! Lasy Programming
for the
IX SPHUITRUW

lan Stewart and s%igj’;
Robin Jones iy

=
B

-asy Programming
‘orthe
IX SPECITRUM

ian Stewarl

Wathematics Institute, University of Warwick

10bin jJones

Combputer Unit, South Kent College of fechnology

in AL
3517¢ Shiva Publishing Limited

SHIVA PUBLISHING LIMITED
i Church Lane, Nantwich, Cheshire CW5 5RQ, England

©lan Stewart and Robin Jones, 1982

leprinted 1983

‘SBN 0906812232
‘over photograph of the ZX Spectrum kindly supplied by Sinclair Research Ltd

il rights reserved. No part of this publication may be reproduced,
stored in a retrieval svstem, or transmitted in any form or by any
neans, electronic, mechanical, photocopying, recording and/or
stherwise. without the prior written permission of the Publishers.

I'his book is sold subject to the Standard Conditions of Sale of
Net Books and mav not be resold in the UK below the net price

nven Dy the Publishers in their current price list.

“vpeset and printed by Devon Print Group. Exeter

Tontenlts

-

i T T - S =N R T N

o
bl

ooth BB

*reface

Basic BASIC (How totalk to your Spectrum)

Arithmetic in BASIC (+, —. *. /. . LET, INPUT, PRINT)
The Keyboard ({shifts, modes, how to type what you want)
Heeeeellllppp!

Input/Output (INPUT “Message”, PRINT AT, TAB)
Looping (FOR, NEXT)

Debugging I (Types of error)

Random Numbers (RND)

Branching (IF, THEN, GO TO, AND, OR, NOT)
Plotting (PLOT. DRAW, CIRCLE, OVER, SCREENY)
Debugging 11 {IDry running)

Graphics (PRINT AT, INKEYS$, PAUSE}

Uscr-defined Characters (POKE USR, BIN, cats)
Subroutines (GO SUB, RETURN)

Son et Lumiére (INK.PAPER, BORDER, BLEEP, FLASH)

Debugging ITI {Tracing)
Strings ($. CODE, VAL, LEN, TO)
Data (DATA, READ,RESTORE)
Debugging IV {Dormant bugs)
Curve Plotting (For the mathematically minded)
Debugging V' (Round-off errors)
Programming Style (and an anti-missile game)
Peck and Poke (PEEK, POKE)
Tips (Snags and tricks)
What I haven't told you about
What Next?

’repacked Programs (Copy them and RUN)

GO el =

13
15
L6
18
22
26
27
31
39

49
52
56
63
70
74

:
79
B5
87
g3
o8

101
102
103

Preface

“live Sinclair has done it again, and so have we.

Not content with selling half a million ZX81 microcomputers, he’s now come up with
ne ZX Spectrum. Not only can you now get home computing at a reasonable price: you
:an nave sound. colour. and high-resolution graphics. {And an acceptable keyboard!)

¥hen the ZX81 came oul, we wrole an introductory book for it, called PEEK,
'OKE. BYTE, AND RAM!—an obscure title foisted on us by our publicity man. We
hought of calling this one SON OF PEEK POKE but that seemed even more obscure.
jut, in a sense, that's what it is. It’s the Spectrum version of PEEK POKE.

"he Spectrum has several features in common with the ZX#1., and where possible
ve ve treated them the same wav. So. if vou bought the first book and are upgrading.
sou il recognize about a quarter to a third of it. But, even there, we've rewritlen to take
wivantage of the Spectrum’s superior features. The rest is new, but written in a similar
tyle.

The aim is straightforward: it is to describe, in simple and comprehensible terms,
hose features of the ZX Spectrum that a first-time user should know about. In addition.
ve ve included about 3¢ “'prepacked’ program listings, to be copied and run as vou wish;
ina another 3@ or so programs in the text. The advantage that we have over the Manual is
hat we can be selective. and concentrate on the less-esoteric features: otherwise, the
rees tend to obscure the wood.

;0 what do vou get? You get a gentle guide to BASIC programming. programming,
itvle. colour. sound. moving graphics. high-resolution {(fancy) graphics, debugging,
mmoer-crunching. and string-handling. When vou've read this. the Manual will be easy
near. Evervthing is broken down inlo manageahle chunks, so that vou'll be able to
pena a couple of hours with the Spectrum and come away having achieved something
efinite. Plus a varietv of programs for your delectation, which make good use of the
.pectrumy’s remarkable range of facilities; plus “De Bugs™ 1o amuse you when attention
rarts to flag.

.ots of computer books give the impression they're trying to prove how clever their
iuthors are. We're not doine thet: everything here is very straightforward and basic. We
hink that’s what an introduction 1o the world of the computer ought to look like. The
iardest part is getting off the ground.

so far, we’ve referred to ourselves collectively as ““we’’, but
chis won’t work very well later. Personal experiences relayed
vy a ‘“‘we’” take on a curious air. Since any given section was
wriiten by only one of us, we have plumped for the word “I”’
0 describe us both. If that disturbs vou, consider how often a
singuiar author refers to himself as ‘‘we’”!

L

SOMs. RAMs, and REMs . . . Computer jargon isn’t
‘eatlv confusing. It just looks like it is.

Basic BASIC

"here is nothing fundamentally mysterious about computers. They're just machines
vnich will carrv out series of instructions. Of course the actual way they carry them
ut—now that is trulv mysterious, at least if vou don’t have a degree in solid state
>nysics. But, just as you can drive a car without being able to build one, so you can
yogram a computer without knowing how to design one. Some understanding of the
ictual mechanics of the thing—what computer people call the hardware—is useful
hough. just as it helps to know how a clutch works when you're learning how lcmhanbe
sear. or indeed wondering why it is necessary to change gear at all. But the main
rincipies of programming don’t depend much on the hardware, as far as the ordinary
1s¢r 1s concerned.

viachines that carry out mstructions have been with us for a long time now. Blaise
>ascal, & French mathematician-cum-philosopher, built a calculating machine in 1642,
‘harles Babbage, an Englishman. designed an ambitious **Analytical engine’ in 1835,
ind the British government was persuaded to invest in it. Like other government
rojects, it turned out not to be feasible with the technology of the time; but the
mnderlving ideas were original and sound. The Frenchman Joseph-Marie Jacquard, at
he beginning of the nincteenth century. developed a system using holes punched in
-aras to control the weave produced by a loom. Fairground steam-organs use a similar
mngciple. Indeed you can think of a trained orchestra as a machine to produce music,
vith the written sheet music acting as a “program’. It’s not a bad analogy.

t's no good walking up to a Jacquard loom, saying “seven yards of blue and green
neck tweed. please,” and expecting much useful to happen. 1t doesn’t talk that
anguage. All it understands is a pattern of punched holes; and there are all sorts of
gsrnctions on the size, number, and arrangement of those holes. “Auld Lang Syne™ on
i Steam-organ won't run on a loom—and even if it did, it would produce a result that
rorc little resemblance to the original tune. You have to know which pattern of holes is
‘equired to produce the desired pattern of threads in the cloth. So the pattern of holes is
i Kind of coded version of the pattern of threads, with the mechanism of the loom acting
is a go-between.

‘imilarly the written music used by an orchestra is a coded version of the intended
nusicai sounds. with the orchestra itself as an intermediary. {There is a minor difference:
rcnestras are not as precise as a machine, and a conductor has some freedom to
nierpret the music. But it's close.)

t is the same with computers, only more so. A given machine must be talked to in a
anguage that it understands.

‘n the early days of computing, this meant that you would have to type out long hsts
ooking something like this: @101 1 101001101@1111111100A 191 11910311 . . . which
s kind of hard on the eve. Computers still, “dccp down™, think this way {with “@"
neaning “no clectrical current™ and “*17 meaning “‘some electrlcal current™): this rather
udimentary language is the machine code for the chosen tyvpe of computer. Miracu-
ously. it lets vou do everything you want to; and it generally has the advantage of being

‘asttorun . .. butit’s less than straightforward to write programs in it.

‘ortunatelv, these days you don’t have to.

i'his 1s because a computer can be targht to accept commands in a lanpuage other than
‘ts “native tongue™. What actually happens is that some diligent programmer works out
1 kind of “dictionary™ to translate the new language into machine code, and feeds it into
he computer (either from some outside source, or built into the hardware). The
tictionary is known as a compifer. or interprerer (depending on just how it works).
“he Spectrum has a built-in interpreter for a language known as BASIC, which stands
for “Beginners’ All-purpose Symbolic Instruction Code™. This language was developed
n the USA in the mid-1960s and is very widely used. It has the advantage of being
elativelv straightforward, like a cross between ordinary English and school algebra. As
ar as the beginning programmer is concerned. the Spectrum speaks only BASIC. (But
80 machine language is accessible via the USR key—and if you don’t know why vou
might want to use it., you don’r. Not yet, anyway.)

1+ BASIC PROGRAM

lather than starting with the “grammar” of BASIC, let's take a look at a simple BASIC
arngram and see what it does and how it does it. 'The advantage of this is that you'll see
1gnt away how easy it is. Grammatical fine points will come later.

PRINT “[Doubling™
INPUT x

LET y=ix+x
PRINT x, ¥

STOP

=D & & & =

“ou can probably guess what this does, just by looking at it. But first, there are some
points to notice about the form that it takes.

a} It consists of a series of lines.

b} Eachlineisa “legal™ (that is, logically sensibic) BASIC instruction or command, or
raternertt. (These three words all mean the same thing in practice.)

¢) Each line starts with a number. known (not surprisingly} as the line ruwmber.
Computers often use @ for zero to distinguish from the letter O.)

"0 these rather obvious remarks I must add some clarifications. Some of these apply to
! BASIC interpreters, as used on other machines; some only to the Spectrum. To save
breath I'm not going to worry which is which: if you graduate to a more fancy machine
vou'll soon find out.
There’s nothing worth saying about (a} except that on the Spectrum a program line can
e more than one line long when written on the TV screen —the machine doesn’t mind.
details for (b) depend on the “*grammar” of BASIC. to which we shall come.

“he reason for numbering lines (c) is that, early in your programming career. you are
oing to want to tell the machine to obey specific lines in a program. An instruction GO

O 7307 will tell it to do whatever it says on line 73@ . . . but it needs to know which line
hat is. There are advantages in #2017 just counting ““1, 2.3, . . .7, as we shall see. The line
aumber must be a whole number between 1 and 9999 inclusive.

Vhen the machine works its way through a program, it moves from a given line to the
1ext one (except when told to go elsewhere, as part of the program). So it needs those
ine numbers. even if the programmer himself doesn’t want to refer to them. The
:pectrum will not accept program lines without a number (although it may instead carry
out the command for that line, as if it were a pocket calculator). Don't forget the line
tmoers!

WHAT DOES IT DO?

Tvpe the above program into your Spectrum. I'm going to explain the full intricacies of
he keyboard a little later: you’ll certainly have noticed that each key has an awful lot of
vriting on it, and in fact some keys can produce eight different effects, depending on
vhat “‘mode™ and “‘shift” thev are in! But you won’t need to know the gory truth all at
nce.

'm going to assume you've just switched the machine on, and got the *“© 1982 Sinclair
iesearch Ltd.” message. (If not, type NEW, or pull out the power supply plug for a
econd.)

et's take line 1@ as an example. Hit key 1 (top row, on the left) and then @ (top row,
m the right). You'll sec these numbers come up at the bottom of the screen, with a
lashing “K". called the cursor. Next, hit key P: the entire word “PRINT" appears. This
s a very ciever feature of the Spectrum, and it saves a lot of time: whole BASIC words
:an bg typed in using a single key. {You will have noticed that the word “PRINT™ is
vritten on kev P too.)

Now for the guotation mark **. That's on key P too! But in red. That means you must
wld the SYMBOL SHIFT kev down while pressing key P, to get the quotes. Now
etease the SYMBOL SHIFT. To get a capital D, hold down the CAPS SHIFT key while
sressing Key D. Now let go of the CAPS SHIFT and hit. in turn, keys O, U. B.L. [N, G.
These will be printed in lower case letters—“oubling”. Now the quotes again: SYMBOL
‘HIFT and P as before.

ine 19 is now sitting at the bottom of the screen. (The cursor has become a flashing
‘. 100 To put it into the program memory, press the key marked ENTER. Up it
Toes!

ine 20 works the same way: press 2, 8. I (which has “INPUT” written on it}, and X:
hen ENTER. Lines 38—50 are similar: but note that vou get the * = ™ sign by holding
iown SYMBOL SHIFT while pressing L; the “ + " sign using SYMBOL SHIFT and K
he comma by SYMBOL SHIFT and N; and STOP is SYMBOL SHIFT plus A. Don’t
‘orget to ENTER once a line is typed out correctly.

fvou've followed these instructions. you'll have the whole program listed at the top of
he screen. And it will sit there forever unless vou do something te prevent it. This 13
iecause computers not only obey instructions, but they are fundamentally as thick as
wo short planks: even when it's obvious what you want them to do, you have to tell them
inyway. 5o press key R {which comes out as RUN} and then ENTER so that it knows
vou ve finished the command.

¥hat you see on the screen is something like RUN D with a flashing L. This
lisappears when you hit ENTER.

1cross the screen appears the message “Doubling™. This is the computer’s response 10
ine 10: PRINT “Doubling™. It's done this pretty quickly. and now it’s waiting for you to
10 your bit of line 20; INPUT x. To remind you, there’s ar: [L] at lower left of the screen.
Tt wants you to tell it what x is.

To do this, tvpe out a number, followed by ENTER. Try

{(ENTER)
(uick as a flash, the computer types out
4

and. in the lower comer. a message 9 5TOP Statement. 5@: 1" which we won’t worry
ibout—it just means it's finished the job correctly.)

'ty it again. To do this. just type RUN followed by ENTER and it’s off again. When it
isks for X, try something else: if you try 756.2912 and hit ENTER vou should get

56.2912 1512.5824

RUN it a few more times. trving different INPUTS x. Try some at random. Try @, 1,2,
Ld.

"his ought to convince you that whatever you input as x, the machine PRINTS out two
numbers: first x, and then the double of x.
“xperiment. You should get things like:

7 34

1 42

-10

) 12
10W DOES IT DO IT?

don’t mean in detail—that would set us into the hardware. machine language., and such
compiexities. But how should you, the programmer, think of the machine, as it runs your
yrogram ! What's going on inside its tiny silicon-chip brain? Indulging in a little anthro-
omorphism., it's something like this.

'® PRINT “Doubling” Well, gosh, here come some

@ INPUT x instructions for me to

M LETy=x+x remember. Better do it.

i) PRINTx.y I wonder if he’s finished

‘@ STOP yet?

tUN ENTER Yen. Off we go. What's the
irst line? Get it from
nemory: 1) PRINT *Doubling™.
ve got to PRINT something.
“here’s a quotation mark **; then
cony out what follows . . .

Joubling

mul I reach another™. Which

ells me to stop PRINTing.
Nothing else. On to next

ling: 20 INPUT x. He's going to

‘ell me a number, and ['ve got to

sallitx. Give himan . . .

ursor to remind him.
JK. I'm waiting.
dead slow, these humans.
ZENTER Ah. xis 2. Now what?
W LET y = x + x. That means
" must add x to x, that is.
vork out 2 + 2. And
il the result v. Soyis2 +2 =4,
Next instruction? 40 PRINT x, y.
 have to PRINT x and vy, which
ire . . .

Yext line? 33 STOP. That's
he lot. then. Finish with a

eport . . .
L STOP Statement, 5¢: 1

enore the whimsy: do you see how the machine is just running through the list of
:ommandas. and obeving them as they come? 1t doesn't even “know’’ what the program is
ibout. But vou, the programmer, know-—it doubles numbers.

"he task of the programmer is now clear. Given a job that you want the machine to do,

sou must assemble a series of instructions which, when carried out, achieve this
Djective.

“o do this, vou’ll need to know BASIC in more detail. Your Spectrum will do some
recty clever things if you know how to talk to it. There are all sorts of refinements, of
ourse-—a good program should be quick. efficient, and clear, as well as getting the job
ione. But refinements can wait: the main thing is to write programs that work.

w0 let’s get started.

- o L
giving due regard to the reappraisal
situation - appraisal situation regar

appraisal - regarding reapprai

ASCIC 7

merican Stamdard Gode for

(e e

Information Concealment

Addition, subtraction, multiplication, and division form
the basis of all mathematics. The same goes for computing.
So the sensible place to start is by explaining how to do:

Z Arithmetic in BASIC

wetually that's a e—it’s algebra. But I didn’t want to scare you off. Algebraic calcu-
ations are involved in almost anv program you care to write. even if only for book-
keeping purposes, so they’re a reasonable place to start,

lust like ordinary algebra. BASIC uses letters to stand for “general’” numbers. In the
‘argon, these are called variahles—indeed. numeric variables—but really ali this means
s that they are things like x. y. 2. a. b, c and so on which can be used to build up algebraic
2xpressions like x + v — z. which the computer can then work out if you tell it, via the
yrogram, wnat values x, vy, and z take. (Forinstance ifx =14,y =3.z=9thenx + v —z

{4 + 3 — 9 =8 Onthe Spectrum vou can use more complicated symbols for variables
han just single letters, bot long names wasie memory.

I'here are some small but important differences between BASIC algebra and ordinary
tigebra. The signs + (plus), — (minus). and / (divided by) are just as usual. (You can’t
1se —) But multiplication is written as an asterisk *.sothat 5+ 7Tmeans 5 X 7, which is 35.
The up-arrow ? means “‘raised to the power™. For instance. 2 T 3 means what an
igebraist would write as 2*, which is 2 to the power of 3 (or 2 cubed) and has value 2 x 2
(2 =8,

You can combine numbers. variables. and these arithmetical signs to produce more
ompiicated expressions. For instance

1*xT2+b*x+¢

s the algebraist’s favourite ax® + bx + ¢.

‘hanter 3 of the Introductory booklet explains about these. and it makes a very
‘mportant point about the order in which the machine makes the calculations. Supposc.
n the above expression. the machine knowsthata=4.x =5.b=3.¢ = 7. You might
think that it will work out the sum as follows:

ieX 1 2=20"2=400,
i*X12+b=400+ b =403,
ie«X T2+ b*x=403+x - 205,
isXT2+h+x+c=2015+c=2022.
“hat’s what vou get if vou work alonp the expression from left to right. But this will not
orrespond to the algebraist’s ax® + bx + ¢, which would take the value
X5+ 3IxS + T =100+ 15+7 =122,

“0 what’s gone wrong?

"he point is that ordinary algebra is full of rules, aboul which operations you do first,
Anyone remember a thing called BODMAS? Never mind . . .) And the language
3ASIC has similar rules. In fact it works out all P's firsi. then all #’s and [’s. and fnally the

‘sand —’s. If in doubt, it does each of these in order from left to right. So it actually
vorks outa = x T2 + b+ x + ¢ this way:

“irst do the 1s: x12=512=25.

low the =s; a+=xT2=4=+25=100
a¥x=3+5=15.
low the +7s: a*xT2+b=x—10+15=115

1*xT2+b+x+c—1154+c=115+7=122.

“ou can see how this resembles ordinary algebra.

lust as in algebra, you sometimes want to work out an expression which does not
ollow these rules naturally. The solution is the same: you use brackets {). Any
xpression inside brackets is worked out as a whole first. 50

a=x)T2

vouid be worked out as (4 = 3) T 2, which is (2@) T 2 if vou do the bracketed bil first, and
his is 400.

There is only one kind of bracket (not like | |or {} in algebra). The other brackets are
m the kevbeard but can’t be used in expressions. So you have to be especially careful
vnen putting brackets inside other brackets, writing things like (3 +5=(a— b)) T 4
vnere an algebraist would write [3 + 5 (a — b) |

"he main thing to understand is that it really is just like ordinary algebra with slightly
anramiliar symbaols.

ASSIGNING A VALUE TO A VARIABLE

This is done by the LET statement (key L). If you use it where it ought to be used, the
‘lever Spectrum automatically recognizes it as LET and not L (by a process known as
*sutomatic syntax-checking™ which just means it keeps an eve on what makes sense as
soutype itin). A program line such as

‘9 LETx=5

ells the computer that the variable x takes the value 5 from now on, and until it is told
nherwise by some other part of the program. Try this program.

i LETa=4
20 LETb=3
@ LETc=7
% LETx=35
® PRINTa#*x1?2+bex+c

t all is well in that diminutive skull. vou will see the answer 122 popping up at the top of
he sereen.
There are easier ways to pet this particular answer: try
@ PRINT4+512+3+5+7

Y ou can even omit the line number: see Chapter 3 of the Introductory booklet. But we
vant vou o see how LET works.)

The right-hand side of a LET command can be an expression that the computer
aiready knows how to work out. For instance. you could change line 5¢ of the above
yrogram o define a new variable y, taking the valuea*x T2 + b+ x + ¢

50 LETy=a*x{2+bs*x+c
~ollow this by
o0 PRINTy

ind vou can check it works properly.
“xample: Falling bodies

secording to Galileo, a body falling from rest under gravity will drop a distance of
approximately) 16t> feet in a time of t seconds. To find out how far it will drop in 17
:econds. you could use the program

@ LETt=17
D PRINT16+t12

“ou should get 4624 (feet) as output.
If vou want the answer for a different time. you can change the first line of the
program. ity it. How far will the body fall in:

a) 97 seconds?

b} 3seconds?

¢) 24.5779 seconds?
d) 100001 seconds?

AN IMPROVEMENT: THE INPUT STATEMENT

“ou will probably have got fed up with repeatedly changing that line 18. A maore civilized
rrogram would make use of the INPUT command, which lets the machine ask you what
salue a variable takes. Type out

@ INPUTt
@ PRINT16*1712

ind RUN it. The []__.i cursor comes up: this is the machine waiting to be told what t is.
“ypein 17, then ENTER: you'll get the answer we had at first. But now, to answer (a) to,
d}, all you have to do is type RUN again, but tell it the new value of t. Try it.

‘or more on INPUT. see Input/Output, Chapter 5.

P"ROGRAM PROJECTS

iere are three programs for you to write, using just the commands we’ve looked at so
‘ar. Thev are minor variations on the program for falling bodies. If you get stuck, there’s
i crib at the end of this chapter!

¢) The volume of a cube whose side is x is given by x* (that is, x 1 3 in BASIC if x
ienotes the side). Write a program which INPUTs x and PRINTS the volume of the
:orresponding cube.

1) A bucket is attached to one end of a rope. which is coiled around a windlass shaped
ike a cvlinder of radius r. For this particular bucket, according to the mechanics
exthooks, its downward acceleration is given by

CT+38

Yo't worry about the mechanics; but write a program which lets you INPUT r and
TRINT the acceleration a.

g) At the Zedex Spectramarket, honey costs 61p a jar: Zxo cubes 25p a packet:

¥hizxas Supcrmeat 32'2p a tin. Write a program which PRINTS the total cost of h

ars of honey, 7z packets of Zxo cubes, and w tins of Whizxas Supermeat, when vou

nput h, z and w. [With what I've told vou so far, vou will need three INPUT
ommands. |

1 FORETASTE OF LOOPING

T'he commands FOR and NEXT allow us Lo try out some of the previous ideas without
joing too much work. (In many circles the avoidance of work is called “laziness”, but
rogrammers have an advantage over ordinary mortals—they can call it “efficient
srogrammung” and point to savings in computer memory or time to prove it.) There's a
ot that can be said about FOR/NEXT loops, and in a few pages we'll say it at suitable
‘ength. Run this program first. to see the kind of thing that can be done.

 FORx=1TO29

B PRINTx,x#x

‘¢ NEXTx
“ou will find a list of the numbers from 1 to 20, and a corresponding list of their squares
.4, 9, ... 3061,400. What the FOR/NEXT commands do is to send the machine round
ina round the series of commands in between (here just line 20) setting the variable x
wuccessively at 1,2, 3. . . . until 28 is reached. Line 14 sets these limits up and starts the
oon going: line 3@ sends the computer through the loop again.

3v changing line 2@ in this little program, you can tabulate all sorts of things. Youwant
‘ubes? I'ry

® PRINTx,x13

“hange line 20 to each of the following, and notice the differences. The very minor
‘nanges from one to the next cause the machine to work out the algebra in different
raers, with differing results. What are the programs calculating in ordinary algebraic
.ympolism?
h} 20 PRINTx, l/x+1
1) 20 PRINTx, 1/{x+1)
i) 20 PRINTx, 1/1 + x
kY 208 PRINT«x, 1/(1+x)
1} 20 PRINTx.1+ 1/x
m) 20 PRINTx, (1+1)/x :

‘inally, notice that in these programs the values of the variable are not assigned by the
‘ommand LET. The machine obtains the assignment instead from the FOR command.

iNSWERS
‘alling bodies

a) 150544 (b)) 144 {(c) 9665.17%7
d) 160003200060, Don’t be deceived by the apparent precision. The computer won't
nve 12 significant-digit accuracy. It has rounded off the true answer, which is

OB 20001 6.

Program projects

e) 10 INPUTx
6 PRINTx13

f) 13 INPUTTr
M PRINT32/{(1+3=*r12)

g) ¢ INPFUTh

® INPUT:z

W INPUTw

i PRINTGHl *h +25»z + 325w
"our program doesn’t have to look exacrly like these to be “correct™. In particular, the
:noice of svmbols for variables is entirely up to you. You can do the algebra other ways,

00: in (e) there's nothing wrong with 20 PRINT x * x « x. and in {f) with 20 PRINT
2/(1+3*r*r).

“ooping
| ; 1
h)] B =
1 1+ x [it works out 1/1 first. (k) the same as (i)
vhich is 1, then adds on x| >
I} the same as (h) (m)—

ol
Yaaaw Wi n l]d/

ach key on the Spectrum can produce
ceverat different effects. Here's
1 quick guide to:

a IThe Keyboard

\s [said earlier, the Spectrum keyboard is quite sophisticated. and the result of pressing
1 kev depends on the context in a fairly complicated way. You'll soon get used to it; but
ou il need to spend some time learning to find your way around the keyboard.

“he two things that affect the result of pressing a key are the shift that is being used,
inda the mode that the computer is in.

SHIFTS

“here are two keys marked CAPS SHIFT and SYMBOL SHIFT. If one of these is held
wwn. and a kev is pressed while it remains held down. then the effect of that key is
iutered. Exactly kow depends on the mode, so let’s take a look at those:

VMIODES

’he mode is the “internal state™ of the computer. and 1s signalled by the cursor. There
ire Tive modes, with the following (flashing) cursors:

< Keyword mode
Letter mode
Capitals mode
Extended mode

1 Graphics mode

lere’s how to get into them:

Ordinarily the machine is in “L" mode.

After a line number. or at the start of a directly entered command. it automatically
roes ino K mode.

To get to “C” mode from “L™ mode, press CAPS SHIFT and hold it down. To get
sack into L™ mode. release it. (You'll only see the “C" if you use CAPS LOCK—
enore this at first.}

To get to “E” mode from L™ mode, press bath CAPS SHIFT and SYMBOL
:HIFT. To get back to “L" mode. repeat this.

To getinto "G mode from L mode, press CAPS SHIFT and key 9(GRAPHICS)
ogether. To get back into L™ mode. repeat this.

HOW TO PRINT WHAT

et’s look at a typical key in the lower three rows, say key “R”. It looks like this:

INT

R =
RUN

VERIFY

“he INT is in green; the << and VERIFY in red.

To tvpe “r"" press the key when in “L™ mode.

To tvpe “R™ press CAPS SHIFT and go into “C" mode: hold it down and press the

key.

To tvpe “RUN"" press the key while in “K"' mode.

1. Totvpe “<" getinto “L2" mode; hold down SYMBOL SHIFT and hit the key.

.. Totype “INT" get into extended mode “E™ by hitting both shifts together. Look for
he “E" cursor: if vou hold the keys down too long it can flip back to L. Then
eiease the shifts and press the key.

1. To type “VERIFY™ go into “E” mode as in (3), then Aold down the symbol shift
vnile hitting the key.

To obtain the user-defined graphics character corresponding to “R” (see the
‘napter on user-defined characters) go into “'G” mode and then hit the key.

"HE TOP ROW OF KEYS

“hese are a bit different. Thev do not have any keywords (K™ mode) written on them:
nstead. there is a graphics character shaped like a box. Over the top there isn’t anything
in green; but there are commands in white. The main symbol on the key and the two red
:vmbols work just as in rows 2—4. The other items go like this:

To get the white symbol over the top, hold down CAPS SHIFT. These are control
‘naracters, and are not actually printed.
To get the graphics symbol, ge into **G™ mode and hit the key.
To get the graphics symbol in inverse video (interchange black and white, or more
renerally INK and PAPER) go into “G’* mode, hold down CAPS SHIFT, and hit
he key.

{. The colours are mnemonics only: for instance, the code for GREEN is 4.
You can actually do a bit more than this: see the Manual, Chapter 16. And I haven’t
nentioned what CAPS LOCK. TRUE VIDEO, and INVERSE VIDEQO do.
lather than add to the confusion, since vou won't actually need these keys. I'll leave
Oou 10 expenment for yourself.

P"REPACKED PROGRAMS

1t the end of this book vou will find a number of program listings, starting on page 103,
‘ou should feel free at any time to copy out one of these listings and run it, whether or not
vou understand the commands contained in the program. All you do is type out the
isting on the keyboard, check carefully to make sure there are no mistakes, and press
RUN followed by ENTER. We hope that by the end of the book you will be able to work
it how these programs do their job; but to gain confidence carly on it’s a good idea to
irv running other people’s programs. It also gives you some idea of what the Spectrum
:an be made to do.

“he programs are generally accompanied by Program Notes. which explain various
radities, and occasionally suggest modifications to the programs, or projects for you to
ry i related areas. But they will run, subject to avoiding errors, whether these notes
nake any sense to vou or not. Most of the programs illustrate particular techniques
:xpiained in this book, but some use ideas I don’t have space to explain properly. In any
-ase, 1 assume vou are reading the Sinclair Manual as well as this one.

Vot going as well as you hoped?
Mavbe you can use some

4 Heeeeelllippp!

f something doesn’t quite go right, what should you do?
\t the very worst, you unplug the power supply for a second. This crashes the
arogram. wipes out everything vou've written in—but unjams whatever the trouble was
unless in the hardware, in which case hard luck). But there are usually better ways.

a) If you print the wrong thing in a program line: Use the arrowed keys 5 and 8 (note
'ou need CAPS SHIFT) to move the [L] cursor just past the offending beast.
iliterate it using DELETE (key @ with CAPS SHIFT).

b) If you want to change a line that’s already gone into the program:

l'o delete it altogether, wnite its line number and press ENTER.

Otherwise, move the > cursor up and down the lines using 6 and 7: then press
DIT to bring the line down to where it can work on it. Now proceed as in (a).
“arious tricks: 1t’s an awful pain to move the cursor from line 1@ to line 33 one line
it a time. Find a line number just before 53@ that you haven’t used, say 529. Write
.29 ENTER: then press EDIT. You'll see line 538 come down. (Why?)

¢} If the program gets stuck, and nothing seems to be happening:

"his is often the case during a debugging session! the last thing you want is to wipe
:vervthing out and type it all in again; and in any case it's likely to do exactly the
:ame again.

cl} If the program is still executing, but you want to stop it: Press CAPS SHIFT and
IREAK.

c2) Ifit’s stuck on a numerical INPUT instruction: BREAK won’t work: but STOP
viil. If by mistake you've got other junk sitting there, it will keep giving vou a [7]
ursor for a svntax error. which is vastly frustrating: DELETE the junk, then
‘TOP,

c3) Ifit’s stuck on a character input— [I] cursor: press DELETE and then STOP.

d) If the program runs but doesn’t do the right things: Read the DEBUGGING
‘hapters.

Mode N? es - she's a thoroughly

node-N millipede

¥

“here are lots of helpful ways to
set information into or out of the
omputer, and to produce well-
organized displays:

S5 Input/Oulpul

There's much more to the INPUT command than I've said. For a start, you can INPUT
:everal numbers in one g0. A better way to answer program project {g) in Chapter 2 is:

@ INPUTh.z.w
) PRINTO6l+h+25+z+ 325w

¥hen yvou RUN this, you will find that after each of the three inputs you will need to
oress ENTER. The numbers are temporarily printed on the bottom row {or rows) until
iil three are in.

"he commas that separate them also control the places where the numbers are
yrinted: they go in columns @and 16 alternately. If you change the commas to semicolons
*." vou will find that the inputs are printed one after the other. with no spaces between
hem. To get spaces. you must define them in the INPUT command:

@ INPUThH:“0O"; z 0" w

wnere a box [denotes a space.

‘ou can also print out prompts on an input: messages that remind you what put 15
required. To do this. you include the message inside quotes as part of the INPUT
1atement. For instance. change line 1 above to:

INPUT “honey™”.h

2 INPUT "zxocubes™. 2
i4 INPUT *whizxas". w

“ou can make more comnlicated combinations of such commands as part of a single
NPUT statement. but this gives the main idea.

OUTPUT

i0 far, when we've PRINTed output data (like numbers) we've left it up to the computer
o decide where to print. Now that’s not always convenient. and it won't always produce
retty displays. To change the print position. you use PRINT AT.

‘or PRINT purposes. the TV screen display is thought of as being divided up into 22
‘ows numbered 0-21 from top to bottom: and 32 cofumns numbered #-31 from left o

1ght. There’s a diagram in the GRAPHICS chapter later. illustrating this: but for the
noment here’s a program which will let you experiment.

1@ INPUT “row".r

b INPUT “column”. ¢
B PRINTATr. c;“£"
w GOTO18

This will literally print money! Try various values for the row and column numbers. and
:ee wnere the pounds are printed.

To select a specific PRINT paosition, you of course specify r and ¢ as numbers in the
‘ommand. To get a message on the bottom row, starting five spaces in (which is column
:_ because the numbers start at $#!). write

@ PRINT AT 21. 4: “Message”
o get roughly in the middle of the screen:
PRINT AT 10, 12; “Message”

And so on.

f vou don't use the AT instruction, the computer will just move on automatically to
he “next” position. Where this is depends on what’s just been printed. If the last PRINT
:ommana does not end in ;" or . then the machine moves on to the next row. A “17
noves 1T on to the next space in the same row. A “."" moves it to the next available slotin
:oiumn @ or 16, whichever is free first.

The colon and the comma have similar effects in INPUT commands.

n conjunction with these automatic features, the TAB command is very useful if you
ire trying to writc data in organized columns. For example. this program lets yousetup a
personaiized Telephone Directory.

@ INPUT “name”: n$

B INPUT “exchange™; e$

0 INPUT “number™: t

4@ PRINTTAB L;n$: TAB 15:e$: TAB 25:t
¢ GOTO10

TAB is key P in extended mode. The dollar signs indicate strings, and are explained in
he chapter about those. later on.) RUN this. and INPUT things like:

red Timbuktu 44390
vionty Preston 12345
Police Norwich 999

an the prompted INPUTSs. See how the data get arranged in three neat columns. (To
.top the thing. press STOP on a number input. or DELETE and then STOP on a
‘haracter string input.)

roject
Vrite a program to INPUT 22 numbers. and PRINT them out sloping diagonally from

o left to bottom right (using something like PRINT AT i, 1; n}. Now think about top
1git to bottom left (PRINT AT i, 21 —1).

There were 10 in the bed and the little one said
‘Roll over, roll over!”’

\nd they all rolled over and one fell out.
There were 9 in the bed and . . .

O Looping

Sy using the FOR and NEXT instructions, you can make the machine carry out an
‘nstruction over and over again a specified number of times. This may not sound very
nteresting, but in fact it is one of the most useful weapons in the programmer’s armoury
1ecallse vou can use variables to alter what each step does.

We've already seen how FOR/NEXT loops allow us to print out tables of values of a
function like x 1 3. Here's a slightly less simple use.

"he factorial function n! is defined. as every schoolboy knows, to be:

1=n(n-1D(n-2)(n-3)...3x2x1.

t tells vou the number of possible ways to arrange n objects in order. For instance, 3! =
' X 2 X 1 = 6: and the letters abc can be arranged in order 6 ways: abc, acb, bac, bea, cab,
"pa.
"o compute n! we can use loops. The idea is to compute itinstages: 1;1 X 2:1 X 2 X 3;
x 2% 3x4;, .. and to keep going until the largest number is n. In each case you take
‘he result of the previous stage and multiply by the next number up. Thisis just the set-up
weded for a loop. In fact, the sequence of statements

@ LETi=1

B FORk=2TOn
W LETi=i*>k

9 NEXTk

1as just this effect.

Nhat does it do? And how? Line 1% just sets up a starting value for the variablei. Line
@ tells the machine to carry out succeeding lines over and over again, letting k
.uccessively take the values2.3,4,5, n. Line 49 tells it when it has reached the end of
hese instructions and should go back to the start of the loop again. So the first time
through, it takes k = 2, and line 3@ works out

=jrk—1] %3

Next time through, k has become 3 and i has become 1 % 2; so it works out i = k which is
0w 1 X 2 X 3, Next time, kis 4, and it works out 1 % 2 x 3 X 4. And so on, until the final
dage, whenkisnanditworksouti=1x2x 3 x4 X ... X n. Then, thanks to the limits
et 1n line 20, it knows that the loop is finished.

his won't guite work out n! for you, because the program doesn’t include instructions
orwhatnis. or to print the answer. So you need to embed the loop in a larger program:

INPUT n
@ LETi=1

0 FORk=2TOn

B LETi=i=k

i NEXTk

4 PRINT “Factorial 0"'; n; “Olis O™

Line 5@ is just fancy printing: you get outputs like
‘actorial 6 is 720

Notice the spaces, shown as boxes [, to make it look pretty.)

RABBITTING ON

‘n about 1220 a gentleman called Leonardo of Pisa. nicknamed Fibonacci (Son of Good
Humour) came up with an interesting problem about rabbits.

f a breeding pair of rabbits produces one new pair of offspring once a month, and it
akes one month for the new pairs to become productive, and you start with onc
pair—how does the population grow? (For simplicity we assume exactly regular pro-
duction each month, and that every pair consists of one male and one female.)

t helps to make a table:

Month No. I No. of breeding pairs No. of new pairs

n month @ we have 1 breeding pair. @ new pairs, so we get entry
A 1 @

n month 1 we get 1 new pair only:

1 1
n month 2 we get | new pair, and the previous new pair becomes productive:
2 1
n month 3 all of these are productive. and we get 2 new pairs
3 2
ind so on
5 3
. 8 3
/ 21 13

We're starting to get an awful lot of rabbits, which isn’t really surprising.
fwe let the total number of pairs of rabbits in month m be f (m}, then we have f (@) =
A(1)y=2.£(2)=3,1(3)=5.f(4) = 8, and soon.

Jow let’s think more generally. Suppose in month m we have b breeding pairs and n
iew pairs, Then next month all of these become productive, giving b + n breeding pairs:
ina the b breeders give us b new pairs, So the table has two consecutive lines looking like
his:

Jdonth No. No. of breeding pairs | No. of new pairs
1 b n
n+ | b+n b

“his table suggests how we can caleulate £ (m) by using loops. The idea is that to get from

monih m to month m + 1 we have to turn the old binto b + n. and the old n into b. This
il work:

@ LETb=1

@ LETn=4#

‘@ INPUTm

W FORt=1TOm
@ LETc=b

W LETb=b~+n
@ LETn=c¢

W NEXTt

MW PRINT“f(":m:*)0OisC]":b+n

If vou study this vou'll see that it follows exactly the steps used to build up the table.
ines 1@ and 20 set the initial values of b and n. Line 3@ asks what value of m we want
{ (m) for. Lines 40 to 88 perform a loop which generates successive lines of the table.
Note line 50, which remembers the old b value, calling it c. for use in line 7@. (If you
1idn’t do this. line 6@ would change b too soon, and line 7@ would produce the wrong n
‘ale.)

“he numbers f (m) are called Fibonacci numbers. If you notice that the b and n
:olumns in the table contain the same numbers. but shifted one line apart (why?) you'll
eethat f(m = 2) = f (m + 1) + f (m): that is. any Fibonacci number is the sum of the
PTEVIOUS two.

Nhat is the value of f(14)7 £ (77)?

NESTED LOOPS

:ven better — vou can put loops-within-loops. or even loops-within-loops-within-loops
as far as the memory can hold). You'd be surprised how often this is necessary.
‘Or Instance, suppose you want 1o print out a table of values of the factonal function.
“ou can use a loop like the one for x T 3 on page 11 but then you need another loop for
the n! calculation. So vou get something like this:

FORn=1TO2® A
@ LETi=1
Y FORK=2TOn
3 LETi=i*k inner loop - outer loop
‘@ NEXTk
i PRINT n.i
Al NEXTn i

Notice that the "FOR n/NEXT n” loop is completely outside the "FOR k/NEXT k™
»nc. You have to do this to make sense — it’s just like brackets. An expression
a + (b — 2¢) | + d makes good sense; but [a + (b — 2c]) + d does not. Try interchanging
ines 40 and 6@ and see what happens. Not much use, is it? The trouble is. the Spectrum
wiil accent, and run. programs with wrongly nested loops: but of course the results are
10t what vou intend. It does not print out an error message. Be careful!

STEP SIZE

f vou just write FOR i = 1 TO 20 the machine assurtes you want the variable i to take
yalues 1,2, 3.4.5, ..., 19, 20. That is. it assumes you move up in steps of size 1.

jut vou don’t have to do this. Youcan set a different step size using the key STEP. For
'xample. the instruction

% FORj=-3TO3STEP.5

nakes i run through the values—3, -2.5, -2, —1.5, -1, -0.5.0.0.5.1. 1.5, 2, 2.5. 3.
;imilarly,

@ FORj=3TO4STEP .01

runs through the values 3. 3.31, 3.02, 3.03.... going up in hundredths until it ends with
1.98.3.99 4. :
“ou can also STEP downwards:

“‘OR] = 10TORBSTEP —1
nakes i run through the sequence 14, 9. 8. 7, 6, 5, 4, 3, 2. 1. 0. Reminds you of
:omething? Run this program.
¢ FORj=10TOOSTEP -1
PRINT j
NEXT |
PRINT “BLAST-OFF!"

fardlv sophisticated. but . . .

t is said that the colourful term “getting the bugs out’” arose
n the early days of computing, when insects used to crawl
inside the machine and cause short circuits. Nowadays, if
he computer goes wrong, it's usually the programmer’s
‘ault. But to put it right, you still need to know about . . .

/ Debuqging |

t is a hard fact of life. which all programmers learn very rapidly. that programs hardly
:ver work—at least, the first time they run. The process of eliminating the errors from a
yrogram is known as debtigging. It is important to adopt a systematic appreach 1o this
process because, even in a fairly small program, the source of error is not necessartly casy
o tind. And there are few things more frustrating than programs with elusive bugs in
them.
et's look first at the kinds of error that can occur. Broadly, they split into twa groups:
:yntax error and runtime error.

:YNTAX ERRORS

These are errors which the machine can identify as soon as you have typed them in. For
:xampie, suppose | were to type the hine

‘ORp=1-17

maer the misapprehension that the “—" symbol can be used as a synonym for “TO™.
‘This is, if you like, an error in the use of the grammar of the language, hence the term
wvntax”.)

"he Spectrum is particularly helpful to the beginner in this case. It will allow yvou to
vpe the “—"" symbol; but it will realize that there are no circumstances in which a
‘ompliete program line can appear as S0 FOR p = 1 — 7, and it will displav a [7] prompt
svmool (to tell vou there is a syntax error), and refuse to accept the line until the
itending “—" is replaced. (Many popular microcomputers will be perfectly happy to
iulow you to sprinkle mis-statements like this one throughout a program. and will only
yoicct when you try to run it. This doesn’t matter to an experienced programmer, but the
reginner tends to make many such errors, and it saves a lot of time to be told of them
immediately.)

it this point a question may be worrying some readers, which we could phrasc thus:
“’f the Spectrum knows that the only thing which can appear after the *1” in statement
1 is the keyword “TO”. why doesn’t the machine insert the “TO" of its own accord?”

I'he answer is that it doesn't quite know enough to do this. For instance, another digit
:ouid follow the ““1”", as in

FORp=12TO 40
There are other. more complicated possibilities. The command
@ FORp=1-7TOS5

s iegal, and means the same as SAFOR p= -6 TOS5.)
he [] prompt can appear before vou reach the end of a line. For example.

@ LETe+s=q

‘an 1ssuc the prompt in front of the ““="'; although it docs not do this until after
‘“NTER" 15 hut.

10 the rule with syntax errors is: warch for the B prompi. When it appears the reason
11l usually be fairly obvious. If it isn’t, check the statement you are writing against the
ippropriate sections of the Manual. (One source of error that is occasionally perplexing
rccurs If vou accidentally type out a keyword in full, rather than using its special key. For
nstance. if you type the two letters “T" and “O" instead of the keyword “TO™. The
nachine will not accept this, although there is no difference on the screen.)

The machine eﬁects to find an ="' svmbol—or another letter or number—aftere, soit

RUNTIME ERRORS

"here are manv different types of error that can occur when a program is run. I once
"ame across a computer routine that would onty work for programs with an even number
of characters, because of a rather subtle error; before it was fixed, vou could get round it
v adding an extra character, somewhere harmless. to anything that failed to run!

t is more useful to give specific examples of possible errors than to define them in
reneral terms. To begin with, let’s look at the following piece of code:

@ FORp=-5TOS5
¥ 1ETa=10/p

@ PRINTa

4@ NEXTp

‘ach of the lines is perfectly valid BASIC and so no syntax errors would be indicated. In
act the program will begin to execute perfectly after “RUN" is entered, and will output

lie. 10/(—5)]
5 li.e. 1/ (—4)]
:.3333333 lie. 19/(—3)]
li,e. 10/ (-2)]
T lie.10/(-1)]

jut it will then halt with the error message
» Number too big, 20: 1

{ere the problem is pretty clear—even without looking up the error number in the
vianual. First. the message shows that the machine is objecting to line 20, which reads

9 LETa= 10/p

lecond. this statement has already been executed several times without any [uss; so the
sroblem must be with one of the quantities which is changing, that is. the value ofaorp.
I'he value of p which has just been successfully dealt with is — 1, so the current value of p
s . In other words, the maching is trving to work out 18/@, which is infinite (or not
iefined according to taste) and so cannot be handled, however large a space the machine
illocates for the answer.

‘ou probably reached this conclusion long before completing the (rather laborious)
inaiysis above; but I'm using this simple example to illustrate the kinds of pointers you
.nould look for when an error has you foxed.

[dentify the problem line (the number after the comma in the terminating message).
Determine whether this statement has been executed at least once. before gener-
ing the error message. (If it has, the problem is with the particular value of one of
the variables at the instant when the error occurred.)

23

Use the message to get a further clue. In the example this is “Number too big”. Note

hat the error message does not say exactly what has happened (i.e. it does not say
‘Attempt to divide by zere™). so it is not always enough simply to look at an error
nessage in the hope that this will explain precisely what has gone wrong,

I'here are two other things to say about the form of the Spectrum’s error reports.

‘irst, they start with a number or a letter (here 6) which is just an identifier, referring
o an entry 1n Appendix B of the Manual (pp. 189-192). This entry may, or may not, give
'ou some more help in deciding what's gone wrong. In this case the Manual says
“alculations have led to a number greater than about 18°"", which secems to me much
ike saving ““Number too big"” . . .

Second. there is a number, which is normally 1, at the end of the message, after the
colon. This refers to “maulti-statement lines” where more than one command goes on a
ingie line. We haven't used this technique so far: see Chapter 9 on “Branching™ for
ictails. What happens. roughly. is that you can put several statements on a single line,
.eparated by colons; and this final number in the report tells you which of these is the
‘uiprit. S0 20: 1 means “the first staternent in line 20™, and 2¢: 3 would refer to the third.

This scems (and is) very sensible, but there’s a possibility of confusion here unless
vou'te careful. The reason is that the Spectrum regards any “natural break™ in the
:equence of statements (such as THEN) as the beginning of a new “'statement™ for this
urposc. 3o the line:

9 IFp=2THENLETp=p+1
vouid get the report
» Number too big, 10: 1
Sut if it read
@ IFp=2THENLET p=p/0
you'd see
1 Number too big, 18: 2

»ecause the error is in the second part of the statement.
ncidentally. this expiains the odd messages you get when nothing goes wrong. For
instance. type LIST; vou'll get the message

i OK., 01

vhich means

A Report code @: the machine has done whatever it was askcd and
‘ncountered no problems.
).K. More succinct form of the above.
A It's just executed “line @, which is just 2 way of saying that the command

iad no line number.
It was the first statement of that line.

"he problem of dividing by zero crops up fairly often. and not necessarily in such an
ybvious way as that just described. For instance:

@ INPUTpD.q.1
0 LETa=(p+q-r+*2)/(5+(p-nN*(p—-1—-2+q)
viil cause the same oroblem if the values 7. 15, and 2 are entered for p, g, and r

especuvely. (Try it!) In general. it makes good sense to test divisors to see if they are
‘cro. before attempting the sum. We might rewrite the above example as follows:

¥ INPUTD,. Q.1
32 LETd=5+(p-n)*lp-1)—-2=*9

4 IFd =0 THEN PRINT “No can do™: GO TO 3§
 LETa=(p+q-—r=2)/d

The meaning of the GO TO instruction 1s (I hope) obvious! Line 34 is an example of a
nuiti-statement line.

JEBUGGING PROBLEM

‘inally, here’s a chance to test your grasp of what has been said so far. The following
program is intended to accept a series of positive numbers, and to print out their average.
[fwe wanted to take the average of 2.4, 8.1, 7, and 14 we would enter:

T'he **—17" at the end 1s used solely to indicate that no more data are to be entered. and is
1or part of the data. (Such a value is often called a delimiter; and you'll see how it works if
'ou iook at line 40 of the program below.)

LETs=4@
LETc=40
i INPUT n
W IFn <@ THEN GO TO 1%}
W LETc=c+1i
W LETz=s+n
W GOTO3p

@) PRINT"AVERAGE IS s/c

“here are some tvpographical errors in the listing. See if you can correct them by entering
ne program as it stands and tinkering with it. When vou've had a go at it, compare your
:0lution to mine by looking at page 39.

lappy debugging!

"here’s a little bit of unpredictability
»uilt into the Spectrum

3 Random Numbers

“he instruction RND produces a “random’ number between @and 1, which can equal @
sut not 1. Actually it's not really random, it’s a pseudorandom number, and the numbers
epeal every 65537 times, bul you won't notice this in practice. Since nobody knows what
t“random” number really looks like, the use of “pseudo™ is a bit pseudo itself.

‘ou can use this in eame programs. For instance, to simulate the throw of a die. you
10te that 6 * RND is a random number between @ and 6 (not including 6), so INT (6 *
RND)iseither®.1.2,3.40or5, atrandom;so 1 + INT (6 * RND)isoneof1,2,3,4,5,6
at random. Which is what a die does. (Die is the singular of **dice™.) To pick a random
card from a pack of 52 you'd play a similar game using 52 = RND. but you'd need a fancy
%t of programming to convert numbers between @ and 51 into names of cards like
*TACK OF CLUBS™. It can be done if vou’re cunning.

“ou ¢an also use random numbers to do statistical simulations. Thers's a nice example
i this on page 112. MONOPOLY DICE.

Zx-3%

Mum told Dad not to fiddle around with
the RANDOMIZE key until he was

sbsolutely certain he understood
what it did

2,
ek m}

Sometimes what you want the computer to do
iepends on what's happened so far. In this case
vou use a rechnique known as

9 Branching

This section is about logic. and conditional statements, where what the computer has to
10 depends on various other things. For example. when going to the pictures, IF you are
mder 16 THEN you will not be let into an X-rated film. You can put similar conditions
n wnat the computer does.

he instruction you use to do it is IF . . . THEN . . .—but what goes into the
iotdotdots is important.

.et’s write a program to tell whether a given number is odd or even. (*Big deall™ 1
ear vou cry, and fair enough; but as elsewhere in this it is the principles that count, not
he actual result.)

lere gocs.

@ INPUTn
'® [Fn=2+INT{nf2) THEN PRINT “even”
@ IFn<>2=INT(n/2) THEN PRINT “odd™
Iow does this work? Even numbers are those exactly divisible by 2. So n is even exactly

vien n/2 is an integer. That means taking INT leaves it the same, so n/2 = INT (n/2).
\nd that is the same asn = 2 * INT (n/2). So line 2¢ is a fancy way of saying

4 IF nis even THEN PRINT “even™

vnich makes reasonable sense to us—but not to poor old Spectrum. who has no idea
vhat “1s even” means until we tell him in the language he understands.
-ust to drive this point home. we’ll work out a few cases.

1 22 23 24 25 26
/2 11 1145 12 125 13
NT (n/2) 11 11 12 12 13
'+ INT {n/2) 22 22 24 24 26

“hat should be enough to convince even the direst sceptic.
In the same wav. k divides n exactly — for whole numbers k. n—ifand only if n = k +
NT {n/k). This is a very useful thing t0 know.)

*erhaps the one other thing to point out is that in line 30 the symbol < > means “is not
equai to”. A lot of mathematicians would use # but the Spectrum prefers < >. Don’task
me why.

n general you do the same kind of thing. The crucial instruction takes the form

(# [IF this THEN that

vnere “'this” and “that” are statements. (In the line 20 above. “this" is “n = 2 = [NT
n/2)" and “that"” is “PRINT “‘even™ .}
“he *'this’ statement has to be something that the compuler can recognize as either

rue or talse. (IFSTOP THEN . . _isn't terribly informative, but IFn = 1981 THEN . . .
5.1 1f **this™ is true the computer then goes on to do “that™; if “this™ is false it goes on 1o
he next program line without doing “that”.

I'wo particularly common types of conditional command follow.

CONDITIONAL JUMPS

“hese take the form
1 IF thisTHEN GO TOn

vnere n is a line number. Instructions like this can be used to change horses in
nidstrcam—that is, aiter the whole coursc of the calculation by moving away to another
rart of the program.

‘or instance, when calculating the square root of a number it's important to remember
hat negative numbers don’t have any. So you avoid error messages by doing something

ike this:
1@ INPUTn
IF n <@ THEN GO TO 5¢
PRINT n, SORn
STOP
PRINT *square root not defined”

= = o =

Yole the STOP in line 490, Why? Chop it out and see what happens!
n the same way, when using PRINT AT a. b. you can protect against a and b in
mPRINTzble ranges by using:

M 1IFa<QOTHENGOTO 1004
[1¢ [IFa =21 THEN GO TO 1000
20 IF b <@ THEN GO TO 100
3@ 1Fb>31 THEN GO TO 1000
50 PRINT ATa, b; ="
o0 STOP
i) whatever vou think is a useful response . . .
elc.
Ne assume here that a. b are assigned in a previous bit of program,
“ack on the front
1 INPUTa
W INPUTD
ina then ask the machine to PRINT AT 999, —37 by settinga = 999. b = —37
viake line 1000 read
[PRINT “I'm not so stupid any more!™

sit?
tf vou think lines 19@-130 look clumsy . . . they are. See the section opposite on
LOGIC.

'ONDITIONAL ASSIGNMENTS

These take the form [F this THEN LET something. For instance, an allernative to the
irst program above is:

1) INPUTn

M LET a8 = “‘odd”

W IFn=2+«INT(n/2YyTHENLETa$ = “cven”
¥ PRINT a$

Icre ad has a dollar sign because it’s not a number., but a string of characters (sce
‘hapter 17).

Ahat is this program?
LET s = INT (2 = RND)
IFs = @ THEN LET a$ = “HEADS”

I[Fs=1THENLET § = “TAILS"
PRINT a$%

=2 2 =2 =

¥henever vou are writing a program, and what vou want to do depends on certain things
1aopening or nol happening, start thinking about IF . . . THEN . . .

JOGIC

\ big subject. examined endlessly in learned treatises . . . but we don’t need to know
nost of that. The Spectrum can do logic— probably better than you or | can. Specifi-
-atly, it can combine statements occurring in the “*this™ position of an IF this THEN that.
wousing AND.OR. and NOT.

3asic rules: p AND qis true only when p is true and g is truc.
»UR g is true when p is true, or is true, or both.
~OT nis true only when pis false.

"he Spectrum works out NOTs before ANDs and ANDs before ORs. [t works out
iimost evervthing else you can think of before it does any of these. As aresult. youdont
siten need brackets to make the order clear.

‘or instance. we can improve lines 100-130 above by changing them to the single line

W IFa<@ORa>210Rb<PORb>31THEN GO TO 1

“here are all sorts of marvellous wavs 1o use Spectrum logic. but they're complicated to
xpiain and [haven't much space. so I'll reluctantly stop here. Chapter 10 of the Sinclair
arnual will pet vou started. but it’s by no means the whole story.

VMIULTI-STATEMENT LINES

The Spectrum will allow you to put more than one command on a single line. Itis merely
Iecessary 1 separate the commands by colons ;7. So the program in Chapter 1 on Basic
3ASIC could have been written as (say)

¢ PRINT “Doubling™: INPUT x: LETy = X + x
W PRINT x. yv: STOP

wnd in fact it could all have gone on one line. if vou'd wanted.

T'his can be used to save a bit of space (it cuts out ling numbers) or to make a program
:asier to understand. The main snag is that you can only GO TO the start of a
nuiti-statement line. On the whole I've avoided multiple statements—it’s usually easicr
0 see what's going on without them—but there is one occasion when they can be very
iseful indeed. I've already used this trick in Debugging [:

4 [Fd=@THENPRINT "“Nocan do™: GO TO 30

T'his lets the machine take two actions if a given condition holds, and avoids using lots of
10 TOs.

“he essential point to remember is that after a THEN, all ol the commands in that line
ire conditional on the IF statement that precedes the THEN. In other words. a
ommand

F this THEN that: the other: something else

viil lead to afl three of that. the other. and something else being done (if this is true) or rio
wcnon whatever (if this is false).
Iseful. but also a trap. It's very easy to write code like:

B TFx=0THENGOTO?20: [Fx=1THEN GO TO 1M
A PRINT “xis zero”
etc.

inder the impression that the machine will branch to 200 if x = @and to 1003 if x - 1. Not
0. notso. If x = 1 then it takes line 10 as meaning:

IF x = @ THEN . ..

GO TO 28 and 1IF x = 1 THEN GO TO 1%
et
F x < > @ (which is the case whenx = 1) THEN . ..

.. .gnore the rest of the line and go on to the next,

¥hich here is line 2@, cxactly where you didn’t want it to go!
fowever, if vou replace 10 by

TFx=0THENGOTO 2@
5 IFx= 1 THEN GO TO 10d¢
t all works as vou'd expect.

Vieral: multi-statement lines are at their most wseful in IF/THEN cormands, and also
it their most dangerous.

One of the main reasons for buying a Spectrum is
is splendid graphics. Kick off with:

10 Plotting

vs small computers go. the Spectrum is equipped with some pretty sophisticated tools
or drawing pictures. [t has what are known as high resolution and low resolution
rraphics. These are good phrases for stopping conversation at partics. but what they
eatly mean is that you can draw pictures with a pencil (high resolution) or a ¢reosote
rush 4 la Rolf Harris (low resolution).

n this chapter, I'm concerned only with the high resolution breed of graphics. When
‘ou te in this mode. the screen is divided up into a large number of small squares called
pixeis, 256 of them in the horizontal direction and 176 in the vertical direction. So there
ire 256 x 176 = 45056 pixels altogether.

75
LOT 208, 132

rFr—-——_———--————_—— e ————————— - -~
|
1
i
|
I
|
I
i
PLOT 79, 67 i
) |
i |
i |
|
| |
| |
1 |
1]

|
0] i

4 79 204 255

igure 101

Juure 10.1 shows how they arg referred to. The first column is labelled @ and the last one
'55. The bottom row is labelled @ and the top one 175, A point s blacked in on the screen
by writing:

B PLOT 79,67

or instance and. as you can see from the diagram. the first value after PLOT indicates
he column number and the second value indicates the row number. The keyword PLOT
eils the system that you want to think in high resolution terms: you simply cannot use
LOT for low resolution work. There are two other kevwords which are used in high
esolution: DRAW and CIRCLE.

et’s deal with DRAW first. At its simplest, DRAW is used to draw a straight line.
"he starting point for the line is implied; it’s wherever the “pencil™ is at the moment. The
wo valucs after DRAW give the number of columns and number of rows to move to get
to the end of the line. So:

¢ PLOT30,30
® DRAW 44, 80

vould generate a line as shown in Figure 10.2.

75

ol

255
fgnre 112

f we add:
@ DRAWSH —10

ve ena up with Figure 10.3.

75

Bl

A 3¢ L 120 255

Fenre 113

0 1t's pretty easy to draw things like rectangles to order. Suppose that we input the
ectangle’s details first, giving the values at its bottom left-hand comer, its width . and its

wight:
¢ INPUT “Leftmost column™: Ic
B OINPUT “Bottom row™: br
INPUT “Height”: h
INPUT “Width"; w

1rst, we can draw in the bettom left corner:
M PLOTIlc. br

Tow draw in the bottom of the reetangle:

i DRAW w. @
ne right-hand side:

i DRAWD. h
he top:

@ DEAW —w.
ind the left-hand side:

W DRAWQO. h

f the rectangle is to be blocked in. things are a shade trickier. We now need to draw all
e vertical lines between the left and right edges. Suppose we wanted 1o draw just one of
hem. the one insome column labelled ¢. { All we know about ¢ for the moment is that it's
rigger than le, the column with the left-hand edge in it. and smaller than lc + w. which 1s
vnere the rieht-hand edge is.) The code would be:

I PLOTc.br+1 {to put the “pencil”™ in the right place]
20 DRAWR.h -1

Now we need to do this for all values of ¢ fromle + 1 tole +w — 1. The —1'sand —1's are
here because there's no point in drawing the edges again. Obviously we can use a FOR
‘oop:

1M FORc=k+1TOl +w -1

W NEXTec

'ow. to repeat the process so that we can draw rectangles all over the screen all we have
0 add is:

4 GOTO 4

M course. the rectangles will always be filled in because lines 108 to 130 are always
xecuted. We could ask the user whether he wants to block in his rectangle like this:

8 INPUT “Block it in? {ves/no)"': b3
ind then ignore the “blocking in” code if the answer was “no™:

5 IFhS = "no” THEN GO TO 10

All this assumes that the user is behaving sensibly, and not trying to draw lines outside
he screen limits, This is a dangerous assumption to make. Users should be regarded. not
0 mucn as idiots who mav do something wrong. but as malicious individuals who will
rertainly do whatever they can to crash vour program if you give them half a chance.

>0 we should insert some tests to make sure that the specified rectangle can be drawn
wefore trving to do so.
“irst. is the leftmost column on the screen?

S TFlc < @OR lc > 255 THEN PRINT ““cannot draw this™: GO TO 1@
Next. is the bottom row possible?

5 IFbr< @OR br> 175 THEN PRINT “cannot draw this": GO TO 20
s the height negative?

3 IFh < @THEN PRINT “that’s silly!”": GO TO 3¢
Nill the top line fit in?

6 IFbr + h > 175 THEN PRINT “top line won't fit"s GO TO 3§
s the width negative?

12 IFw <@ THEN PRINT “that's silly!”: GO TO 40
¥ill the right-hand edge fit?

4 IFlc + w > 255 THEN PRINT “r. h. edge wont fit”: GO TO 49

Ve ought also to check that only “yes™ or “no™ has been entered in answer to the
juestion in line 48:

‘9 IFb$ < = “yes” AND b$ < = “no” THEN PRINT
“ease enter vesor no”: GO TO 48

I'here’s an interesting point here which you should be aware of. As far as the machine is
:oncerned. “‘ves’ is not at all the same thing as “YES™. So if we leave the program as it is.
he user has caps lock on (i.e. everything is coming up capital letters), he will type either
ES” or “NO inanswer o line 48. and the infuriating machine will keep responding:
*lease enter yes or no
Mock itin? {yes/no)

See if vou can modify line 49 so that the machine will aliow the user to tvpe in either
wper or lower case.

AUNNING RINGS ROUND THE SPECTRUM

Jrawing circles is very easy. There's a special keyword, CIRCLE. after which you
:pecify the column and row you want the centre to be in. and then the radius. So. for
‘nstance;

@ CIRCLE 59, 70, 30

viil draw a circle whose centre is at the intersection of column 5% and row 7@, whose
adius is 30,

lowever. DRAW can alse be used to produce circles, or rather bits of circles. Try
his:

@ PLOT20. 30
B DRAW 6}, 100
@ DRAW —o6l, —100. 1

“ou’ll see that line 2¢ draws a straight ling, as you'd expect, and that line 31 gets back to
he originally PLOTted point. also as you'd expect, but it draws along a circular path. not

i straight line. It's the third variable after DRAW which tells BASIC to draw an arc of a
1reic. and the way it works is slightly confusing, but I'm going to explain it anvway.
magine the whaole circle {the bit which isn’t drawn is shown dotted in Figure 10.4).

angle specified by third
value in DRAW
\ statement

Trure 104

f vou draw lines from the centre to the ends of the arc. the angle between them is the
hird value after DRAW. You may [ind this surpnsing, because this angle is obviously
nuch bigger than 1. This is because, just so life isn't too easy, the angle is measured in
acians. and 1 radian is inst under 66°. Now if all this isn’t crystal clear and vou thought
-aaians were tvres which look flat even when they’re pumped up properly. don’t worry.
sll it means in practice is that if you choose a small angle (say @.1) you'll get a line which
joesn’t deviate from straight by very much. As you choose larger angles. the circular
iature of the line becomes more pronounced. Try:

® PLOT 60,20

5 FORa=0.4TOPISTEP 3.4
B DRAW 100, ¢

W DRAW — 104, 1. a

‘) NEXTa

:e¢ how the shane approaches a semicircle as the angle gets close to PT(3.14159)?
~Now change line 15 to read:

5 FORa=04TO2+«PISTEPQ.4

“ou get more and more of a full circle, and eventually it won't fit on the screen. It doesn't
natter how small vou make the original straight line, it still won’t fit sooner or later. The
cason ts that 2 = Pl radians is 368°—a full circle! Since this full circle includes the original
traight line—a flat bit— it must have an infinite radius, so it won't fit on anything! The
norat is: don’t let the angle get too big (about 5 gives you most of a circle) and even then,

e careful: iUs easy to go careerng off the sereen. and not easy to test to see where vou're
roing to.

AILLING IN THE HOLES

Ne've seen how to fill in a rectangle. but filling in a circle or a segment of a circle looks
iitogether a more difficult proposition. The reason is that it's more difficult to see where
o start and stop the DRAW that does the shading in. since these values aren’t fixed as
hev are for a rectangle. And that’s the clue. We need a way of finding where the edges of

he figure are in each row we want to shade in. (W¢'ll shade the rows, rather than the
‘alumns. just for a change).

‘ortunatelv, the Spectrum gives us a way of finding out whether a particular pixel is
inked in. 1t's called the POINT function. i [write:

‘9 LET g = POINT (20, 33

» wiil be set to 1if the pixel at 20, 3@is inked in. and zero if it’s not.
;0 the problem breaks down like this:

Set up a rectangular space around the figure to be filled in. in which the search for
:ages is going to take place.
For each row do the following:
a) Search from the left until the figure is hit. Note where this is.
b) Search from the right until the figure is hit. Note where this is.
c¢] Draw a line between the two points found in (a) and (b}.
lere’s the resulting program:
W) INPUT “frame cols™: I, rc Ithe left and right columns of the
Taming rectangle|
318 INPUT “frame rows™; br. tr [the bottom and top rows of the
raming rectangle]
520 FORt=brTOtr
130 FORc=1IcTOrc [search from left to right.
¥l IFPOINT (c.r) = | THEN GO TO 660 looking for the edge]

3¢ NEXTc

S5 GO TO 730 |if program gets here. there is no
cdge on this row, so go to the next|

Wit LFETcl =c¢ Il is leftmost column of figure|

77 FORc=rcTOISTEP —1 [search from right to left,

80 IFPOINT (¢c.r) = | THEN GO TO 708 looking for the edge]

"M NEXTc

MW LETc2=c [¢2 is rightmost column of figure|

13 PLOTcl.r [shade

20 DRAW —cl. @ in|

30 NEXTr

M course. vou'll have to precede this with a routine to draw a closed figure ., such as the one
o draw a circle segment at the beginning of the previous section . to see anything happen.
There are some simple modifications to this which make it quite powerful.
First edit line 620 to read:

20 FORr=br1O1rSTEPs

ind then write a line which allows the user to enter any value of s he wishes {somewhere
-onvement before 623). If s is set to 1, the effect is the same as before. but withs = 2, enly
wvery ather row is drawn in. so we get a hatching rather than a shading effect. With larger
ralues of s. the hatching gets wider. of course.

~low edit line 720

20 DRAW2 —cl.P.a

ind INPUT "a" somewhere convenient. Now try hatching in a circle with a fairly small
atue of “a” (8.5, say). See the 3-D effect?

Now choose the framing rectangle so that the top half of the circle is above it. Use the
ame vaiue of a. but set s back to 1. Now vouve got a moon in shadow . {Usc white ink on
slack paper to get the best effect.) And so on. and so on. When I hrst wrote this program 1
had a lot of fun drawing quill pens in ink pots. Simple things . . .

JASIC’S ELECTRONIC RUBBER

Yatchine shapes heing erased is almost as much fun as drawing them. You still use the
LOT. DRAW and CIRCLE commands [or this. bul vou have toell BASIC that you've
rot the rubber in your hand. not the pencil. This is done with the command: OVER 1

Try this

i CIRCLE 124 85, #
W OVER
" CIRCLE 120, 85. rd

ina vou'll sec the circle drawn, and then erased. Now replace line 7@ with GO TO 5@ and
un 11 again. The circle is drawn, then erased, then redrawn, and so on!

all right, so I've been telling fibs. Actually, in the “OVER 1" mode the computer rubs
wt if there is something to rub out, but draws in otherwise. So the first time line 5@ is
xccuted. the circle is drawn. the next time it's erased {because it's there to be crased). the
X1 time it’s drawn (because there’s nothing to erase) and so on.

Now try this:

 OVER® [to turn the eraser action off)
) CIRCLE 44, 49, 30
@ CIRCLE 60, 49, 30
) OVER1 [turn eraser on]
‘@ CIRCLE 10, 100, 3¢
CIRCLE 124, 100, 30

see the effect? With the rubber off, the first two circles are drawn overlapping in the way
ou’'d expect. With the rubber on, the other pair of circles also overlap, but the second one
ubs ont bits of the first where they intersect.

‘0 the action of CIRCLE (or DRAW or PLOT) under OVER 1 is: “If there'ssomething
o rub out. rub it out; otherwise draw the desired shape™. In the above program. the etfect
3 the “OVER @ in line 19 lasts until it is countermanded by the “OVER 17 in line 40, It's
aossiple o make an “OVER” command last for only one statement like this:

¢ CIRCLE OVER@; 138, 104, 2¢

“he new circle overlaps the previous one without rubbing out the intersections but any
‘ubseauent statement not containing an OVER specification (try % PLOT 0. B DRAW
50, 148 for instance) will still have the OVER 1 of line 49 in force, and so will erase at
rossing points, although where the crossing point is a single pixel, the effect has to be
ooked for closelv. What would be the effect of editing out the “OVER @:" from linc 7¢?
I'ry it!

PRESERVING YOUR ART FOR POSTERITY

“ou can use the techniaues we've discussed to draw some pretty fancy patterns, and there’s
i program 1n “Prepacked Programs™ to make this fairly straightforward (it uses the
srocedures for shading and hatching described here).

0 it would be handy if we could save the results on tape. For instance, we might design a
seautiful lunar surface display which we would like 10 use in 2 “meoon lander™ program: or
ve d like a series of pictures each of which represents a hole on a golf course. A golf
srogram could load each in tum as the holes are plaved.

"he Spectrum makes this process very casy. We save and load the display screen
‘ontents in almost exactly the same way as we save and load programs. The only difference
s that we write the word “SCREENS" after the normal SAVE or LOAD instruction to
ndicate that it’s the SCREEN we want dumped to tape (or read back) and not a program.

‘0T 1N0Stance:

;AVE “"GHOLE3" SCREENS
.avs “‘save the screen contents as a tape file called GHOLE3™ and to get it back:
LOAD “GHOLE3" SCREENS$

‘encil and paper still have their uses . . .

1 Debuqging 11

‘arlier. on page 25, T left you with the averaging program which is reproduced below (so
:ou don't have to page-flick too much} and suggested vou might like to try debugging it.
@ LETs=10
@ LETc=0
W INPUTn
B IFn<QTHENGOTO 10
LETc=c+i

60 LETz=s+n

GOTO3)

W PRINT "AVERAGE [5O:s/c

_et’s now consider a step-by-step approach to the problem. Obviously. the first thing

0 do is to see if it works as it stands. so we kev it into the Spectrum and run it with a few
amnie sets of data. Suppose we Lry:

3

[remember—this value just acts as a terminator or delimiter]

he answer to which should be 5. In fact, when the program is run, you get the error
‘eport 2 Vanable not found. 5@: 1. Hmmm. It means that a previously undefined
:ariable hias been used in line 5. From the listing we can see that this isi. Solet's give i a
‘dlue. say

PLETi=0

T'hat will fix things up so that the program continues beyond line 5. If we add line 5 and
RU/N again, we find that the messagc

WERAGE IS
s printed carrectly, but then an error report:
» Number too big. 10: 1

s displaved.
We've met this message before: you probably remember that the 6" indicates that
he machine has attemnted to do a picce of arithmetic leading to a result larger than it can

32

10ld. and that the 100" indicates the line number when the problem arose. So a fair bet
vould be that the program has tried to divide by zero. as was the case the last time this
‘rror report cropped up. Before we start the real detective work, let’s collect a little more
:vidence. Try a different set of data:

[¥}

—_— P

‘xactly the same set of messages results. S50 a working hypothesis seems to be: “What-
*ver data are entered, the program terminates with an arithmetic overflow report.”™ Test

‘he program with threc or four more sets of data and our working hypothesis looks more

ind more sound.
s0. where to start looking? T used the words “'detective™ and “*evidence™ a minute ago;

didn’t use them lightly. Debugging programs is like detective work. and any detective
J'.m[tell vou that vou have to try to think like the villians to be successful. or. if you like.

“‘t takes a thief to catch a thief”. The villain of this piece is the Spectrum. so our problem
s to try to think like it. The first thing to do is to slow down your thought processes. That
wuprised you, didn't it? You were under the impression that computers were a bit quick.
Nell. so they are. but the way they “think™ about a problem is usually pretty laborious.
Next, set up a model of the computer’s memory. or at least that part of it which is
‘eievant to the problem in hand. In our cxﬁimplc five memory elements have been set
0. and have been given the names s, c.n. 1 and z. A convenient model. then, will just be
1 table in which we can show how the contents of these elements change as the program is
:xecured. It can also be helpful to have an indication of the line number at which a
rranch takes place. although this is not essential. So the table might appear as:

_ine No. s ¢ n i 4 Branch

Thave added an extra column labelled “*Branch™ whose function I'll deal with shortly.

Now we build up the table by considering the action of each statement in turn. We have

o define a data set to deal with: let's choose:
2
1

-

‘0. the first statements to be obeved are on lines 5 and 10 and simply set the memory
lements called i and s to zero. The table appears like this;

¢c n | 1 zZ Branch

i
Aot S el

0 0

sfter line 20 has been obeyed we have:

Line No. s n i Branch l
s | |
| 19 @
20 @
ine 30 picks up the first value from the data set and puts it in n, so:
Line No. 8 ¢ n i z Branch |
5) l
10 i @
20 i@
30 ; i 2 |

ine 48 is an ~If” statement. and so merelv performs a test to sec if nis negative. Itisn't
it’s currently 2) so the test is false, which we'll indicate by an “x™ in the “branch™ column
ina the branch to 13§ does not take place. When a test is true, and the branch does occur
ve wiil show this with a “ V" in the “branch”™ column. Now we have:

LII'It, \Io | s s n i 7 Branch
@
l(ﬂ
"!lm m |
30 | 2
() | i X

.ine 50 asks the machine to take the contents of 1. add the contents of ¢ and put the
‘esull back in ¢, This should make us a bit suspicious because we know that i was not set
0 originaily. So maybe adding line 5 wasn't such a good idea. Anyway. let’s carry on
vith our simulated program run.

Line No. ‘ § ¢c | n i | = Branch

= |
5 | ’ 8
0 o |
0 ¢ |
30 >
404 X
i

) course. adding zero to zero has had no useful effect. and that should make us even
noTe SUSDICIoUS, so remembering that we are looking [or typographical errors, we might
:uspect that 1shouldn’t be i at all, but 1. a pretty common b]]p after all.
low we start all over again with a new table. working on the new assumption that line
is unneccssary and line 5@ reads

0 LETc=c+1

Linc No. 5 c n 7 Branch

10)
20 @ | ‘
30 [2 .
40 - | %
50 1 |
o | 2 |
TIJ I | V’ |
30 1
40 X
S0
60 ' 1
7@ 5 A4
1) | 4
i | X
bl 3
60 4
70 vV
39 6
4@ | X
50 4 | i
Hk | ']
?@ | _I
3 =l
40 | Vv
10 i |

[§

Nhen the program reaches line 190 it will print the message "AVERAGE 15™
‘ollowed by the value of s/c, which is zero!

.0 the program still doesn’t work. but what is interesting is that now there is no error
eport from the Spectrum: we have introduced a new kind of error—a logical error. The
spectrum can perform the operations we've asked for all right: it's just that having done
0, 1T gets the wrong answer,

et’s have a look at the table we have generated. It is now fairly clear what the function
i ¢ is. Every time a new value is entered in n the value in ¢ is increased by one, so that
vhen the branch to line 1) occurs, ¢ contains the number of values entered aitogether.
n this case 4. But nothing at all has happened to s after it has been set to zero, and z only
:ontains the same values as n, but slightly later. Perhaps s and z should really be the same
ace, and since s 1s mentioned at line 10 first, let us assume that z is a misprint for s. That
neans line 60 reads:

W LETs=s+n

[Some oeople have a

\ aatural gift for
iouch - typing

e

ind the table becomes:

T ine No. | 5 C i n Branch

1t @
20 1]
3d '
4 X
50 1
6l 3
74 A%
3¢ 1
44 X
S0 2
6 3
70 2%
3np 4
4y X
=i . 3 '
gt !
it A

30 p 6 f
40 X |
50 i 4
AT
T : AvA
3t =1 i

40 ; BV

100 . !

3

~1

L)

Ve now get printed:
WERAGE IS 3.25

vhich 1s correct!

'he process I have been describing is called “dry running” the program, and it is a
:ommon wav of searching for errors. Of course, it isn't always necessary to include all the
1etails I have shown in a dry run program table (for example, the line numbers have not
wcen very useful to us in this case) and it often isn’t necessary to complete a table before
he light dawns, but I think you can see that it is a nice way of forcing you to think in the
:rart-iacketed way the machine does. and at the same time giving a clear view of the way
‘he program runs.

JTow voumay say “all this is very well, but who is going to make typographical errors of
‘his tvpe Keving in programs?™

The answer is that it happens all the time, for a number of reasons. First, if you copy a
yrogram from a magazine, there is the possibility that the error is present on the printed
vage. Second, you may easily make the odd keying error in a long program—i for 1 {if
he listing you're copyving from has used all capital letters), letier o for zero. 2 forz and so
m. Third. even when you are writing a program yourself you can make an error which 1s
:quivalent to a typographical error.

‘or examole, suppose you call a variable b3 at the beginning of a program. You write
ne program over several days, tinkering a bit here, modifving a line there. At the end of
nis time vou need to write a few more lines using this variable, which you remember

auwte well was called b2, so you don’t bother to check.

“ou don’t think it can happen? Wait till you've been programming for a few months.

"he Spectrum can draw things. Once it knows what to draw,

t can move it around. Once it can move it around, the operator
‘an control the movement through the kevboard. Particularly
T you want to write computer game programs, you'll need

‘0 know something about

17 Graphics

an extremely attractive feature of computers is that they can draw pictures—with
-nougn hardware, beautiful and intricate multicoloured pictures. And while the
‘pectrum is rather more limited. it has enough capabilities to provide a stimulating
niroduction to computer graphics.

“hapter 10 describes one way of using the computer to draw: but there we were
thinking of rather academic thmgs like rectangles and circles. By using the PRINT
acility, it 1s possible to draw objects with more visual appeal.

THE “PRINT”” INSTRUCTION

"he fundamental instruction here is PRINT x3% where x3 is a character or a string of
‘naracters. It's almost self-explanatory. If you experiment with PRINTing, hawever,
vou wiil soon find that this instruction alone gives you little control over where a given
‘naracter is printed: the machine starts every such instruction at the left of screen on the
1ex1 avaliable hine., which isn’t always what you want.

'RINT AT x. vy takes care of this. Much as for PLOT. the screen should be thought of
is givided into squares, labelled with two coordinates x and y. But there are several
iifferences. First, the squares are twice as large. This means there are half as many each
viy: a quarter of the total altogether. Next, the coordinate numbering system is quite
nfferent—and more straightforward. The first number. x, is a fine number on the
.creen: 1t runs from @ at the top to 21 at the bottom of the area available for PRINTIng.
The second, v. is a column menber giving the distance along a line (thatis. horizontally).
ind running from @ to 31. Figure 12.1 shows this system in more detail.

y—
AT P
EEEEEEES
;;{;_ BT =
@R LT WL LT ST
‘ I:’IPHNI‘H ¥l HERSEEED
| | | | |
|.:"l.‘::_* ™, sgemeE
0 FREL &i
{lwﬁf:"-h g
e i

hgum 12,1

:uppose you want to print the graphics characier B in the middle of the screen. The
cxact middle can’t be achieved: but the square in line 11 and column 15 is pretty close. So
vou would write

@ PRINTATI11, 15, “m”

Note the semicolon () which is needed to tell the computer to run what it thinks of as wo
‘nstructions together: move to 11, 15; PRINT something.

v fitting several graphics characters together you can achicve more interesting
-Tfects. The most direct wav to do this, by using large numbers of PRINT ATs, uses up
wecious memory the way a Cadillac uses petrol; but for the moment let's not worry
ipout cfficiency: only the principle is important. Try this program:

» PRINTATI1G 10 HHE=™=-
@ PRINTATII.2:“EEEEEENR"

@ PRINTAT2.8: - INBEEAEANLD -

t should remind vou of something of a military nature. {If not, blame my poor design.)
¥hen printing graphic designs like this, a useful approach is to draw the design on

:quarea paper. and number the lines and columns; this makes it easier to read off the

-equired instructions. The above program is obtained by this process from Figure 12.2.

8 9 1011 12 13 4 15 16

“J)] coo0O

feure 12 2

“he Spectrum has 16 special graphices characters (numbers 128-143 in the character
et—see Manual. page 186). But you can make good use of other characters too {as in

he above examole). Inverse video (white on black) characters are especially useful in
his connection.

"HANGING POSITION

laving worked out how to PRINT in a chosen pasition on the screen. it's not hard to
nodifv the program so that you can PRINT the same graphics at any position yvou
‘noose. The tank (yves. that’s what is was supposed to be) above sits on line 12 with its
eft-hand edge in column 8. If we want to draw it sitting on line a with its left-hand edge in
‘olumn b. we just renumber the lines and columns in the picture to achieve this effect
see Figure 12.3).

‘rom this we can read off the new program:

% PRINTATa - 2.b+ 2™ -
PRINTATa-l.b; " EEEEEEN"

@ PRINTATa. b MEEEEREL

N ooo000

Toure 12.3

) course this won't run unless vou tell it the value of a and b in a previous picce of
rogram. it also won't run if it encounters values of a and b that make the picture run off
he edge of the screen. Looking at the left edge. that means b must be @ or morc; at the
1gnt, we need b + 9 to be 31 or less. thatis b = 22 or less. Similarly a must be 2 or more,
ind 21 or less.

"he great advantage of thinking generally, like this. is that we can draw our tanks all
wer the place on the screen., just by specifying a and b. Here are some samples: tack
hem on to the lines 183 above (the line numbers will automatically be ordered by the
‘pectrum) and run them. to see what you get.

a) 1 LETb=7
* FORa=2TO2!
i) NEXTa

b} 1 LETa-=15
FORb=10to22
‘) NEXTbh

c) 1 LETa=2+ 15*RND
LETb =2@#+ RND
) GOTO 1

BREAK this to put it out of its misery!)

Ince vou've learned about subroutines you'll be able to find all sorts of uses for this
ipility to draw a given shape in an arbitrary position. The next section describes one
‘ommon circumstance in which this might be used.

VIOVING GRAPHICS

Juppose you want the tank to move across the screen from left to right. Program (b)
ibove almost does this, except that it leaves a trail of rear ends of tanks behind it as 1t
soes. You can get rid of these by overprinting blank spaces: but the nicest way is to use an
“nvisible border™ which does this automatically. Change lines 10-38 like this:

LETa=15
FORb - B#TO21

@ PRINTATa-2.b+2:"LJHBAHA=™MM"
) PRINTATa-1.b:;*mEEEEEE"

¢ PRINTATa. b;-[IHNEBHEEANLD -

@ NEXTb

Note the blank spaces added at the front of each graphic line. {To avoid running over the
age, we make b run only up to 21 in line 2.)

i'he border of blanks is not visible on the screen: but the wav the computer prints out
‘haracters means that these blanks are printed on top of that awkward “trail”’, blotting it
sut. {An old saying has it that foxes erase their tracks with their tail: so does our tank, but
ts tail is invisible.)

f we want to be able to reverse the position of the tank, then we need an invisible
worder at the right end t0o. To move it upwards, we need a border below it; to move
iownwards. a border above. To move in all directions (by varying a and b accordingly)
ve put the border all the way round the edge of the tank, which means two more lines of
lanks inrows a — 3anda + 1.

Project

¥rite a program to make the tank move round and round the edge of a square, size 1@ by
¢. on the screen. Put invisible borders all round; work out how a and b have to vary:
srogram that.

<EYBOARD CONTROL OF MOVEMENT

Jow we can draw things that move around as we wish, it's possible to use the keyboard to
irect the movements from outside the program.

“he clumsv way ta do this is to write the program as a loop. and to input something
rom the kevboard. This holds everything up. moving display and all, until the keys are
oressed.

letteris the INKEYS instruction. A program line like

1@ LETc} = INKEYS

ells the machine to see which kev is being pressed, and assign to the string variable c5 the
corresponding character. By plaving tricks with that character. you can do all kinds of
‘hings.

‘or example, let’s direct that tank either to left or right, using keys 5 for left and 8 for
1ght. (This is useful for reminding you. because of the arrows on those keys; but it’s not
1ecessarv to press CAPS SHIFT and actually input the arrows.) What do we do? We tell
he machine to read the INKEYS; and adjust the print position according as thisis S or 8.
ike this:

LETb = 15
LETa =12
LET c$ = INKEY$
y IFc¢$~“5"THENLETb=b -1
IFc$ = “8" THENLETb=b+ 1
) PRINTATa-2.b+2;*L/HEE=ME=S]-
@ PRINTATz2 - |.b;"EEEEEEEO"
PRINT AT a. b; |[[(NEIEEEEALC]"
@ GOTO?3

8

Yote the invisible border at both edges. The trouble with this is that if you press the
cevs for too long, you can run off the edge of the screen. See if you can modify the
yrogram to prevent this. by adding lines something like [Fa < @ THEN . . . something or
ither.

fyou keep a key pressed. this program keeps responding. and the tank keeps moving.
;ometimes this is a terrible nuisance: often what vou really want is for the program to
"espond only to changes in the INKEYS. or at least to renewed pressings of it.

IF INKEYS < >“"THEN GO TO 3
i JFINKEYS=“"THEN GO TO4
LET c$ = INKEYS

I'his has the effect of holding everything at line 3 if you're still pressing down the old key.
¥hen vou let go, it moves to4 and holds there. When you press a new key or repress the
sid one—away she goes!

YARNING: do be careful what vou tell the machine to do with that INKEYS. You
nay only wanf to press keys giving numbers, and then to work out VAL INKEY$ which
onverts that number from a character to something you can actually use for arithmetical
-alculations. But to start the program you have to press ENTER—and sometimes the
:pectrum reads this as the INKEYS, tries to turn it into a number—and the program
rashes. Or worse. if no keys are pressed, it does VAL {the empty string). This can be a
rifle puzzling until you've realized. (You can protect against it by using suitable 1F . . .
I'HEN instructions.)

PRINT AND PLOT IN COMBINATION

n some programs you may need to use both PRINT and PLOT together for graphic
nsplays. It is important to remember that PRINT AT x. vy and PLOT x. y produce quite
iifferent results, because the x. v refer to two very different coordinate systems on the
:creen. The Sinclair Manuaf has a diagram on page 102 showing both. But usually the
casiest way to make the two kinds of command fit together properly is to make a rough
.ketch. on squared paper, of the region you want to draw graphics in; mark in both
-oordinate svstems: and refer to this sketch while writing your program. It is often worth
.pending some time thinking about the structure of the program before sitting vourself at
he kevboard. (Equally, if your first attempt goes wrong, it is often easier to debug by
=xpenimenting on the machine, instead of bashing your brains out. The knack is to
illocate vour time and effort to best effect.)

PAUSE

“he Spectrum has a PAUSE command. which makes it wait for a specified period of
ime. This is very useful for moving graphics: say. to slow down something which would
stherwise move too fast, To pause for nscconds type

'AUSE 50 * n

f the character set doesn’t contain
ne that you want, you can invent
1 new one for yourself:

3 User-defined Characters

The Spectrum has 21 characters that you can alter as you wish. They are numbers
44-164 in the character set. and to begin with they are sel as letters A-U. To access
hem from the kevboard. go into **G” mode and hit the corresponding letter key.

'he technigue for building your own graphics characters is basically simple, but
iescrves proper explanation because il is such an elegant leature, and can turn an
wherwise dull program into something quite special,

I'he first step is to sketch out the character you want on an B by 8 gnid, blacking in those
«auares wnich will be INK when the character is printed. Forexample. Figure 13.1 shows
i “cat” character from Computer Puzzles: For Spectrum and ZX81 (Shiva, naturally).

igure 131

Next. replace the black squares by 1's and the blanks by @'s. to get a list like this:

y 1 9 6 1 @ 1 @

P11 1 © 1

J 1 1 1 1 @& 1t O

po0 1 e 9 1 9
11 11 8 1 0

—
FS
—
i’
ot
s

o

Next. decide which letter you want to use: the natural one 1s “C™,
Joing things the hard (but casy) way, input from the keyboard the following
-ommands:

*OKE USR “C”". BIN 410d101¢

'OKE USR“C™ + 1. BIN 01111919
*OKE USR “C™ + 2. BIN 91111910
*OKE USR “'C™ + 3, BIN 00110010
'OKE USR“C” +4,BIN 11111019
OKELUSR“C7 + 5, BINH111111¢
YOKLE USR“C™ + 6, BIN@111110¢
YOKE USR O + 7, BIN (HMG30M)

“onsider this as a bit of magic, if you wish! POKE puts certain information into the
-omputer's memory (see Chapter 23, on PEEK and POKE), USR just tells it that
iser-defined characters are in operation, and BIN stands for “binary”. The important
hings arc the “C™, the letter you chose; the numbers 1, 2, . . ., 7 added in; and the rows
st @'s and 1’s which are copied, in turn, from the table that I got from my cat picture.

wny 8 X 8 pattern of s and 1°s can be treated this way; and the machine will store up
o 21 different user-defined characters at a time. They are not destroyed by NEW; but
hey aren’t SAVEd.

There are other ways to set up the characters. I've written out a prepacked program
CHARACTER BUILDER) that will let you design your character and then load it up.
Ine way is to convert the binary numbers to decimal—say by direct commands like

'RINT BIN 01031016
vhich yields the answer 74. The rows of the cat. in decimal. are
4.122,122. 50. 250,254,124, 0
ind instead of POKEing around in the BIN you can use these numbers directly:
POKE USR “C”, 74
*OKE USR “C" + 1,122

YOKEUSR*C" + 7.0
Now. by writing these instructions into the program. you can set up the characters during
i RUN: and by saving the program, you effectively save the characters.
“ou can also save the characters by using the version of SAVE that saves a block of
nemory. and LOADing back the same way: but that’s a little advanced for this book.
¥ course you can store the list of numbers 74, 122. etc. as an array; or use the DATA
‘ommand (seec Chapter 18, on Data).

It has facilities for 2 e

user- defined characters, 5l
user- gefined functions,
and 101 user~ defined

misconceptiens

B N—

*rojects

Set up user-defined characters for the four suits of cards, stored as *“H™, “C™, “D™,
57 by using the grids in Figure 13.2,

~

4
)
W

‘Tgure 13.2

R

. Use Figure 13.3 to set up a character for “'2".

dgure 13,3

Design a set of characters for the twelve signs of the Zodiac, and set them up in
positions A-L.

1. Design two different characters representing a dog. but differing only in the position
of the tail. PRINT them alternatelv at a fixed positipn, and make the dog wag his
ail.
Possibly using several characters stuck together, make a man that walks,

f you can break a job down into a number of
dentifiable subtasks, then a powerful weapon in the
wrogrammer’s armoury becomes accessible:

‘4 Subroutines

Fhere’s a storv about mathematicians that could equally well apply to computer pro-
rrammers |ves, they are different animals!). About boiling a kettle. First the mathe-
nancian is asked to describe the stages to make a cup of tea, when the kettle is hanging
m the hook in the kitchen: so he says something like “*Take the kettle oft the hook, fill it
vith water. put it on the stove, light a match . . " and so forth. Then he is asked to
1escribe the steps needed to make a cup of tea when the kettle is standing on the kitchen
able—and he answers “Hang the kettle on the hook and proceed as before™.

Vhat he’s doing is using the first sequence of operations as a subroutine. Second time,
1e modifies the existing situation to make the subroutine applicable, and then usesit asif
Twere a single indivisible operation.

N computer jargon. a subroutine is & chunk of program that can be written in its own
1gnt, and used repeatedly as part of some larger program. Subroutines arc a very
wilized way of writing programs because they usually make it easier to see what's going
m. it is also easier to debug a program written with subroutines, because it is possible to
icbug each on its own, and then just to check they link together properly.

“he relevant command s GO SUB. It’s like GO TO but much more versatile. [t
vpically occurs in this sort of way:

% GO SUB 500
18 various other junk

¥ do something

70 RETURN
vnere, as usual, the small letters denote other bits of program. What this does is:

a) Om hitting line 14} the program jumps to 504, remembering where it came from.
b} It then executes 58, and whatever follows it. until it hits line 570 and is told to
IETURN.
ic) It then goes back to the original line {here 180}, and carries on with the nrext
nstructicon after that.

‘ssentiallv this is like GO TO, except that the return to the starting point is automatic.
"he important feature, though. is that you can enter the same subroutine from different
ines in the same program, and the computer still keeps track of which it came in by, and
RETURNS to that one.

s an example. I'll give a blow-by-blow account of the writing of a program which:

d) Useskeys 5, 6,7, 8 to move around the screen a cursor [P .
¢) Prints in place of the cursor any character input from the keyboard.

‘or this character input we'll need to use INKEYS. We'll read the current key using
his. and assign that to a string variable a$. We want the program to respond only to
iewly pressed kevs, as described on page 48; so we need a chunk of program in the form

oM IF INKEYS < = * THEN GO TO 1000

1910 [F INKEYS$ = = " THEN GO TO 1810 wiil become
he subroutine

020 LETa$ = INKEYS

The 1’s are used because this will be a subroutine and we want to tuck it well out of the
¥ay (although actually you can often save a few program lines by putting all subroutines
it the front end and starting the run vsing GO TO and not RUN—but that’s a refinement
101 worth going into in detail here). To come back out of it we’ll need the extra line

@30 RETURN

Next, to move that [P] cursor around, we have to . . . what? Well. we're certainly going
o need to know where to print it: so we'll invent two variables, a and b, which give the
-aiues of the row and column on which to PRINT it. To stop the whole thing crashing
efore we get properly started we’ll need to assign values to these. The middle of the
icreen 1s 4 good place to start:

¢ LETa=10
® LETb=15

Now ., we want to use kevs 5. 6. 7. 8 to modify a and b, thus moving the cursor around.
i00d old Subroutine above will read the kevboard: so the obvious thing 1o do next is

H GOSUB 1000

Now a¥ will tell us which of 5, 6, 7. 8 has been pressed. We want to move the around
n the direction of the four arrows on these kevs. (That's why we use them: the arrows are
J00d mnemonics!)

bh—1 b b+1

deure I4.1

Take a look at Figure 14.1 which shows position a. b and the four neighbours. Using
he clues in the picture. we see that we want:

tev 3 to change b to b — | and leave a alone,
iey O to change a toa + 1 and leave b alone.
tev 7 tochange atoa — | and leave b alone,

ev 8 tochange btob + 1 and leave a alone.

lere’s one way:

IFa3 =*"5"THENLETb=b -1
[Fa$ = 6" TIIENLETa=a + 1
IFa$="7"THENI.ETa=a—-1
IFa3 ="8"THENLETb=b+1

= & = =

"Taving moved the cursor. we'd like to see where it's gone; and for fun we’ll make it flash:
¥ PRINT ATa.b:FLASH1;"P"

Now what? We want to input a character to print in place of this [P]. Subroutine again!
W GO SUB 1

This time the machine reads the kevboard, assigns a$ the value it finds there (which is
vhateverwe press.a. b.c,d. ..., 7.3.>,...), and returns to the next line after line 99.
1nd we want this to tell it to print the character it’s found:

) PRINT ATa, b; af

Nearly done now. So far this all works only once. We want to go back to the front and
‘tart again— but keeping the new a. b, nor resetting to 1@ and 15. That's easy:

1 GOTO?30

30 then immediately sends it to 1800 again. Why won't 110 GO SUB 19003 work?)

Vrite all the above lines in (we've made sure the numbers work out in the right order.
vnich isn't always the case first ime round when you design a program. so don't be
misied!) and press RUN. Nothing will happen: but if you press any of 5,6, 7. 8 you'll see
he [P] cursor in its new position. (If vou press anything else, it appears at theold a. b-
i programming bonus we hadn't actually planned.) Then press a key. say t. The
nsappears. 10 be replaced by a t. Move the cursor (now invisible) using 5. 6., 7. 8: print
«our next character: and keep going. You can draw words all over the screen. (How
ipout a program for computer-aided crossword design?)

"o avoid crashing at the edges of the screen. a bit of user protection is a good idea:

S IFa<=$ORa=210Rb<<@0OR Db =31 THEN GO T 30

and no deubt you can think of refinements.

roject

nstead of the INKEYS subroutine. generate both 5. 6, 7, B inputs and the PRINTable
‘naracters at random: set the whole thing going and await developments. To print
anaom characters use things like PRINT CHRS INT (65 + 26 * RND) which selects
Tom the alphabet at random. (Why?7)

lere’s another examnle—an introduction to Computer Art. 1t draws random squares.
slack or cheauered, until it runs out of memory or until vou stop it with BREAK.

LETa= 1¢« RND

LETb = 10 * RND

LET g =5+ RND
LETr=5+RND

LETk = INT (2 * RND)

IFk = 0THENLET m$ = "m"
IFk - ITHENLET m$§ — %"

= =

= s =

= 2

W GO SUB 1000

M GOTOI19

0) FORi=aTOa+q
010 FORj=bTOb+r
020 PRINT ATi. j; m$
@30 NEXT]|
|40 NEXTi

¢5¢ RETURN

Project: Graphic dice

iencrate a random number between 1 and 6 using INT (1 1+ 6 » RND). Depending on
vnat this number, say n. is. print out n dots spaced on the screen just like they are on a
tie. near the centre of the screen. If ENTER is pushed, repeat this.

Todo this. invent a subroutine for each of the six possibilities. If the subroutine fornis
vritten starting at line (say) 500 + 100 « n (that is at 604, 700, etc.) and ends well before
he next one starts. vou ¢an cheat and use GO SUB 500 + 10@ + n to avoid complicated
-ongitional jumps. But you do need six separate RETURN commands. . . .

‘or the ENTER repeat. use a line asking for an input character INPUT k$. follow it by
i GO TO command sending everything back to the beginning. k$ isn’t used for anything;:
yut the machine waits for it. gets ENTER. and carries on to the GO TO. Get it?

Spectrum sings with the Blues

5 Son el lumiere

Ty this:

@ FORi1=1TO6

% INKi

0 CIRCLE 108 80,1+ 10
‘@ BEEP@.5,i

D NEXT

Not terribly exciting. perhaps. but it illustrates a couple of points. Firstly we can see how
o change the colour of the symbol being platted (or printed). We just specify the
number associated with the colour we want in an “INK" statement. We don't have to
‘emember which number corresponds to which colour, because the colours are written
ibove their equivalent digits on the keyboard. So in the program, the first time line 20 is
xecuted 1= 1, and the statement “INK 17 is interpreted by BASIC as “use blue ink for
mniing and plotting until further notice™. Of course, the only thing being plotted while
he “ink™ is blue is the smallest circle. By the time the next circle is plotted, line 20 has
recome “INK 27 so red is used. and so on.

vfter cach circle has been completed, the computer emits a triumphant becp. That’s
he effect of line 3. The first value after BEEP gives the duration of the note in seconds
so0 each of them lasts 0.5 seconds in this program—sounds longer, doesn’t it?) and the
.econd identifies the note to be played. If this value is zero, the note is middle C. 1is C#,
“isD.3isD#* 4isE, 5is F (there’s no such note as E#) and so on. Negative values take

sou pelow middle C. —1is B, —2 is A#etc.

"he simplest way of using BEEP is to signal to the user that something has happened
such as an error in the program) or that the computer is waiting for. or has accepted
nout. Of course, it can be used for playing music but I want 1o leave that until later {see
‘repacked Programs) and deal here with some more features ol the colour system.

‘irst, it’s not only the ink colour which can be changed. The background (which
1ASIC, guite sensibly, calls PAPER) can be any of the eight colours. Of course, if INK
ina PAPER are the same colour, vou won't see anything happening. which can be
:onfusing if you type LIST after running a program which has altered the INK colour to
hat of PAPER. (T mention this because I keep doing it, and then wondering why the
rogram nas been deleted. Tt hasn’t of course: 1 just can’t see it.)

Now vou might expect to be able to write “PAPER 2" and get a red background, but if
70U Insert this statement in the program at line 5, say, no change takes place when you
{UN. The reason is that the svstem can't change the colour of paper which has already
1een written on, and it can’t be sure that nething has been written unless it has executed a
‘LS (clear screen) instruction. So only when a CLS is encountered will the machine
-‘espond to the most recent PAPER command.

t's also possible to alter the border colour (for instance by typing BORDER 4 to get a
areen porder), and this is effective as soon as it is encountered. 50 if you insert:

'S5 BORDERI

he border will always match the circle being plotted.
it line 25 so that it reads:

5 BORDERT7 —i

“hat’s a little more arresting (not to say tasteless) isn't it?
Jow add the following lines:

B INK4

@ PLOT 1000
I DRAW®Q, 175
9% PLOT®, 80
® DRAW255.0

inda RUN the resulr.
% pair of green cross-wires are drawn in, as vou'd cxpect, but if you look closely, vou’ll
e that all the circles have now been coloured green in the region where the cross-wires
ntersect them. This is not a fault of vour television or a bug in the Spectrum. [t is a
eature of the wav the Spectrum handles the display. (A bug which can’t be fixed is
uways called a “feature” in computing jargon. It makes it sound as though it was meant
0 be there.) Anvway, the reason for this odd behaviour is that the attributes of a point
n the screen (that's to say its colour, brightness, whether it’s flashing) are not limited to
ust one pixel. They refer to a whole character, which, as we’ve already seen . takes up 64
pixels arranged as an 8 < 8 square. Consequently, when you change the colour of one
mxel, all the others that are INKed in from the same 8 % 8 region change with it.
viostly, you can live with this. Changing the brightness of a character square generally
presents no problems either. This is done using the statement BRIGHT 1 to turn the
brightness up and BRIGHT @ to turn it down again. Once a BRIGHT 1 command has
reen exccuted everything is plotted bright until the next BRIGHT @ is reached. So if we
vanted the two inner circles to be plotted more brightly than the others, we could add
he statements:

BRIGHT 1
'3 IFi>2THENBRIGHT#

‘lashing is a different kettle of fish. You can turn flashing on and off with FLASH 1
ind FLASH @, much like using BRIGHT. However because of the attributes problem., if
sou try this with the circle drawing program, great blocks of the screen flash at you in an
mnerving way. Try:

FLASH 1
» CLS

osee what I mean. {Like PAPER, FLASH needs a CLS 1o be activated). You may have
a use ror this kind of display. but the only one I can think of is inducing migraines in
experimental rats.
senerally, then, FLASH is most used in PRINT statements, where we want to flash
vhole character squares, rather than in PLOTs, DRAWSs and CIRCLEs where the
etfects are likely to be unwelcome.
jetter vet, all the attributes, INK, PAPER. FLASH and so on can be "embedded™
nto a PRINT statement, in which case their effect is limited to the symbols displayed by

that statement and vou don't need a CLS to activate them. For instance, you can
vrite:

10 PRINT AT 1@, ®; INK 5: FLASH 1, PAPER 4; “xxx”

ind RUN (having deleted line 4 and executed FLASH @: CLS as a direct command to get
1d of the flashing) and just the x's will flash. If vou now type LIST you'll see that the ink
s still green (set by line 6#) even though it's been set to cyan in 119: and the listing doesn't
lash.
haven't dealt with all the ways of handling the display that the Spectrum allows, and [
won't intend to. This is an introductory book, and the whole point is not to weigh vou
iown with reams of detail. When vou're happy with these technigques you'll obviously
vant to bone up on the remainder from the Manual, and you shouldn’t then have much
tifficulty doing so.
Three small points to finish with. Firstly. the need to clear the screen before some
utributes take effect doesn’t actuallv mean vou have to enter CLS. For instance, hitting
tne ENTER key with nothing before it will have the same effect as CLS: LIST. So
nstead of tvping FLASH 8: CLS to turn flashing off you can type FLASH @ and then hit
‘he ENTER key twice instead of the usual once.
ccondlv. you'll have noticed that the region of the border just below the paper
rehaves oddlv. not always changing as it should and retaining its colour at the beginning
)T a run. You may have realized that this region corresponds with the command and
nessage line (i.e. it’s where the BASIC system communicates with you). That's the
mootem; the BASIC system doesn’t want to fall into the trap [mentioned earlier of
vriring in green ink on green paper. It is, after all, rather important that you know when
r's trying to tell vou something. In fact, it varies its ink between black and white
acpending on the border colour so that the resull is as clear as possible. So this region has
1 fixed colour during each run. If you loop the whole program by inserting:

20 RUN

ind then BREAK in and CONTinue at various points you’ll see the effect very clearly.
hirdly. a point of style. When you write “FLLASH 1" you are turning the FLASH
ittnibute on. How much nicer it would be if you could write “FLASH on™ and “FLLASH
if " or "BRIGHT on” and “BRIGHT off" instead of using the rather meaningless @ and
- It's easily done. Insert a line [:

ILETon=1:LEToff =40

Now when vou write “FILLASH on™. BASIC will replace the 1 by “on™ (or @by “off) and
he program reads better.

iRRAYS

t’s possible for a group of memory cells to be related by having the same name. Such a
sroupas cailed an array. We can think about it iike this. Here’s a chunk of memory:

v

Ted e (1)
' #(2) g
otal o (3)
Jim g14)

PGS

"Jsually we would give each cell a BASIC name (fred, i, etc.) as shown on the left. But we
-an call all four cells by the same name (I've chosen **g”"} as shown at the right. If we

aopt this approach (and why we should want to won't be clear for the moment) there
ire three things to bear in mind:

An array name is Just a single letter. so you can't have an array called t2 or albert.
Arrays can be as long as vou like (within the limits of the machine’s memory) so you
ieed to tell BASIC how big each one is before you use it. There's a DIM (short for
limension} statement for this, which would look like:

0 DIMg(4)

or the array in the diagram. In other words, the name of the arrav is stated, together
vith the number of cells in it, in brackets.

We need to be able to identify particular cells within the array. and the technique for
10ing so is shown in the diagram: the first cell is referred to as g (1), the second as
212) and so on.

et’'s look first at how a set of 20 numbers could be input to an array. The stmplest way
vould be to write:

DIM n {(2@)

INPUTn(1)

INPUTn (2)

INPUT n(3)

£ & = =

190 INPUT n(20)

»ut that is obviously tedious and there's clearly no advantage over using separate
rariable names. since every array element is named in the statements from 2@ to 219.
towever. the trick is that the content of the brackets doesn’t have Lo be a number. It
*an pe a variable name . So we ¢an talk about n (p) for instance, and that willmean n(2)if
y—Zandn (17 ifp = 17.
Now the problem’s casy. We can see that the value in the brackets goes from 1to 2@ in
teps of 1, and that’s a cue fora FOR loop:

0 DIM n (20}

0 FORp=1to2
¢ INPUT n(p)

@ NEXTp

“irst time round the loop p = 1 s0 line 30 is equivalent to INPUT n (1). Second time
irouna p = 2 and line 3@ becomes INPUT n (2) and so on. I've chosen the variable name
3" quite deliberately. It is pointing at the array element being referred to all the time,
ina this is a verv uselul way of thinking about array manipulation.

VIUSICAL CHR$

Now let’s do something mteresting with arrays. We've alreadv met BEET and remarked
hat it would be possible to use it to play music. although at the most primitive level it

would be tedious. because we would need to work out the number corresponding to each
ote and then enter a whole series of BEEP commands with the appropriate numbers.

N¥hv not let the computer garn its keep and do the translation from note to number for
1s?

‘We'll keep things simple to start with, and work in only one octave, that around
niddle C. The numeric codes for these notes are:

A:bi—3 D#: 3
Alt: -2 E : 4
S| Eos5
P F¥#: 6
Ch: 1 G T
2 Fipee GR: 8

since the sharp notes always have a value one higher than the corresponding natural, we
don’t need them tabulated, so the fundamental information we require is:

A 3
=1
: @
Jozi 2
E :4
S
B

There's no neat connection between these numbers, so it makes sense to hold themin an
irray and look them up when we need them.
:toring them is easy: we could write:

0 DIMs(7)
M LETs(1)=-3:LETs(2)=-1:LETs(3)=%:LETs(4)=2
® LETs{5)=4:LETs(6)=5:LETs{(7)=7
There are other ways which would be more satisfactory if the array were larger: but this
vorks fine here.)
Now we input a note (as a letter) from the keyboard. but then we need some way of

sing it to “look up” the appropriate number in the array s. In other words we want
.omething hke:

INPUT “Enter note™; n$
Some process which generates the right
..... ralue of p from the value of n$ (e.g. ifn§ = “A”. p=1
fn§="B".p=2etc.}]

™ BEEPA.S5.s(p)

Jow. of course, we could write a series of statements like:

45 IFn$="A”THENLETp=1
% IFn$=*“B"THENLETp =2

ind it would work. but it’s messy. A better way is to make use of the internal nurneric
codes of the characters. “A’" is actually stored as the number 653, “B™ as 66 and so on.
(See Appendix A of the Manual.)

‘ou can write:
ETp=CODE “A"
t0 access the code for A. So if we put:
@ LETp=CODEn$

ve would get values of 65, 66, 67 and so on for p, which are obviously 64 bigger than we
vant. So line 5@ should be:

W LETp= CODEnS — 64
Now add a fine to loop back to the input statement:
12 GOTO4d

ind we've got a (very) primitive music keyboard. (Don't forget to use capital letters to
nout the notes!)

The first thing wrong with this is that we've conveniently ignored the sharps. So if you
vpe in “C*” you'll still get C. Since the CODE function takes the code of the first letter
n a string it won't even have noticed that the “#" was there!

We need to examine the second symbol in the string, n$ (2)

W IFnS(2)=“*"" THENLETi=1
'hen we can modify line 100 to read:
% BEEPQ.5.s(p)+i

.0 that the note being plaved is increased by 1 if i = 1. Of course, i must be set to zero at
he beginning of the loop otherwise, once one sharp has been encountered, i will remain
it one and all the notes will be treated as sharp:

i5 LETi=0

Infortunately things are slightly complicated by the fact that n$ (2) doesn’t exist if you
enter 4 natural note (just B, for instance). So as things stand the program works if you
:nter CP, A¥, G*but you get an error message as soon as you try C.

The easy way out of this difficulty is to define n§ as an array of length 2:

1 DIMnS$(2)

Now n$ (2) always exists, but if it isn’t used, BASIC will fill it with a space.

"he second thing wrong with our music player is that it plays notes in a halting fashion,
iepending on your typing ability and the vagaries of the keyboard (after all, the
‘pectrum isn’'t meant to be an elgctronic organ).

ather than play a note as soon as it's entered, why not store it (vou guessed—in an
irrav) and play the whole tune when all its notes are in the machine. That will also have
he advantage that we can repeat the melody whenever we like.

‘irst we need another array to hold the coded notes:

2 DIM1(1500)

Jur tune can have up to 150 notes in it.

I'he input loop changes somewhat, because the number of notes is no longer un-
limited. and also because the value to be BEEPed is stored in t. not played. Also, we'll
ieed a way out of the loop if there are fewer than 1500 notes together.

ines 20 and 3@don't alter, and are outside the loop of course, so let’s start it at line 35:

'S FORq=1TO 1500

after the INPUT at line 4@ we'll need a test to see if the sequence is terminated yet. Let's
1se “*+"" to finish with:

2 IF n§ = “»+" THEN GO TO 202

o get us out of the loop.
Aine 100 has to alter to store the coded note in 1 rather than BEEP it:

W LETt(q)=s(p)+i

11

12

iince q gets the successive values 1, 2. 3 efc. the first note will be stored in t (1), the next
in1{2)and soon.

“he loop terminates at 119 with:
14 NEXTq

instead of the GO TO which was there before.
Now we can set about playing the tune from line 200 onwards:

@ FORr=1TOgq
‘19 BEEPQ.5.1(1)
20 NEXTr

[Note: this loop only goes as far as q. not 1500.
This is because. when the first loop is left, g hasin it

the number of notes in the tune. |

‘or continucus repetition, all we need add is:

30 GOTO?2M

In case the various alterations and revisions we've gone through have confused you,

rou il find the completed final program listed in the Prepacked Programs section.
inallv. let's add a coloured display to go with the music. About the simplest thing we

‘an do is to alter the border colour with each note piayed. Now, itwould be nice to write:

15 BORDERtr)

.0 that each note had an individual border colour, but we can’t, because the range of
ralues which canbe in t(r}is —3to 8, and the range of possible colours is only @to 7. If we
1dd 3 to t(r) the range becomes @ to 11, and if the result is multiplied by 7/11, we get@to 7

1§ we want. So;
115 BORDER INT ((t(r) + 3)=7/11)

MNow alter the paper colour every time a note is played like this:
16 PAPER &+ (r/8 — int (1r/8) }: CLS

That slows things down somewhat. doesn’t it?

Leplace 216 with:
16 PRINTINK((1(r)+ 3 =«7/11):~00O 0O

It’s not absolutely necessary to INT the expression; BASIC will do this anyway because
NK can’t have a non-integer value associated with it.)

‘Xperiment: you can probably invent even more horrific looking displays!

't used to go BEEP until we ran a
simulation study for
Heinz Baked Beans

.. but why not use the Spectrum to debug itself?

16 Debugging

'n the last example we looked at, the debugging process was achieved by a considerable
imount of hard graft on our part. It would be nice to get the machine, whose sole
unction so far has been to sit there smuely telling us the wrong answer, to do some of the
¥ork for us.
.0 the question is: what kind of things could the machine usefully tell us about the way
1 is executing a program? There arc three main arcas to consider:

What values does the program get for its variables at various stages inits execution?
Where docs the orogram go? (i.e. what lines get executed and in which order?)
How often does it go there? (i.e. how many times do particular lines or groups of
ines get executed?)
»ome machines provide automatic features for printing out at least some of this kind of
niormation. but vou can’t have everything for a hundred-odd pounds (yet!) so we have

o build some extra statements into our programs to provide some of these details. Let's
ook at the headings above in turn.

PRINTING VALUES OF VARIABLES

1°s very easy to print out values of variables anywhere we want. All we havetodois to
nsert a PRINT statement at an appropriate place in the program. For example, in our
wveraging program we might insert a line 55:

55 PRINTc

vnich would allow us to trace the changes in the value of ¢ as the program executes. (In
actit wouldn’t be difficult to get the machine 1o provide a copy of the dry run table which
ve proauced by hand—vou might Like to try it.)

I'he real problem here is to choose where to output intermediate values sparingly and
;enstbly, otherwise you just get reams of numbers which take as long to analyse as a
iand-generated dry run.

n the case of the second run of the averaging program, you will recall that an error

‘eport was generated at ling 198 so we didn't get any values printed out. A sensible first
:tep would be to include a line %5:

5 PRINTs. ¢
Don't forget that line 40 will need modifying:
B IFn<@THENGOTOS

Jherwise the new statement will never get executed. That will have the effect of
:onfirming our suspicion that ¢ contains zere, but little more. Now insert line 65:

35 PRINTc:iin:s. z

:0 that we pet a complete list of all the variables (in alphabetical order for convenience)
it the end of everv loop. This will create a simplified version of the dry run table which
w11l still show up the salient points.

Incidentally, here's a neat trick: in the process of program testing you may want to
emove one of the new lings temporarily to avoid having too many values printed at
mce. 1'his means typing the whole line in again later, or worse, as in the case of our ling
'5. editing another line as well, since line 49 will have changed back to

W TFn<@THENGO TO 18

i line 95 is removed. There is no need to do this. Simply edit in a REM at the beginning
f any line you want to disable. Line 95 becomes:

'35 REMPRINTSs. ¢

;ince 1t is now a remark the machine will ignore it, but branching to line 95 is quite
egal! When we want the statement back again. all we do 1s edit out the REM.

"RACING THE ROUTE

“he simplest way of tracing the route a program has taken 1s to follow every line with a
’RINT statement which simply prints out the line number just executed. For example,
he averaging program woulkd become:

@ LETs=0

1 PRINT 16"

D LETc=0

"1 PRINT 20"

W INPUTn

(1 PRINT 39"
1C.

veain, we run the risk of generating too much information and not being able to see
he wood for the trees. so let's be more selective about this ““tracing” procedure. The
tind of auestion which a trace will answer well is ““does the program branch when it's
:xapected to?” This being the case. it makes sense to restrict our trace to regions where
here are branches.

~or instance. suppose that a routine in a program is to input a day of a month. Such a
ralue must be within the range 1-31 so it would be good programming practice to make
:ure that the user has entered such a value before continuing. We might write a piece of
-oae like:

@ INPUTA
W [Fd>00Rd<32THEN GO TO 20
/@ REM Here if invalid day

‘“™d REM Here for a valid day

T'he program doesn't behave as it should, so we insert a trace statement after lines 5@, 70

ind 200:

‘@ INPUTd
1 PRINT “*56*>

[Fd>00ORd< 32 THEN GO TO 20¢
REM Here if invalid day
1 PRINT “*7(*~

=

‘™) REM Here for a valid day
@1 PRINT “*20@*,

Ve find that whatever input value we try, the resulting trace is always:
'Cﬂ* *‘)M‘P

I'm using asterisks so that trace line numbers cannot be confused with numbers printed
»ut by the program. Any special character that takes vour fancy will do.)
‘0 the program cannot be made to get to line 7. There is only one sensible conclusion:
he condition d > @ OR d << 32 is always met. Logically this is so—any number is either
rredter than zero or less than 32, What we should have said was:

o} 1Fd>@ANDd < 32 THEN GO TO 2%

“onfusing AND with OR is 4 common error, because of the rather sloppy way we use
nese words in ordinary speech. In this case both conditions must be met before we have
1 vaiid dav so the AND connective is required.

'ROGRAM PROFILES

1 program profile shows how many times each line of a program has been executed. As
1sual. this is overkill, and we should be selective about the parts of a program we want to
srorile. [t's easy enough to do. Suppose that we want to find out how many times line 420
»f a particular program is executed. We set up a count to zero at the beginning of the
srogram and then increment it by 1 every time line 428 is passed through:

20 LETa=a+(p—1)
21 LETpc=pc+1

{10 STOP

_et’s look at a concrete example. The following program is intended to accept a
naximum of 2@ values, terminated by a zero, and sort them into ascending order. Thus if
he input sequence is:

LR R R T FI]

the resulting output should be

W e =

"he zero should not appear since it is only a delimiter.

9 DIMa(2%)

‘} FORp=1TO 20

® INPUTa(p)

9 IFa(p)=@THENGOTO 60

@ NEXTp
W LETn=p
S LET{=@

® FORp=1TOn
W IFa(p)<a(p+ NTHENGOTO 13¢
W LETt=alp)
W LETa{p)=a(p+1)
) LETa(p+ 1)=1
28 LETf=1
130 NEXTp
40 IFf=1THEN GO TO®65
S FORp=1TOn
o PRINT a (p)
70 NEXTp
“he program doesn’t quite do the job_ (Key itin and try it.) In fact it gets into an endless
m}fn‘ where to start looking? The first loop (20-58) looks harmless enough. and the final
me (150 17@) is just printing out the contents of the array. a. It seems sensible then to
oncentrate on the loop from 70 to 130. It is clear from line 88 that sometimes all the
statements in the loop are executed. and somcetimes those from 9 to 120 are ignored. So
ve il have two profile counts. ¢l and ¢2. which count the number of times the loop is

-ntered and the number of times the last part of the loop is executed. respectively.
¥e can achieve this with:

7 LETcl=9
8 LETc2=4¢
5 LETecl=ecl+1
25 LETe2=c2+1

32 PRINTcl. G2

¥hile we arc at it. we might as well print out the contents of the array at the end of
-ach loop because it is obvious that numbers are being shovelied about inside it and that
‘ery few other variables are being used at all. So:

34
35
36
37

FORg=1TOn [because 1 TO n seems to be the
PRINT a (q); retevant chunk of the array]|
NEXTq

PRINT

et's try a few data sets and see what happens: if we enter

T AR

N

=

M1356

ind so on, until memory runs out.
Nell, it seems to be getting values in order but we've lost the 8 and where did the

aur of zero

s come from? Also. it goes round the main loop 6 times consistently but the

numoer of times round the subloop decreases steadily until it reaches 1, where it stays.
One of the zeros is obviously the delimiter. and the other one is an element of the array

vnich 1s not

set during the run, but s initialized to zero by the system. In other words. the

rogram 1s dealing with two values too many. So let's rewrite line 60):

o0

LETn=p-2

:nd tev vet again. Hope beats eternal . . .

Ne get

2
1165
2
1356
' 0
356
1
3
5
6

t's progress of a kind: we’ve got rid of those zeros. But we still haven’t got our 8 back.

t's hard to see how 1t can have got lost. Perhaps it's still there, but not being printed
wit. Where do we PRINT it? Lines 158170 The range 1 TO n must be too small. Let’s
ncrease it by 1:

59 FORp=1TOn+1

wnd, of course, while we're at it. the trace in line 134 is presumably having the same
sroplems. So let’s fix that up too:

3 FORq=1TOn+1

10 hum; once more unto the breach. dear friends. once more . . .
This time we get (for the same data);

[l

ireat: we've cracked it. It's doing the job perfectly. Oris it? Let’s try:

Ld

[

“his time we get:

LS}

%]

k
|]

t's getting the right answer, but it never comes out of the loop. We notice that 2
1ever gets down to zero in this case so iU's a fair bel that this is what terminates the
program.

Mhat decides whether the program enters the subloop or not? Line 8

W IFa(p)<a(p+ 1) THENGOTO 130

“he ditference between the two data sets is that the second has two identical values in
t. Since 3 is not less than 5 the subloop will be executed whenever the pair of 5's is
:ncountered. That'’s why the program always goes round the subloop once. Perhaps the
Jucstion should be:

IFa(p)<=a(p+ 1) THEN GO TO 130
This time evervthing works,

1)
&

b
4

N wed b —

LA

Now it works like a charm and we can take out the test lines.

hope I have illustrated a couple of important points here. Firstly, we haven't needed
o know exactly how the procedure works. If you've worked through this carefully, it’s
wrobably fairly clear by now: and a few dry runs would probably convince you that you
maerstand it. (Dry runs are a good way of understanding how computer procedures
vork. ['ve often done a dozen or so on some obscure piece of code—someone else’s, of
‘ourse— pefore being really clear in my mind about what's going on.) Secondly, there is
ilwavs 4 temptation to believe that when a program runs successfully for the first time,
he iob is done and there’s time for a quick pint down the local. As we've seen, the job is
101 done, because there mav be other sets of data for which the program fails; and
invway. the pub closed an hour and a half ago. if time poes as fast for you as it does for
ne when I'm wnting code.

)

‘omputers aren’t just number-crunchers.
They can crunch characters too; that is, manipulate symbols.

11 Sirings

"he postman cometh . .. and there is a letter for vou. A very personal letter. “Dear Mr
.Iughh.:wcr il says, YUu have been selected from ¢ among a small group of people living
n Lower Pigpen to recewe absolutely free of charge, a magnificent pair of concrete-
ined Wellington boots . . . Very g_ratlfymg But, next door. old Mrs Snagglechest has
received almost the same lt‘llt:r. In fact, the whole of Lower Pigpen has, along with most
if the West Midlands.
Iere’s how it’s done.

@ INPUT “What is vour name?""; n$

' INPUT “What town do you live in?”; t$
‘@ INPUT “What street do you live in?""; s§

@ INPUT “What number is your house?"”; h
‘@ PRINT n$
A PRINT h: =, O s%
® PRINT t$

3 PRINT "“Dear0; n§; "

99 PRINT “J 2 O you have been selected from a™
1@ PRINT “small group of people living in™
18 PRINT t§; “ 1o receive™”

20 PRINT “absolutely free of charge* a”

3@ PRINT “magnificent pair of concrete-"

43¢ PRINT “lined Wellington boots. We are™

50 PRINT “sure. (0": n$; “[] that you™
160 PRINT “will want to take advantage of”
178 PRINT *this generous offer, and that™

83 PRINT “the other inhabitants of”’

9 PRINT t$; “0O will be sick™

™M@ PRINT “as parrots with envy.”

18 PRINT “0OC O Yours insincerely,”

280 PRINT “0O O 0O 0O OMilton F. Gnatbender™
3@ PRINT “0J 0 0 00 Dealer’s Wry Jest.”

‘40 PRINT,, “* Postage £1043.22 extra.”

{

AUN this. and INPUT (c.g.} “Gully Ball”; “Wayward Heath™; “Pristmas Crescent™;
“966". Try other names and addresses. Hmmm . .,

Now imagine this automatically fed names and addresses from a data bank, and
‘nurning out thousands of letters an hour,

“he interesting thing, apart from how blatant the whole exercise is, is that absolutely
10 computation is involved. Merely memory, and some very simple manipulation of
vmitten text. The computer can manage this because. as well as numbers, it can store
arings. That's what those dollar signs 3% signal. though there may be some Freudian
ngnificance too in the present context,

\ strine is a sequence of characters. The characters are listed on pages 183188 of the
Hanual, and each has a CODFE which we’ll talk about in a moment.

lere's 4 string;:

Tringsiringstringsiringstring.
lere’s another one:;
334 », [> >> < <— b4+ 4+ 4+ 4 qgi.

Il you type the full stops. they're part of the string too!)
\ string can be only one character long, such as <. or even no characters long!
T'o assign a string variable. you have to put inverted commas around the string:

@ LET a$ = “stringstringstringstringstring™

iverv string variable must be a single letter followed by the % sign. For a string no
‘naracters long, LET a$ = = ™ works.

rings will sit up and beg if vou know how to ask them to. Consider a single character
1ring like

3
“'his can be thought of as:

a) anumber, 3
b) astring, “3”

ind vou can switch from one to the other in various wavs. Suppose we really do think of it
i$ a string, and assign it:
@ LETa$="3"

Suppose you want to work out 3 + 5. [1's no pood asking the Spectrum to do this:
Y LETb=a8+35
W PRINThH

twon't work—try it if yvou don’t believe me. Why not? The foolish beast has been told
hat 31s to be considered a string, and it doesn’t know it’s a awmber too. But—ahah—we
:an convert it to a number using VAL. Try

@ LETb=VALa$+35
@ PRINTD

in general. given a string which happens to be an arithmetical expression:
$ 1ETaf—"2+2+5«3"

he machine does not know it can be worked out 2as a number: it just thinks of it as a
;equence of characters

2+ 2+54+3

‘ot instance, vou can pick out the 6th character in it:
@ PRINT as$ {6)

ind get * as your answer. (This can be useful: as an arithmetical expression it equals 19
vnich doesn’t Aave a sixth character.) But if you want to convert it to a number, then

@ PRINT VAL a$

viil come up with 1% as your answer.

‘ou can convert a number to a string in two ways, First, by putting inverted commas
iround it. 3336 or whatever. BUT if vou're inside a program. and are working out
a + b or whatever, which is 3336, it’s no good writing “*a + b" and hoping to get 33367 in
here; what vou get is a three-character string

1+ b

vnich is rather different.

"HRS$ converts a number between B and 255 into a single character according to the
ist of codes in the Manual on pages 183—188. For instance, CHR$ 96 is the pound sign £.
some numbers aren’t used.

'ODE goes the other way: CODE “£” is 96. If you try CODE “£335/h™ you still get
16: it only looks at the first character.

EN tells you how long a string is.

3y far the most interesting feature of strings is that you can chop bits out of them,
-alled substrings. The instruction

$(3TOD
m1cks out the string consisting in turn of the 3rd. 4th, 5th, 6th, and 7th charactersin a$. So
if a$ = “stringstringstringstringstring”™ then a$ (3 TO 7) = "rings”. You can use any

wmoers in place of 3 and 7. And a$ (5) picks out just the 5th character—here “n”.
‘or instance. suppose you want to input a number between 1 and 7 and say which day
of the week that gives (taking I as Sunday, 2 as Monday, etc.) A clumsy way would be
' INPUTn
® IF n=“1"THEN PRINT "Sun”
i@ IFn="2"THEN PRINT “Mon"

anul all seven days are accounted for.
3ut. using substrings:

i@ LET a$ = “SunMonTueWedThuFriSat”
) INPUTn
@ PRINTa$(3*n—2TO3+n)
aoes the same iob in 5 fewer lines; see DAYFINDER, page 121.
“ou can stick strings end to end using + to join them, like this:
‘hot” + “dog" = “hotdog™

ir orger them “alphabcetically”™ using <. Consult the Manual. and experiment. Careful
1s¢ Of strings can often save a lot of space.
“his program takes a name and finds its initials.
@ INPUT “*What is your full name?""; n$
W LLETn$=*11"+n$

#® FORi=1TOLENnS

i TFn$ (i) =“0" ANDi< LEN n$ THEN PRINT n$ (i + 1); “.";
@ NEXTi

RUN it, use vour own name. INPUT “Ginormous Electronic Corporation” and see if it
sutputs “G.E.C."

s it stands, it’s not perfect: if you put extra spaces between words it gives a rather
nessy output. All it does is tack an extra space at the front to make life easy: and then
assume that each character following a space is an initial. For tidiness it inserts dots.

Project

viodify the program so that it ignores repeated spaces. One way is to search through, and

1elete any spaces that follow a given one. To delete the jth character from a string n$ you
NTile

ETn$=n$(TOi— 1) +n$(j+ 1TO)

[f you omit the numbers before or after the “TO™ the machine assumes they are the front
ind end, respectively.

There can be more efficient ways
to define a lot of variables than
using LET statements:

18 Dala

Over the top of key DL in green. is the word "DATA™. By using this instruction you can
avoid having to type in long series of statements of the type "LET a (37) = 2427, "LET
a(38) = 243", . . ete. Forexample. and purely to familiarize vourself with the command.
tvpe in this:

10 DATA1.2.3.4,5,6.7
20 FORi=1TO7

3@ READx
40 PRINTx
S0 NEXTi

You should get. as output. the numbers 1-7 again. The READ command is essentially
“LET x = the next number on the DATA list”. Every time a READ instruction is met.
the computer looks along the DATA lines, finds the last item it read. and inputs the next
one as the value of the variable after the READ statement. So first time around it reads x
as 1:next time 2: and so on.

A uscful feature of DATA 15 that the machine considers all of the DATA lines in a
program as a single list, strung end to end. You can put these lines anywhere you like
(though. since the computer searches through them. somewhere near the front tends to
be quicker). Try rewriting the program. say as

@ FORi=1TO7

20 READx

30 DATA1.2.3.4

4 PRINT x

50 DATAS

60 NEXTi

70 DATAG6.7
It works just the same—even if the DATA line is inside a FOR/NEXT loop. (DATA is
an exception to the rule that lines are executed in numerical order.)

Now. if that were all vou could do. it wouldn’t be very impressive. But here’s a more
typical use.

10 DATA 100,50, 150, 103G, 100, 150, 50, 10§, 10¢. 50
20 READ«X.y

3 PLOTx.y

4 FORi=1TO4

50 LETx0=x:LETyl=y

60 READ«x.y

70 DRAW x —xi), vy — v

80 NEXTi

This should draw a diamond shape: the DATA list gives the coordinates of the corners.
with the bottom corner repeated for the finish as well as the start.
Let's jazz that idea up into areal cool cat . . .

1 DATAZ2.0.6.0.9.1.15.0,16.1, 16,12, 15.13. 14, 12,
14.2.13,2.11. 6.8, 12,10, 15,9, 18,8,22,7, 18,3, 18, 2,
22.1.18.0.15.2.12.0.6.0.3.2.0

20 READx.v

33 PLOT«x.y

4) FORi=1TO23

50 LETx@=x: LETyi=y

60 READx.v
70 DRAW x - x).y — yi#
30 NEXTi

[f you analyse what this is doing. you'll find it first PLOTSs the point with coordinates 2. (:
and then it joins this to the point 6, @: then 9. 1: and so on. The numbers are successive
ones in the DATA list.

To put the picture more towards the middle of the screen so that it doesn’t look
cramped. change line 30 to:

30 PLOT 10O + x. 60 + y

The DATA list itself was worked out by making a rough drawing on graph paper, and
reading off the coordinates. It’s just like the pictures in those dot-to-dot drawing books.
except that we have to specify where the dots are using coordinates.

Now. that’s still a lot of work for just one cat. For the option of fat cats, thin cats, and
even upside-down and back-to-front cats, you can transform the data. Change line 3@, as
above. to make enough room; add this line:

5 INPUTa.b
and change line 70 to
70 DRAW a=(x — x@).b*(y—y®)

Now. on RUN, you must input two numbers. Don’t be too ambitious at first: trya = 1,
b=2;anda=2.b=1.Thentrya=2,b= —1;a= —2.b = — 1. Once you've seen those.
try what you like! But be warned: the program has no protection against going off the
screen. and fractional values of a and b give funny effects due to round-off errors. For a
trick to avoid this problem, see SPIRALS. page 125.

Now let’s draw a whole line of cats. To do this, we can use a loop; but we need some

way to reset the READ instruction to the front end of the data list. That's what
RESTORE does. So we add the lines

15 FORt=1TOS8
99 RESTORE
100 NEXTt

75

76

and change line 30 to

30 PLOTSO + x +20+1t.50 + y

That’s all.

Projects

1. Make the cats sit higher up the screen as they move to the right, as if they're sitting
on a flight of stairs.

2. Add more DATA to draw the stairs,

3. Change the DATA list, with the aid of an atlas, so that the program draws a map of
Australia. Find out what Australia looks like upside down. {Australians think itis.)

4. If you've half an afternoon to spare. set up DATA for a map of the world.

Does the program really work?

19 Debugging IV

How do we p=ove conclusively that a program does precisely what it was written to do? |
don’t want © get involved in too complicated a philosophical discussion (because that's
where we ar . headed) but. broadly. it’s a bit like asking an astronomer whether the sun
will rise tomorrow. If he is very pedantic he might answer that the earth has been going
round the sun for a long time now and we have a body of physical laws which suggest that
it will continue to do so in a regular way. and that the smart money would be on this
continuing to be the case tomorrow: but he would add that he has no way of knowing
whether our physical laws are right and that what we have observed for thousands of
years might in fact be a manifestation of a much more complex law whose effect,
tomorrow, might be to reverse the direction of the earth’s rotation or to take it out of
orbit completel .

By analogy, Lecause a program behaves correctly for the first thousand sets of data
input to it, there's no absolute guarantee that it will work for the thousand and first. In
fact, bugs often don’t become apparent until months or even years after a program has
been apparently successfully completed and has been run without problems dozens or
even hundreds of times. This isn’t really surprising; after all, it's the conditions which
occur least often that the programmer is most likely to overlook.

Here's an example:

We arc writing a suite of programs for the Nether Hopping Electricity Board to handle
their customer accounts. They explain to us that there are two tariffs, A and B. On the A
tariff the consumer pays a quarterly standing charge of £15 and then pays for units used at
a rate of 4p per unit. On the B tariff the consumer pays no standing charge and pays 7p
per unit. So we write a piece of code like:

1 INPUT t$

1905 INPUT units

11 IFt§ = “a” THEN GO TO 3\
120 TIF t$ = “b” THEN GO TO 140
130 GO TO 5066

140 LET bill = 7 * units/10¢

15¢ PRINT bill

160 GO TO 1%

300 LETbill = 15 + 4 + units/1(¢
310 PRINT bill

77

78

320 GOTO 10

S PRINT “Invalid tarff™
5019 STOP

OK. I know the code could be more efficient. and that we would actually need some
more information like the consumer’s name and account number. but you get the basic
idea.

So we test this piece of code and it works fine and we go away muttering that it is a
waste of our remarkable talents to be given Noddy programs like that to write.

And it does work fine: for vears: and then one day it prints a bill for £0.00. Of course.
nobody notices because it’s one of thousands of bills and anyway it’s probably enveloped
automatically. The recipient is puzzled and probably amused by the bill because it shows
how stupid computers are but there seems no point in taking any action so he throws the
bill away. Unfortunately. we wrote another program in the same suite which stores the
date that each bill was despatched, and if it does not receive confirmation that the bill has
been paid within 28 days. it prints a final demand notice. This time the recipient is more
irritated than amused but he just consigns it to the waste paper basket, as before. At this
point things start to go visibly wrong. The routine which checks the lelay between
presentation of the account and payment issues an order to the maintenance department
to cut off the consumer when he still hasn’t paid after 6 days.

What's happencd? Easy!! The consumer is an old-age pensioner who has taken
advantage of onc of the long winter break packages that the travel companies offer to
senior citizens. He was out of the country for just over three months and used no
clectricity in a full account period. He is also an unusually frugal user of clectricity so he's
on tariff B. That's why the system printed out a request for zero payment. and of course
it won't happen very often because very few people will be away from home for that long.
and tariff B users are likely to be thin on the ground, too. For the problem to occur. the
consumer has to fit both conditions.

Once scen. the bug is easily squashed:

145 IFbill = @ THEN GO TO 104
so that the PRINT statement is avoided. This problem is supposed to have occurred inan

early computer system. although whether it’s a folk tale T wouldn’t like to say. In any
event. | think it illustrates neatly how a bug can lie dormant almost indefinitely.

The moral is: when you invent data to test a program, don’t do so at random. Choose
values at and close to branch values in the program. If a statement says:

305 IFu< 30 THENGO TO 50
then run a test with u at 29.999 and another at u = 30.0001 . You may have meant:

305 IFu< =30 THEN GO TO 5%

If vou only test at u = 15 and u = 160 you won't notice the error.

Make sure test data have been chosen so that every section of the program gets
executed at some time. And of course. make sure you know exactly what the answer
should be for each set of test data.

For the more mathematically minded only!

20 Curve Plotting

You've probably met the idea of a graph specified by coordinates; but just in case. let’s
recap. Start with two lines, the x-axis and the y-axis. at right angles to each other. We can
mark off distar.ces x and y along these (marking negative numbers to the left on the x-axis
and downwards on the y-axis) and usc these two distances to specify a point with
coordinates x and y. It’s just like pixels (Figure 20.1).

Figwere 2000 Coordinares for carve-ploiting

If we now imagine x varying along the x-axis. and the value of y changing in some way
that depends on x. then the point with coordinates (x. y) will move too: and it generally
traces out a curve. If vou give a formula for how y depends on x. say v = x* = 3_ then vou
give a formula for that curve. (This idea. due to Descartes in 1637, lets you use algebra to
study geometric curves: it’s the starting-point for calculus.)

Using PLOT instructions we can draw similar curves:

10 FORj=0TO255

20 PLOT]|. jn
30 NEXT]

79

80

You should get a line of pixels climbing up the screen from lower left to top nght. A
mathematician would call this the graph of the function y = x/2.

You can modify this to give an endless variety of graphs, just by changing j/2 to some
other expression involving j. For instance, to plot the square root of j as a function of j all
you have to do is change the j/2 to SOR j. getting:

10 FORj=@TO 255
20 PLOT.SORj
30 NEXTj

That’s a bit more interesting, isn't it?
Experiment. Change that j/2 again. Try these.

(Parabola) 20 PLOT . .02 *j«j

(Sine curve) 200 PLOT j. 80 = SIN (j/20) + 80
(Cosine curve) 20 PLOT .80 « COS (j/2¢) + 80
Catenary) 20 PLOT]. (EXP (.02 +(j — 120))

+ EXP (.02 (120 —))) =10

... hang on, why are these so complicated? What is he up to?

There are problems if you try any old expression in j. Namely. what will fit on the
screen. The value of the vertical coordinate has to be between # and 175, or else the
Spectrum loses its paddy and shuts up shop. (The poor old thing can’t PLOT anything
else. and it resents being asked to.) So you need to adjust the scale to make things fit.
You'll soon see why if you try

20 PLOTj.j+*j

20 PLOT.SIN j

20 PLOT . COSj

20 PLOTj.EXP(j) + EXP(-j)
There are ways round this problem. of course—see below, under SCALE. But before
you do, here are some more interesting functions that de fit. because I've carefully
chosen them to.

20 PLOT j. EXP (—j/80) * SIN (j/8) = 8¢ + 80

200 PLOT .80 + 80+« COSSQR (2+*))

20 PLOT). ABS(j— 127)

20 PLOT ;. 80+ 6@+ LN (1 + ABSSIN(j*.125))

20 PLOT . 12> ABS (j/4 — 30) T .666

20 PLOT). 40 = ABS(j/4 - 30) 1 .25

20 PLOT j. 160 « EXP (—.1 = (j/4 — 3@3) « (j/4 — 30))
To avoid writing complicated expressions, you can build up the formula in stages. like
this:

20 LETt=)/24

25 PLOT . 120+ 1 =t*(t=2)*(t—4)*(t— &)= (t —8) = (t — 1])

SCALE

For the moment we'll work just with functions defined for positive numbers and taking
positive values: a good one to use is SOR. the square root. Take the graph-plotting
program above. and change line 20 to the following in turn:

(a) 20 PLOT).SORj

(b) 20 PLOT;.2+SQR;

(c) 20 PLOTj.4+SORj

(d) 20 PLOT).6*SOQORj

(e) 20 PLOT;.8=SORj

(f) 2¢ PLOT.10+SOR j

(g) 20 PLOT|.12+SQRj

(h) 20 PLOT).14=SOR

You'll notice pretty quickly that in successive graphs, everything goes higher up the
screen—and in fact, in (g). the machine stops because graph points start to go off the
screen altogether. The greater the “something™ in (something) * SOR j, the more the
graph is stretched in the vertical direction. This “something™ is a scale factor, and by
adjusting it you can make graphs fit the screen neatly.

If the scale factor is too small, you get graphs that are so squashed up you can’t see
anvthing. Try

20 PLOTj,.1+SOR j

If the function you're plotting grows too large, you can get it back on the screen by
adjusting the scale factor. For example

20 PLOTj.j*j

goes off the screen because 14 = 14 = 196, which is already too big. In fact the largest
number you need to plotis 255 = 255 = 65025, If you divide this by 400 you get 162 5625,
which fits neatly into the 175 that is permissible. So vou get a nice graph provided you use
1 /400 as the scale factor:

20 PLOT . j+ j/40d
There is a fairly obvious general rule which makes sure the scale factor is chosen
suitably. Suppose that the largest value the function takes as j runs from @ to 255 is m (for
maximum). Then with scale factor s, everything is fine provided s * m is no larger than
175—and preferably close to it so that the graph isn’t too squashed. In particular. you
can make s * m = 175, by setting s = 175/m. (For round figures 160/m may be better; and
you need a reasonable estimate for m rather than an exact number.)

In fact. vou could write a program to work out m. Suppose we stick to the j * j
function: then this will do the trick:

10 LETm=0

20 FOR j=@TO255

30 LETq=j*j

49 IFq>mTHENLETm = q
50 NEXT j

As it stands this won't PLOT the graph. though: so now you add the plotting routine
0ove Tpilgt_' ¥

81

60 FOR j=0TO?255
70 PLOT|.(175/m)*j*
80 NEXT |

One defect: you have to do all the calculations mwice. This is hard to avoid efficiently.
unless vou know which j gives the largest value for j » j. In this case j = 255 obviously
does. but it’s not always easy to sec in advance. (You can dimension a vector v (i} of size
256, store the values of j * jas v (j + 1). and usc these for the PLOT: but vectors and
arrays take up a lot of memory! See the Manual for further information on vectors and
arrays.)

As well as scaling the vertical axis. you can scale the horizontal axis. The function SOR
jor j* jdoesn’t show this very vividly, so Ull use 8% + 80 = SIN j. which does. Try the
following:

20 PLOT j. 80 + 80+ SIN (.05 * j)
20 PLOT ;.80 + 80+ SIN(.1*j)
20 PLOT .80 + 83 = SIN (.15*3)
20 PLOT .80 + 83« SIN (.2 « j)
20 PLOT j. 80 + 83+ SIN (.25 + j)

This time the horizontal scale changes—but the scale factor acts rather differently (did
vou notice?). The greater the scale factor. now, the more the graph is squashed up in the
horizontal direction: you get more wiggles in the curve. Why?

When j ranges from @ to 255. the number .05 = j ranges from .05 = () to .05 = 255 that is,
from@to 12.75.

When j ranges from @ to 255. .1 * jranges from .1 @ to .1 255, that is# to 25.5.

So. in the second case. rwice the range of values gets squashed into the same horizontal
space.

In fact, with a scale factor s—that is. using

20 PLOT j. 8@ + 86 » SIN (s = j)

vou plot the range from @ to s = 255 in the width of the screen. The greater s 1s. the larger
the range. so the more squashed it becomes.
So, if you want to plot over a chosen range. say [, then you want s + 255 = 1. that
is.s = 1M)/255. In general, if you want the range to n, vou'll need a scale factor n/255.
To sum up:

175

best vertical scale factor = -— :
largest value being plotted

tpp of range of values of variable

best horizontal scale factor = 553

Project

It you don’t know what’s going to look best. vou can write an “interactive™ program
which lets you choose the two scale factors (via INPUT) and then plot the graph: if you
don’t like the result you run it again and change the scale.

Write such a program for the function 8¢ + 8 = SIN j.

Hint: if his the horizontal scale factor and v the vertical. the operative program line is

20 PLOT j.v = (80 + 80+ SIN (h * j))

SHIFTING AXES

You may be wondering: “why all those 8§} + 80 « SIN j°s?"”" Or maybe. “That’s all very
well, but what if the numbers are negative?” The answer is the same to both. The way to
deal with negative numbers is to shift your axes. as Eric the Viking once said.

Try this program.

10 INPUTSs
200 FOR j=0TO?255
3 PLOTj.s +SORj
40 NEXT
Try inputting s = @. 1. 20 etc.
What vou'll see is the same graph. but moving higher up the screen according to the
viluc of s. There are two ways to think of this.
One is that you're plotting different functions. like 5 + SOR jor 10 + SOR j.

The otheris that you're always plotting SOR . but that the position of the x-axis on the
screen changes. See Figure 20.2, which is pretty much self-explanatory.

Fronre 2002 Adding a constant iy the same as moving the x-axis

To get a clearsine curve. for instance., you need to replace the SOR j above by 80 « SIN
(.1 #):and pick s to get everything central on the screen. s = 8@ works beautifully: hence
all those 80 + 80 = SINs.

That gets the x-axis moving. To get the y-axis moving, you can change the range of).
say from — 120 to 135 instead of () to 255.

You can combine these shifts with scalings in both directions: and you don’t have to
keep the axes central—it’s up to you. I did in fact write out a detailed specification of
how to do it to get the best possible display on the screen for a given curve over a given
range: then [took one look at the mass of algebra that I'd written, and chucked the lot
awav again. There are times when mathematics hides the wood behind the trees. and this
is one of them.

83

[nstead. I suggest you experiment. using the following program:

¥ INPUTa.b.c.d
20 PLOT@. d
30 DRAW255. 0
4) LETu= —b/a
5 PLOTu.®
60 DRAWQ. 175
100 FOR j=0TO?255
110 PLOTj.c+«SIN(a+j+b)+d
120 NEXT j
Here a. b. c. d shift axes and scale, while the x-axis and the y-axis are drawn in. | haven’t

protected against crashes if the function goes out of range—apart from laziness. this
drives home the need to take care in choosing scale and position of axes.

(Trya= .1.b= —10.¢c =80, d = 8). Negative b is generally necessary.)

OTHER TECHNIQUES

There are other ways of using PLOT and DRAW to get curves. Rather than overload
this chapter with technicalities. I've put examples of some of these in the Prepacked
Programs. See LISSAJOUS FIGURES, SPIRALS AND ROSETTES. and
GRAPHICS DEMONSTRATION 1 and 2.

Sometimes numbers that look the same . . . aren’t!

21 Debugging V

The kinds of bugs we've looked at so far have been of our own making. and have been
rcasonably easy to cure once we have seen them. There's another kind of bug which is
caused by the design of the machine itself. It’s not a design fault but a consequence of the
way all computers are organized. It's to do with the precision with which computers store
numbers. If we think about any common way of holding numbers it's obvious that there
is a limit to the number of digits that can be held. A car mileometer. for example, can
only hold 5 digits becausce it only has 5 “windows™, It’s just the same with a computer.
Each number can occupy no more than a fixed number of “windows™. However, each
window does not represent a decimal digit. The internal machine code for numbers is
quite different from the way we think about them, and [will not bore you with the gory
details. The fact that there is inherent inaccuracy and a code conversion being employed
means that the external representation of a number (as it is displayed on the screen) may
not be quite the same thing as the internal representation. I'll give vou an example of
what I'm talking about from school logarithms. If you multiply 2 by 2 using logs vou get:

No. | [,ng_

> 5 #3010

2 03010
3.999 .60 +

e, 2 x 2= 39997

The combination of the fact that the logs are only accurate to 4 figures (i.e. they are
only allowed to occupy 4 windows) and that a code conversion (number to logarithm.
logarithm back to number) is taking place. creates the inaccuracy.

Here is a program which causes the same Kind of problem:

1@ FORp=0TO .3STEP .0l
20 LETq= ATN (TAN(p})
3 IFp< =qTHENPRINTp.q
4 NEXTp
Atline 10, we take the tangent of p and then immediately invert the process by taking
the arctangent of the result. In other words. g should contain the same value as p. So linc

30 should never have the effect of printing p and g because they are always cqual. When
the program is run we get the following output (see over):

85

86

0.02 0.02

0.03 3.03
0.4 0.
0.05 (.05
007 0.07
0w 0.00
0.11 0.11
0.12 0.12
®.13 0.13
®.14 0.14
?.16 ?.16
.18 0.18
0.2 0.2

0.21 0.21
0.22 0.22
.26 0.26
(.28 (?.28

This is a very strange result indeed. because the machine is not only printing out
values. and so claiming they are different, but it is also printing them as if they were the
same! What has happened is that the complex mathematical processes involved have led
to slight inaccuracies in the internal representation of the numbers, which have accoun-
ted for the differences between p and q. However, there are also inaccuracies involved in
decoding the internal format back to the decimal numbers displayed on the screen so that
they appear to be identical although the machine is adamant that they are not. Note that
for some values the internal codes are identical: for .06 and ¥.08. for example.

This kind of error can be extremely puzzling and sometimes the only way out of it 1s to
allow a small error in the IF statement so that we have:

IF ABS (p — q) < 0.000001 THEN . ..

The ABS function is necessary because ¢ might be greater than p. For example. if
p=3andq= 3.1 thenp — q= — @.1. which is less than 0.1 so the condition would
be met if the ABS function (which cffectively chops off the minus sign) were not there.
ABS (=0.1) = 0.1 which is greater than 0.0 1 and so the condition is not met, which is
what we wanted.

When vou come to write longer programs, to
do more complicated things, it's important
to keep a clear head. This program,
ANTI-MISSILE SCREEN, produces a
plavable game and illustrates

27 Programming Shyle

First things first: the program. You can treat it as a prepacked program if you wish: copy
it and RUN.

It starts by displaying two cities and two anti-missile silos. The silos are referred to as
“17and 2" from left to right.

Missiles now rain down on vou in a fairly unpredictable fashion. but the track of any
given missile has a fixed angle.

Hit =17 or »27 on the kevboard to activate one of your defence silos. (The program
can take alittle while to respond to this. so hold the key down until it does.) You will then
be asked for a range and angle for the intercepting missiles. If you hit an incoming
missile. this is indicated by the warhead no longer flashing.

Sooner or later vou will run out of missiles (there are 200 in each silo to start with), or
vour silos or cities will be destroved. The object of the game is to shoot down as many
missiles as possible before this happens.

The “range™ and angle” values you need to enter need explaining.

Firstly. the range value uses the same coordinate system as the Spectrum in high-
resolution graphics mode (PLOT). So if you want to hit something at the top of the
screen immediatelv above a silo, the range is 175, From bottom left corner to top right
corner is & total distance of about 3(6.

Secondly, the angle (measured in degrees) is taken from the horizontal to the right of
the referenced silo. This means that for silo 2 the most useful angles are between 9%° and
180°, so be careful! (Forsilo 1. however, (#° to 9%° is the useful sweep.) One of the features
of the program is that it doesn’t tell you if you make a mistake such as firing a missile off
the screen. It will simply deduct a missile from your stock and not plot any trace of it.

Here's the listing, in full.

ANTI-MISSILE SCREEN

1 RANDOMIZE

10 LET display = 50d: LET genmis = 106
20 LET movmis = 1500
3 LET fire = 2500: LET prnscr = 33: LET hitest = 35()
4¢ DIM m (3, 20): DIM s (2)
5S¢ LETcity =2: LETs (1) = 20: LETs (2) = 20
60 LET kilsilo = 4000: LET kilcity = 45())
70 LET score =@
80 LET kbhit = 50

1 GO SUB display

11 IFcity < 10ORs (1) +s(2) = THEN GO SUB prnscr

120 GO SUB genmis

130 GO SUB movmis

160 GOTO 110

50) LETxs =8

510 FORI=1TO2

520 FORx =xsTOxs + 20

530 PLOT«x.0

540 DRAW®. 4

55¢ NEXTx

560 LET xs = 224

570 NEXTI

580 LETxs = 56

599 FORI=1TO?2

60 FORx =xsTOxs + 36 STEP 3

610 LETh=INT(RND=*1@) +3

620 FORy=0TOh

630 PLOTx,y

640 DRAW 3.y

650 NEXTy

66 NEXT x

670 LET xs = 144
680 NEXTI
690 RETURN
1000 FORI1=1TOS
3@ LET x = INT (RND = 1(%)
1020 LETa = (RND *PI/2) + .¢1
1030 FORp=1TO20
104 TFm(3.p) =0 THENLETm (1. p) = x:
LETm (2.p) = 175: LET m (3, p) = a: GO TO 1060
1050 NEXTp
1055 GO SUB kbhit
1060 NEXTI
1070 GO SUB kbhit
1080 RETURN
1500 FORp=1TO20
1505 TFm(3.p) =@ THEN GO TO 1580
1510 PLOTFLASH®: m (1.p).m(2.p)
1520 LET xo0 =20+ COSm (3. p)
1530 LETyo = —20+SINm(3.p)
1540 IFm{l.p)+x0=>2550Rm(2.p)+yo<@
THEN LET m (3. p) = @: GO SUB hitest: GO TO 1580
1550 DRAW xo. vo
1560 LETm(l.p) =m(l.p)+ xo0
157¢ LETm(2.p) = m(2.p) + yo
1573 PLOTFLASHI1:m(1.p).m(2.p)
1575 GO SUB kbhit
1580 NEXTp
1585 GO SUB kbhit
1599 RETURN
2500 INPUT “range. angle:™: rg. ag
2505 1IFs(VALd$) = @THEN RETURN
2510 1Fd$ = 1" THEN LET xb = 18
2520 1Fd$ = 2" THEN LET xb = 234
2523 PLOT xb.0
2525 LETs(VALd$) =s(VALdS$) — 1
25300 LET xf = rg « COS (ag * PI/18@)
2540 LET vf = rg = SIN (ag * PI/180)
2545 IFxf+ xb<@ORxf + xb =2550R yf <@ OR yf > 17STHEN RETURN
2550 DRAW xf, yf
25600 FORp=1TO 20

9}

2570

2610
2625
2630
2700
2710
3000
3010
3020
3030

Sa30

IFABS(xt +xb—m(1L.p)) = ISORABS{(yf —m(2.p)) = 15
THEN GO TO 27(%}

LET score = score + |

PLOTFLASH®: m(1.p).m(2.p)

LETm(3.p) =0

NEXT p

RETURN

CLS

[Fcity << | THEN PRINT AT 19, 2: ~Cities destroyed™

[Fs(1)+<(2y=@THENPRINT AT 1$. 2: *No anti-missiles left”

PRINT AT 12.5; score; missiles shot down™

GO TO 9999

LETxt=m{l.p) + xo

IF xt =7 AND xt <= 29 THEN LET x5 = 8: GO SUB kilsilo
[F xt = 223 AND xt = 245 THEN LET xs = 224: GO SUB kilsilo
IF xt = 35 AND xt = 93 THEN LET xs = 56: GO SUB kilcity
I st = 43 AND «t - IR THEN LET xs = 144: GO SUB Kileity
RETURN

IFxs =8THENILETs (1) =0

IFxs = 224 THENLETs(2) = @

PRINT AT 21 xs/8: 000"

RETURN

LET city = city — |

FORr=19TO 21

PRINT AT xS -2 01010 1

NEXTr

RETURN

IFINKEYS = "THEN RETURN

LET dS = INKEYS

[FCODE dS - WORCODEJ$ - 51 THEN RETURN

GO SUB fire

RETURN

BREAKING IT DOWN

Most of the programs in this book are pretty short and fairlv casy 1o follow
practice. This one is a fittle more serious (in program content rather than mtention) and
its worth a little study because the technique used towrite it is a common and powerful
one. known variously as rop-down analvsis or step-wise refinement.

The idea is that we start by breaking the program down into a sequence of major steps.,
Then we examine cach step and decide whether it can casily be coded directlv: or.
alternatively. if it is worth breaking it down into smaller steps. We continue this process

. Enven

until all the steps are small enough to code without difficulty. Each step at cach level
becomes a subroutine.
In this program. the first stage of the breakdown looks something like this:

Initialize variables
Display cities and silos
While there — Generate new missiles
are anti-missiles {
and cities |
left Move existing missiles

Print out score

Looking at the listing, you can see that the initializations are done between lines 1 and
8@. You might then expect to find something like

100 GO SUB 5™
to enter the display routine; but you'll see that it’s actually written as
100 GO SUB display

and that “display™ is a variable which is set to 500 in the initialization area. This makes
the program more readable and is particularly handy when vou're debugging. For
example. once the program has been run once you can write

LIST display
instead of having to remember
LIST 506

when you want to examine that particular routine.

The lines between 11% and 160 simply model the “while™ loop in the skeletal program
description. You can see that there are two subroutine calls in the loop; one to generate
new missiles (genmis) and one to move missiles (movmis), as you'd expect.

Let’s look at “movmis™, for instance. In order to move a missile we have to know
where it is. In fact there can only be 200 missiles at any given time, and 3 pieces of
information are held about each (its x-coordinate. y-coordinate and attack angle) in an
array called m. By convention, if an attack angle pigeonhole contains zero. then there
isn’t a missile there. That way we only need to test one out of the three parameters to see
if there’s a missile: and later on, when we want to destroy one. we need only reset the
angle to zero to indicate its demise.

The breakdown inside “movmis™ then looks like this:

— If no missile skip the rest of the loop

Compute new coordinates for missile

For all possible Hf missile now off screen, test for hit
missile entries on city/silo and skip rest of loop

Plot new missile position
— Test for keyboard being hit
If you look at the listing. you'll see that two of the blocks are written as subroutines:
the “test for hit on city/silo™ (called hitest) and the “test for keyboard being hit™ (called

kbhit). This last routine is there because we need to know whether the user has hit the
keyboard recently to activate a silo.

92

Now look at kbhit:

[fno key hit, then RETURN
If key hit not 1 or 2 then RETURN

Fire anti-missile

and you'll see that “*fire’ is another subroutine.

Can you see how this kind of approach and analysis allows us to worry about only a
little at a time? That’s what appeals to my natural lethargy.

I'll leave you to complete the job of re-creating the skeletons of genmis, fire, and
prnscr.

REM: TELL THEM ABOUT REM

When developing a program, the REM statement is an important aid to memory. The
computer ignores all REM statements. except during a LIST: so you can put little
messages to yourself to remind you why a particular command is where it is. [haven't
actually used many REMs in this book: the reason is that all of the programs are
accompanied by detailed discussion anyway. But. when you're writing programs on your
own, REMs are a godsend. You can use tricks to make REMs stand out in a listing: putin
a line of stars REM******* ar use control characters to get them printed in a different
colour (see the Manual, p. 114).

MODIFICATIONS AND IMPROVEMENTS

1. At the moment, when you activate a missile silo. the program does not confirm
which silo it is. Arrange for the activated silo to flash (and to deactivate a few
seconds after firing).

Missile and anti-missile tracks look identical. Give them different colours. (NB:

colour peculiarities will mean that drawing new tracks may change the colours of

parts of old tracks. There is no way round this, but it doesn't matter.)

3. In more sophisticated versions of this game, the incoming missiles are MIRVs, and
split up into multiple warheads as they descend. It's not difficult to do this, but it
needs some careful thought!

4. The destruction of the cities is rather clinical (they're literally wiped out!). How
about displaying a mushroom cloud. and then some ruins?

5. Think about sound-effects. (But they will slow the game down a lot.)

6. Because kbhit is called fairly infrequently, you can hold down 1" or “*2" for quite
some time before getting a response. Experiment with other places to put "GO SUB
kbhit™ in the program, to improve the response time without slowing the rest of the
display too dramatically.

2

The internal organization of the Spectrum is not something
vou usually need to worry about. But, if you want to,

you can get the machine to tell you what it’s doing

—and you can change it to further your own ends.

23 Peek and Poke

[could probably write another book the size of this one on PEEK and POKE. And most
of it would be far too technical to be useful. But it seems a shame to avoid these
extremely important features altogether. By exploring PEEK and POKE you can really
learn a great deal about the way computers operate. So. obviously, what you need is
some idea of how to get started: how to talk the Spectrum into giving away some of its
Innermost secrets.

On page 3 I mentioned that computers store information as sequences of s and 1's.
Fach such @ or 1 is called a bir (short for binary digir). You can think of a string of @s and
I's as a number in the binary svstern. which is just like the decimal system except that in
place of units. tens. hundreds. thousands. ete. we use units. twos. fours, eights. and so
on. In the Prepacked Programs vou'll find a program on binary/decimal conversion
which cxplains this a little more.

We don’t really need to know about binary; but we do need to recognize that
computers work with bits. In fact, they generally carry their bits around in chunks. called
bytes. One byte is a sequence of eight bits. So 1011031 and M 111011 are typical bytes.

There are 256 possible different bytes; if you convert to decimal you get the numbers
from @ to 255. You may recognize these numbers: the CODEs of Spectrum characters
are numbers between (@ and 255. And indeed, each character is represented by exactly
one byte.

A program (and some of the steps performed in carrying it out) is just a sequence of
characters: so the machine can store it as a sequence of bytes. To make sure everything
stays in the right order it gives each byte a reference number, called its address. So you
should think of the program as living outside the machine in some form rather like

Address Byte

1 11001100
2 (1110000
3 LR
4 11etn

Unfortunately, the machine “architecture™ makes a scheme like this a little too
simple.
The Spectrum consists of sets of microchips, known as the

ROM (Read Only Memory)
RAM {Random Access Memory)
CPU (Central Processing Unit)
SCL (Sinclair Logic Chip)

The ROM stores the BASIC interpreter; the RAM stores your program and anything
that needs to be worked out while running it; the CPU does the arithmetic and the logic:
and the SCL organizes how the others fit together.

93

94

We are not interested in the CPU or the SCL_, but we are interested in the ROM and
the RAM. And we can find out exactly which bytes are stored in which addresses in the
ROM and RAM by using PEEK.

An instruction

PRINT PEEK 837

for example, will PRINT out the byte stored in address 837 (it’s 40, or 0010100 in
binary). It prints out the corresponding decimal, in fact; so there’s no harm in thinking of
a byte as just a number between @ and 255.

For useful PEEKing, where should we look?

The ROM addresses run from @ to 16383. There are certainly some good reasons for
PEEKing the ROM—you can find out how the Spectrum tells the TV to PRINT a
particular character, and play games (like printing it out four times the usual size) with
this.

But more interesting are the RAM addresses. These start at 16384; and those up to
23754 (or more if the microdrive is attached) are set and used by the machine. Your
program is placed in an address that is stored in the system variable PROG, which itself is
in addresses 23635 and 23636. In fact the start address for the program is

PEEK 23635 + 256 + PEEK 23636
Without the microdrive, this ought to be 23755. Try it and see.
To find out what's stored in RAM, make the Spectrum do the work. (Always do this if
you can!) Here's a program to do the job.
1 LET g = PEEK 23635 + 256 + PEEK 23630
1910 LETr=PEEKq
10290 IFr>23THENPRINT q;*“0O0";r; TAB 12; CHRS$ r
1030 IFr< =23 THEN PRINT q; “C0 0"; r; TAB 12; 27
1040 LETgq=q+1
105¢ GO TO 1010
I've used large line numbers because the idea is to write a test program in front of this,
and to see where and how it is stored by using GO TO 1004.
Type the above in; and also a test program:
10 REM start
20 PRINT ATO. 19;*”

You twerp, it's a Disc
Drive . not a Drive-in

night forer might
feevyrerety ...

Now hit GO TO 19 and watch. You'll get a print-out like this:

23755) 04
23756 10 2
23757 7 Z
23758 0 ‘)

23759 234 REM
23760 115 s
23761 116 t
23762 97 a
23763 114 r
23764 116 t
23765 13 ?
23766 0 ?
23767 20 ?
23768 23 ?
23769 0 ?
2377¢ 245 PRINT
23771 172 AT
23772 48 0
23773 14 7

23774) 7
23775 U ?
23776) 5

Now it's asking about scrolls, but let’s take a look at what’s on the screen.

We can see our program—or most of it—building up in the third column: REM, s, t,
a.r.t.....PRINT. AT.®. ... Butthere’ssome other junk too. The third column doesn’t
seem to help understand this; but the second does. For instance in address 23756 we find
10, and in 23767 we find 20: presumably these are the line numbers. (It's a bit more
peculiar than it looks with the lower line numbers; and the 7in 23757 and the 23 in 23768
are actually the number of characters in the relevant lines: see the Manual, page 166. But
at least most of it makes good sense straight away.)

The question-marks in column three are there for good reasons: if you leave out “IF r
= 23" in line 1820, and delete 1930, the program won't work. This is because those
characters are control characters (e.g. setting colours) and the machine attempts to carry
them out as commands, getting nonsense every so often, and stopping with an error
message. But you can work out what they are from the character table in the Manual, pp.
183-188. For instance. in address 23765 we have character number 13. which is
ENTER-—-oh ves. we did press it then. didn’t we?

So. there are some details to puzzle out: but we can see where the program is stored,
and 1t’s really in there. To see more of it, hit "y for a scroll (a feature that makes our
PEEKing program extremely useful). Now we get

237 0 ?
23778 0 o
23779 4

23780 49 I

95

23781 48 0

23782 14 a4
23783 @ £4
23784] ?
23785 10 !
23786 0 ?
23787 (O 2
23788 59

23789 34

23790 42 *
23791 34

23795 13 ?
and you can go on listing, scrolling every so often. for a considerable time. Soon the
routine on line 1A starts listing out itself . . .

Try a few other programs in lines 10, 20, 3. ¢te. Leave lines TOO- 1040 as they are. and
PEEK vour programs using GO TO). You'll soon see the beginnings of patterns to
the listing.

One thing that’s obviously peculiar is the way numbers arc stored. The 1@ in PRINT
AT 0. 10. for example, scems to occupy addresses 23780-23787. This looks a big space
for such a small number: but it’s related to the fact that the Spectrum can handle

floating-point arithmetic (decimals like 23.567) and use a code that is suitable. You can
have hours of fun just trying to work out how a given number is actually stored.

But the real beauty of it all is that now you know where a given program byte lives. vou
can change it. The instruction that gives you this terrible power over the poor Spectrum is

POKE
Let’s see it in action.
What does our little program above do? It PRINTs out = at position @, 19. RUN and
See.
Let’s POKE it. Add two program lines:
30 POKE 23790, 96
4 GOTO 10
Now run it by typing
GO TO 30

Instead of * you get £ printed out.

Why? Because line 30 POKESs into address 23790 (where the original * was stored) the
new character with code 96, which is £,

If you ask the machine to LIST you'll find that line 200 of the original program now
reads

20 PRINTAT®. 10 £~

I et’s experiment a little further. BREAK and get rid of lines 3 and 40, Change line 20
back to its original form using EDIT. At the same time. change the @ to . so you have

200 PRINTATIL. 19 ™

Now GO TO 100 and PEEK it all again. Scroll to carry on when you run out of screen.
You'll spot the change. Addresses 23772 and 23776 have becoine

23772 49 I
23776 1 ?

Otherwise all is as before.
To test our new knowledge. add the following program lines.

30 POKE 23772.49
40 POKE 23776, 1
50 GOTO?20

Change line 2f back to reading PRINT AT @, 10; “*+”". Now press RUN.

The screen should display mwo asterisks, in screen lines fand 1. [t runs through the first
program. printing on screen line (; then it POKEs the values nceded for screen line 1;
then GO TO 20 makes it PRINT again in the new line.

Try LIST: once more you’ll find line 200 has become PRINT AT 1, 1@; ™.

You can’'t POKE the ROM. of course—"“Read only™ means what it says! And a good
job too. otherwise an accidental POKE might ruin the BASIC interpreter. In conse-
quence, you can POKE fearlessly as the whim takes you. to see what happens.

The possibilities opened up by POKE are vast. But to handle it properly you need to
know more about the detailed internal codes used by the Spectrum. Chapters 24 and 25
of the Manwual give the basic information you need. If you're keen enough, you can work
the rest out using the PEEK routine above. lines 1000—1050. I'm not going to say more,
because it's better to work it out for vourself than to read through a complicated
description given by someone ¢lse. But. as in the other sections of this book. [wanted to
set your mind working along useful lines. By the time you've reached here, yvou’'ll have
scen that PEEK and POKE are not the awful mystery that they are often made out to be.
It's just that thev dig deeper into the system by which the Spectrum functions. Experi-
ment with them: POKEing presents a fascinating challenge and a potentially rewarding
one.

w7

Eh

There are one or two standard problems,
and one or two useful but obscure
tricks: here's the low-down on them . . .

21 1ips

BAFFLING SNAGS

1. It’s natural to try to square a number x by working out x72. This is fine for positive x;
but although the square of a negative number makes perfect sense, the up-arrow won't
work then. (This is because xTa is worked out as EXP (a = LN x) and the logarithm of a
negative number isn’t defined. Use x = x instead if x is likely to be negative,

2. In the same order of ideas. if x ts an integer. x12 has a nasty habit of being not quite
exact, and you can run into the sort of trouble discussed in Debugging V. Similarly for
x13: it really can be better to write ® * X * X.

3. If you use a REM in a multistatement line, remember that evervthing after it (in that
line) is ignored by the computer. So
10 REMstart: LETx = 99
has no effect whatever. However
10 LET x =99: REM start
sets x 1099,
4. Any [F/THEN command works like this: the entire line after the THEN is carried out

provided the IF condition holds. but nothing after THEN is carried out if the condition
fails. So

10 TFx=0THENLETy =0:1Fx< >QTHENLETy = 1

sets v to @if x is @, but is ignored entirely if x < > (). In contrast. as separate lines

10 IFx=0THENLETy =0
20 IFx<>@THENLETyY = |

y will be set to 1 for any non-zero x. If your conditional statements are going haywire,
check the multistatement ones first!

5. Inan IF/THEN statement. the machine works out the whole expression between IF
and THEN before checking to see if it’s true. This can lead to crashes, and unintended
error reports. For instance,

10 IFx$< =" AND VAL x$ = 5 THEN STOP

causes a crash if x$ happens to be empty—even though the x$ < = " part is false and
hence forces the entire condition to be false. whatever VAL x$ might be. The machine
still insists on calculating VAL x$ when x$ = ** . which it doesn’t like. You can easily
think you've protected your program against crashes. but you can be mistaken . . .

6. There are two ways to get a blank space. One is the SPACE key. the other is graphics
8 on CAPS SHIFT. These are not the same character as far as the Spectrum is concerned.
So searching for spaces with a command

10 IFn$ (i) = 0" THEN GO TO 5000
will fail if the blank at n$ (i) is not the same kind of blank as the onc in line 10 of your
program. Unfortunately, you won't see the mistake on a listing!
7. You can SAVE a picture using
SAVE “Picture” SCREEN$
It’s terribly easy to try to load it back using
LOAD **Picture™

in which case the message “Bytes: Picture” comes up OK., but nothing actually happens.
What you should have done, of course, is

LOAD *Picture” SCREENS

8. The quality of the colour display is very sensitive to the quality of your TV set, and to
the tuning. On a very cheap portable colour TV you may find the display just won’t work
satisfactorily at all: so DON'T buy a small colour TV specially to use as a monitor
without checking that it’s OK first. If the shop won’t let you plug your Spectrum in
before buying, go to another shop!

9. When trying to LOAD a program. there is a very distinct high-pitched Bleep through
the speaker whenever a program name is encountered. If nothing shows up on the TV
when you hear this bleep. something is definitely amiss.

10. If you've got a program in the memory. and want to SAVE it on a tape, but have
forgotten whereabouts on the tape you are—and are worried about leaving too big a gap
or overwriting something important—type

VERIFY ""Rubbish™

where “Rubbish™ is a name not used for any program. Then run the tape. and watch the
messages to sec whereabouts you are. When you reach the right place, stop the tape;
BREAK; then LOAD your program as usual.

SYSTEM VARIABLE TRICKS

I. Youcan produce a much more satisfying keyboard bleep if you make the direct entry
POKE 23600, 50
Numbers other than 50 give slightly different effects. but 5@ is about right.

2. You can speed up the auto-repeat by direct entry of

POKE 23562, 2
(say). Change the 2 to 1 or 3 for faster or slower auto-repeat; change it to @ to disable the
auto-repeat altogether, '

3. You can shorten the time the machine waits before an auto-repeat by keying in
POKE 23561. 2¢

(say). Reduce the 20 to reduce the delay. increase it to increase it.

4. Some programs need to SCROLL automatically. (A lot of ZX81 games use the scroll.

and you may want to transfer these to vour Spectrum.) But there is no SCROLL
command.

100

However. you can fool the beast into scrolling by using the routin=

1000 PRINTATZ2L.0
1@ POKEFE 23692.2
120 PRINT

In fact, POKE 23692 with anything bigger than 1. at the moment the screen fills up. and
then try to PRINT a new line: this produces a scroll without keyboard entry.

The DRAW x. y command. nice as it is, draws from the current position x@, yi to the
new position x@ + x, v} + y. That is, x and y arc the offsets nceded, not the new
coordinates. A way to draw from the current position to a new position X, y is to use the
command

DRAW x — PEEK 23677. vy — PEEK 23678

The advantage of this is that it works even if vou've lost track of where the last PLOT

position was (easily enough done) and it is not subject to cumulative round-off errors if
you use it in a loop, say to draw curves. Addresses 23677 and 23678 hold the coordinates
of the last point plotted. of course!

YOU TWERP. YOU'VE
LEFT THE ‘ANT BUTTON
ON AUTO- REPEAT

AGAIN

And now, the terrible truth is revealed . . .

25 What | haven'l old you aboul

There is far. far more to your Spectrum than I have been able cven to hintat in this book.
I'd cheerfully have included more, but that would have made the book 17 volumes long,
and cach would have cost you about ten quid . . . However. by the time you've survived
this book, the Sinclair Manual will make a lot more sense. (I'm not casting nasturtiums at
the Manual—but, by definition. a manual has to tell you evervthing, and this means
some pretty compact descriptions.)

For example. I've said nothing about the mathematical functions like EXP, COS.
TAN., LN: I've told you nothing about user-defined functions DEF FN A (x.y.z....)
which are well worth knowing about; I've said next to nothing about the attributes
ATTR; I've only given you one of the uses of USR (but the other leads into Machine
Code. see Chapter 26, What Next?): I've used a few multidimensional arrays but never
explained them: I've said nothing about INVERSE: and I've not explained about
LOAD and SAVE because the Manual discusses them very clearly and the whole system
is very nearly foolproof anyway.

But the main point 1 want to make here is that if, in a program listing. you see a
command that vou don’t understand. you can still copy out the listing and run it If you're
feeling adventurous. you can change that puzzling command. and see what happens:
that way, vou may even find out what it does. Be bold.

101

102

This isn’t the end. it’s just the
beginning. The question is:

26 What Next?

Fod =

ad

9.

Read the Manual again.
In the UK there is a National ZX Usergroup. Its address is

Tim Hartnell

44-46 Earls Court

London W8 6EJ
If you are interested in educational programs, contact EZUG. the Educational ZX
Usergroup. It lives at:

Eric Deeson

Highgate School

Birmingham B129DS
As we write, the potential for the Spectrum in educational use has increased
dramatically, and it looks likely to become very widespread. (See Eric’s book:
Spectrum in Education; another Shiva title.)
There are local Usergroups. and National ones in other countries: contact the
National Usergroup in (2) above for details.
There are swathes of magazines for home computers. Among those that carry a
reasonable amount of stuff for the Spectrum are Your Computer, ZX Computing,
Sinclair User. Sinclair Programs and Computer and Video Games. A good general
computing magazine is Personal Computer World. All of these are widely available
through newsagents.
Indubitably there will soon be swathes of software (tapes) and hardware (add-ons)
for the Spectrum. See the magazines.
Read the hardware and software reviews in the magazines: most dealers are rep-
utable, but there are a number of cowboy types, best avoided if you can spot them.
For more advanced BASIC programming techniques. or for Z80 Machine Code. we
strongly recommend the book Machine Code and Better Basic, published by. er,
Shiva Publishing Ltd. It's written by some blokes called Stewart and Jones. and it’s
excellent value for money. Although written as if the machine in question is the
ZX81. almost all of it applies to the Spectrum—advanced computing depends less
on the particular machine, and anyway the Spectrum can do almost anything the
ZX81 can. (The display file is a bit different. though.)
If you haven’t got it already. the extra 32K RAM will prove irresistible soon. And
watch out for the microdrives . . .

Prepacked
Programs

104

The programs that follow are intended to illustrate various features of the Spectrum, and
to show you the sort of thing that can be achieved. Each is complete in itself, and need
only be copied and RUN. It’s not necessary to understand the commands in the listing.

However. by the time vou've worked your way through this book. you ought to be
able to analyse the way these programs work. This won't always be casy. though: it's
often difficult to get used to somebody else’s programming style. Good style requires
claritv, partly because it’s a soul-destroying task trying to modifv programs that look like
Finnegan's Wake written in Chinesc. and partly because you tend to make fewer errors
anyway.

I have deliberately left a lot of programs with untidy line numbers. It's amazing how
often errors ereep in when vou renumber a program. And I wanted to emphasize that
you do ntot have to use line numbers that are multiples of 1. The only reasons for doing
this. apart from fashion or fussiness. are to leave room for changes to the program, or for
inserting tracers when debugging.

In these listings. I've drawn the graphic characters as they appear on the keyboard.
Boxes around a letter. such as [H] . mean inverse video: an open box[C] denotes a space.
obvious spaces aren’t made explicit: but ones that arc important and casily missed out
are,

A word about colour. Before running any program. vou can sclect BORDER.
PAPER. and INK by direct keyboard entry— for instance

BORDER 3: PAPER 5: INK |

I have not inserted such commands in the prepacked programs: vou can put them in if
vou want. The aim is to save vou time typing the program in. and to make it clearer—
even if the display 1s not quite so spectacular. Similarly. some of the programs arc fairly
simple: this is because I hope vou will try to see what they do. and not just copy them
blindly (for that vou should get Games o Play on vowr Spectrm, by Martin Wren-
Hilton, and Computer Puzzles: For Spectrum and ZX81. by—you guessed it!—Stewart
and Jones).
The programs are not listed in any special order. Dip in!

For my

first prepacked program, I chose one whose internal

workings are pretty close to the surface. It calculates:

1he Area of a Triangle

It the side

sof atriangle arc a. b, ¢ thenits arcais given by the formula Vs {s =) {s -~ h)

(s = chwheres = b2 {a + b + ¢}, This program uses the formula to compute the arca ofa

triangle w

10
20
30
40

106
e

hose sides are INPUT in turn.

INPUT a
PRINT"a=0":a
INPUT b
PRINT b = ":h
INPUT ¢

PRINT ¢=0":c¢

LETs= 5+*{a+b+)

LETx=s+(s —a)*{s - h)*{s =)

IFx <@ THEN GO TO 11¢

PRINT "AREA1S17: SOR x

STOP

PRINT “IMPOSSIBLE TO FORM A TRIANGI E”

Program notes

I. Programs that evaluate formulae and print out the answers are so transparent that it
would be cheating to count them as “real”™ programs! They're more like mechanized
pocket calculator routines. But. at this stage. I felt that an obvious program
wouldn’t do any harm.

i You

can casily modify this type of program to work out any reasonable formula.

Perhaps this is one way to make mathematical formulae more interesting, and get

SOMe

cducational value out of the Spectrum. Here are a few suggestions for possible

programs:

(a)

(b)
()
(d)
(e)

(f)

The surface area of a sphere of radius ris 4o’

|7 is PT on the screen: key M in extended mode. |

The volume of a sphere of radius ris Aer'

The volume of a cylinder of radius r and height h is wr*h.

The volume of a cone of radius r and height his brh.

The solutions of the quadratic equation ax* + bx + ¢ = (are given by

x={-b*V(bh*—4dac))/2a

(Work out the + and the — roots separately. If b® — dac < @ the roots are
imaginary. and vou’ll have to deal with this, cither by PRINTing
“"IMAGINARY ROOTS™ or concocting a picce of program to work them out
if vou know about complex numbers. You'll also have to deal with the
possibility thata = @)

Thesum [+4+9+ ... +nlisequaltobn(n + 1)(2n + 1). INPUT n and
PRINT the sum. [Also, for comparison. work it out by summing the series.
using FOR/NEXT. once vou've read LOOPING. page 18,

105

106

(g) The period of swing of a pendulum of length [is T = 27 V/(I/g) where g is the
acceleration due to gravity: 981 em/sec/sec or 32 ftfsec/sec.

(h) In fact g varies from place to place: a more accurate approximation is that it
depends on latitude L and height h above sea level, according to the formula

2= 980.616 — 2.5928 cos (2L) + 0.0069 cos® (2L.) — A.M3h cm/sec/scc

Write a program to work out g. and T. given L. h, and /.

If triangles aren’t your thing, why not write a program
to work out your bank balance?

Am | Overdrawn?

1) PRINT “PREVIOUS BALANCE [S[1";
20 INPUTb

30 PRINTD

40 PRINT “LIST DEBITS™

5 INPUTAd

60 1IFd <@ THEN GO TO 9§

7 LETb=b-d

80 GOTOS
9% PRINT “LISTCREDITS™
1 INPUTA

10 1Fd <@ THEN GO TO 140

120 LETb=b +d

130 GOTO 100

140 PRINT "CURRENT BALANCEIS[0": b

Program notes

1. Lines 60 and 110 are defimirers (see page 25). I vou input a negative number the
machine knows you've finished the listing. (This negative number is nor included in
vour bank balance!)

2. Debits are mostly chequebook stub figures. But don’t forget standing orders. (An
obvious first improvement is to build these into the program. See if you can manage
it.) And withdrawals from cash-dispensers.

3. Credits: don’t forget your salary cheque! Maybe you can build this in too.

4. Your younger children can play banks for hours using this.

5. If you add two more lines:

55 PRINTd
105 PRINTd

the machine will list the items. If vou have more than 20 items the screen fills. and it
is necessary to scroll to continue.

Deep in the depths of the dark Sinclair
Forest lurks a Terrible Tiger. Can you

find him?

figer-hunt

PAPER 7: INK 8: BORDER |

1 INPUT “Choose size of forest: max 161", w
15 IFw>16THENLETw =16

20 FORi=0TO8+*=wSTEPSR

30 PLOTi+64,32

4y DRAWQ B+w

56 PLOTO64,1+ 32

60 DRAWS»w. ()

70 NEXTi

80 LET z$ = “01234567891111111"

99 LETy}="00000000000123456™
100 PRINTATI19,8;28(TO w) + 20" + “x”
113 PRINT AT 2. 8; v$ (TO w)

120 PRINTAT 16 —w. 6.y AT 17 — w, @

130 FORi=1TOw

140 PRINTTAB6 —(w —1=>9);w — i

150 NEXTi
2 LET mx = INT (w * RND)
210 LET my = INT (w + RND)
220 INPUT “Where is the Tiger? 00" x; “[071 y
225 IFx=>wORvy=>wTHEN GO TO 220
230 LETd=((mx —x)*{mx —x)+(my —y)+{my —y))/ w/w
24) LETd=d=*8:IFd>4THENLETd =4
25 PRINTPAPERd + 2: AT 17 — v, 8 + x: OVER ;0"
255 IFmx = x AND my = y THEN GO TO 3
260 GO TO 220
3 PRINTATI7 — my.8 + mx; OVER 1;*+"
3100 PRINT AT 0.0: FLASH 1: "“Gotcha!™
320 FORi=1TO30

330 BEEP .1/i.1
340 NEXTIi
107

[0

Program notes

i

5

You can choose any size of wood from [to 16. If you input more. it gives you size 16.
The wood is drawn with x- and y- coordinates along the bottom and down the side
(using lines 20-7@ for the wood. 80— 150 for the coordinates). Notice how setting up
the picture is the major part of the program!

When asked “Where is the tiger?” you must input two numbers between ¢ and
w — [: these are the coordinates of your guess. If you input numbers outside this
range they are ignored.

The machine then prints a coloured square at this position. The colour gives you a
clue as to how close vou are: red means you're very close. magenta fairly closc. green
fairly far off. and yellow a long way off.

You keep going until vou locate the tiger. You then get a =7, a flashing message of
congratulation. and a musical offering to mark the occasion. (The music is in lines
320-340: you can use it in your own programs to produce the same sounds.)
PARENTS may delete these lines to prescrve their sanity.

Totry again. hit RUN.

Projects

wd d

When you are really close to the tiger. arrange for the red square to flash. You can
do this in line 25@. Insert after OVER 1 a piece of code like this:

FLASH (d < something or other)
and experiment to find what value something or other should be for a nice effect.
Change the message 1o something rude.
Change the music at the end: have a sclection of tunes from which the machine
chooses at random. to avoid boredom.

Be your own Beethoven,
or Spectrum its own Sibelius . . .

Composer

This program will allow the Spectrum to play music. The notes are entered one at a time.
as single letters or single letters followed by a hash mark @) to indicate sharps. Enter **
to terminate the sequence of notes and start the Spectrum plaving the tune.

¢ DIMs (7}

11 DIMn$(2)

12 DM t (15())

20 LETs()=-3LETs(2)=~1: LETs(3)=®:LETs(4)=2
3 LETs(S)=4LETs(6)=5:LETs () =7

35 FORg=1TO 150

4 INPUT “Enter a note™: n$

42 IF n$ = “** " THEN GO TO 2%

45 LETi=0

5¢ LETp=CODEn$ - 64

55 IFp>1THENLETp=p-32
60 IFn$(2) = %" THENLETi=1
1 LETt(q)=s(p)+i

11¢ NEXTq

20 FORr=1TOgq

219 BEEP®.5,t(r)

220 NEXTr

The details of how this works are explained in the section on arrays.
Improvements and modifications

1. Replace line 40 with:
40 LETn$ = CHRS (INT (RND = 7) + 65)

The program now composes its own musical piece. with exactly 1500 notes in it.

There are no sharps in the result, so it sounds pretty bland.

The length of each note is fixed at .5 seconds. Can you devise a routine which will

allow the user to enter the desired length of cach note. at the same time as the note

itself? You'll need another array to hold the duration values, the same length as .

(In 16K. two arrays of length 1500 will run you out of memory. Make each array 750

long.)

3. Use a similar technique to that in (1) to generate random music with random note
lengths,

4. Entering the music a note at a time can get a bit tedious. Can you devise a way in
which it could be entered as a single string?

5. This could be a useful composing tool if individual notes could be altered easily. Can
you invent a melody editor {meloditor?) which allows the entry of. say. 38, A$#to
mean: "alter the 38th note 1o Af™?

6. Break out of the single octave straitjacket. Again. you need more entries per note,
For instance A, (could mean “A in the octave around middle C" and C$ 2 could
mean " CH. two octaves above middle C.

[£%)

Here's a program to keep the kids quiet
on a rainy afternoon . . .

Sink the Bismarck

A routine patrol in the North Sea . . . suddenly from out of the fog. the enemy vessel
appears. about a mile away. You tell your gunners to sct the elevation and muzzle
velocity of their gun. Will vou be able to sink the Bismarck?

10 PRINT TABS: “SINK THE BISMARCK™

20 LETt=15+(1 + RND)

30 PRINTAT2I.G:INKS:INVERSE 1.2 0000OMO0OAQ

gocoQooeooaorooonoooooanogan [32 spaces]
40 PRINTAT20.t — 2:INK4: " il B b ™
54 INPUT “Elevation = (171 ¢
104

110

600 PRINT AT 3. §:; “Elevation = [0 ¢

70 INPUT *Muzzle Velocity = 0"y v

80 PRINT “Muzzle Velocity = (17 v

99 LETa=v+COS(PI=e/180)

I} LETb =v=SIN(PI=e/ 180

110 FOR j=0TOb/I6 STEP .3

[15 LETc=.01+(b*j—16%j=*j)

120 IFa+j>=>6200 THEN GO TO 199

130 1Fc>40THEN GO TO 170

140 INK?2

150 PLOT M+a+jd4+c+8

160 BEEP .05, ¢+ 16

170 NEXT j

180 IF ABS(a+b /3200 —t) <3THEN GO TO 210
19¢ PRINT AT 10. 20; “MISSED!”

2 STOP

21¢ FORj=0TOIS

220 PRINT AT20 — j.t - 2: “glug!™: BEEP 3.6 — 3+ |
230 NEXT]

(SINK THE BISMARCK w

Elevation = 56
Muzzle Velocity — 463

MISSED

Program notes

1.

2

It begins by drawing the sca. and a randomly placed silhouctte of a ship. Line 20
chooses the random position. 38 PRINTS the sea. and #) the ship.

5080 INPUT and display the elevation ¢ and muzzle velocity v. The player when
asked by the machine. must INPUT these from the keyboard. e is in degrees. and
must be between 07 and 99°: v is in feet per second and must be positive.

90170 compute and plot the trajectory of the shell at 0.3 second intervals—see
mathematical notes. opposite.

ey

180 gives vou a HIT if your shell hits the waterline within 600 feet of the ship’s
centre. Adjust the 3 to 2 or 1.5 for a more difficult game. or to 4 or 5 for an easier
one.

190230 are output routines for a HIT or MISS.
To start or restart, hit RUN followed by ENTER. as usual.
The screen here is 6400 feet wide. as simulated.

The program is moderately “user-friendly™ and goes on running even if the shell
goes off the top of the screen (thanks to line 120).

9. The graphics in line 40 are graphics 3 and 1in CAPS SHIFT.
10, PI' in lines 9% and 100 is key M in extended mode, not keys P and 1!

SO AV

Mathematical notes

The shell's path is calculated using a mathematical formula accurate (in the absence of air
resistance) for a body moving under gravity—assumed to be 32 ft/sec/scc. In line 11¢%
j represents time: a is the horizontal component of velocity and b the vertical
component: the PI = e / 180 converts from degrees to radians. Line 150 computes the
height at time j and converts to screen coordinates (each PLOT pixel is 25 feet square.)
In line 110. b/16 is the time taken to hit the waterline. In line 180, a * b / 1604 is the
distance it has then gone: the 3200 happens because we are using a PRINT statement in
line 40, so the distance to the ship is 200 = t,

If any other feature of the program puzzles you. try changing it and sec what happens.

Notice that, while plaving a computer game like this has only minor educational value
(pressing the right key. judging distances and agles). writing or understanding it
requires some knowledge of both programming and mathematics, and could be used to
advantage as motivation either in the classroom or at home.

Here's a variation on the PLOT routine,
producing some beautiful curves:

Lissajous Hgures

These were invented by Nathaniel Bowditch in 1815, but named after Jules-Antoine
Lissajous who reinvented them in 1857. They illustrate another way to PLOT interesting
curves. using what mathematicians call a parametrization. What that means is that you
make x and v depend on a variable t. and PLOT x. y for sequences of t's.

I INPUT “First number™: p

20 INPUT “*Second number™: g

3 INPUT ~Phase shift™:r

0 LETt=0

¢ LETm=p

60 IFq<pTHENLETm=q

M LETx=127+120=COS(t=PI/ 180 +p + 1)

B LETy =87+ 80=SIN(t+PI/I18)+q)

9 IFt=0THENPLOTx.v

10¢ IFt>=@THEN DRAW x—PEEK 23677. y—PEEK 23678

1@ LETt=1t+10/m

120 GOTO7

11

12

1
;
|

S S

i
o

g

G

8

==
0
i

%
@
7
0
X
i
&

B

:o
’0
)
i

T
()
0:0
0’0
I8
W
%
0

p—— —

Sl o m_____,m . " e

!

Program notes

For pretty results. p and q should be whole numbers.

r can be anything. but somewhere between @ and 3 is best.
Agoodstartisp=5.q=7.r= L

Pl iskey “M" in extended mode.

Tostop. BREAK + CAPS SHIFT.

For more spectacular results (but longer plot times) try p = 31.q = 29.r = (.

Line 100 works out the offset from the old plot point to the new one. so that DRAW
can put in a line between the two. The system variables in addresses 23677 and
23678, which are PEEKed. hold the last PLOT coordinates. This trick is extremely
useful.

_‘--J?\‘Jt-h-'_nJE-J—'

The Spectrum can do statistics, thanks to its random number
generator RND. This program simulates

Wonopoly Dice

If you've played Monopolv® you'll remember that to find out how far your picce moves
vou throw two dice. and add the result. You may also have noticed that the total 7 is

more common than anything else. In fact. out of 36 throws of the dice vou should expect
the total

2 1o happen on average | time

3 to happen on average 2 times
4 to happen on average 3 times
5 to happen on average 4 times
6 to happen on average S tmes
T 1o happen on average 6 times
8 to happen on average 5 times
U 1o happen on average 4 times

**Monopoly®is a registered Trade Mark of John Waddington Had.

10 to happen on average 3 times
11 to happen on average 2 times
12 to happen on average [time

Of course. you won't usually get those numbers exactly. but in the long run you should

get close .

.. on average!

You can use the Spectrum to explore the world of statistics. by simulating this kind of
thing using random numbers. This program “throws™ two dice 144 times (4 times 36. to
make life easy). countshow many times the totalis 2, 3.4, . . etc.: plots out the results in
a “bar chart™: and also compares the actual result with the expected theoretical

numbers.

10
20
30
40
il
80
99
100
110
120
139
140
150
160
17¢
180

DIMa(11)

FORj=1TO 144

LETd =1+ INT(6+RND)+ INT (6+ RND)
LETa(dy=a(d) + 1

NEXT)

FORj=2TO 12

LETg=a(j—1)

LET q¥ = INT (g/2)

LETql=q-2+*q0

FORt=1TOq®

PRINTATI8 —t. 4+ 2+ [}"

NEXTt

IFql = I THENPRINTATI17 —q0. 4+ 2+ j."[g™
NEXT j

PRINTAT [9.8;-20304050607080%90101017
PRINTAT20.24:0 00 102"

Program notes

. The bar chart shows the relative number of occurrences of the totals 2. 3.4, 12,
The theorctical shape is triangular with the peak at 7. How close does it actually get?
Do vou get the same shape if vou RUN it again? Why not?

Here's an example of an “educational’ program,
albeit not an ambitious one.

Arithmetic fesl

This program scts the operator (vour seven-vear-old) an addition sum involving two
random two-digit numbers: checks if his answer is wrong or right: and. if wrong. explains
how to get it right.

113

14

10 LETv=10
20 LETc=49
30 PRINT “Hi! I'm Sinclair Spectrum. Who are you?”
40 INPUT e$
5S¢ PRINT*OK.O":e$: [can you answer”
60 PRINT “this?™
T LETx = INT (v+v* RND)
80 LETvy=INT (v=v+RND)
M IFx+v<=I12THENGOTOT7+*v
100 LET x1 = INT (x/v)
110 LETx2=x—v=*xl
120 LET y1 = INT (y/v)
130 LETy2=y—v=yl
140 1IFx2+y2>=vTHENLETc=1
15¢ PRINTx: "+ y:"0O=07?20"
16(0 INPUT a
170 PRINT a: ~[1?™
180 LETb=x+v-a
190 PRINT (right” AND b = @) + (“sorry. wrong™
AND b = = @)
200 IFb=0THENGO TO 19¢
218 PRINT x2: =+ y2:*0Ois[I":x2 + y2 —c*v;
220 IFc=1THENPRINT “Ocarry 1"
230 PRINT “Cand then O x1:, =+ y1: =+ the carrv™
ANDc=1:"00":x1 +yl +¢
2400 PRINT “giving [17:x + v

Program notes

l.

)

Line 30 is a confidence-builder. It asks the operator for his name. Line 5@ uses the
name to ask a question.
Line 160 is where the operator tells the computer what he thinks the answer is.
Lines 208 onwards explain to the operator how the sum should have been done. if he
got it wrong.
The main difficulty in “educational™ programs of this kind is that they tend to
require lengthy displays of text. This program could be much improved—for
example. setting various levels of difficulty. giving more advice if something goces
wrong with the operator’s calculation. protecting the program better against the
operator pressing wrong kevs by mistake. and so forth. And. of course. more
interesting sums than plain addition would be an improvement. But most of the
basic principles show up in this little program.

You can also buy prepacked “educational™ programs. advertised in the maga-
zines. The quality of these varics hugely. and some are not as good as mine!
A good program wouldn’t need to be RUN each time. but would ask the operator if
he wanted another go. and if he said yes. RUN automatically. It's easy to add a few
lines to achieve this.

A sample of the Spectrum’s hi-res graphic capability:
Graphics Demonsiration |

For such a short program., this produces a remarkably pretty display.

10

A,

-

30
40
50
60

BORDER 0: PAPER ¢

FORj=0TO9

INK 7 - INT (j/2)

FOR i = (0 TO 510

PLOT .5 *i. (80 + 70+ SIN (i = i/ IG000) + j/2) » (1 — j = i/100)
NEXTi

NEXT j

Program notes

1. Although changes in INK colour affect entire 8 x 8 blocks of pixels. the effect here
(with the lighter shades of colour) is quite nice, and you don’t really notice the
blocks.

This illustrates a good way to get interesting hi-res pictures: superimposc several
(similar) curves. By “similar” I mean that just a few regularly varying changes to the
formula are made at each step: notice here how the values of j change the curve.

I

An example of text-display:

Partridge Printoul

This yuletide program displays, at singable speed. the words to a well-known carol.

1 FORdA=1TOI12
20 PAUSE45+d + 250
0 CLS
40 PRINT “On the [17; d;
50 1Fd=1THEN PRINT “st™";
6 TFd =2THENPRINT “nd™;
65 IFd=3THENPRINT “rd™;
70 IFd =3THEN PRINT “th™:
80 PRINT (] day of Christmas my [0 [J true love gave tome™
9% GOSUBI32-d
1 NEXTd
113 STOP
120 PRINT *12 drummers drumming”
121 PRINT 11 pipers piping”
122 PRINT 1@ lords a-leaping™
123 PRINT "9 ladies dancing”
124 PRINT "8 maids a-milking”
125 PRINT "7 swans a-swimming ™
1260 PRINT “6 geese a-laying™
127 PRINT "5 gold rings™
128 PRINT "4 calling birds™
129 PRINT *3 french hens™
130 PRINT 2 turtle doves and™
131 PRINT "a partridge in a pear tree™
140 RETURN
Program notes
. The screen blanks out for a few seconds before anyvthing happens.

2. Line 20 adjusts the tempo. The 45 adjusts the time for lines 120-131: the 25@ the time
for 40-80. Boxes denote important (non-obvious) spaces.

[16

I8

The Spectrum is quite an effective number-cruncher.
To convince you of this, take an 8-digit number
and see how quickly this program will give its

Prime factors

10 INPUTk

30 PRINTk:“O=0":

40 LETKO =k

50 IFINT (k/2) *2 =k THEN GO TO 140
o LETn=3

70 IFINT (k/n) *n =k THEN GO TO 110
8) IFn+*n>k THENGOTO 178

9% LETn=n+2
190 GOTO7T9
11¢ PRINT n: =™
126 LETk = k/n

130 GO TO 70

140 PRINT “2.7;

150 LETk =Kk/2

160 GO TO 50
17¢ 1Fk = kB THEN PRINT FLASH 1:“PRIME"
180 TFk <k@ ANDK =1 THEN PRINTk

Program notes

1. INT (k/n) = n =k if and only'if k is divisible by n. So this tests for divisors.

2. The program tries dividing k by 2. and all odd numbers less than the square root of k.
If no such divide k, then it is prime.

3. If a divisor is found. the program divides k by it, and hunts for a new divisor of the
same size. If it doesn’t find one it looks for a bigger divisor.

4. The machine takes about 35 seconds with an 8-digit prime and less otherwise. (The
times quoted are for 11111117; obviously, they will change for different numbers.)

5. Maodifications: Embed this in a loop, and produce a display of prime factors of k. k + 1.
k +2,...andso on indefinitely.

6.k has to be at most 8 digits, because the Spectrum won’t handle larger numbers with
enough precision.

7. This program could be made mathematically more efficient. for instance by exclu-

ding multiples of 3 or 5 from trial divisors. Can you use this to make a program run
faster? The price for mathematical efficiency is increased program size: does the gain
wipe out the loss if you're careful?

Everybody has programs to solve quadratic equations.
What about this?

Solving Cubics

This program finds all real roots of cubic equations ax® + bx* + ¢x + d = 0. to reasonable
dCCUracy.

1 INPUTa.b.c.d
S0 LETbh=bh/a

60 LETc=cfa
7 LETd=d/a
M LETx=0

o) LETg=2*x*x*x+b*x*x—d
1M LETh=3*x*x+2+*b*x+c
113 IFh =@ THEN GO TO 2¥)
120 TF ABS (x — (g/h)) < 1LE = 8 THEN GO TO 3%
130 LETx = g/h
140 GO TOM
200 LETx=x+1
210 GO TO Y
30 PRINTx1=0O":x
4 LETa=b+x
410 LETb=x+*x+b=*x+c
420 LETd=a=a—4+b
430 IFd < @ THEN PRINT Others imaginary™
440 IF ABSd < 1.E — 7THEN PRINT *Numerical instability possible™
445 IFd <= WTHENSTOP
450 PRINT “x2=[1":(—a + SORd)/2
460 PRINT"x3=0":(~a—-SORd)/2

Program notes

I. The program finds one root of the equation by an iterative process known as the
Newton-Raphson method, which involves taking a trial value for x and improving it
successively until it gets near enough to a root. Lines 99—150 perform this process.
If vou want to see the way this iteration works. add

131 PRINT x

[§¥]

and watch the numbers converge on the answer.
119

el

Having found one root, the program divides out by this to get a quadratic and solves

it by the formula in lines 400-460.

4. 1If this quadratic has no real roots, line 43@ applics: the program then crashes in line
450 but no harm is done.

5. A fine point: for some cubics inaccuracies in the arithmetic build up too much. and
the program may claim “Others imaginary™ when this is not in fact the case. Line 440
warns the operator that this is on the cards. The problem is that the sign of d is
crucial. and if d is close to @, errors can have a disastrous effect.

Most numerical methods encounter similar problems. and a large part of the
subject called numerical analysis spends a lot of time tackling these.

6. Forexample, try INPUTtinga =4,b = —8,c=5,d = —51. You should get x1 = 3,

other imaginary. Now trya = 4, b = —16,¢ = ~5.d = 51: this time you get x1 = 3,

X2 = 2.6213203, x3 = —1.6213203.

You, too, can have an electronic gambling device:

Heuil Machine

1 LETc=4¢

20 DIMa(3)

3 FORt=1TO3

40 LETr=INT(3*RND)
S0 LETa(t)=r

60 LETi=S5

70 LETj=10st-5

80 GOSUB 3

990 NEXT1

1M LETc=c— |

110 IFa(1)=a(2) ANDa(2) = a(3) THEN GO TO 7%}

120 GO SUB 1000

130 INPUT "Stop?: b$

140 IF b$ = s THEN STOP

150 GOTO 3

3 PRINTINK2 *r: AT, . MMg " AT+ 1. j,~mgmg™

31¢ BEEP .1, 3+r

3200 RETURN

7 LETc=c+9

720 GOTO 120

1000 1Fc > =0THENPRINT AT I8, 5: " You have won [¢ =[] pounds [17
1010 [Fc <O THEN PRINT AT 18, 5:"You have lost [17: —c: 1] pounds™
1280 RETURN

120

Program notes

L

e e

This displays three decorated squares. If they are all the same. you win £9. If not,
vou lose £1. To play, push any key except “s”—we recommend ENTER asit savesa
keystroke. Push s to stop.

On average. vou should break even. This is better than you'll get in the local pub.
Note the use of subroutines to plot the three possible types of square.

Note the proper use of the screen: you get a reasonable display in the middle. nota
tiny little one bunched up in a corner.

The Spectrum will let you call a subroutine from inside itself.
This is known as recursive programming. See if you can
work out how this program does its job.

Obscure Factorials

10
20
30
40
50
70
100
1
120
130
140

LETf=1

INPUT n

LETm=n

GO SUB 1%

PRINT m; (] Factorial is [1; f
STOP
IFn<=1THENRETURN |
LETf=f*n

LETn=n-1 — subroutine
GO SUB 100

RETURN "

What day of the week were you born on? What day
did Anne Boleyn die? Now you can find out with the:

Daylinder

This program accepts as input a date d. m. v. where d is the day number. m the month,

and y the vear (e.g. 23.7.1066) and works out which day 1t 1s (was. will be).

10

LET a$ = 033614625035

20 LETbS = "SUNMONTUEWEDTHUFRISAT™

121

3 INPUTd

40 PRINTd: .

5¢ INPUTm

600 PRINT m:*."

7% INPUTvV

8) PRINTy:"OisU™;

9 LETz=y-—1

I LETc=INT (z/4) — INT (z/100) + INT (z/400)

11¢ LETx=y+d+c+ VALa$(m) — 1

120 IFm >2AND (v =4+ INT (y/4) ANDy < = 100 = INT (y/100) OR
v =400 =« INT (y/400)) THENLETx = x + |

130 LETx=x—-7=+INT (x/7)

140 PRINTbBS (3+x +1TO3*x + 3)

Program notes

1. Line 10 stores a list of twelve “monthly correction numbers™ in compact form as a
string. Line 100 works out the month in the list as part of a computation explained in
note 4.

Line 20 uses a similar trick to simplify the printing routine. See how line 140 selects

the right group of three letters.

3. Line 10 computes how many leap years have elapsed since the year dot.
Remember: multiples of 4 are leap years, but multiples of 1 are not unless also
multiples of 404.

4. Line 11@is the guts of the computation. The idea is to count the number of days
elapsed since some (essentially arbitrary) reference date. but to save space by
throwing away multiples of 7 since these won't affect the day of the week. So the
number of vears. y. gets multiplied by 365; but 365 = 7+ 52 + | so instead of 365 * y
we use y. The curiosities of month-lengths are taken care of by a$ (m). Note the use
of VAL to convert a single-digit character to an actual number. To calibrate the
program I chose a date for which we knew the day of the week—30.9.1981 was a
Wednesday—and that gave me the —1 correction on the end. Line 120 adjusts the
computation in January or February of a Leap Year, where it would otherwise go
wrong.

5. One calendric subtlety is missing. In 1752 Britain changed from the “Old Style™
calendar to the “*New Style”. The day after 2.9.1752 was 14.9.1752. My program
assumes New Style.

[

Projects

Maodify it to work with Old Style dates for pre-1752 periods.

6. The program accepts impossible dates like —37.12.-992. Modify it to accept only
sensible dates.

7. It won’t work for dates BC. Modify it so it will. NB: There was no year (d between |
BC and 1 AD, even if logically there should have been!

122

Strings and numbers are sometimes closer than
you might imagine— for example, in:

Binary/Decimal Conversion

Binary numbers only use @'s and 1's; instead of §. 1. 2. 3,4, 5,6, .. . theygo @, 1. 10, 11,
100. 101, 110, . . . where in general something like 1101001 is worked out from right to
left as

I %1 40x2+0x4+1=xRB+Px16+1x32+1x64=105

each digit counting double what the previous one does. Computers, of course. use binary
numbers for internal work (though modern computers use sophisticated variants, in
practice).

The following two programs convert an INPUT number from binary to decimal, or
conversely.

Binary to decimal

10 INPUT a$

20 PRINT a$;

30 LET!=LENa$

40 LETs=VALa$(l)

50 FORj=2TOI

60 LETs=2+s+ VAL a$ (j)

70 NEXT]

83 PRINT s 17 s: O in decimal™

Decimal to binary

10 LETc§=*""

20 INPUTa

30 PRINTa;

40 LETd=INT((a/2)

50 LETr=a-2+d

60 IFr=0THENLETDS = 0"
70 IFr=1THENLETbS = 1"
8¢ LETc$="0b$ +c$

99 IFd=0THENGOTO 120
1M LETa=4d
118 GO TQ 40
120 PRINT “0Ois [0; ¢$ “0 in binary™

124

Program notes

1. The INPUT for binary/decimal conversion must be a sequence of #'s and 1's. like
1 1OAP1P1011. For decimal/binary it must be a whole number. like 3427006.

2. The two programs have been written to illustrate different approaches to the
conversion problem. It would be possible to make both look very similar in
structure.

3. In the decimal/binary conversion. note that lines 6)—7@ cannot be replaced by

60 LETbS ="r"
You can avoid having two lines by using CHRS and being clever; or you can write
0 LETbHbS = (“1"ANDr) + ("0" AND 1 -1)

which works for reasons to do with how the Spectrum handles logic—see the
Manual. p. 86.
Or. yet again:

60 LETDHS = ("
70 IFr=1THENLETb$ ="1"

will do the trick and save a little space.

A graphic and moving experience:

Brickbal

Coloured bricks drop from the sky. If you catch them with your bat. they vanish. If you
miss, they pile up. When the piles get too high. the game ends. How many can you catch?

90
100
116
120
130
140
150
160
170
180
190

200

BORDER 1: PAPER 7
LETh=11

LETc=0

DIM a (5)

LETp = INT(5* RND + 1)

LETj=5+p

FORi=1TO2l —a(p)

PRINT ATi. j: INK 6 * RND: INVERSE 1; “[1"
BEEP 02.35— 1.9+i - j?2

PRINT AT - 1. j: 0"

LET m$ = INKEY$

IFm$ = 5" THENLETh = h — 1

IFm$=“8" THENLETh=h+1
IFh<1THENLETh = 1

IFh>26 THENLET h = 26

PRINT AT 15, h; O, INK 2: INVERSE |: “000"; INVERSE @; “0O":

IFi=15ANDABS(h+2-j)<=1THENLETc=c+ 1:GOTO 40
NEXTi

LETa(p)=a(p) + 1

IFa(p)=7THENPRINTAT2.5:INK I:

*You caught 0" c; " bricks™: STOP

GO TO 40

Program note

. Tomove the red bat left or right use the arrow keys 5 and 8.

More graphics, and a useful trick
for using DRAW to plot curves:

Spirals and Roseltes

15
20
30
40

BORDER 1: PAPER 2: INK 7
FORt =0 TO4STEP .5
PLOT 128, 88

FORy =0TO720
LETx=y+PI/180
LETr=15+x

126

50 LETa=128 +5+r+«COS(x+1)

M LETb=88 +4+r+SIN(x +t)

70 DRAW a—PEEK 23677. b—PEEK 23678
80 NEXTy

Program notes

1. “PI"in line 30 is key M in extended mode. not the letters P and 1.

2. Line 70 makes use of the system variable COORDS (see the Manual, p. 175) to
calculate the correct offset for drawing from the old PLOT position to the new one.
In general, if you replace the command PLOT p. q by DRAW p- PEEK 23677,
q-— PEEK 23678. the machine will draw a straight line to the next PLOT position.
There are other ways to achieve this effect, but using COORDS avoids errors
building up, which is not the case with some methods. You can experiment with this
idea. even if you don't understand PEEK.

3. Todraw ROSETTES instead of SPIRALS. change lines 20 and 40 to read

20 FORy =0 TO 364
4 LETr=20+SIN(7 *x)

4. Experiment. changing the 7" to other values, such as 3.4.5.6.8.,9.10.

This program may not help you to draw
like Picasso, but as long as you stick to colour 1,
you too can have a blue penod !

Picasso

The program starts by asking for a “mode”. This is either “d™ for draw, ““¢” for erase, or
1" for finish. In the latter case. the program is terminated.

If vou enter “*d". the program prompts for a colour. You enter this as the appropriate
digit (1 for blue. 2 for red etc.)

For either *d” or “*¢”. the program now asks for an option. which must be a numberin
the range 1 to 9. The effect of each option is shown below. Note that where the word
“draw™ is used “erase” should be substituted if the mode s “e™.

Option Action

l. Draw horizontal and vertical scales for reference. A dot appears in every
5th column and row, a double dot (short line) in every 10th, and a slightly
longer line in every 10dth.

2. Rectangle. You will be asked for the left and right columns and bottom and top
rows in which the edges are to appear. You will then be asked if the rectangle is
to be drawn. or used as a frame (sce option 7).

3. Circle. You will be asked for the column and row in which the centre appears.
and the radius.

4. Segment. You will be asked for the coordinates of the two corners of the
segment of a circle. and the largest distance from the curve to the straight line.

5. Straight line. You will be asked for the coordinates of the two ends of the line.

6.

|

Nore:

Curved line. You will be asked for the coordinates of the two ends of the line.
and the largest distance from the curve to the imaginary straight line between
these two points.

Shading. You will be asked whether the shape inside the current framing
rectangle is to be blocked in or cross-hatched. Note that the current framing
rectangle is the last one cither drawn or set up as a frame. In this context, the
word “inside” is used inclusively. In other words. if you draw a rectangle and
then call up option 7. this rectangle will be shaded in. unless there is another
figure inside it, in which case strange things will happen.

If vou choose “*cross-hatch™ you will be asked for the distance between cach
line, and whether the hatching is to be straight or curved. If it is to be curved.
you will be asked for the maximum distance between the curve and the
imaginary straight line between the two end points. (Enter option 2 first.)

Save. This saves a picture on tape. You will be asked for a name.

Load. This loads a picture back from tape. You will be asked to supply its
name.

There is no need to implement the whole program all at once. The subroutines
starting at lines 1000. 2000, 30 and so on deal with options 1. 2. 3 etc.
respectively. So if you want to start with something simple and just draw
rectangles and circles vou need not code lines 48 onwards. Of course. if you
do this. don’t enter optians 4-9 or yvou'll get an error message. There's one
other thing to beware of: the routines starting at 4000, 600 and 7000 all call the
routine at 950¢.

1) INPUT “set mode: 7; m$

20 IFm$ = “f* THEN STOP

30 IFm$="c¢"THENOVER |

40 TFmS = “d” THEN OVER @: INPUT “colour:": ¢: INK ¢
5¢ INPUT “option:™: op

60 GO SUB 100Q = op

M GOTO 10

127

I FORx =@TO255STEPS

1010 PLOT x. @

1920 TF x/10 = INT (x/10) THEN PLOT x. |
1030 TF /100 = INT (x/100) THEN PLOT x. 2
140 NEXT x

105¢ FORy=0TO I75STEPS5

1060 PLOT®.y

1070 IF y/10 = INT (y/I) THEN PLOT 1.y
1080 ITF y/100 = INT (v/100) THEN PLOT 2.y
190 NEXTy

113 RETURN

2000 INPUT “left column of rectangle:™; I
2010 INPUT “‘right column:™: rc

2020 INPUT *“*bottom row:™"; br

2030 INPUT “top row:"; tr

2@ INPUT ““draw (d) or frame (f):”": m$
205¢ 1Fm$ = “f' THEN RETURN

2060 PLOT lc, br

2070 DRAW@. tr — br

2080 DRAW e —lc.0

2000 DRAW Q. br — tr

210 DRAW Ic —rc. @

2110 RETURN

3 INPUT “centre of circle; (column then row):™: cc. cr
3010 INPUT “‘radius:":r

3020 CIRCLE cc.cr.r

3330 RETURN

4 INPUT “one corner of segment; (column then row):": ¢cl. rl
4010 INPUT “other comer: (column then row):™: ¢2, r2

4020 INPUT *‘max. distance from curve to line:": d

4036 GO SUB 9500

440 PLOTcl.rl

4050 DRAW 2 —cl.1r2 —rl

o0 DRAWCcl —c2.rl —12.a

44070 RETURN

S INPUT one end of line: {column then row):": ¢cl. rl
5010 INPUT "other end: (column then row):"": ¢2. r2
5020 PLOTecl. rl

128

7010
7020
7030
7040
T050
7070
7080
TH0
7100
7110
7120
7130
7140
7150
7160
7170
7175
7180
7190
7200
RN
8180
820
9000
9010
920

950

9510
9520

DRAW2 —cl.r2-rl
RETURN

INPUT *one end of curved line: (column then row): " el rl

INPUT *other end: (column then row):™: ¢2. 12
INPUT “max. distance from straight:"; d

GO SUB 9500

PLOTcl. rl

DRAW 2 —cl.2—rl,a

RETURN

INPUT “block in (b) or hatch (h):": m$
IFm$=b"THEN LETs= l: LETa = ¢: GO TO 707¢
INPUT “width of hatch:™: s

INPUT *‘straight (s) or curved (¢):”": m$
IFm$ ="s"THEN LET a = 0: GO TO 7067
INPUT “max. distance from straight:": d
FORr=brTOtrSTEPSs

FORc=1cTOrc

IFPOINT (c.r) = | THEN GO TO 7120
NEXTc¢

GO TO 7199

LETcl =c

FORc=rcTOIcSTEP —1

IF POINT (c.r) = | THEN GO TO 7160
NEXTc¢

LETc2=¢

PLOTcl.r

IFm$ ="¢"THENLET 2 = r: LET rl = r: GO SUB 95%)

DRAW 2 —cl. 0. a

NEXTr

RETURN

INPUT “enter name for picture to be saved:™; p§
SAVE p$ SCREENS

RETURN

INPUT “enter name of picture to be loaded:™: p$
LOAD p$ SCREEN$
RETURN

LETI=0.5+«SOR ({2 ~cly*(c2 —¢cl)+ (12— rl)=(r2
[ETa=ASN(2+1+d/(dT2+172))*2
RETURN

-rl))

129

Modifications and improvements

1. At the moment there are no tests to ensure that the user doesn’t try to draw off the

screen. Insert some.

Some commands have the effect of destroying the horizontal scale, so that you have

to regenerate it using option 1. How could you avoid this problem?

3. How about writing a routine to generate vertical hatching? (Or cven diagonal
hatching?)

-

At Harold Hustler’'s Vegas Venue
they don’t play ordinary roulette;
they play:

Linette

This is roulette played in a straight line.

1 LETw = 1M

200 INPUT *Faites vos jeux [1": b$

i CLS

4 INPUT “Sizeof bet [1"; a

5S¢ LETw=w-—a

) FORn=0TOY

70 PRINTATI10.2+n+ 6:CHRS$ (48 + n)

80 NEXTn

99 LETr=INT{5+ RND)+5

1M LETd=INT(1¢+ RND)

1O LETr=r=10+d

120 FORn=0TOTr

130 LET x = n — 1@+« INT (n/1)

140 PRINT AT 10.2 =x + 6: CHRS 143

145 BEEP .05.x

150 PRINTAT 10,2+ x + 6; CHRS (48 + x)

168 NEXTn

170 PRINT AT 10.2 + x + 6: FLASH 1: CHRS (48 + x)
18 IFb$(1)="e" THEN GO TO2I0

199 IFbS(1)="0"THEN GO TO 220
200 IFVALDbBS(1)=dTHENLETw=w+ 10=a
205 GO TO 240
210 IFINT(d/2)=d2THENLETw=w+ 2*a
215 GO TO?240

130

220 IFINT(d/2)<>d/2THENLETw=w +2+*a
240 PRINT AT 16.9; w; I chips 17

250 IFw>=>=0THEN GO TO 20

260 PRINT “Harry’s Mob will be round in themorning!”

Program notes

1.

-

After RUN, you can bet either on EVEN, ODD, or a number between @ and 9. by
typing in your bet. (Any word starting e will be read as ““even™. anything starting o as
o™

You then say how much you are betting by inputting a number. You start with £100,
setin line 10.

If you win you get back twice the stake on e or o; ten times the stake on a number.
This theoretically makes it a “*fair” game.

You can bet more than you have in the kitty; but beware if you lose!

In line 260 there is no space in themorning. Why? Put one in and see.

To stop. on a character input, hit DELETE and then STOP. On a numerical input
STOP will do.

Meanwhile, two blocks up The Strip,
Harold’s arch-rival Samuel Hammerhead
has had an original idea . . .

Circular Linette

This is Linctte played in a circle. Hmmm . ..

0 LETw = 104

3 CLS

40 CIRCLE 123.91.84

50 CIRCLE 123.91, 60

60 FORn=0TO?9Y

70 PRINTATIQ+9+COS(n*PI1/5).15+9+SIN(n+*PI/5); CHR3(48 + n)
80 NEXTn

82 INPUT “Faites vos jeux. kiddo!": b$

84 INPUT ““How much ya wanna bet?; a

8 LETw=w-—a

9 LETr=INT(5*+RND)+5
10 LETd=INT (10« RND)
19 LETr=r+10+d
120 FORn=0TOr
130 LETx =n — 10+ INT (n/10)
140 PRINTAT I} + 9= COS(x+PI/5).15+9=SIN(x*PI/5),CHRS 143
145 BEEP .05.x

131

150 PRINTATIQ+9+COS(x*P1/5).15+9=SIN(x=*PI/5):CHRS (48 +x)
160 NEXTn
170 PRINTAT IO+ 9+« COS(x«PI/5). 15+ 9=SIN(x+PI/5);
FLASH 1: CHRS (48 + x)
180 TFb$(1)="e” THEN GO TO 210
19¢ IFbS(1) =0 THEN GO TO 220
2 IFVALbS (1) =dTHENLETw =w + 10+ a
205 GOTO 240
210 IFINT(d/2) =d2THENLETw=w + 2+a
215 GO TO 240
220 IFINT(d/2) < =d2THENLETw=w + 2+a
240 PRINT AT 10, 10: w; Ul chips 11 07
250 IFw = =0THENGO TO 82
260 PRINT FLASH 1:*Steer clear of Sammy the Shark!™
Program notes
[nstructions for use are just like LINETTE, previous program.

1.
2. Plis key M in extended mode.
3. Samuel Hammerhead is a bit more flash than Harold Hustler.

Dot-dot-dot; dash-dash-dash;
dot-dot-dot . . .

Automatic Morse

This is an example of the way to use BEEP. 1t accepts a message from the keyboard. and
turns it into Morse code. The message. and the code. are displayed on the screen:
simultaneously the dots and dashes are produced from the Spectrum’s loudspeaker.

AUTOMATIC MORSE

5 CLS
10 INPUT “Enter message 07 m$
20 FORi=1TOLENm$
3 LETc= CODE mS$ (i)
40 IFec=320Rc¢=32ANDc<=650Rc =Y AND ¢ =97 0OR
¢ > 122THEN GO TO 120
54 IFc>9 THENLETc=c- 32

60 TLETc=c—64
132

100 [IF ¢ = —32 THEN PAUSE 40: PRINT *0O0"
1} 1IF¢ =@ THENPRINT CHRS$ (¢ + 64): “[0™; : GO SUB 206
120 NEXTi
130 STOP
200 LETkS = a$ (c)
218 EETt=1
220 IFk$ (1) = “1" THEN PRINT INK 6; =.”"; : BEEP .1, 10
230 IFKk$ (1) = “2” THEN PRINT INK 3:-""; : BEEP .3. 19
240 IFkS (1) = "O0"ORt = 4 THEN PRINT “00": RETURN
250 LETt=1t+1: GOTO 220
50 REM Input Routine
510 DIMaS(26.4)
520 FORr=1TO26
530 INPUT a$ (r)
543 NEXTr
Program notes
1. Tosetup the array a$ which stores the Morse code. you must start with GO TO 5(4.

You then INPUT 26 strings of I's and 2's: these are the Morse codes for the letters
A—Z . with | standing for a dot and 2 for a dash. Here are the strings to INPUT . in

order:
Letter INPUT this string Letter INPUT this string

A [2 N 21

B 2111 O 222
C 2121 P 1221
D 211 0 2212
- 1 R 121
F 1121 S 111
G 221 T 2

H 1111 U 112
I 11 v 1112
J 1222 w 122
K 2 X 2112
L 1211 Y 2122
M 22 Z 1211

Don’t INPUT the letters: theyv're just there to remind yvou how far you've got.
2. After setting up a$. press GO TO S, Do NOT press “"RUN"—vyou'll clear out the
variables vou've just laboriously tvped in. Never use RUN on this program.
133

134

L

When asked for a message. type one in. If it’s more than 22 characters long. you'll

need to SCROL.L. The program treats lower and upper case letters as the same. and

ignores everything else. For example. you could type in “Hello™.

4. The computer will now display the message. in letters and Morse: and it will BEEP
the dots and dashes.

5. Note the way a string array is used to hold the Morse code. This is a very common use

for arrays: as a “"look-up table™ to convert from one system of code to another one.

Project

Modify the program so that it can cope with numbers as well as letters. The Morse code
for numbers §-9. in order. is:

Go skiing with the Spectrum
in the safety of your own home:

St Morilz

You have to ski through the forest. avoiding the trees to arrive at the ski-lift. You are an
"M (bird s-eve view of a crouching skier. get it?) and the ski-lift is a black blob (1 don’t
know why. cither!). It's downhill all the way. so if vou do nothing vou'll simply fall from
top to bottom. or until you hit a tree. You hit 2" to veer left and “m™ to go right.

i
i
'
A, L 3
T 2 I - T
* 3
I S - ¥
H
i
+ % i i
+ H
% +
- + i T
+ + i {3
| +
* + T
.

Hani anothed go7v ot

I CLS: RANDOMIZE
2 LETn=3}):1.ETsc= 14

I FORi=1TOn

20 LETr=1INT(RND = 18)+ 3

3 LETc=INT(RND = 32)

40 PRINTATr. c:t”

S NEXT

60 PRINT AT 21.2¢:."®"

T8 PRINT AT(. sc: ~M”

8% PAUSE 20

%9 FORr=1TO2d
1M LETd$ = INKEYS

103 TFdS ="THENPRINTATr— l.sc: ™|’
I IFd$ = "m”"THEN PRINT ATr — |.s¢: "V LETsc = s¢ + |
185 TFdS="7"THENPRINTATr— l.sc:"/": LETs¢c=%c—1
120 TF SCREENS (r.s¢) = 1" THEN PRINT AT r. sc: =+ crash™: GO TO 24
130 PRINT AT r.sc:"M™
135 PAUSE?2
140 NEXTr
150 1F s¢c <22 AND s¢ = I8 THEN PRINTFLLASH 1: AT, 2: *Great run!™:

GO TO 20

160 PRINT AT (. 3: “You've got a walk to the ski-lift”
200 INPUT “want another go?™: q$
210 1IF g8 = "yes" THEN GO TO |
2200 CLS: PRINT AT 10, 2: “Et maintenant l'apres-ski. . .7

Modifications and improvements

[E¥]

The trees could look more tree-like. Experiment with CHARACTER BUILDER
to produce a spruce or concoct a conifer. While vou're at it. how about giving the
skier twin tracks: and do semething about that awful ski-hft.

The number of trees is fixed at 3¢, Allow the user to vary it to get an easier or more
difficult game.

There's a “PAUSE 27 at line 135 in the loop to give a reasonable speed of descent.
You could allow the user to alter this. (I don’t mean directly: set up a series of
possible PAUSE values and allow the user to enter. say. a difficulty rating of 1-5.
cach of which selccts a different PAUSE value.)

Why not modify the difficulty automatically, by looping the whole program and
increasing the number of trees and/or descent speed every time the user makes a
successful run?

User-defined graphics made easy:

Character Builder

This program lets vou design a graphics character on the TV screen, large scale, and then
enters it into the computer as the user-defined character corresponding to a letter of your
choice. It also prints out the contents of the eight bytes giving the rows of the character.
for re-use in subsequent programs.
10 DIMK(8.8)
20 FORi=8TO 15
38 PRINTATI. 12; i 3
40 NEXTi
S50 LETx=@0:LETy=1#0
55 GO SUB 500
60 INPUT *“Pixel Value (17 v
65 IFv<>=>@0ANDv <= =1 THEN GO TO 60
W LETk{(x+1l.yv+1)=v
80 PRINTATx + 8.y + [2: INVERSE v: (0"
% LETy=y+1
1M IFy=8THENLETy=0:LETx=x+1
110 IFx=8THENLETx=@: LETy = 0: GO TO 20
120 GOTOSS
200 INPUT “Is this right?": g8

136

310
320
330
S¢0
600
610
620
630
640
650
66
670
700
710
720
730
740

IF q$ == " THEN GO TO 2

[F g$ (1) = “y" THEN GO TO 600

INPUT *Use arrow keys to move cursor™; j$
GO SUB 5

IFINKEYS$ < = " THEN GO TO 240

IF INKEYS$ = = " THEN GO TO 25§

LET i$ = INKEY$
IFIS="0ORiS="1"THENLETk({x + 1.y +1)= VAL i$:
PRINT AT x + 8,y + 12: INVERSE VAL i$; “[0": GO TO 20
PRINTAT x + 8.y + 12: INVERSE k(x + L.y + 1) =00"
[Fi$ ="5"THEN LETy=y—- 1+ (y=0)

IFi$ = 6" THENLETx=x+1 - (x=7)

IFi$ ="7"THENLETx=x—-1+(x=@)

IFi$ =“8"THENLETy=y+1—-(y=T7)

GO SUB 500

GO TO 240

PRINT ATx + 8.y + 12: FLASH 1; INK 2; “+": RETURN
INPUT “Which Letter?™: f$

FORn=1TOS

LETt=k(n.1)

FORj=2TOS8

LETt=2+t+ k(n.j)

NEXTj

POKE USRS +n— 1.t

NEXTn

PRINT “This is what it Tooks like: [17; CHRS (CODE f§ + 47)
PRINT. . “Bytes:”

FORn=1TOS8

PRINT PEEK (USRf$ +n— 1) “[1":

NEXTn

Program notes

l.

Initially. the screen shows an 8 > 8 array of dots. and a flashing cursor: it asks for a
Pixel Value. You input@or 1: if you input @), a dot is blanked out: if a 1, it is blacked
in as a square. The cursor runs automatically through the entire array. row by row:
vour inputs build up your first try at the character.

It then asks “Ts this right?". If you input “v"—or anything starting with y—it goes
on to load the character into the machine (see note 3. below). If you input anything
else. it prints the message “Use arrow keys to move cursor”™, You must now press
ENTER. and the cursor reappears. It can be controlled from the keyboard using
keys 5. 6, 7. 8 to move it in the directions of the arrows. Once you have moved it to
the right place. an input of @ or 1 from the keyboard will blank out or black n the
corresponding square. The message “Is this right?™ reappears. and vou can make
new changes if you wish,

137

138

3. Onccitisright. and you've typed y™. the machine will ask you which letter you wish
vour character to correspond to. Recall that each user-defined graphic character is
accessed from the keyboard by using a letter (apart from v. w. x. vy, z): you have to
decide which one. For example, you might choose “'s™: now your new character is
stored in the right place for graphics-mode s to produce it. You can also call it by
code. as CHRS (162).

4. The computer also lists the eight bytes corresponding to the rows of the character:
this makes it easy to sct it up at any later date, if you note the numbers down. by
POKEing them into place as described on page 94.

5. From now on. until vou switch off. your new character will be stored as graphics-
mode s, You can load other characters into other positions. by RUNning the
program again.

6. So that you can check if everything is correct, you get a sample print-out of your new
character. If you don’t like it. press GO TO 200, The character isn't printed out, but
as you sweep the cursor through the area. the squares reappear: and you can make
new changes.

Up at the rifle range on a windy
day: how high can yvou score?

Target Praclice

1 LETd = 1
20 LETw =4+ (.5 — RND)
3 LETv = 1000
4 LETs=0
59 LETc=0
1MW FORi=1TOS
11 CIRCLE 127.95.8 =i
120 NEXTi
2 IFc=11THENSTOP
205 PRINT AT 20, @: Elevation =7
210 INPUT e: PRINT ¢
2200 PRINT "Deviation = ™;
2300 INPUT: PRINTf
240 LETe=e=+Pl/I80
250 LETf=f=+PI/18}
M LETt=d/(v=COSc)
310 LETh=v+t*SINe—-49=t=t
320 LETk=w=d/ 100+ d=*SINT
330 LETh@=8=h +95+ 4h« (.5 - RND)

340 LETkO@=8+k + 127 + 40+ (.5 - RND)

350 IFh@<QORKD > 1750R k@ < @ OR k@ = 255 THEN GO TO 500

360 GO SUB 399

370 PRINTAT20.0:*0000000000000000"..[16spaces)
“0o00o0oooooconooo” [16 spaces]

375 LETc=c+1

380 GO TO 2N

3000 INK 3

40 PLOTk® — 8, h(: DRAW 16, 0: PLOT k@, h{) — 8: DRAW 0. 16

405 BEEP.1.5

410 CIRCLE k@, h@. 6

415 TFc< I THEN GO TO 480

420 LET q=SOR ((k@ — 127) + (k@ — 127) + (h® — 95) * (h®) — 95))

430 LET q = INT (g/8)

440 LETq= 100 — 10+q

450 IFq <30 THENLETq=0

460 LETs=5s+q

470 PRINT AT®. 25:¢c: TAB 28: s

480 INK @

499 RETURN

S0 PRINT AT 0. : “Off screen™

510 PAUSE 50

520 PRINTATO.:"O0000OOO0OCOO” [10 spaces]
53 PRINTAT.0:"0000000000O0O0OO0O0OOQO"..[l6spaces]
*O0000000000000ooO” [16 spaces)

535 PRINT AT®.25:¢
S LETc=c¢+ 1
S50 GO TO 2

Program notes

After RUN, vou are asked to input an elevation (in degrees). Somewhere close to
zero is best, say between =2 and +2.

Next vou are asked for a sidewavs deviation (1o compensate for a side-wind). This
should be between about — ¥ and + 10, NB: you are not told which way the wind is
blowing!

You get one ranging shot. which doesn’t count: and then 10 shots. The wind varies
shightly between shots.

The score. and the number of shots used. s printed out at the top right— number of
shots first, then score.

IR

Other titles of interest

PEEK, POKE, BYTE & RAM! Basic Programming for the ZX81
lan Stewart & Robin Jones

"Far and away the best book for ZX81 users new to computing'— Popular Computing

Weeklv
", . . the best introduction to using this trail-blazing micro’— Computers in Schools

*One of fifty books already published on the Sinclair micros. it is the best introduction
accessible to all computing novices'— Laboratory Equipment Digest

The ZX81 Add-On Book
Martin Wren-Hilton

Machine Code and better Basic
[an Stewart & Robin Jones

ComputerPuzzles: For Spectrum and ZX81
[an Stewart & Robin Jones

Games to Play on Your ZX Spectrum
Martin Wren-Hilton
Available from October’82

Further Programming for the ZX Spectrum
[an Stewart & Robin Jones

Spectrum in Education
Eric Deeson

Easy Programming for the BBC Micro
Eric Deeson

Further Programming for the BBC Micro
Alan Thomas

Plus lots more! Keep your eye on the magazines for up-to-date news.

Tapes available soon!

if you’ve just bought — or are still thinking of buying
a £ZX Spectrum, then this is the book for you!

Ne'll show vou, in easy steps, how to get started on
¥riting your own programs. Topics include:

« graphics
strings
data
debugging techniques
son et lumiere
» Drogramming style

and, in case you're impatient to have a game or two
n your new toy, why not have a go at

Brickbat

‘ruit machine
Picasso
sutomatic Morse

or anv of the other 26 “Prepacked Programs™ listed
at the end of the book. They are all ready to copy
ind RUN, and you’ll find that, by working through
he text, you'll come to understand how these
programs were put together.

Happy computing — it’s easy when you know how!

Amazing: | wonder
do these hj-pe
graphics ?

how ”‘E}'

L T i 1
-hiva Publishing Limited

