter ;iM%

LET X8R} =Hs

196

IR3ZR RETURN
4222 LPRINT X$
;glﬂ PRINT "ENTER 1 TO FPRINT RGHR
4@22@ PRINT TAB S;“2 TO RUN ABAIN
4232 PRINT TAB S;“Q 7O STOP"
INPUT U
4@5@ IF U=1 THEN GO TO 4@e@

IF THEN RLIN
4@7@ IF U=3 THEN STUP
4232 GO TO 4@4@
The final program in this section is designed to place entries
and page references in alphabetical order and will enable
indexes to be constructed (e.g. to books or articles in
magazines) or can be easily adapted to accommodate stock
lists or levels. .

The program is in three parts. The first (to line 100) accepts
the entries, the second (lines 200 to 300) sorts them and
the third (lines 310 to 530) displays the data.

‘The program asks you to enter a title (T$) and its author (N$)
and then enter the subjects and pages, one by one, entering
an “E" to end the entry process. The program will accept up
t0 400 entries (line 20). This runs on a 16K Spectrum. You
can have 2000 entries or more on a 48K machine. At the
end, you can choose to have them printed to the screen or to
the printer.

Here is a sample run:

BRAIN GAMES
FISHER R 8
CONSCTOUSNESS
INTELL IGENCE -
ER| 1
FACHINERY - 32

PERCEPTION - 187
PERSONALITY - 3

~_18s
7

BEN Book index
2%

2
WebT

£OR 8731 T8

16
ERSea T arie - T8
EN'TER AUTHOR S NRAME

Se
* ORD_AND PRAGE
ANPUT TENTER UE" To END ENT

8@ IF A
THEN_ GO
9@ PR
NE
CL
FOR B=1 TO_ G-
FOR C=B+1 TQ

ERRas e the or

B2 LET D8 08 (0)
LET AR =As (02
A% (C) =08

LET
NEXT €
B

Xt
PRIN
FRINT “EnTER"Y

ERENT
s:m 5 ey =an
IF INKEY$="1"

-3 TO
l.anm‘ A% AY

TSR

BRINT ‘T8
PRINT °N§
BRINT

FOR A=1 TQ
PRINT A$ (R}
NEXT A

G-1

&-1

=
ERINT |STAND BY, SORTING"

 "READY"

TO LPRINT

ENTER 2 TO PRINT

THEN CLS :
THEN SC TQ

“rhen co To

G
on

as

Improving your
programs

You've probably gone through several stages as you develop
your programming skills. After the first, brief struggle with
BASIC, you suddenly discovered you could, after a fashion,
write programs which ran. They may have looked pretty
convoluted when you looked at their listings, and friends may
have needed a detailed explanation from you before they
knew what to do when running the programs, but at least
they worked.

There comes a stage when you decide you're going to have.
to do better than that. But while you may be vaguely
dissatisfied with your programs, you may not have much idea
of how to go about becoming a better programmer. Here are
a few guidelines wi

First, have a look at a printout of your listing. Programs linked
by REM statements look better, and are easier to understand
‘when you return to them after a break. Of course, shortage of
memory may preclude the luxury of REM statements, but if
you have the memory, you should include them. REM
statements filled just with a line of asterisks can prove quite
useful in separating each major section of the program.
Examine any unconditional GOTO critically. Too many
GOTOs leapfrogging over other parts of the program show a
lack of directed thinking, make programs run more slowly,
and can make them almost impossible to decipher.

It is very good programming practice, to have each of the
main sections of the program (iike the one which assigns the
variables at the beginning of a run, the one which prints out
the board, the one which works out who has won, and so on)
in separate subroutines. The beginning of your program
could well look like this:

10 REM *NAME OF PROGRAM*
20 REM ASSIGN VARIABLES
30 GOSUB 9000

199

40 REM PRINT BOARD
50 GOSUB 8000

60 REM HUMANS MOVE

70 GOSUB 7000

80 REM COMPUTERS MOVE
90 GOSUB 6000

100 REM CHECK IF GAME OVER
110 GOSUB 5000

120 GOTO 50

As you can see, this ensures that the program actually cycles
through a continuous loop over and over again, until the
program terminates within the “CHECK IF GAME OVER"
subroutine. You can actually write a series of lines like these

fore you start writing anything else, and even before you
know how you are going to actually perform some of the
tasks within the subroutine.

Then you can write the program module by module, making
sure that each module works before going onto the next. It is
relatively easy to debug a program like this, and far simpler to
keep an image of ‘where everything is’ when you do this,
than when you just allow a program to, more or less, write
itself.

The listing should be, then, as transparent as you can make
it, both for your own present debugging, and for future
understanding of what bit carries out what task. The output
of the program should also look good. Again, if memory is
not a problem, make sure the display is clear and uncluttered.
Use blank PRINT lines to space it out, use rules of grapl
symbols or whatever to break the screen up into logical
sections and so on. Once you have a program working
satisfactorily, it is worth spending extra time on the
subroutine which controls the display. Here you'll appreciate
again the advantage of having all the display handling in one
subroutine, s it will be easy to know where to go to enhance
the display.

Of course, as we live in a far from ideal world, it is unlikely
that every single display command can be contained within
200

one subroutine, but if you aim towards that end, it will make
subsequent working upon the program much easier than it
might be otherwise.

The ‘structured’ approach outlined also helps you realise
another aim of a good program — to do what you expected it
You should write a program so that,
even if you are not present when a friend decides to run it for
the first time, it performs as expected. This means not only,
of course, that it is properly debugged, but that the
instructions (which can be contained within the ASSIGN
VARIABLES subroutine) are clear and complete.

The user prompts should be clear, so the human operator
knows whether to enter a number, a series of numbers, a
word, a date, a mixture of letters and numbers, and so on.
The program has to assume that the operator is a complete
fool, and that no matter how clearly the instructions and/or
user prompts are stated, he or she wil attempt to do things
the wrong way. A classic example of this is the entering of
dates. ‘Mug traps’, as the routines to reject erroneous input
from the operator are called, should be set up to reject a date
being entered in a form which the computer cannot
understand (such as the month before the day) or which is
clearly wrong (such as entering the 32nd of February). You
should ensure.that, no matter what the operator does, the

‘without entering anything at all. You can get around this by
always allowing a input, going back for another input if
the empty string is entered, and taking the VAL or CODE of
the input to tun it into numerical form.

Documentation is an area of programming which is often
neglected. It is virtually essential for a program which is
intended for publication, and most advisable for long
programs which you've written for yourself. At the least, the
documentation should include a list of variables, an
eexplanation of the program structure (which should be easy
10 do if you've followed the ‘modular’ approach advised), and

201

brief instructions, especially if the program itself does not

contain instructions. A sample run showing the kind of
inputs, and the nature and layout of the program outputs, is
also useful.

Your program should run as quickly as possible. Every time
there is a subroutine or GOTO call, the computer must search
through the whole program, line by line, to find the specified
line number, so placing often used subroutines near the
beginning of the program will speed them up fractionally.
That is why the instructions are often placed right at the end.
You do not want the computer to have to wade through the
initialisation and instruction lines every time it has been told to
GOTO or GOSUB looking for the destination, or return line
number.

Define often-used variables first, so they will occupy the early
slots in the variables store. The computer will search the store
only until it finds the variable it wants, so there is no point in
getting it to look at more entries than absolutely necessary.

Finally, and this is by far the best way to test a program
you've written, callin a friend and st him or her n front of the

it back and watch. If there is any hesitation, or the
program hiccups, you have more work to do.

In summary then:

‘® Use REM statements

® Make program listings neat and logical

@ Use structured programming techniques, controlling the
program through a loop of subroutine calls.

@ Examine unconditional GOTO commands criically

® Make output display attractive and clear

® Ensure all user prompts are clear

® Add ‘mugtraps’ on all user input
Document your programs, even if you just make a list of
variables

202

® Make your program run as quickly as possible
® Test programs. bv allowing someone unfamiliar v
program to run

2z
ERINT INK 4iTRB S0, "

To se
11S FOR a=1 _TO SO STEP 2
= TAT ‘ge 36: INK nunau

N PRINT AT 20,
d you zre the w.

o29¢ IF w<1 OR w>9 THEN GO 7O 22
23S BORDER 2
2@ CLS : RETURM
bouncer
thell, 1982
LET b=1: LET c=RND
=
I S 2P AT Cadi IN
S@ IF'cibr2i OR ctb(-1 THEN LE
SEP 0.2, -RND:1S

22 I gra>3170R dia @ RND > .
g6 THEN LET 3=-a. BEEF o. O RNBiz

7@ LET_c=c+b: LET d=d+a
80 GG TO 40

Colourthello

Challenge your Spectrum to a game of Reversi with this
program COLOURTHELLO, written by Graham Charlton.
COLOURTHELLO is intended to highlight the sound and
colour potential of the Spectrum. You'll see, when you run
the program, how effective the Spectrum’s features can be.
You move by entering the number down the side, followed by
the number across the top or bottom, as a single, two-
number. For example, if you wanted to place a piece s
the bottom 0" is on the board, you'd enter 64.

coloyrthetis
2 27

204

S0 _NEXT c: NEXT b: LET p

2 (5,5) =CODE
SRR (S \5 5>_|:m>=

e
130 IF’ CODE qs<>cbpe “nt AND SO
DE 33 3GEEE CNT THEN co To zegel
320 BRINT INK 2;AT 18,187

ODE "o'": LET t=CODE

2 4oEOR Bz TO 8
1856 I:wa(a 039,860 0. ¥

LET kaktii LET f=fsc: LET 9
3 28, 1F 21742382 21 THEN GO TO
ize

et T
122@ IF f=2 OR_f=8 OR g9=2 OR g=9
THEN LET §=gs=
1230 TF_1=3 OR_f=5 DR 9=3 OR 9=&
=97
(135785 f=2) AnD 5 (932,98
N Esr Sl
;53 88, (RND>.3 AN

: m=a: LET n=b

133@ NEXT a
1340 IF h=@ AND red THEN GO TO &
135@ IF h=@ THEN GO TO 1370

i3se gg 2 so8e

1378 3000

RINT INK 1;AT 102.16; “HEER
IE @ LET 5=CODE “x": LET t=CODE

2820 TnPUT

2640 IF r=8 THEN GO TO

2240 IF 1104 527 RER20 1o

20E@ LET m=INT (r~,10)+1: LET n=r
205

ET
T10¥INT (5 ,10) +1

2050 GO SUB 4000 Colourthella
290

2 GO _SUE_300@: GO_TO 1000
zgaa PRINT AT 5,@;: BEEP .25,RND
2810 LET c=2: LET n-g
Z@3@ PRINT INK 4 "HEEEES
840 FOR b=3 TO 5. PRINT
380 FOR d=2 TO @
3@7@ IF _a(b,d)=CODE "x" THEN PRI
NT X -ouc ol
ﬁ_ b =CODE “o" THEN PRI
°
a b =CODE “.“ THEN PRI
L] £.4) =CODE “x" THEN LET
3 I b,d)=CODE “o" THEN LET You have &
+
5199 NEXT d
311@ PRINT INK 4; b-1
512 b
3
g
5 Life
b Here are two versions of John Conway’s game of LIFE, the
bt game which simulates the birth, growth and death of a cell
i colony. The cells evolve according to the following rules:
& gBaLET F=f+ LET 3=3+d: GO TO
@ Each cell on the grid has eight neighbours
e s i bk e il e g Hha ok ®Every cell with two or three neighbours survives to the next
4032 LET a(f.g)=t: IF m=f AND n= ety
il i 4Py gaged: GO TO @ there are three, and only three, neighbouring cells, a new
id3a Ko i cell is born
A oy S SR ®Any cell with four or more neighbours dies from over
K Sy population
5310 IF hjc THEN PRINT “You won.
SR g S REM LIFE_- © ANNE MARSHALL
s25@ @ Charlton 1882 ‘%g’DIﬂ R(145): DIM L (145): DIM
E
18 LET
32 For
25 REAI
3@ LET C
3S BORDE!
i2 FOR B
Sa FGR D
LET AT

g2 S+103D) =2
7@ IF RND>.45 THEN LET R(B+18%
8@ LET L (B+1@#D) =R (R+1240)

207

33 NEXT D HEXT 8
G+

ize FQR 82870 12

B=1 10 12

128 57 G=1°THEN G0 To 252

199 Lf

3@

24
11

5980

e
R i Rk

910!
56!

OO AL DDEOODNO:
SUSSSLEEH SEEREs:
]

1@

ESR BZ 13:

280 PRINT INK 6;CHRS R (F)
EXT PRINT : o
SoERINT AT 2,107 PABER 2; INK

ET
FOR
TFRtFE T S0 co THEN LeT H

T
“BF1 20 AND HO® BND HoOR

=
M_LET LiF)
F

AF) =Z AND H=3 THEN LET
EXT B: BORDER RND#7: NEXT

BORDER 1

FOR M=11 a4 LET Ao =L

EEER""Tads B AT kT

ERINT BT €0,

‘12 PRINT TAB_ 4;
LET F=Uyinsb

22
& BarA11%%0,0,12,-1, -2, 10, -

REM con'né s coton
REM_@ Hartnell, 1982

EEEEEarrredany
iatise

Lo ok Bav
=

T ¢

oIM 3

FOR X

BORDER RND#:

AF ANB>ooS THEN LET a(x
S@2)x¥us2: LET cells

LET bix.ul=ax.u)
D NEXT X

REM Pr

REM unuutnnun
LET +1

228 BEEP .22 ANDs2e
NT 1,0: INK RNDs6;
JAT 3,8;
celt
4258 FOR x=2 TO 1@: FOR y=2 7O 1

®a7e LeT 20x 92 =blx 0

280 IF atx THEN PRINT "

‘28s_IF 2 4% ,9) =1 THEN PRINT INK
G getizziEiis

ERInTSBAENT ' TRAx

XT

%
,81,@; INK RNDaS; -]

345 BORDER RND#6
358 LET c=e

3s@ a(x-1,y-11=1 THEN LET c=
‘3 1F a(x-1,4)=1 THEN LET c=cs
Yaga IF a(x-1,us+1)=1 THEN LET c=
“3be 1F aix,u-1)=1 THEN LET c=c»
4@@ IF a(x,y+1)=1 THEN LET c=c+
(418 IF a(x+1,4-1)=1 THEN LET c=

.
s
s
.
a(x+1,9) =1 THEN LET c=c+
43@ IF a(x+1,9+1)=1 THEN LET c=
:
s
7

(x93 =1 AND c¢>2 AND c<
Ly =
AND c=3 THEN LE

Matchsticks

‘This game is based on one which was played in the film “Last
Year at Marienbad". There are a certain number of ‘matches’
at the start of the game, and you and the computer take it in
turns to take one or more away. The maximum number you
can take is shown at the top of the screen. The player who
takes the last match loses. The computer is not infallible.

s REM % MATCHSTICKS #
GHITE TEXT O SLUE ﬁ
18 BERTEIR SRR o

: LET Z=18+INT (RND%

3@ TIF Z#(Z,2)=Z THEN LET Z=Z+1
20 LET H=INT (RND#4) +a

28 PRINT INK RNGeD3E, K Y,
88 TF'RND) .65 THEN PATAT . PRI

NEXT K

LET K=7: IF RND:>.S THEN LET
112 INPUT INK K "HOW

vOU_TAKE? “E b
i2e IF E>n OR E<1 THEN GO TO 11

BLSH: e
F Z=0 THEN BDRDER BNDE7: P
R
-25_RNDx: :na‘:«‘a &0 T0
PINT 11210, TR. 18T

1=

1
188 TF zZa The

RINT TTRRRERT BRBLRORREAPADAT 8

OK “;@;") So_you u.‘t %agtrT 58
SAND&4@: o ia
ise 6o TO s°

MARXIMUM TO TRKE IS S

I TOOK 1

4§ si =1 7 s

108 il
128 a1k 148

Fruit machine

The next program costs Pty infiationary $1.50 a spin.
From time to time the HOLD option will come up. You can
hold all four reels if you like. Whan HOLD comes up, you just
enter each number you wish to hold, pressing ENTER after
each one. When you have held enough, o if you don't want
to hold any, enter 5, then press ENTER which gets you back
to the next roll.

2@ POKE 23523,100
38 BEkEVEas820 s
S0 PAPER @: CLS : BORDER ©: IN
7

PRINT *°° PAPER 2;TR8 2, TH
==°%s RaUND “; ROUND - - TRB 2; P
HAUE_ " ; MONEY® TAB 2; "PRESS ANY

ol

“_THEN GO_TQ_78
THEN GO TO 8@

9 ORDER RND$7
;. BEER G0 S0 8. REXT G. BORDER

122 FOR J=1 TO 4

211

i CUYoU NOW HAVE
318 IE Mid =d THEN G0 T ise AlR0 BRI, TEDND
338 BELR" 053N, TRNDaaY,1 -tf_s’m_‘gk T51,J0,64: PRINT INK RN
15@ NEXT a4 D¥7;
158 '657358”'5‘3‘“9‘-‘"9*1 $i%8 ﬁﬁﬁﬁasssa,_,A PRINT : PRIN
ki
138 32 Ri5,+gee Lise DIM M(4}
178 EN 30 sus_sope 3178 RETURN
S; INK H PRINT ﬁT J.E S00@ REM x3% SPIN_##
ANDE7; Seie FOR T=1 70 S0: BORDER RNDAZ
177 “Formr.i ¥5"2s! wzm- : NEXT L BEER .o1,5e. b ?
iee IF HDNEY 2@ THEN GO TO PRINT ~-° TAB 4
o R BRART . RalfiBs R YoM SuRBrue Er D-rif.syiepkxm- INK 2
i i P =1,
135 BORCER END:® MK T
=88, FREINT "BUT NOW YOU ARE BROK THEN PRINT
THEN PRINT INK &4,
208 BDRDER RND#7 EEP Yl
PIB BRINT "C A S T80 I8 © THEN PRINT INK S
215 ECRDER _RND*7 P .1,40
220
o
4@ EM ## HOLD ##
igee N
POKE 23592, 1
s82 2558 BORE dstez e
£E£EE OHBER () YOU
BE| B5@4@ PRINT

sosn gﬂzg‘r .' INK B; “WHEN YOU HRV

Goea INPLT

£358 IFTBL:S THEN PRINT INK 2:@
Sas@ LET MI@) =@

gos@ IF 9<)5 THEN GO To sasa

U
5388 REM a%_mssIen YPRIABLES s3
3212 DIM A(S): DIN Mis)
3@2@ LET MONEY=7.5
5@3@ LET ROUND=1

FDR _T=1 T

DA

o
A
3

Li
o
i
i
0)
I
R

i
)
"

2
o 2@3@ RETURN

R I

Final circuit

FINAL CIRCUIT was adapted from a ZX80 program (2K
RACETRACK) first published in the National ZX Users’ CLUB
monthly magazine, INTERFACE. The original version was
written by Alan Gunnell.

It easy to play, and becausa it nds up giving you a score

ter each ‘race’, acts as a challenge to play it over and over
ng- trying to_increase your score. There are three
‘racetracks’ on which you can drive, of varying degrees of
difficulty.

Throughout the race, you are asked to enter your choice of
acceleration and gear setting. You'll soon learn the effects
these have. Your score is shown at all times (line 220), and a
final score is given at the end. Your feedback (including such
Iinu s “Driver behind is hooting, hurry up’ if you're dragging

heels) is in words, and comes throughout the race.
Youlfnd there s a great tendency to crash, and your vehicle
manages somehow to survive an infinite number of crashes.
Of particular interest is line 290, which takes the place of five
IF/THEN statements of the type IF H = 5 THEN LET BS =
“oily straight”” and so on.

LET a=sS: LET
BORDER 1: PAPI
INPUT “Uhich t
IF v<3 OR v>S THEN GO TO 25
LET x=
LET (=1204vev
I %218 THEN STOP

X 41

10000) DI sk
88865 INCHNFDEA

i Ly out of 10V ¥
Vi ’pcm: 13e05, " L2OREER | CRABSSY
SEEP .02, RND 50

1s@
£9:°72,'%8 so: mEEP .02.t:

2
gg XﬁaINK RND ¥6; b$

£8:79.5%c_so: BORDER RND*7

siﬁégzﬁgrla*a;_(=;1s»+(

PER 25 INK ;"
s a

enkoss §HeREuT T INK 7;“"Sele

$2°5 4%0r% 3% fRen oo TO 2

NK "Enter accelera

158

OR 5710 THEN 60 TO 2

NT_INK RNDs8; "Current sc
K

2: RI
is Nl o0 "
Sio IneUy PRPER 2; INK & "Enter

@ ia)

BL3%409, (8 IR 2510’ THEn 0 TO 2

Ul
fos nemnn o mosnl
29@ LET Moty straight’
h=8)+("ha Al
o pii L B R
EEr IFURg THEN LET a=
o
388 TR e o
5¢1@ THEN LET 5=12
g;g }; 5<¢18 THEN PRINT “°°'' 1IN
K 2;"Driver behind is hooting"
P:ég‘rﬂ‘ INK 1, nur.g up™
SBOB IF S)QB THEN PPINT INK 2,‘ 'V
Sl e
%gés ?F S)‘B THEN BEEP 3.S5@: FOR
9=1_TO 2@: BORDER RND}E’ NEXT q
JiEde 36 gonee o
2010 I;EEI;E ;Hgs PRII
Sh*”: - i
gaasz 2_? LET L=1-3+INT (RND#1@)
Bt e o e

INKRND S8, (Crashiy
LET L)

215

3212 RETURN
1000 IF $3>35 THEN PRINT TINK 2;
i&*fiﬁﬁraig*!ﬁ!*:};—i**-}*{»***{-{» f

4812 RETURN

Seee 320 THEN PRINT INK 2
_,C_D'l:l:lltrgrrraaaassssshhhl. St
Sees FOR_t=1 TO_S8; POPER RND37:

T
seig 1e"BYE FheR BRINT “crashiiv

Breakout

In this game, based on one written by Eric Thompson,
control the action of the little slide at the bottom with the 1"
and “0" keys. Your ball is a small letter “0”.

POKE 23808, 100

REN BRSEC°LN zxau smocmen
REM BV ERIC THORPSON

1S PRPER &: CLs .

i P2 LS : BORDER 2

INK AND#3; A"

0~

$135.58T X=X+(INKEY§:"Q"J—(XNKEY
122 PRINT AT 9,%-2; INK 2;" P43
1abP TR Bl Toi 1R

;\se IF B=3_OR B=18 THEN LET @=-
-e@s, 2@

B=E ¥

ize i X=X+ TINKEYS="0") - L INKEY
178 £QR @=1 70 Z. NEXT &

182 PRINT AT #,B1;

isa NEXT P

216

sip_g"l!.:‘r X=X+ (INKEY$="0") - (INKEY
20@ IF ARS (B-X)>2 THEN G0 TO 2

208 LET 5=5:1

I L roue

i BEEF .25,1
Fa NEXT &
2se o _TD
588 SNpLT *DecrEe ‘oF DIFFICULTY
(1 TO 201772

Si@ IF Z<1 OR Z»2@ THEM S0 TO S

@ NEXT S
SE@ RETURN

Galxian

This program was adapted by Tim Hartnell from a ZX81
program written by James Walsh and Paul Holmes and was
first published in the magazine DATABUS.

isn -
Lsh, Hartnett

158 IF INKEY$="8" THEN LET X=X+

142 PRINT AT 1S,X; INK 2;A%
145 PEEP .004,10

217

BI
@111,B1n 1412

2111,5IN 111@@
N 1e11011d

I
1

MBZEN

681
o2
iei

1
THEN

RND #°

INK_RND.

INK 4,
0 _TO

N

2

I

o

]

I
111,BIN D@111
N 1ée21111
2021,5IN @

I
2
B

AHE dHS

P,N;
THEN
RDER_RND%7: BE
G0 TO 42
MBI N
SMU AN
UET LN
1
I
Et
1.
I
2

AT

215,18
@ B0l

a i
e
wzo
o THL
1= R oa
g 8" 938
>
z
&5 o
I 4
L) 2z
2 i3 2
10 ol

P14

PRINT
FOR J=2 TO 7

1gS@ READ N

160 IF RND>.65 THEN LET N=N+INT
NEXT J

(RND¥3-11

-
J
"
i
4
2
=]
Q
i
s
W
o
.
)
&3
i
o

)
¥
X
i
o
1
1)
]

15@ PRINT AT _B,N;
17@ IF RND>.8 THEN LET
ige PRINT AT ;

@2 IF

1252 POKE USR

IF
EP
0.
o
828 BGRE Use

igse
1lgag

219

218

Appendices

220

Microdrive
This is a miniature microfloppy disc memory system. Each
Microdrive holds up to 100K of program or data, and up to

rate of information from the Microdrive to the Spectrum is
16K per second, and the total time to scan the entire

to find a particular point is seven seconds
although many access times will be less than that. Some
commands which have not been mentioned in this book are
designed entirely for the Microdrive and the RS232 interface.

RS232 interface

The RS232 interface allows the Spectrum to be connected to
any of peripherals (such as printers, terminals, other
computers) which are RS232 compatible. The RS232 is an
industry standard, so there is a wide range of uses for a
Spectrum with the interface. The interface operating system
is in the Spectrum monitor.

Other commands

OPENH, CLOSEH, MOVE, ERASE, CAT and
FORMAT are designed for use with the interface and
Microdrive. The Microdrive supports not only SAVE,
VERIFY,-LOAD and MERGE, but also PRINT, LIST, INPUT
and INKEYS.

IN and OUT are commands to trigger the computer’s input
and output ports, and are used for controlling or obtaining
information from such things as the keyboard or printer.

U0 SUON DOSH0 1
{SNN NN SN

88

8
as
s@

ONGTS - 0N 03!
BB

59
=
&1
82
63
=
65
68
67
88
&8
7e
71

A A R AR R R R i
e es55 555 555550000800005565 088505558055

|

in case you're interested, the

SAUGIDON DGO O!

DDA
£ AUD S BON GO A A oA AN O

AT
OOOONNO0SS bt

S
27
23
23
3

38

You may prefer to use decimal, rather than binary, numbers
in your data statements for user-defined graphics. If this i

this list should help you:
program used to print out the st is given at the end.

Binary to decimal
converter

o i A (U OIS0 00 A T U001 0 00 6 U 05 o4 LD DTS 0300 G A CY € DD P 0 O
e o oI P 3 T3 0B 0B 503 6301011 1 1A A S S S B B S S et s g n
4 10 U 0 0 0 000 0 0 4 0 3 0 00 00 000 0 4 -
ERENERERE R R
AGGAAGOAAG G A I Ll bl A G G e
PRt R P R LR R Pl Fphed
2 e aE Bodd 5085556 PR Pt Er k]
i et TR b e
oo =
55556 58859856608 5568080 ERiesecesacs
i

225

\

FUDON DO A0 S AU SO 100 A DB TGy OGO PO T
SSEB G ceri e AU O 5 DB § 4 3 55 4 DD BBRBRAL

224

11102 220
11101 281
11101 281 Report codes
FEERES 223 These appear at the bottom of the screen whenever the
Saaas 22 computer stops executing some BASIC, and explain why it
1800010 226 stopped, whether for a natural reason, or because an error
leviza 258 occurred.
Iaeial e
lgeiia 222 CONTINUE generally goes to the line and statement specified
giges £33 in the last report, but there are exceptions with reports 0, 9
1 255
e101d 232 nd s
@101 23s
01180 238 Code Meaning
e1ral 237
e11ia 238
21111 232 0 oK
1gaaa 222 Successful completion, or jump to a line number bigger
19638 2iz than any existing.
Specs e 1 NEXT without FOR
lele1 245 2 Variable not found
19315 21s 3 Subscript wron
1208 248 A subscript is beyond the dimension of the array, or
1033 2i2 there are the wrong number of subscripts.
1011 251
1e11 281 4 Out of memory
1101 555 5 Out of screen
1110 253 An INPUT statement has tried to generate more than 23
Bp | lines in the lower half of the screen. Also occurs with
PRINT AT 22,
| 6 Number: too
We hiin st to AlE | Calculations have led to a number greater than about
20 LET J:B 10%.
RETURN without GO SUB
End of file (Microdrive, etc, operations)
STOP statement
Invalid argument

9@ NEXT N
100 PRINT A%.5 Integer out of range
Nonsense in BASIC
BREAK — CONT repeats.
The behaviour of CONTINUE after this report is normal
in that it repeats the statement.
E Outof DATA

compO®~N

FxCe-zIom

pv0 2z

Invlid 1/0 device. (Microdrive, etc, operations)
Invalid colour

BREAK into program

BREAK pressed, this is detected between two
statements.

RAMTOP no good.

The number specified for RAMTOP is either too big or
100 small.

Statement lost.

Jump to a statement that no longer exists.

Invalid stream. (Microdrive, etc, operations.)

FN without DEF

Parameter error,

Wrong number of arguments, or one of them is the
‘wrong type (string instead of number or vice versa).
Tape loading error

9
Tha PRINT

INT formatting and TAB.
SAVEing
VERIFY, MERGE

INT A1

printer, LLIST,
lom numbers.
Dice

‘Scioniific notation.
String variables.
CRICKETS

Froventing INPUT crashos

IFFTHEN GO TG .
Truo & faise
R

L
ROLLER, BULL FIGHT ..

Join the Nations) 2X Users Ciub

e oo o your 2 St b Joialog he acioml X

e
Ulers! Ciug, the tountry's' Targest user

READ/DATA/RESTORE 121
inod % TETGE, whicn nciuges ot

hna rs
139 e e b icTse your sunk and sddrese. 406 P10 You et
i the quickest sessible tine.

e,

20 barts coure one,
(owoow 14 52

| wish <o Join the Nations) 2K Ysers' Clus.

VB ctna (dazm () anw

s s e e e 12 isses o he maasine INTERPACE.
ciose €9.50 (U.K.), £12.50 (Europe), £16.00 {other)

Flasse ateo send 2o ehe follovin

() The Sorcerum progran Library - 60 GAMES 0 APPLICATIONS

Fregrams, pro p-w-m., rarms.
s nm

o 258
e . 293 Coe e T
S 2
i 27) g s urs o s - i o <70
i T T L
21 ey e]
"2 L Lt R
37 (13 R el Yl o v J
220 13 Dl s o i - sl T il
2 e e L
221 () gt sz, s ot e 18 < st St
E) (L T op b
e Tt e oo |

Adrens,

Flease send this puge, or 4 copi—

ISBN 0-9075b63-19-8

9 7809077563198

