The ZX Spectrum in science teaching is an essential sourte book for
science teachers who want to use a ZX Spectrum in their teaching —
either in the laboratory or in the classroom. Although the ZX Spectrum
is comparatively cheap, it is none the less a powerful and flexible
microcomputer that can be used in many ways. This book contains

many programs that you will be able to type in to your computer and__

run immediately, but it also shows you how to adopt these programs
and how to write your own.

A large part of this book looks at using the Spectrum in the laboratory
and examines how the Spectrum can be interfaced with other
laboratory equipment. Programs are given that show how the
computer can be used to take measurements and to control
experiments. For example, the Spectrum can act as a four-channel chart
recorder, it can measure time, speed and acceleration and it can

. measure and plot the voltage across a capacitor as it discharges. The
principles of the program are always clearly given so that you will soon
be able to start writing your own interfacing programs.

The ZX Spectrum in science teaching also acts as an introduction to
machine-code graphics using the full resolution and colour of the
Spectrum. Difficult topics like waves and radioactive decay can be
dynamically illustrated and many program listings are given in full.

This book is parallel to three other books by the same author: The BBC
microcomputer in science teaching, The ZX 81 in science teaching and
Microcomputers in science teaching (for the PET). Microelectronics: A
practical introductiorn is also available and provides an accessible
introduction to the fundamental ideas of microelectronics and
miCroprocessors.

Some reviews of Microcomputers in science teaching:

‘R.A. Sparkes has produced a book, written directly for those science
teachers who have a desire not only to use computers but also to get
behind the coding and know how the programs work. . . . Thétextisa
goldmine of programming ideas and techniques showing the way
desirable features can be coded.” - School Science Review

‘Any teacher, whatever subject or machine, will benefit from a look
through these pages — here’s an author who has undoubtedly spent
an immense amount of time producing a wide-ranging and delightfully
readable text. ; ; : :

One must repeat - brilliant, brilfiant, brilliantl” Computers in Schools

ISBN 009 158201 6

22 S S—

The ZX Spectrurh
- In science teaching

The ZX Spectrum
in science teaching

UB/TIB Hannover 89
100 623 B24

L || | I i
Wi ‘I'. L i,|l|\.|
FH 8666

o

The ZX Spectrum
in science teaching

R. A. Sparkes

UNIVERSITATSBIBLIOTHEK
HANNOVER

TECHNISCHE
INFORMATIONSBIBLIOTHEK

Hutchinson

London Melbourne Sydney Auckland Johannesburg

Yol

The programs listed in this book have been checked carefully. In the hands of a
competent user, all programs listed should perform their intended function
satisfactorily. But no program can ever be entirely free from error, even when
copied exactly from an accurate print-out Therefore the publishers do not
guarantee the programs and take no responsibility for any errors in or omissions
from them. No liability is assumed for any damage, either physical or
psychological, that ensues from the use of any information contained in this
book. Neither is there any guarantee that the equipment described in this book
will not change, thus rendering all programs unworkable.

COPYRIGHT 1984 R. A. SPARKES

World rights reserved.

No part of this publication may be copied, transmitted or reproduced in any way,
without prior written approval from the publishers. with the following exception.
The programs in this book may be entered into a computer, executed and stored
on magnetic tape or disk for use by the reader personally but such programs may
not subsequently be sold. exchanged or made available to others

Hutchinson & Co. (Publishers) Ltd
An imprint of the Hutchinson Publishing Group
17-21 Conway Street. London WIP 6JD

Hutchinson Publishing Group (Australia) Pty Lid
PO Box 496, 16-22 Church Street, Hawthorn,
Melbourne, Victoria 3122

PO Box 151. Broadway, New South Wales 2007

Hutchinson Group (NZ) Lid
32-34 View Road. PO Box 40-086, Glenfield, Auckland 10

Hutchinson Group (SA) (Pty) Lid
PO Box 337, Bergvlei 2012, South Africa

First published 1984
® R A Sparkes 1984

Typeset in Times and Univers by Folio Photosetting, Bristol
Printed and bound in Great Britain by
Anchor Brendon Lid, Tiptree, Essex

British Library Cataloguing in Publication Data
Sparkes, R A.

The ZX Spectrum in science teaching.

1. Science — Study and teaching (Secondary)

— Great Britain — Data processing

2. Science — Computer assisted instruction

3. Sinclair ZX Spectrum (Computer)

L Title

5071241 QI834.G7

ISBN 009 158 201 6

For Mum and Dad

Acknowledgements

The ZX Spectrum microcomputer. on which the programs in this book were
written, was given to me by Griffin and George and I am most grateful for the
use of it. Dave Palmer and Griffin and George between them helped me by
providing the laboratory interfaces as well as help and encouragement. Once
again the artwork is the product of Annie Hynes and this time I have had help
in preparing one of the programs from Dr Leon Firth. I am most grateful to
both of them. 1 acknowledge the support given by the publishers. especially
Bob Osborne and Sue Walton. 1 am especially grateful to teachers who
attended in-service courses at St Andrew’s College and were willing to try out
my ideas and offer further suggestions.

However, none of these can share any blame for the errors and omissions
that occur in this book. and I take full responsibility for them. I look forward to
receiving comments from readers on how this book. and the use of the
Spectrum in the areas | have discussed. might be improved.

Once again most thanks are due to my wife. Margaret. for her €ncourage-
mentand criticisms and for her patience and understanding The development
of thisbook and the ideas in it has been at the expense of both Margaret and the
children. I can only hope that their sacrifice is found to be worthwhile.

The University of Stirling
1984

Contents

Introduction
The new resource
Programming techniques
Computation and mathematical modelling
Microcomputer timing and control
Analogue interfacing
The Z80 microprocessor
Machine-code graphics
Interfacing in machine code
Dedicated systems
Suppliers
Bibliography
Program listings

Index

Listed programs

Th s li i i
givznp;af;an:s l1s\éed in the Appendix are described below. Each has also bee
ortened name as a file name for tape or Microdrive storage. "

P
rogram 1 RgéTéL ELECTRONICS these programs teach and
.) test the principles of
rogram 2 LOGIC TEST (LOGICTEST) ~ Boclean logic and show the
use f}fa microcomputer in
solving logic problems. They
require a logic board
connected to an interface,
details of which are given in
. the text.
rogram 3 LEAST SQUARES PL ili
et OoT a utility program.
Program 4 MASTERMIND
(MASTERMIND)

Program 5 780 SIMULATION (Z80SIM)

a science-based game.

teaches the instruction set of
the Z80 microprocessor
(written by Leon Firth).

P =
rogram 6 REACTION TIMER (REACT) measures reaction times,

The next sixteen programs require the Interspec interface.
Pro '

gram 7 STOPCLOCK (STOPCLOCK) measures time intervals with
a visual display of the
elapsed time in large digits.

|
rogram 8§ FAST TIMER (FASTTIMER) measures time intervals in

ten microsecond units.

P
rogram 9 TSA METER (TSA) measures time, speed and

acceleration.
Program 10 &%CELERATION TUTOR a more transparent version
CTUT) of TSA, to allow pupils to
see l_mw the computer carries
out its calculations.

Program 11 CONSERVATION OF
MOMENTUM (CONSMOM)

Program 12 SPEED-TIME PLOTTER
(SPEEDPLOT)

Program 13 FREQUENCY METER
(FREQMTR)

Program 14 PENDULUM PERIOD
(PENDULUM)

Program 15 PULSE GENERATOR
(PULSER)

Program 16 PROGRAMMABLE
OSCILLATOR (PROGOSC)

Program 17 X-Y PLOTTER
(XYPLOTTER)

Program 18 STORAGE OSCILLOSCOPE
(STRGOSC)
Program 19 FAST ADC (FASTADC)

Program 20 DIGITAL MULTIMETER

(DIGMULT)
Program 21 CURRENT-VOLTAGE
PLOTTER (IVPLOT)
Program 22 FOUR-CHANNEL CHART
RECORDER (CHRTREC)

Listed programs

measures the speeds of two
colliding trolleys,
simultaneously if necessary.

plots a speed-time or
distance-time graph.

measures pulse frequency.

measures the period of a
pendulum.

produces square pulses of
variable frequency.

provides alternating voltages
with changeable waveforms
and frequencies. This
program needs a digital to
analogue converter.

displays two voltages at the

same time like an X-Y CRO.

captures analogue data from
up to four channels for
subsequent display.

for rapid voltage readings
(up to 50 000 per second).

displays voltage, current,
power and resistance.

automatically plots I-V
characteristics.

displays four channels of
voltage input and scrolls
horizontally.

The remaining programs do not need interfaces Their use is described in
Chapter 1 and they are referred to throughout the text as examples.

Programs for drill and testing
Program 23 MECHANICS DRILL

Program 24 INTEGRATED SCIENCE
TEST

(MECHDRILL)
(INTSCITEST)

The ZX Spectrum in science teaching

Program 25 ELEMENTS
Program 26 CHEMICAL NAMES

Simulations with animated graphics
Program 27 ANALOGUE-DIGITAL
SIMULATION

Program 28 BYTE SIMULATION
Program 29 RADIOACTIVE DECAY
Program 30 SUM OF TWO DICE
Program 31 STANDING WAVES
Program 32 LONGITUDINAL WAVES

Program 33 MOLECULAR MOTION
- BASIC

Program 34 MOLECULAR MOTION
- FAST

Examples of the iterative method
Program 35 GRAVITY

Program 36 RESONANCE

Program 37 CAPACITOR DISCHARGE
Program 38 PROJECTILES

Program 39 NEWTON

Program 40 RUTHERFORD

(ELEMENTS)
(CHEMNAMES)

(ANALDIG)

(BYTE)
(RANDECAY)
(SUMTWODICE)
(STWAVES)
(LONGPULSE)
(ONEMOL)

(MOLMOT)

(GRAVITY)
(RESONANCE)
(CAPDIS)
(PROJECTILE)
(NEWTON)
(RUTHERFORD)

Introduction

This book is a ZX Spectrum microcomputer version of my previous book
Microcomputers in Science Teaching, which was written mainly for PET and Apple
users. The differences between these machines and the Spectrum are such that a
major rewrite has been necessary. To some extent, this book is also a sequel to
Microelectronics (Hutchinson, 1984). That book concluded that the most sensible
way to introduce students to microelectronics is through programming a
computer to control its environment. Accordingly, a large part of this book
considers the use of the Spectrum in analogue and digital measurement and
control.

To do this, some way of interfacing the Spectrum to other laboratory equipment
is necessary. In this book I rely heavily on one particular interface - the Interspec.
This is so good that teachers are unlikely to be able to improve on it themselves. It
is inexpensive and it would be impossible for the average teacher to produce a
home-made version any cheaper. The Interspec has an expansion bus and TTL
input and output ports, to which other devices may be connected. I have,
therefore, given some guidance on adding extra facilities to the Interspec and this
part of the book assumes a knowledge of basic electronics.

To reduce the overall amount of material, I have tried to exclude things thatare
described in the ZX Spectrum manual (also called the user guide) and I assume
that readers are well acquainted with that book. T have attempted to fill in the gaps
in the user guide to allow Spectrum owners to get even more out of their machines.
I have concentrated mostly on those applications of the Spectrum that are
particularly relevant to science teachers. The term ‘science’ has been interpreted
pretty widely and there is a great deal to interest teachers of engineering science,
CDT and mathematics too. Most examples are taken from physics, but the
principles they demonstrate apply to all subjects. This area is one of very rapid
development and new ways of doing things are constantly being found. For this
reason I have emphasized the principles involved as well as providing specific
examples. Forty programs are listed in the Appendix and these are referred to in
the text as examples of the points being made. In addition, many other listings are
included in the text to illustrate particular ideas. Note that these examples (which
will eventually be available on Microdrive for readers who wish to save time) are
not ‘idiot proof ", that is, they have not been tested and protected against pressing
the wrong keys or entering the wrong information etc.

My programs are mainly intended to help Spectrum users to write their own
programs. The listings are utilities that can be developed by teachers fortheirown
purposes. There are those who decry this attitude, saying that we can't expect
teachers to become program writers. Unfortunately, there is never enough money

11

The ZX Spectrum in Science teaching

in et_jucation to pay for the prog

ha_vx_ng to write their own (or st

writing is well within the ca;

to drive a car).

" :;fvlei'lfuse the analogy of the motor car in thi
¢l from one part of the country to anoth

ra i

ealrlr;lsetha; teachers want, which results in teachers

wheiok 1'nr rom someone else). In any case program
les of the average science teacher (like learning

: context. If you occasionally need
: T 1n reasonable comfort, you
?;:Pe};zfxli'e. Ailematlvcly. You may learn to griv::};:z
o ;ll"lll lally and is only worthwhile ifyou expect to do
Al i “;an{ pu;;}sy'expecz_tu use the microcomputer on a few
bl iy 0 use it without supervisi
Consme};g]c ‘cl-s:xgral:nd get crash proof programs, But i]f}you ;i?énﬂc:en i
il ;en;lglro::omﬁuter‘ it is better to learn pmgrarnn[roinzi'l;e
¢ to take contro i id i :
crashes, because you will know how to rec e ot T et
program to i i
s i your own specification and you will pay
th;l"h: effort in wt;iling programs is less in
m absolutely idiot proof. I appreciate

car yourself. This will take
alot of travelling, Likewis

The new resource

‘Where shall I begin, please your Majesty?
(Lewis Carroll, Alice’s Adventures in Wonderland)

One of the unfortunate results of the history of computing is that most people still
regard it as a branch of mathematics. A common response 10 the call to learn
programming is, I'm no good at maths.’ This is a mistake, since there is no longer
much relationship between mathematics and computing. For science teachers,
the microcomputer is much more a new piece of educational technology than a
super calculating machine. Its use is not confined to the mathematics department
nor to a computing department. This chapter explores the possible applications
of the microcomputer in science teaching.

To emphasize the difference between the traditional computer and its modern
counterpart the new phrase ‘information technology’ has been invented. The
modern microcomputer is mainly concerned with collecting, processing and
presenting information. The machine should therefore appeal instantly to the
teacher. whose task it is to disseminate information in its widest sense.

There are several aspects of such ‘presentation’. First of all the microcomputer
can be used to display a page of text on its television screen (or VDU). The
information could also include a set of figures or a list of names in columns.
Alternatively, the information could be presented graphically (i.e. as a diagram or
picture or graph) or by an animation or moving picture. This is where the video
screen has an immediate advantage over the blackboard or OHP, since
animation is not available on the latter. The microcomputer is thus a textbook,
blackboard, slide projector and film loop all together in one instrument.
Itis not restricted to use by individuals and there are several ways in which it can
be used with quite large groups. In this case the display is unlikely to be just text,
because this cannot be read from a distance (although there are ways of
displaying a few words at a time in large letters). More likely it is a picture or an

animation that is being presented for all to see, but with the added advantage of
interaction. At any stage during a demonstration the students can be asked to
suggest how the parameters should be changed. A discussion can then take place
as to the likely effects of this change upon the phenomenon being investigated.

The changes may then be made to check on the predictions. The general name for

this application is electronic blackboard, where the microcomputer is used by

the teacher in front of the whole class.
The microcomputer is also a powerful tool for helping small groups of pupils.

Until class sets of microcomputers become available, it is envisaged that this

13

The ZX Spectrum in science teaching

application will be confined to use by students in a stations laboratory (where
there are a number of work-stations and the students move from one to the next).
The microcomputer can thus be used by small groups for short periods of time
within a lesson. Alternatively students might use the computer in a library or
resource centre. I use the generic term computer assisted learning or CAL for
this application.
At the other end of this spectrum, the microcomputer can be used by one
individual pupil working alone. The program being used might be simple drill
and practice or a tutorial or the microcomputer might be managing a complete
programme of work, adjusting the level of presentation to the particular abilities
of each individual pupil. One reason why microcomputers have suddenly
become important is because they make the dream of individualized learning a
reality. The difficulties of managing the workeards and the tests etc. that are
needed in the self-paced learning situation are overcome if they are presented by
the microcomputer. New material can be written on the screen for the stu
read and answer questions about. If the student is correct, then some other
can be presented, but a wrong answer causes the microcomputer to behave
differently, either by presenting the question again or by branching to a remedial
teaching loop. Itis this ability to react differently to different situations that makes
the microcomputer more powerful than any other resource we have had
before.

The interaction between the user and the microcomputer creates possibilities
for monitoring the teaching process much more efficiently than hitherto. The
process of instruction can be halted frequently to check that the student is still
following. This is something that every teacher tries to do but cannot achieve in
the conventional way for each individual student. Given these facilities, the
microcomputer’s role in programmed learning is obvious.

Scientists have an application of microcomputers that is peculiar to their
discipline - its use as a powerful laboratory instrument. We have already reached
the stage where no physics laboratory is complete without a microcomputer and I
think that this situation will soon apply in other areas. With suitable transducers
and interfaces the computer is fast becoming the only equipment in some
industrial laboratories. [do not think that this will happen in schools, butthey do
need to mirror the real world to some extent. The Spectrum may be used to
measure almost any physical quantity desired. At a rough estimate its use in this
way can save up to a thousand pounds worth of alternative apparatus, as well as

enabling some hitherto unmeasurable quantities (like acceleration) to be
displayed. This is my own favourite use of the microcomputer and much of this
book is devoted to it.

Inside every microcomputer is an incredibly powerful device, called a
microprocessor. By talking to this device, new horizons can be opened up,
especially for animated diagrams and for using the microcomputer as a
laboratory instrument. Because this is a new idea for most teachers it is presented

in Chapter6as a microcomputer simulation and tutorial, providing a step by step

dent to
material

14

The new resource

of assembly language programming. This is xln;ct?i;(:

Iy to explain microprocessor instructions. but also to _dell'lnons; ity
e ey uter simulation. Readers who follow this t roug i
g cohmol-:v this way of visually presenting a new topic cou! 1:;;,:-
an ;Or:egi?l::ching in other areas, for example. the operation of a nuc
transferre g ‘

P o S_l‘dl'loﬂ e le;ﬂ:ll\(\::n?iircior:::;\iig could take over the role of kecplrngr
Oumdfﬂ e ClaSSl"‘)wa '.that bigger computers have been doing in c:ommtzrcehoS
chmd?' e Sal'n;l bg expected. a great deal of r:sear_ch ancl_ dey’gloprrent he;
ey b ASdm‘g in lhis-area. and there is little point in anymdn'l'dua teﬂv:l g
alr_eadb_r b_efﬂ 'q[r)ae"ll'herc are several projects under way on the de\eltilpr;wcr:)me
dOlﬂg i 5 o écka es for schools and. before very long, these wi leb“n
ildmlnis{?ﬂll?fll pbl 1’50{ only will these include student records, nme”a ng;
gen._:rally‘ awf ad :'l‘bran‘ lo;;ns. etc.. but also there will be complete pa_ckagres‘l‘d
- ﬂ;t;; Sa;n]d assessment. Even if no other part of the school is affecte
m'ﬂrk:c)‘pr?tcj;:‘n ulgers. the school office certainly will be.) I
e heading too, 1 consider the use of a m.n::rocornr{ll g
T t Z;dimr to be very exciting. Readers o(‘th1slhcok will no h
i £ Dfr o :.'ious book The BBC microcomputer in science !eurﬁ.zmg z:hc
g il [‘11; was a; simple matter to call up the text of that book onl{c)liSke
i i hti:re t?}?é ané required, alter them and save them onceArnolre orn (hé
= o SE'ECI d ‘pscw';:ral such wordprocessor programs available c)rlhe_1r
Pk dlmli] d use more than repays the cost. Teachers who prep;u;:: il
e e‘{il find that their productivity increases by a faulor‘of l”:ec ;
?w“ “:;::&e'fg‘ise:‘m an even bigger saving of time for oln&ﬁ;ger:_l 3{3;:1;:;[:111;
i iovinm hese i i etail with partic X3 ¢
!'Jﬂ wuirih C?'-Pi'l)l’?i 5?::ZQE;ZZEZLLSS:el?hE?;ZSe examples (which afe std-;l;
s I'he Pfsﬂtr_ﬁ also be available in machine-ready form for rm;_ler]s{ :-nh
lh_‘-’ APPe"d'—“a“ ‘;::: not thoroughly tested programs. guaranteed ¥o w‘or i
= t[: Sm:s:lsr::fp}id ofusers. They are examples only oflhbe 50 rl‘c_fl“;\:\fdblt]relvr.zu
be done wi icroc ; rertheless. they have been tried y d
e dkorE.’er:li::recﬁféils::nl?allsﬁr;olj:;: understanding of programming. they will
work. v

present no problems.

approach to the principles

Specific examples

Testing) .

A common use ofmmrocumpu[erim sc e

inati routine ‘

-of-term examination as the n 1 S

w‘:icegdlezchers attempt to reinforce leam?g:dBecla*::;:i:u:;(;?fzhudin e
individual basis, !

entional method to be used on an i e
?onVL{:lllljmrzieed the public nature of the responses often causes pup

rom 1L y

hools is testing. This means not so much
stion and answer sessions, with

15

The ZX Spectrum in science teaching

strategies for avoiding an answer. Ifa chil

teachers will direct the question elsewhere. The microcomputer can be viewed as

a resource for handling question-and-answer sessions,

At the simplest level are numerical tests; the microcomputer is perfectly
capable of setting its own arithmetic questions and working out the answers for
itsell. MECHANICS DRILL (23) illustrates this application. It would be
relatively easy to adjust the number range and the difficulty of the programs like
this to suit the user. For practical purposes this program needs to be improved in
several ways. Where is the power of the microcomputer being used? There are no
diagrams or pictures oranimations. INTEGRATED SCIENCE TEST (24) shows
what can be done in this area. In this program the number of correct and w rong
answers may be counted, so that a final scare can be given. It is also useful 1o note
which questions the student &els wrong. in case this reveals the source of the
ignorance. A properly structured test would be written for this purpose anyway. A
way of doing this can be seen in the score routines of this program.

A particularly powerful use of the microcomputer is 10 allow the student to ask
for help. if the offered problem proves too difficult. This could be given
automatically after, say. three attempts. or it could be available upon pressing key
H. After the first few questions. it is a little wearisome to a student to be given
exactly the same "well done® response each time. No teacher would do this. so why
should we accept a lower standard from the microcomputer? It is not difficult to
create a whole range of responses in an array. and to pick one out at random, Also.
thought should be given to more dramatic ways of responding. Arcade iny aders
leap about with delight, when they score a hit on the defenders; why can’t the same

graphics be used in education? As a suggestion, the fast screen transfer routine
discussed in Chapter 7 illustrates how this might be done. by flashing pictures
onto the screen for a short time. This could be incorporated into a test program to
indicate whether the student has the right or wrong answer,

This area is also known as drill and practice. The microcomputer s
programmed to ask the questions and 1o monitor the responses. To do this there
has to be some way for the user and the microcomputer to intera with the user,
an aspect which is covered in the next chapter. INTEGRATED SCIENCE TEST
also illustrates several of the basic principles of using multiple choice items, This
program can be used as the framework for any other multiple choice test. The
items are kept separate from the main program. which handles all keyboard
inputs and scores etc. The question numbers, clues and correct responses are
passed to procedures as parameters. Scoring is a separate routine and the final
presentation of the results is also self-contained. Note the way that graphics have
been included with each item. These are not essential in all cases. but they do
increase motivation,

The most exciting thing about test exam
is that children tend 1o treat them more as
or to "do better than last time",
SCIENCE TEST was derived. wa

d remains dumb for long enough. mast

ples presented via the microcomputer
agame. They aim to ‘beat the computer’
The longer test. from which INTEGRATED
sthe one that made me realize the power of the

16

The new resource

nicrocomputer. Somech dren ran the test again and again to see i they could get
arKs. € a al s¢ st.
1 (:'L 1 have never noticed this in a traditional s hool te:
fu t

: ions : = T simulated by
51muial|§?phenon1encn model or experiment can be imitated or
Almost any Z

ams is type give tables of numbers as results, while
i cnm!’!lu_li::;::ﬂsrpi:igr;i?z;i‘g'ﬁs;ﬁ{ (35) is'an example of the former and
b ?nt' simulations show the use of graphics. NT——
the remaining lations are most useful where the real experiment p i
Computer é-m,]u x‘:,en difficult to perform satisfactorily (Mllhk:un s exp:..rug <
g gl’il\.ll}{) Dlrhc behaviour of an atomic pile). 1 do not think Ihiil &[l'] ;zal
0Ir ml[%ai'lrrz‘lbozlt computer simulations of cxperimenls{e;v}é;r:ldlhgfp'j;t:d e
i e icrocompu s
o ilSd(c:::l?e k;ut;\sf;ﬁ?{;:l:dz;n’zc?; againstan alkali. One CQL{ld prji“.;
g i l“‘idﬂx c-lrip in and. with high resolution colour graphics. (i‘g i
e lh‘crribeffect of the indicator changing colour. A meter C(;Tlcricn
ST:J;:IIut‘;:dla:anlLu indicate the current pH as Ihhe 'a[m; :[a\:];]::i;::;;ia;?;r:)nmhfd‘
y e ving the stude ¢
ol i Cm‘lld. bc ‘(e:t}:'z{?:)fl’; Shheozpi?i’replaccd the acmaF cxpe_nmenA["
s 0"1)‘: 'nb}n}lonlher dangerin simulation expsrirncnls.ol‘lmpl_\'mgtlmton'iné
e alm"dnoonalu re. Students may come to thinkthat the churmfl_c rs mo\{ e
i A E b‘l"la\'mﬂjuﬁl like molecules in a real gas. This canno' o
AR Sm.ie?l dre ; nolio% of what the molecules of a real gas are El(f{l‘lid y
dotn h(‘CillUiE s 'i\ecorl{)wn ations and draw conclusions about lhclr‘ h_chgmgl:l
doing. We ‘-33 m:l simulations that appear to produce lh}‘ same beh_.l.u.lo‘u"r.’rhc
e {hr:ﬁ ot UL‘Ln that the gas molecules are like the particles on the s;rc‘gc L
Ihd; d:?l"‘wh‘:ln'ztri‘n;l(l‘y being encou raged to "discover’ OLIlr mOdﬂisgrt:-::;gd:nlu; B
the molet ich i imulation e 5 ‘
st mojcsukfh\‘x:chri;e‘:; ?:SIT\!:‘ :L]:{ \ih;rli:. so that our theories about its
ated wi)

integr.
shav can be tested. : : 'sical events, some of
hgg“r‘;]ﬁ;;\‘:ﬂ to 40 are straightforward simulations of physical ev
T L_ -

ine-ct aphics to achieve the necessary speed. Thc
et “‘_Hlkl‘ “S?do-f.lr?:;}::t:;c;icf’)d;aﬁi‘gg;::i::Dusly moving at_c.r'nc_c_ arcl qtlll(l)ls
mlmlmlm}sﬁe?bhi{ic: of BASIC. RADIOACTIVE DECAY {2‘_)) is gsl‘nll:uam 'y
Nj}ond (h" ‘La?d diuaén‘vc particles using the RND I‘unpuon of .lhe_ plu. i ']:hc
b l’ﬁb er of nuclei remaining after each time interval is dl\p[!)\.[i e
- f’“ht‘rluml- : n might be for students to discover about ha“'-h—h-»r;lo;
i ol SU;U ; IIL:acher mightwishtouseit foradiffcrentpurpnfm;;;.a;E.(ﬁJ
::I:i:girﬁnc:ml:(actused in comparison wilb C{AP?E‘:—‘TS—E}]D‘;SF(&::‘N e
yny the are so similar fre S
;'ilnlixi:lll':d;;ilr:|:s.§elijc:1l;ii::l;‘.ric::(]::l; be im:orpf)rmcd into a CAL package and
?hl: stuilcnl instructed to ma}&c certain obscna‘horn;. L ——
SUM OF TWO DICE (30) is another exz'lmph. ofthe g e s o
generator to simulate the shaking of two dice. The program

17

The ZX Spectrum in science teaching

THE SUM OF TUuG CiIce

NUHBER OF THROUS = gog

Plate I The sum of two dice

and displays the number produced each time. This program illustrates the
graphics capabilities of the Spectrum in displaying a bar chart. while at the s
time continuously updating it (Plate 1).

Some simulations are designed to get across ideas of the behaviour of waves -
STANDING WAVES (31). This shows what happens when two waves, trav elling
in opposite directions interfere to produce standing waves. WAVE SUPER-
POSITION described in Chapter 7 is designed to explain the relationships
betweeen speed, frequency and wavelength and also to demonstrate the nature of
a transverse wave. The amplitude, frequency and relative phase between two
waves may be altered and the production of beats between two waves of different
frequency demonstrated. Classical interference between two waves that only
differ in phase may also be shown. The way that the microcomputer is used to
obtain these effects is discussed in detail in Chapter 7 - basically they use
machine-code plotting or scrolling routines.

LONGITUDINAL WAVES allows the user to investigate the propagation of a
longitudinal pulse. By holding down key Z, a continuous stream of waves can be
generated. Then, by setting the reflection coefficient to zero, the motion of the
individual particles is clearly seen (simple harmonic motion). A reflection

ame

18

The new resource

MolLecular motlaon
B temperature .
H to increase
Press
s N to decrease lemperature,
Pres

Plate 2 Molecular motion

-oefficient of 1 causes the wave to be reflected in phase, thus pr»qducin%f;“li‘;[li:lﬁ
o l'u%‘“ F tinode at the reflected end. Conversely, a TCﬂCLIlOrll coeffici i
“l“‘ﬂ““}“h - al‘:ﬂ waves with a node at the reflectingend. Thc pg'\“",),m of nnﬂ:t
_1::&(:::;1::33: arg clearly visible and can initiate a detailed discussion on the
itudinal wave on.)
N nha-mre 0{il(;?iil;uglfnrila:;i‘:e-r::lc?éle techniques is to keep a record lx?i ll::
\;:}illli(r))ln:L?Eﬂarac[crs on the screen and so to move them aropn:}il u\mr:cn o
l‘ of certain laws. Graphics characters can be directed across the L] op.
L”“!ml OIITLLmt‘:rnbounce off the walls simulating the behaviour of nll‘)‘Ll..Ll:'l.Ld.l
:\[‘[r(l)lﬁlgctl?z;]{ MOTION (33) demonstrates what happens to gas molecules
!
different temperatures (Plate 2). e
ﬂ:lf;)Giell:_ng‘IR(l;l‘tlEﬁ; S lF\":l‘ﬁEi“_;[OfN(’: 27‘;2:15\\:5 howthe colmputh mtirp rlcn(;
?:Lcimnl number as a set of memory switches or as ?hsor:ll;t:x;;;: E)f adginé
analogue quantity. BYTE SIMULATIOP_I (28) explains \p e
cti nd shifting binary data in a byte of memory e
mh('mz;l?lglc;l(fi:SSOR SIMULATION (5) teaches some of the properties Qd ¢
;I\‘I()(iﬁslruction ;‘El and, in conjunction with Ihe‘lutorial in Chapter 6. provides
good introduction to machine-code programming.

science are included.

19

The ZX Spectrum in science teaching

BYTE 32S0ee

Lilele]2]zTeleT=]

Decimal value = 152
Press P to enter a ne
g tg adg‘a numb:rnu”‘ber
subtract
L to shift Lefi numper
R to shift right
F to finish

Plate 3 Byte simulation

Computer assisted learning
This area h E: 5 i
program is ;:,}man_y names depending upon whether it is emphasizing what the
\h-lﬁ imm\re t;ng{(lnsrdr_uc_lmn) or the student is supposed to be doing flcurn;nz) ‘i
shall ig ¢ line distinctions involved, while sti i o
o 12 Clstinct L - while still using the general ter
o Ofst};:rt, .T‘hc j1b0»c d1sn?usuon of drill and practice inevitfh]\ leads ;:1 ‘IJl'
e m:;,rggqmputcr for CAL. INTEGRATED SCIENCE :I'E‘ST mo' .
2 . , . ves
i l}::a;hs it SlanB t'ha't program replies to each response with a slatcme::
i wm,ng w‘mos:n answer is correct or wrong. It is clearly possible to integrat
g [hé : i h the teaching of new material in the same way. The idmgis‘t(:
"n\.!cr“.mdg A_}r;‘lc df]d, then ask questions to establish whether the student
nderstands. Then, if it becomes clear that the student does e
remedial action can be undertaken ‘ e
A progra es this is 1 i
Thl. pmoi c:)nn-:;al does this is termm‘j atutorial and there are many in circulation
o s mon are sel-instructional tutorials in BASIC programming. M t
prm,rcg-_\,‘iosastl-cg:ﬂ»arly of tho‘se subjects which lend themselves tov‘im:":r
mmt e,w" .pre}g dsﬂ:nathemaucs and computing, find such tutorials useful 'I'h;y
may r them to traditional class Y
Sep ssroom methods, because
p;-(-,gr-,rra.‘?;‘}(:f t}l'lle feedback_and the fact that they can learn at their o\'\‘nOr T':IE
ams like this are not difficult to write, but they should use the full ranpau}
ge o

ot understand,

20

The new resource

interaction, reinforcement and, of course, graphics that is available. Several
author languages, like PILOT, exist to aid writers of CAL programs, but these can
be restrictive. They were not developed with microcomputers in mind and may
need special adaptation to allow an author to incorporate sound, graphics or
other special techniques.

There is. though, a great deal more to CAL than is implied above. To begin with,
there is a clear distinction between teaching and telling. Too many of the self-
teaching packages, that have been published so far, fall into the latter category.
What is involved in producing a good CAL package?

There are two broad categories of CAL programs, one of which favours a struc-
tured approach to learning and the other a more open-ended approach. The former
is based on programmed learning theory, which may be summarized as follows:

| The main objectives of the topic to be learned are specified, in terms of observable
outcomes, as precisely as possible. Not ‘the student should understand something
about molecular weight', but specific. like ‘given a list of ten chemical compounds and a
table of the atomic masses of the elements, the student should be able to calculate
the corresponding molecular masses for at least seven of them’.
The objectives should then be listed in hierarchical order, in the sense that each
objective earlier in the list should not be dependent upon objectives that come
later. For example, the following objective should be attained before the one stated
above, ‘given a list of ten chemical compounds, the student should be able to write
out the corresponding chemical formulae for at least eight of them'.
The next step is to arrange the objectives into a learning sequence. Teachers tend
to do this automatically, so they usually find no difficulty here. The difference with
programmed learning is the attempt to ensure mastery of the earlier objectives
before the later ones are tackled. One of the difficulties of traditional classroom
teaching has been the insistence that all pupils should progress at the same rate.
Thus pupils who had a particular learning difficulty, might never acquire later
objectives, not because they were unable to, but because they had never quite mas-
tered the earlier ones. This is why the objectives above are criterion referenced.
Students do not just have to get higher marks than average, they actually have to
attain the external standard set by the objectives.
The learning sequence is then turned into a series of lessons, using appropriate
teaching strategies for each objective. At certain stages throughout the sequence,
tests have to be devised to see whether a student is ready to proceed to the next
objective. These diagnostic tests are not stored up for the students’ end-of-term
grades, their purpose is to inform the student of his or her mastery of each par-
ticular objective.
Finally the package needs to be tested on a sample of students similar to those
who will ultimately use it. Any or all of the preceding stages may have to be
modified in the light of this experience.

A CAL package is thus not just something that any knowledgeable person can
write down in an evening Estimates vary as to the length of time needed, but a good

(=]

W

&

w

21

e

I ——

The ZX Spectrum in science teaching

average figure is that 100 hours of development time must be d e
material 1o keep a student occupied for one hour. So an e\pc;l pt:)(;lrt;:nlt:nEEOdml:;
Et[—sfy’:ﬁr‘bi'-rf‘;ll l)nm\:: \\.nrk'mlo a CAL p_ackage to keep a class occupied foioc?n
* The failure of programmed learning in the past has not n arily .
that it doesn l_uurk. but that there were not enough people aro EC:-‘\SJ”.I): e
packages. This position has not changed with the introdi Lm i ing
computers. It requires a massive effort to produce good iol'n\'mnon SN
ml_{\‘(‘:?_ then ttmerc are hzlrr.lw_‘arc problems to be Dvercorﬁ: “ral:: graphics and
‘[mmiii:_lm;s n]t.:i)mpt.cp‘ teaching package. which could adapt its teaching to th
dual needs of its students. could not be run with a cassette system ft :

program loading. A Microdrive or some other form of rea I'l" >C i
storage is essential, A ecessible mass

Should teachers, therefore, give up the whole idea of CAL’

hald e rs. hiereh ve ¢ ca of CAL? 1 do not think
E:tm“:f ‘T‘fnfu er come. unless rhercr a substantial number ofwud:tizl:x;]o‘
ave experience ofit. But I think that this is a task for a properly funde .
writers, notindividuals. Unfortunately the ease with which s:fl'l ‘a U‘n i lcﬂmcf
is likely to deter commercial organizations from being ir;l‘r“la‘r; B

Tc_uchcr-f. or better still a group of teachers. could b;vin l:\e:li ng i
Fh:u is purncul_;lrl\,\' ﬁuited 1o a programmed learning ap;ro'lc'h"u II}:I:'OTC i
in structure, WIII_ fit into the video text method ﬂfpre;cnluli;;n uln |n»:r: -dl _IS_llm’.‘ilr
to ,“ rl‘l:_lhe ghjcyl[\cs. The commonest fault is to attempt t g Lfc"m that
insufficient u_mc is spent in ensuring the mastery of each copm (:)0 muL!L Y :lheit
the program 1s written. several trial runs with students (and nl:)t Yl {":” e h'-‘_”
computer addicts) should be made with the teacher in attendanc JUTSF:‘t h' i
challenged to crash the program, if they can. All proh{cm;di:i:“ v“y Sho'um b
should be noted and rectified. Only then should it be pla | SRl fht‘ﬂ‘n
should not be the end users who have to debug the prggrii:s'on SRR
m;i-:f;: :nmg‘\iur;r.fu: Fcuson for not spending a great deal of effort at the
i : par . rom the_ fact that few schools possess a classful of
: l.lru‘k_:)lr;puu rs) - the technology is changing fast. Within a few years the vi 1(:’
h::‘ev:; b: ul::.‘cil"llc;parﬁ;nli the graphics, text. tests and other items rhu-t currel;ltl(\)
Lk mrm‘pof ot PH::gmrn. I‘n future the microcomputer will become
sk e.ofd ma cl__\l.'l'. L;.iv ing up from !}_m disk the current lesson and al
h ng previous lessons available for remedial review. With a single vi isk
‘c]dmgl the equivalent of several hundred floppy disks’ Do in g (']Hk
CAL will no longer be a dream. M

Discovery learning
The other way of using the microcomputer for CAL is, i s opini
:,}‘;:.‘_llllnj:“u-n)\r\&l‘)'. Itis also less lliker ISbt supcrs?d[:wl.{s.\;Ecmn)n?g\l‘?gllzg‘;lid} H_“.JFC
Is Is its use in open-ended investigation. Instead of the co l'h “'Hmﬂ-
student, lhe_ student interrogates the computer. Alreudkv ";fy‘::'rldi:trlgb(hc
fanr;xogrl;:n:: e)u;[.(e.g. VMICROQUERY and QUEST) to allow students to‘ oab[d.bL
ation by typing certain keywords into the computer. In biology 1?1‘:

22

The new resource

o be very useful since a student can then carry out a search without
d into a particular direction by the program. At a simpler level many
veloped that allow the student to determine what he or she

promises t
being force
programs can be de
would like to know.

Imagine that you wanted to teach a student about standing waves. This could be

done by direct instruction in the laboratory using a helical spring or Melde's
riment with the teacher pointing out the essential details. Oritcould be leftto
the student to discover the principles for himself or herself. My experience is.
however. that students do not know what to look for when doing an experiment
and help is needed. STANDING WAVES (31) strips away the inessentials and
allows the pupil to concentrate on the features that are important. A set of
programs based upon STANDING WAVES and covering most aspects of wave
motion is available from Griffin and George. With these. the student may alter the
frequency and speed of the waves and then observe the results. This approach
does not teach directly. butit does point the student along a particular path. There
is no guarantee that learning will take place But all our experience indicates that
ifit does. then the student will not just have learned the facts. he or she will have
gained an insight. which could transfer to other properties of waves too.

Most of the simulation programs listed in this book were originally devised for
this purpose. Although they illustrate the principles of discovery learning. their use
is not restricted to it. The versatility of the microcomputer ensures that a program
can be used for many different purposes. only a few minutes of adaptation

expe

being required.

Number-crunching
Aglance ata list of available software reveals programs on Fourier transforms. least
squares fit. linear circuit analysis. linear programming. numerical methods.

integration by Simpson’s rule and so on. The microcomputer is being used as a

programmable calculator. with all the advantages of screen display and editing.

error detection and program storage.

There are occasions in teaching when an equation needs to be solved many times

and where the result is more important than the solution itsell. One example is
typing experimental data into a microcomputerto obtain an automatic straight-line
plot - LEAST SQUARES PLOT (3) (Plate 4). In this case the important aspect is the
interpretation of the data. not the long process of plotting it out by hand. GRAVITY
(35 es another instance. calculating the height of a ball thrown vertically against
gravity. It is the nature of the motion that is being investigated. not the solution of
algebraic equations. Even here though a graph of the results would be even more
meaningful. The techniques of graph plotting with the Spectrum are fully
discussed in Chapter 3.

Modelling
The equation of motion used in GRAVITY is a mathematical model of the

behaviour of a real stone falling. It is inaccurate because it ignores certain features

23

The ZX Spectrum in science teaching

3 4 S 6 7 8 9 i1e

Press ENTER to alter readings " N"

Plate 4 Least squares fit

such as friction, but it does give some insight into the nature of the motion. In
Chapter 3 we shall discuss ways of making the model more real by using iterative
methods. Physics and chemistry abound with such models and most students can
understand an equation much better if they can see what happens to it when
different parameters are changed. For example RESONANCE (36) uses a simple
technique to plot the resonance curve for an LCR circuit. The student m
observe the effect of altering the capacitance or the resistance of the circuit.

Usually in science we eliminate some of the variables in order to make the
mathematical analysis of the phenomenon easier. The microcomputer allows
some of these other variables to be considered. GRAVITY ignores the effects of
friction. but this is not too difficult to incorporate provided the
nique of anal

ay

traditional tech-
is is abandoned in favour of the iterative method. PROJECTILES
(38) uses this technique to provide a more accurate picture of the motion of real
stones being thrown through the air. The iterative method. which is disc ssed in
detailin Chapter3, is particularly powerful when dealing with central forces since
the motion of satellites is obtained without recourse to integral calculus (a solution
that Newton would himself have liked). In addition, the motion is not confined to
the circular case, elliptical motion is no more difficult for the microcomputer th

an

24

p—

The new resource

BULLS
]

ssed correctiy

Plate 5 Mastermind
s doi i JTON (39) is also a
i inary circ case ell as doing this, NEWTO

he imaginary circular case. As “ i ! ity
. lll:tmalfcul simulation of Newton's thought experiment anu}g tgslnl':: v
1]1“1\ ards the C'i‘rlh and yet never gets any closer. RUTHERFORl _(On,‘ 3 s
o : o = i e Wi i
tion of this program. that replaces the attractive force with a repulsive one

; E y 1 . o

late the scattering of alpha particles by gold nuclei.

e, i e ¢ the issue,
If the recent fury that has developed over video games does not obscure

i i iscovery learning. It
there may be very little distinction between this section and dlhl:()\ L.?,!.::ncb ey
mx“ be g ossible to distinguish between educational and rccreatllonal :mcr; e

ay be poss g : onal ¢ :
doubt iFe\ en that could be maintained. There are repoi:t_s:f ':| o\: :| e
inv: v it is cla B
atly helped by space invaders, which. 1t
have been very greatly helpe ik : st s
incrEased their span of attention at other, more academic aclmuics, }\(Iieileis w1
do think that some games exercise the intellect more than others an
that [am interested.) e) oaram
:\ il:ndard favourite amongst beginners to computing 1s _liargu:lgstzn%r Cgows
MASTERMIND (4) or one of its traditional forcr!Janers like ‘u‘1| i ™
hich is easier because it uses numbers (Plate 5). Llike it because it illus
w s

25

The ZX Spectrum in science teaching

essence of the scientific method. Each guess is an hypothesis 1o be tested by
expgrlmcnt. Each experiment leads to a refining of the model until pmfecl?on ')
ac_hleved. Most important, each guess should be wholly consistent with all thIs
evidence so far gathered and it should also be framed so as to achie:;e lh.5
maximum amount of new information. Hence this game requires a strategy f i
getting the answer. I should like to improve on the program given by :‘ncouri)*' .
lh'e user to develop the correct strategy. I have seen even older children ado [_le:'g
lna_l and error method rather than using the information in previous gucssisl sz
hnsxsl for the next. If strategy training could be done here, would a similar syster ‘hd
possible to teach students a strategy for. say. solving equations or {ie:'i:lin:
Iuboralor_v experiments? It is clearly an important polcn}ial development. o
Guessing games are among the most popular and I have included my own -
ELEMENTS (25). I am not sure that I agree with the traditional version of thi
game (HANGMAN) on educational grounds. Doesn’t learning theory require |.:5
to reward success rather than punish failure? 1 have included m\"wr\ion {5
illustrate the technical ways of handling guessed inputs. The game is e '10'
adaptable to other topics by changing the nature of the words: this one is hz]::e‘}
upon the elements. This is easily done because they are all contained }n db-l
statements at the end. This program chooses the nc—xl word at random undil 3
:(l\’DllJ repetition, contains a routine to pick each word once only. Therefore, ifv‘ .
intend to a}iapl 1t to your own use, you will need to alter the ma'ximum nun;b: Ol:_
words available (103 in this case) wherever it appears in the program. A si L'rl‘0
program, wi?h different objectives, is listed as CHEMICAL NA‘MES E’;}lml .
_ My favourite guessing game is called ANIMALS and several versions are :»a.il‘ ble
for the Spectrum. The computer ‘learns’ the names of different animals ;m:i il -

the one that you are thinki ¢ asking a series i e
aty ¢ thinking about, by asking a series of yes/no questions.

Does your animal live in the sea?
Does your animal fly?
Does your animal have horns?

When the computer gets to the end of its branching search without success. it oi

up and asks the user to say what the animal is and to suggest a suitable 1uf{j'\m
.lor dl:':[mgmshin_g it from the previously named animal. Thus the L?Jn:m:?‘n
learns’ a new animal. The form of the game usually given needs alteration \irl;“L‘r
asks wh:etl?e{ the animal in question has long ears before even di\;m -Q't IE
whether it is insect, bird, fish or mammal. As a strategy for guessing. it is th =r'.-ar’“u:
very poor. In the hands of a competent biologist the Ev'rmzrarrn cuuljbc im'Ll e (;F
for teaching about classification. In chemistry too it could be used to de d ud- L
understanding of the periodic table. relop an

The new curriculum

I suppose it is inevitable that teachers first use microcomputers to enhance th
. - . o
current curriculum. At the drill and practice level it is even reinforcing current

26

The new resource

syllabuses. The discussion under discovery learning above. though, does imply
(hat the microcomputer will eventually alter both whar as well as how we teach.
The way forward has been shown by Papert and the LOGO language. With this
pupils can explore the world of space. shape, size and angle and discover the
properties of language at the same time. Can we use a microcomputer as a
context-free method of developing process skills in science in the same way?

It might be possible to invent different worlds with particular properties to be
investigated. Gamov's Mr Tompkins in Wonderland describes worlds where the
speed of light is reduced to ten m.p.h. and where Planck’s constant is unity. The
purpose of this is not just entertaining science fiction, it is rather to explain the
real world by exploring the properties of an imaginary one. I should like to see this
done with a microcomputer. At a simple level GRAVITY and some of the
simulation programs in Chapter 3 allow the acceleration due to gravity to be
altered from its normal value. Could this be extended to exploring situations
where an inverse cube law of force existed? What would be the properties of
visible light if our eyes could see into the X-ray or microwave regions? Why are all
current adventure games based on myths and legends? Why can't some
imaginative scientist devise an adventure on. say. exploring the atom. sailing
through the blood stream in a miniature submarine or managing an atomic
power station? This exploratory use of microcomputers cuts across traditional
subject boundaries. so that science. mathematics and art become united.

Al the moment few schools possess teletext facilities allowing them access to
vast data-banks of information. When these do arrive they will raise important
questions regarding the content of school syllabuses. In particular we shall have
10 question the current emphasis upon knowledge. Brain of Britain 1984 is the one
who can remember the most information. What will be the value of this skill when
we each have access to any desired information via a home computer terminal? A
pood memory will be as out-moded as the ability to extract square roots by pencil
and paper (which I was taught). The skills we shall come to prize will be the
processes of handling information. Brain of Britain 1999 will be the one who can
solve problems.

Despite a generation or more of protagonists for process skills. most school
science (and nearly all university physics) is still heavily content based. Students
have little chance to apply their minds to new situations. they are loo busy
learning about old ones. Given the opportunity. the microcomputer could be used
to put us back on the right track. This is why I call this section "the new
curriculum’. [believe that the introduction of microcomputers will be far more
revolutionary than any of us expect.

2 Programming techniques

‘I'm afraid I don't quite understand.’ said Alice.
‘It gets easier farther on.” Humpty Dumpty replied.
(Lewis Carrol, Through the Looking Glass)

This chapter is not an introduction to BASIC programming. I assume you can do
that already. Instead it attempts to explain some of the things that the Spectrum
user guide omits (because they are of specialist interest). It also looks at ways of
improving tutorial programs with the use of graphics, proper display of text and
methods of collecting and processing responses from the keyboard. Finally. this
chapter explores the processes involved in the development of an educational
program.

Bits and bytes

The heart (or perhaps it should be brain) of any computer is its central
processing unit (CPU). A microcomputer like the Spectrum is no exception. its
CPU is the Zilog Z80 microprocessor. Note that this word ‘microprocessor’ refers
only to the CPU. People who use it in place of the word ‘microcomputer’ are
fundamentally incorrect. The microprocessor is only one of many chips inside
the microcomputer. even if it is the one which does all the work. Figure 2.1 is a
simple picture of the way that a microcomputer works.

For most purposes the input to the microcomputer is via its keyboard. The
outputis via the television screen or monitor (in computer jargon thisisa VDU or
visual display unit). One purpose of this book is to show you how to make use of
other forms of input and output.

The microprocessor is a programmable device. The programs it runs are of two
kinds. the resident program and the user program. The same Z80 microprocessor
is used in the RML 380Z, the Exidy Sorcerer and the ZX81 as well as in the
Spectrum. These machines all behave in different ways because they have
different operating systems, which tell the microprocessor how to read the
keyboard. where to print characters on the screen and so forth.

A programmer can write different application or user programs for the
microcomputer to execute. For example, one program can be written to draw
pictures on the video screen. another can search through a list of numbers for the
smallestvalue. This user program will not remain in the machine after it has been
switched off (it is said to be volatile). Every time that the microcomputer is
switched on, a new user program must be placed in its program memory. This can.
of course, be entered from the keyboard or loaded from cassette tape. To allow the
microcomputer to store different programs, the memory for user programs is

28

Programming techniques

z80

output
microprocessor

program
memory

Figure 2.1 The microcomputer as a system

alterable. It is called RAM (which stands for random access memory).

oy .) Ioff
A useful picture of RAM is to imagine it as being rows a'!'ldhrohwslf;:)ghost
switches. An electric light switch can be up c}; &:ofm. If yo;x S:]::qo:-yede\gfic: T.hc
: f itc i (it stays off. It is a simple]
stays on. If you switch the light off, it stay : : 3 c =
;p;:ctrum'syRAM contains thousands of simple swn@;s r:lher hl;lcc;l}:; c],:f i
i is a si i ; and when it has been swi R
switch. Each one is a single bit of memory and ‘ . " i s
i'l‘!.\; on and when it has been switched off, it stays off. These switches are i
gro i is ca a byte.
sroups of eight and each group is called a b) o
¢ Frgm our:puim of view each set of eight bits can be cnn‘:ldc{?d 1!;::;:5?880%
/ith ei i ¢ are 256 possible binary numbers (10
number. With eight bits there are 256 p e - t v
0000 to 1111 1111) and any information received by lhbe rnllcrqtphrmeasgoérrr;ulsl_ro
5 igi is binary number is either -
one of these numbers. Each digit of this I i 0
m ;;ke it easier for us, we usually convert these binary numbers into decimals using
the following values for each bit position:

Binary Decimal
0000 0000
0000 0001
00000010
00000100
0000 1000
0001 0000

The ZX Spectrum in science teaching

0010 0000 32
0100 0000 64
1000 0000 128

The leftmost bit (worth 128) is called the most significant bit (MSB) and the
rightmost is called the least significant bit (LSB). Converting such numbers to
and from decimal is easily accomplished - it is part of most pupils’ mathematical
upbringing. The place-value of each bit position is multiplied by the bit itself and
the resulting numbers are added together. Thus 1011 0110 is:

1 o 1 1 0 1 1]
128+0+32+1S+0+4+2+0
which is 182 in decimal.
Each byte can be used to store a different bit-pattern or code. which can then
represent numbers or letters or even whole messages. The Spectrum can
remember the letters of the alphabet, the decimal digits from zero to nine and

other characters like 2, !, (.) and +. Even a blank space has to be represented by a

special code. The Spectrum also has graphics characters (pictures) and user-
defined characters.

The American Standard Code for Information Interchange (ASCII) is

quite often used in computers to represent letters of the alphabet. For
example:

01000001 (decimal 65) represents the letter A
0100 0010 (decimal 66) represents the letter B
0100 0011 (decimal 67) represents the letter C

The Spectrum also uses ASCII to represent characters. This is given in full in
Appendix A of the user guide.

Types of program
To make it easier to produce programs, they are often written in the language
called BASIC. The microprocessor does not understand BASIC, it is a digital
device and only ‘understands’ digital signals: hence information is sent to the
microprocessor as a set of HIGH and LOW voltage levels, The Z80 microprocessor
has eight lines for this information and it reads all eight lines at once, that is. it
reads one byte ata time. One measure of the power of a computer is the number of
characters that it can store, that is, the number of bytes in its RAM.

The 16K Spectrum can store about 16 000 characters and the 48K model about
49 000.

The instructions given to the microprocessor are also in an eight-bit code. For
example:

0011 1010 means ‘fetch a number from the memory’
0011 0010 means "send a number to the memory’

Programming techniques

It might seem that having only eight bits toa byteis very hmitin‘g. 1fw|i ":anvgzly
give lh:Lmicroprocessur 256 different instructions. However there :mf 0!1‘:'[“" htiys
Fevsona typewriter keyboard. yet how many different book:s can be writl en.‘ i
l:;::rf\ the sequence of the instmct_ionsrgi\cn to the microprocessor that is
inxput:tainl. This sequence of instructions is called a program.

i nguage o
?;x?jtlarxcc:?pfogrimming the microprocessor W(}l:lld be to gl\'? “-Sfiquc?c[ﬁ[?:
binary numbers via eight switches. A separate switch mluhi hc. us: :Io -f\. A
miuru‘processor when the nextcoded instruction was rea_dy ,AThlS‘lS ol ; ‘ IOL:; 3 m;?;;
<low and many mistakes might be made. (It was the way that the early comp

ere srammed.

“L‘r\Lhr::rl(t’e!:rr::‘ay wmllld be to type in the requin‘:d numbers frorr] the I;Ieyhourzl. A
still better way would be to write all the binary numh‘.?rs mtov [ds« nﬁnlo\‘?
beforehand. The microprocessor could then fetch e.ach oneinturn an t?&LL}lhc“:rE,
This is the purpose of a machine language monitor. (The word momlost‘w ¢
has no connection with the television monitor.) The Spectrum does not pU:(:)[;ier
machine language monitor., but several are available as separate pro:grams‘,[L
microcomputers, like the PET and the Apple have machine language monito

part of their resident program.

uage

ﬁi?::-lublé.lil[:?ne %unguuge monitor is still slow, luborio_us_and very pr;)ne ':o
mistakes. An assembler allows the programmer to type in mstru(.:m_)ns .(.)I tte
microprocessor in a special mnemonic language. For E'fample. tl'{ejl_nsl:r.ufll(?zng
the microprocessor to fetch a number Frpm thc memory is 001 l,“,]" nj mfr}nni !
LD in assembly language. The latter is easier to remember. it is the mnemonic
I\\itlif):ol.s')&‘;ihlc to buy an assembler program f'orlll?c Spectrum. Whlcl‘! lgkes :::i:"h
line of an assembly language program and turns it into the correct binary number
for the microprocessor to execute. This is a very powerful tool for a pnl)g{_;m:-nie:
especially when the Spectrum is being used for_ measurement or cunl‘rn ; belr‘ 0..
however, a way of using machine code instructions wlnljnoul either an assembleror
a machine code monitor. This is discussed in detail in Chapter 7

E.\zsn‘gsscmhl) language is not simple. so high-!.ervel languages ha»’i h;::)nr
developed. BASIC is one of these. Instead of codes it uses English words.
example:

PEEK means 'fetch a number from the memf!rv'

POKE means ‘send a number to the memory ‘

PRINT means 'write something on the television screen

BASIC still uses codes to represent letters. it is just that these codes are not

31

The ZX Spectrum in science teaching

normally visible (since they are not usually of interest). They can. however. be
accessed through BASIC. For example, the command:

PRINT CODE "B”

will produce the ASCII code for the letter B. Another way is to use the CHRS
function. which is the opposite of CODE. It turns a coded number into its proper
character. For example:

PRINT CHR$ 65

will print the letter A. which is the character for the code 65. These functions
provide useful programming techniques. as the hexadecimal conversion
programs below will show.

Although we use words in BASIC statements. the microprocessor has to turn
them into its special codes before it can understand them. The word POKE is
turned into the code 0011 0010 and then the microprocessor can carry out (or
execute) this instruction. The microcomputer has a special program. called the
BASIC interpreter. to turn BASIC statements into the binary numbers needed by
the microprocessor, This interpreter also contains error checking. so thaterrors in
programming give the error messages to the programmer. BASIC is so very easy
(by comparison with the other methods) that only a fanatic would use assembly
language unnecessarily. BASIC programs are used wherever possible throughout
this book. However. it takes time for the interpreter to collect each BASIC
instruction and to turn it into the correct machine code instructions. so BASIC
programs run hundreds of times slower than their counterparts written directly in
machine code. So for certain purposes. like rapid measurements and animated
graphics, machine code programs are essential.

The resident program

The operating system and the BASIC interpreter are part of the resident program
in the Spectrum. Since this must always be there when the machine is switched
on. it is non-volatile. and is written in ROM (read only memory). ROM cannot
be changed. but it has the advantage of not disappearing when the machine is
switched off. Because it has to do so much. there is quite alotofitin the Spectrum.
Some of this is useful to us even when we are not using BASIC.

Hexademical notation

In BASIC most users are unaware of binary. but when we start to use the
microprocessor directly. it is not possible to avoid it altogether. But what are we to
make of a binary number like 11100110 1010 0111 - even co
produce errors. We use a shorthand system called hex
of four bits (halfa byte
following table.

pying it down might
adecimal coding. Each set
iscalled anybble) is represented by a code accordingtothe

|

Programming techniques

Decimal Binary Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 o111 7
8 1000 8
9 1001 9

10 1010 A
14 1011 B
12 1100 c
13 1101 D
14 1110 E
15 111 F

The sixteen-bit number 1111 1100 0000 0001 is thus written as FCO\,TG‘ shfm [::iaill
o decimal number. itis usually followed by the letter H.but th_t.re can

b 1\ u'hﬁ;:bizcn b;[\\ccn ahexadecimal number like FEEAH and a \;ar‘l_aglennf\‘r::
?IL;:L?ncrcibrc common practice with most assemblers to p‘ret;l_x :;K he'_-:;.'mc;
hexadecimal number that begins with a letter. so our numb%r m Al
U?;ﬂ l‘-ltlI The addresses used in the Spectrum have sixteen bits gmni:l dem'] &
65 536 different locations (from ﬂ(_JU(JH_m OFF'H?H]'-ﬂlF:niO::]E\?;: ok E}”H
any location are eight-bit bytes with 256 possible differ

“)::Ei‘l;idmu! numbers are converted to and from dec.lfnul 1:1[«.1i \ai:\: (s}lfmsll‘iziﬁ
binary numbers. except that the place values are now in multiples

instead of two.

F [0 1
x4096 x256 x16 x1
15x4096 + 12x256 + Ox16 + 1x1= 64121

YTE
The programs ANALOGUE—D]G]TM_‘ SlMLT[L_ATION‘(_iT] garT]ireruU_
SIMULATION (28) may be found useful in explaining these i en £ fmr,n
:Jn"hc following programs will convert numbers from hex to decimal or
decimal to hex automatically
10 REM HEX TO DECIMAL
20 LETA=0
30 INPUT AS
40 FOR|=1TOLEN AS -
50 IF A$(l) >= "A" THEN LETA = 16 * A + (CODE A$(l) — 55)

33

The ZX Spectrum in science teaching

80 IF AS(l) < “A" THEN LET A = 16 * A+(CODE AS(l) — 48)
70 NEXTI
80 PRINT A$,A

10 REM DECIMAL TO HEX

20 LET A$=""
30 INPUT A
40 PRINT A

50 LETN=A— 16 *INT (A/16)

60 IF N> 9 THEN LET A$ = CHR$(55 + N) + A$
70 IF N < 10 THEN LET AS = CHRS$(48 + N) + A$
80 LETA=(A—N)/16

90 IF A> 0 THEN GOTO 50
100 PRINT A$

This program is an excellent example of the advantages of delving beneath the
surface of Spectrum BASIC.

Sometimes the computer has to remember an address. This causes problems,
because the address is sixteen bits long and a single byte is only eight bits long.
The solution is to split the address into two, the bottom eight bits of the address
(the low byte) being held in one byte and the top eight bits (the high byte) being
held in the next byte. To find the address is a matter of calculating it with the
formula:

address = (low byte) + 256*(high byte)

Talking directly to the memory
BASIC allows the user to be unaware of how the microcomputer works. This is
usually advantageous, but occasionally better results are obtained. if the peculiar
characteristics of the machine are exploited to the full. Usually this prevents a
program from being transportable to a different microcomputer, but this is not in
itself a sufficient excuse for avoiding it. After all, each new microcomputer soon
has its own specific version of invaders written for it. and these are usually totally
machine specific. Graphics are a particular example of the advantages of
machine dependent programming, so a little time will be devoted to looking at
Spectrum graphics from the microcomputer's viewpoint.

The Spectrum memory contains 65 536 locations each with its own address. The
contents of any address (for example 65535) can be seen with the BASIC

statement
PRINT PEEK 1000 (which gives the value 9)

New data can be sent to a particular memory location with the statement
POKE 1000,0

34

Programming techniques

With this particular address there will be no effect as location 1009 is Ln ROM
and its contents cannot be changed. Ol?ly ARA}\«i'can be altered in this twt?.
However, il you start changing RAM mdi_scnmmalely, you may u%s; [h:
operating system of the microcomputer. Certain parts of RAM are resm;ve by ¥

achine for its own use. If you change these the S]?eclrum may get oslfmSI e
?:qel[. The screen may ‘freeze’ or go blank and the microcomputer may :le uscﬂl]o
respond to the keyboard. Even the BREAK key may not wur_k or may pro u(;: e:
situation where everything seems normal l?ut unexplained Zrmrdmes gnﬁ
:—;char. On listing your pmg-rarrn_you find that it has been changed and someo

as wri rubbish in parts of it
hd;li;:?fihis causes ar?y permanent damage to I}?c microc}omputer.].n comr;;u:r
jargon you have caused a crash. The remedy is very 51mple.-Sw1I1_;h off t :
microcomputer, wait a few seconds and ‘then switch on again. le ple)lp;e
operating system will be restored and al.l “.r'll'l be well. The only casualty wil o
{hat your program has disappeared. This is your own fault for not obeying the
=i ALWAYS SAVE A PROGRAM BEFORE YQU RUN IT. 5
This is particularly sound advice when running mach_me code program;. w tle:lré
writing directly to the memory or when external devices are connected to

icrocomputer.)

ml(;:?:::g' useful place to write is the screen memory. Cena1‘n parts of lte
memory hold the information that is displayed on the screen. This RAM can be
read and written to without any fear of disaster. It al;9 has the advantage thatyou
Cé e Wl a ns to the location. Let us try this now. .
NES: :;::: ?hdepszreen with CLS. Each dot on the screen is now the visible
representation of a particular bit in the screen memory and can be turned on or
off directly. For example, type

POKE 18000,1

Asingle dot should appear approximately in the middle of the screen near the top.
because bit 0 of memory location 18000 has been turned on. Try

POKE 18000,16

1o get a different dot. A good investigation now is to discover the positions of the
dots corresponding to each bit. Try this program.

10 FORi=0TO 255
20 POKE 18000,

30 PAUSE 25

40 NEXTi

Line 30 is a delay to slow everything down. You should observe that combinations
of the numbers 1, 2,4, 8. 16, 32, 64 and 128 give different combinations of(_iots. In
particular, 255 switches on all the bits and produces a line. Now try different
addresses, such as

The ZX Spectrum in science teaching
POKE 19000,255 or
POKE 20000,255

To find out where the different memory addresses are located on the screen, rug
this program: {

10 FORi= 16384 TO 22527

20 POKE 255
30 PAUSE 25
40 NEXTi

You will soon discover one fact: the screen locations are not contiguous. That i
the end of one line is not followed immediately by the start of the next. Each block |
of thirty-two continuous bytes produces a line, but the next bytes produce a line 3§
eight positions further down. This continues until the top third of the screen is§]
filled and then a start is made on the next third. This makes it more difficult to]
address the screen directly. but a method of doing this is shown in Chapter 7.§
|

Spectrum graphics

The graphics facility of the microcomputer makes it the most powerful resource
in education since books were invented. In this respect the ZX Spectrum is
exceptional and will allow you to do just abouteverything you want. By the term
‘graphics’ is means not only pictures, but also drawings. enlarged figures and
letters, graphs. bar charts. histograms and animations. Their use makes
computer assisted learning more interesting. increases motivation and
enhances retention. So how do we write BASIC programs with Spectrum
graphics?

There are three different ways of producing pictures on the video screen: with
the chunky graphics characters; with user-defined characters: or with the PLOT.
DRAW and CIRCLE statements. The latter use the high resolution screen,
meaning that any of its 49 152 dots (called pixels) can be individually switched on
or off. We saw above how this can be done directly. The method is identical to that
which will be used in Chapter 4 for switching LEDs on and off. Each bit at each
address controls a single pixel, so any combination of dots could be produced
anywhere on the screen by turning on the appropriate bits. You could
theoretically paint a complete picture by specifying each individual dot but in
practice this is time consuming and impracticable. BASIC has much simpler
ways of doing it

When using BASIC we can imagine the TV screen as a matrix of pixels (256
wide by 176 high). independently addressed by its x and y coordinates. For
drawing lines and circles this is very useful and there are three functions to help:
PLOT (which plots a single point); DRAW (which draws a straight or curved
line); and CIRCLE (which draws a circle). These functions are all described in the
Spectrum user guide, so there is no need to go over them again here. It should be

36

Programming techniques

hough, that drawing pictures with these functions is sdl!! not easy, and you
o el ood at coordinate geometry to do it well. A dxscusspn nf_l}ns is
- qél‘r:z glerfi A useful point to note here is the ease with which pictures
e ‘up mqferrfd o ﬁaper. using the ZX printer and the COPY comn:nan_d. How
Cannt:-tolfls:rlmicrocomputersystems can dump the screen onto paper with justtwo
many

keystrokes?

raphics) L
E:ugltirgmel?hods of producing pictures use graphics characters. This is similar
e

1o the way that text is written on the screen.
PRINT AT 5,10;"ABC”

i ith the letter A starting at
e letters ABC on line number 5 of the screen wi A
N'!l:l‘r"; s:h:u:r'it:er 10. There are 133 possible characwfs thal} can be prmtEd orf\ ;I;z
L-\-’r sen in this way. listed in Appendix A of the usergu lde(\r;;i}hhcot:!e ::lme,:?-a:hﬂ
scree ¥. ’ ol .
: S blank or space, which might s

32 10 164). One of these characters is a : i St
}«:xii:llcs: but in fact this character is invaluable (remember that arithmetic was
/ery licated until zero was invented).) ‘
‘L;:\otr(::]c]ljures the most useful of these are the graphics chamcte.rs. coded 123.:;’
143 (page 92 of the user guide). They are obtained by first entering the ?rap l|e
m(')d:;:d l};en using the numeric keys 1 to 8 (unshifted and shlﬁed&_?o‘; Bxiasn:ljze(i
in the graphics mode key 3 gives a row of upp'er-half bars. If a s{\nl,'lt;cRSE o
instead. the result is the lower-half bars (one is th)e reverse or |

Her = thi i ics characters).

her - this applies to all the graphics ¢) -
"l_]:-hfc nnrmaFEules about PAPER and INK apply l.o_’the ﬁra;lpl'llllzs'(s){‘;nht;oés[_l‘ic]%

/ i ER to be RED (key 2) and the -
Forexample, by defining the PAPER to b e o
iti i hich is half red and half blue.
(key 1).itis possible to get an edge W alft L ey
> tly within a line, it bec

a t PAPER and INK are to be altered frequen 1 2 line, it bec
:l:itlr ll; enter them more directly. The other advantage o!‘domg it lh%s way 1;]1:1;:
the final result becomes visible immediately - you don't have l%'“aé:::m e
srogram is run before you see what the picture will look like. The disa : gu—,
Ilh 11Lcd1‘[ing a printout is made more difficult since their codes donotappearinthe
listing.

Pictures " .
The best way of using these graphics characters to ?r;w a ;:l:lu]:c 1_:»;5;:1;11;55:‘12:%2
" i id of thirty-two hort.
sheet of squared paper and mark it out as a gr i h i
i ketch the required picture an :
and twenty-two vertical squares. Then s] ¢ il
i i best fits it, making a note o q

square with the graphics character 11}3'(] t
L‘Elou:s (paper and ink) at the same time. The picture can then be built up from a
sct of PRINT statements. . ;

LThcne are some aspects of such pictures that are not pleasing. Dnag?nratlhei;itg;z
are stepped in Lego fashion and fine details are not 1ncluded:Tu allow or =ty
Spectrum lets the user define a set of his or her own graphics characters

37

The ZX Spectrum in science teaching

may be vertical, horizontal or sloping lines of triangles, etc. The technique o
defining a shape is described in the Spectrum user guide (Chapter 14), where a set
of chess pieces is defined.

The shape to be defined should be drawn on an eight by eight grid. As an
example let us make a diamond character. Note which dots have to be coloured in
and write dqwn a1 for each corresponding position. Where the dot is not coloured
in, a 0 is written down. Each row is then represented by a binary number, which|
can be written down as BIN 00001000 say. All eight rows are similarly represented. §

Then a particular letter (from A to U) is defined by the USR function to be the &
chosen character.

100 POKE USR “A” + 0,BIN 00011000
110 POKE USR “A” + 1,BIN 00111100
120 POKE USR“A” + 2,BINO1111110
130 POKE USR“A" + 3,BIN 11111111
140 POKE USR"A” + 4,BIN 11111111
160 POKE USR“A” + 5BINO1111110
160 POKE USR “A” + 6,BIN 00111100
170 POKE USR "A” + 7,BIN 00011000

The defined character may now be used. After the program is run, each
graphics-A character will be a diamond. The above method of defining Chal:aCTel'S
is good for those who do not know about the binary code, but most users find no
difficulty in converting each of these binary numbers to its decimal equivalent
with the table given below

Binary number
00011000
00111100
01111110
11111111

Decimal equivalent
16 +8=24
32+16+8=60
64+32+16+8+4+2=126
= 255
It is then easier to define the diamond like this:

100 POKE USR “A"+0,24

101 POKE USR “A"+1,60

102 POKE USR “A"+2,126
103 POKE USR "A"+3,255
104 POKE USR "A"+4,255
105 POKE USR “A"+5,126
106 POKE USR “A”
107 POKE USR "A"+7,24

The ultimate step is to put these numbers into DATA statements as follows:

100 FORn=0107

Programming techniques

110 READ row

120 POKE USR "A” + n,row

130 NEXTn

200 DATA 24,60,126,255,255,126,60,24

which is very much shorter than the original method.

User-defined character sets

A useful task is to define a whole set of graphics characters. In general there are
two such sets required: line characters and filled characters. The following
programs produce each of these character sets. Although each character in the
PRINT statements that make up a picture looks like a letter, this is before the
program has been run. After this has happened, each letter is redefined. so that
subsequent listing produces the graphics character instead.

The filled set

3000 REM filled graphics

3010 FORi=0TO 20

3020 FORj=0TO7

3030 READ row

3040 PRINT USR CHR$ (i+144)+jrow

3050 NEXT]

3060 NEXTi

3080 RETURN

3100 DATA0,0.0,00.0,0.0

3110 DATA 0,0.0.0,0,0,0,255

3120 DATA 0,0,0,0,0,0,2565,255

3130 DATA 0,0,0.0,0,255,255,255

3140 DATA 0,0,0,0,255,255,255,255

3150 DATA 0,0.0,255,255,255,265,255

3160 DATA 0,0,255,255,255,255,255,255
3170 DATA 0,255,255,255,265,255,255,255
3180 DATA 255,255,255,255,255.255,255,255
DATA 128,128,128,128,128,128,128,128
DATA 192,192,192,192,192,192,192,192
DATA 224,224,224,224,224,224,224,224
DATA 240,240,240,240,240,240,240,240
DATA 248,248,248,248,248,248,248,248
DATA 252,252,252,252,252,252,252,252
DATA 254,254,254,254,254,254,254,254
DATA 255,254,252,248,240,224,192,128
DATA 128,192,224,240,248,252,254,255
DATA 1,3,7,15,31,63,127,255

DATA 255,127,63,31,15,7.3,1

DATA 24,60.126.,255,255,126,60,24

The ZX Spectrum in science teaching

The filled set consists of corner to corner ‘sandwiches’ and characters produced
by having one row, two rows, three rows, etc. (or one column, two columns etc.),
This set is most useful for horizontal and vertical bar charts, which are then more
easily constructed than with high resolution graphics. A wavy surface to water is
easily obtained by printing these graphics characters in a line thus:

200 PRINT at 21,0;"ABCDEFGHIIHGFEDCBA”

The line set

3000 REM line graphics

3010 FOR =0 TO 20

3020 FORj=0TO7

3030 READ row

3040 PRINT USR CHR$ (i+144)+jrow

3050 NEXT]j

3060 NEXTi

3080 RETURN

3100 DATA 0,0,0,255,255,0,0,0

3110 DATA 16,16,16,255,255,16,16,16

3120 DATA 16,16,16,16,16,16;16,16

3130 DATA 16,16,16,31,31,0,0.0

3140 DATA 16,16,16,240,240,0,0,0

3160 DATA 0,0,0,31,31,16,16,16

3160 DATA 0.0,0,240,240,16,16,16

3170 DATA 16,16,16,255,255,0,0,0

3180 DATA 0,0,0,255,255,16,16,16

3190 DATA 16,16,16,31,31,16,16,16

3200 DATA 16,16,16,240,240,16,16,16

3210 DATA 128,128,128,255,255,128,128,128
3220 DATA 1,1,1,2565,255,1,1,1

3230 DATA 255,0,0,0,0,0,0,0

3240 DATA 0,0.0,0,0,0,0,255

3250 DATA 128,128,128,128,128,128,128,128
3260 DATA1,1,1.1.1.1.11

3270 DATA 255,1,1,1,1,1,1,1

3280 DATA 1,1,1,1,1,1,1,255

3290 DATA 255,128,128,128,128,128,128,128
3300 DATA 128,128,128,128,128,128,128,255

Since itis most likely to be used for line drawings, the use of colour is much less
important in this set, black ink being the most favoured (Plate 6). The line set is
used extensively in this book, for example in Z80 MICROPROCESSOR
SIMULATION and INTEGRATED SCIENCE TEST.

By defining the characters in other ways it is possible to create almost any type
of picture, the worst problem being that there is a maximum of twenty-one user-
definable characters. Therefore use may also be made of some of the letters,

40

Programming techniques

A(@)
B (@)
data (@)

address

Press E to end.

Plate 6 Using the line set

mmetrical shapes, like * and +. The part of the
definitions should normally be placed at the
erged with any other program that

particularly o, 0, X, x and other sy
program containing the character
end of the program, so that it can be m

uses 1t

Movement

One useful requirement
individual characters around
old position by overprinting wit
line, column’” statement, since t
each time.

200 fori=0TO25
210 PRINT AT 20,i" ”
220 PRINT AT 20,i+1:A$
230 NEXTi

is to make pictures that move around. The movement of
he screen is done by erasing lhq chara?ter from its
h a space. This is fairly easy wup the ‘PRINT AT
he values of ‘line’ and ‘column’ can be changed

or
200 LET|=8:LETc=10
41

The ZX Spectrum in science teaching

210 PRINTAT L c:” ~

220 LETI=1+1:LETc=c+1
230 PRINT AT I,c;A$

240 GOTO 210

In both cases line 210 erases the character from the old position before the
position is changed. There ought also to be checks that the character is not
moving off the edge of the screen, otherwise the program crashes.

For moving whole pictures it is not always necessary to rub out the whole
picture from one place before reprinting it in the adjacent place. Horizontal
motion is easiest since a space at the beginning of each line of the picture can be
used to perform the rubbing out. Movement in other directions is generally a little
slower. since the picture may have to be surrounded by spaces, to stop bits of it
remaining behind when it is moved to the next place. In general, for moving more
than one object or for moving large objects, BASIC is unacceptable. Smooth
motion can only be achieved with machine-code programming.

Machine-code programs cannot, though, make use of the BASIC PRINT AT
statement (at least not without slowing them down too much). We must therefore
move characters around the screen by writing directly to the screen memory. 1
used to be unhappy that it was not possible to POKE characters onto the
Spectrum screen directly. This would allow programs on molecular motion, the
behaviour of molecules being simulated by the movement of certain characters
around the screen. Such characters cannot be written directly onto the Spectrum
screen (at least T haven't yet found out how), but there is a way round the problem.
All the molecules can be printed on the screen beforehand in invisible ink (white-
on-white). Each molecule can then be highlighted in turn. by turning the ink o
black momentarily, which gives the appearance of motion. This is done by
changing the ATTRIBUTES of each screen location with the appropriate data.
The ATTRIBUTES for each screen position are held contiguously in memory
from 22528 to 23295. For example:

POKE 22528,56
turns the ink of the top-left position to black. whereas
POKE 22528,63

turns it back to white.

There is no point in doing this in BASIC - the PRINT AT and PRINT OVER
commands are fast enough. But the POKE command can be implemented in
machine code, thus giving at least a hundredfold increase in the speed of the
graphics, which allows a hundred molecules to be moved around at the same time
and this is not possible in BASIC.

The ATTRIBUTES control the screen positions on a thirty-two (wide) by
twenty-four (high) matrix. Their chief feature is that they are contiguous in the
memory as follows:

42

Programming techniques

columnno. O...ovvivrvieninaninannn 31
row 0 address 22528 22559
row 1 22560 22591
row 2 . .
. . .
. . .
row 23 23264 23295

PRINT AT cannot access the lower two lines which BASIC uses for error and
INPUT messages, but these are accessible with this direct method. If the address
of the top-left corner is subtracted from each address, the pattern becomes
clearer.

columnno. O.....icvvvmmmniannns 31
row O 0 31
row 1 32 63
row 2 64 95
. . .
. . .
row 23 736 767

Itcan be seen that the addition of thirty-two moves down one row. This makes for
very easy programming of motion.)

To begin with we shall just"'move’ a black square around the screen to Jlluslr'z'nc‘
the principles. If an ATTRIBUTE is POKED with 0. it goes black. if POKED with
56 it returns to its original state (which is white since the screen is cleared when the
program is RUN.) To make the black square move across the top of the screen 0
must be written into each successive ATTRIBUTE in turn, and then replaced by
36 again after a short delay to give it time to be observed.

10 FOR X = 22528 TO 22559

20 POKE X,0:REM PLACE BLACK SQUARE ON SCREEN
30 PAUSE 2:REM DELAY

40 POKE X.56:REM ERASE BLACK SQUARE

50 NEXTX

To move the character vertically 32 must be added to or subtracted from the
current position.

10 FORX = 22528 TO 23168 STEP 32

20 POKE X,0:REM PLACE BLACK SQUARE ON SCREEN
30 PAUSE 2:REM DELAY

40 POKE X.,56:REM ERASE BLACK SQUARE

50 NEXT X

60 FORX = 23168 TO 22528 STEP —32

70 POKE X,0:REM PLACE BLACK SQUARE ON SCREEN

The ZX Spectrum in science teaching

80 PAUSE 2:REM DELAY

90 POKE X,56:REM ERASE BLACK SQUARE
100 NEXT X
110 GOTO 10

Diagonal motion is achieved by a combination of these two methods.

Value Direction
1 east
33 south-east
32 south
31 south-west
-1 west
-33 north-west
-32 north
-31 north-east
10 FOR X = 22528 TO 23189 STEP 33

20 POKE X,0:REM PLACE BLACK SQUARE ON SCREEN
30 PAUSE 2:REM DELAY
40 POKE X,56:REM ERASE BLACK SQUARE

NEXT X
FOR X = 23189 TO 22528 STEP —33

70 POKE X,0:REM PLACE BLACK SQUARE ON SCREEN
80 PAUSE 2:REM DELAY
90 POKE X,56:REM ERASE BLACK SQUARE

NEXT X
GOTO 10

100
110

More usually it is small pictures that are moved around the screen in this way
(for example, the piston in the cylinder of a motor car engine). Very low
resolution pictures, made from whole blocks of colour. can be moved about in
the same way. The required coloured block is obtained by POKING nine times
its numerical value into the required ATTRIBUTE position. This is because the
INK colour is held by the lower three bits (decimal 9 to 7) and the PAPER
colour by the next three bits (decimal 8 to 56). So by making PAPER and INK
the same, the whole square becomes the required colour, irrespective of what is
already on the screen at that position. The coloured block can be erased by
rcsmri'ng the original number into the ATTRIBUTE position. For example, 56
restores PAPER 7. INK 0. In this way coloured blocks may be moved around,
passing in front of or behind any existing characters originally printed on the
screen.

In the same way individual characters may be moved around by alternately
making PAPER and INK different and then the same. The character must
already be in position, by filling the required area of motion with the character.
The following program fills the top third of the screen with *—characters.

44

Programming techniques

10 CLS

20 FOR x=0 TO 31
30 FORy=0TO7
40 PRINT AT y,x"*"
50 NEXTy

60 NEXT x

By altering x and y this ‘area’ may be placed anywhere on the screen. In the
BASIC molecular motion program ONEMOL (33) the molecules are constrained
inside a box by this technique. The ATTRIBUTES of each location can then be
changed to 63 (INK 7, PAPER 7) which effectively erases each *—character. By
moving the number 56 (INK 0, PAPER 7) from one position to another, exactly as
above, the molecule apparently moves around the screen, bouncing off the walls
of the container.

Techniques of interaction

The most usual means of communication from the microcomputer to the user is
the display. In this there are numerous pitfalls for those writing their own
programs, which will now be described.

The display of text

The statement PRINT “PARIS IS THE CAPITAL OF FRANCE" is probably the
most easily understood of all BASIC statements. The sentence is just written out
on the video screen of the microcomputer. It is so easy to use, that some
programmers fail to give any attention to the result.

The use of capitals (upper case) makes for difficult reading at the best of times,
and if the programmer does not use double spacing either, it is doubly difficult to
read. With lower case letters and the use of double spacing the result is more
pleasant. The amount of text presented also needs to be adjusted to the level of the
user: secondary pupils in particular merely scan the text without reading it
properly. Later they complain that they ‘don’t know what to do’.

An automatic line feed occurs when there are thirty-two characters in a line.
The thirty-third character appears on the next line and the crime of wrap-around
is committed. There is no excuse for this, it simply requires the programmer to
read what the program prints with a critical eye and not accept inferior
presentation. If the same things were done on paper, they would be glaringly
obvious. BASIC has the ability to display figures in neat columns, so there is no
excuse for not doing so. This is described in the user guide.

In the days of tele-typewriter output there was no way to prevent text from
scrolling up from the bottom. Part-sentences remained at the top of the screen,

45

The ZX Spectrum in science teaching

and these were most distracting. There is no need to continue with this practice
today. The programmer should clear the screen before each new page of text. Also
less text should be displayed at one time. in which case the student will need to
indicate when a new page of text is to be displayed. This is described later.

Input from the keyboard

Some published programs limit interaction to *press SPACE at the foot of each
page of video text. This is a misuse of a powerful machine. especially if the
opportunity to return to a previous page is denied. The microcomputer is more
than an electronic page turner and its facility for interaction should be fully
utilized. At the highest level. an interactive program could determine the level of
understanding attained by its users and adjust the presentation to suit. At the
lower levels, the interaction will probably be confined to responding to
questions.

The INPUT statemenr

The simplest way of managing the response situation is via the INPUT statement,
This needs careful handling. since the user can easily wait in vain for the
microcomputer to reply. while it waits for the ENTER key to be pressed. Full
instructions need to be given. especially to first time users. The first INPUT in a
program might be to get the student to enter his or her own name. so that the
microcomputer can appear more personal. Some instructions such as the
following need to be displayed. not only on the screen itself. but also on any
accompanying documentation. i

Hello.

Please type in your first name.
If you make a mistake, you can
rub it out with the DELETE key
(top-right of the keyboard).
Press DELETE at the same time
as the CAPS-SHIFT key.

When you have typed your name
correctly, press the ENTER
key to say you have finished.

Note the double-spacing between paragraphs, the use of lower case text and the
use of capitals for emphasis. As mentioned above, the text should be preceded by
CLS to give a clean presentation.

The PRINT statements that produce this text are followed by the INPUT
statement. In thiscase, a string response is required, thatis INPUT a$, but this can

46

b el

o BB ia

Programming technigues

cause problems. The student, who presses ENTER before typing anything. causes
45 to be set to the null string and subsequent PRINT a$ statements produce no
name. To avoid this. the INPUT statement should be followed by a check
thus:

120 INPUT a$:IF a3=""THEN GO TO 120

Because an alphabetic INPUT requires quotes around it, these are automatically
supplied by the Spectrum. Their presence may. however be disconcerting to the
novice user and it may be better to use the alternative form

INPUT LINE a$

which assumes the presence of the quotes without printing them.

The Spectrum is unlike most other microcomputers in that text input from the
keyboard using the INPUT statement appears at the bottom of the screen. It is
often necessary to include text in the INPUT statement to reassure the student
that he or she is doing the right thing. This is described on page 104 of the user
euide. Several examples of its use will be seen later.

The INKEYS statement

This difficulty, of having to write at the bottom of the screen. and the problems of
users having to remember to press ENTER. results in many programs studiously
avoiding the INPUT statement. preferring the INKEYS statement. This retrieves a
single key entry. which may be any character on the keyboard and places itin the
temporary variable INKEYS. The most obvious use of INKEYS is to tell the
microcomputer to turn to the next page. INKEYS takes a quick look at the
keyboard to collect the current key being pressed. If no key is being pressed. the
program simply carries on.

100 LET A$=INKEYS:IF AS=""THEN GO TO 100

causes the program to halt until one of the keys is pressed. An alternative is to use
the PAUSE statement as follows:

100 PAUSEO
110 LET AS=INKEY$

PAUSE is always interrupted by a keypress. This is useful if it is desired to give the
student a limited time in which to respond. If the student has failed to answer
within say twenty seconds. the program could jump to a remedial loop. The time
delay is u'djus[cd by altering the number in the PAUSE statement (the maximum
Is twenty minutes).

100 PAUSE 1000
110 LET A$=INKEYS
120 IF A$="" THEN GO TO. . .(remedial loop)

47

The ZX Spectrum in science teaching

An alternative wait routine. which is not interrupted by a keypress is
100 FORT=1TO 8000:NEXTT

which produces a delay of several seconds and may be used to give a user time to
read the text before presenting the next page. While this is adequate for single
words or sentences. readers differ so markedly in their speed that no common
time can be fixed for them all. The alternative technique. using PAUSE 0. is more
satisfactory. The student is requested to "hit a key’". or better, to ‘press SPACE to
continue’, The SPACE can be detected with the BASIC statements

100 IF INKEY$<>" " THEN TO TO 100
This has the advantage that pressing a different key has no effect
A common use of INKEYS is to “select from the menu’. The user is offered

several alternatives and invited to choose one. A typical menu in a drill tutorial
might look like this:

You are correct, the shutter
speed must be as fast

as possible, i.e. 1/1000th
of a second.

What would you like to do now?
1 Try another problem
on shutter speeds?

2 Try a problem on apertures?

3 Go on to study film speeds?

4 Finish the lesson for now?

Press one of these numbers

to make your choice

In response to INKEYS$ the Spectrum accepts a null string from the keyboard

when no key is pressed and this is programmed out as follows:

110 LET a$=INKEYS:IF a$=""THEN GO TO 110

120 IF VAL a$ <1 OR VAL a$ >4 THEN GO TO 110
A numerical key is required. but a student who presses an alphabetic key by
mistake produces an error. For this reason VAL should only be used once it has
been determined that the entry is correct.
110 LET a$=INKEYS

120 IF a$<>"1" AND a$ <>"2" AND a$<>"3" AND a$<>"4"THEN GO TO 110
130 LET number = VAL a$

140 GO TO (5000 + number*100)

The last line carries out the function of

48

Programming techniques

140 ON number GOTO 5100, 5200, 5300, 5400

which is available on some other microcomputers.

In some situations an alphabetic key entry is preferred to a numeric one. even
though this can cause more problems. For example. the user may be asked to
select one response from a set of three or more possible correct answers to a
question. These possible responses have to be labelled A. B. C etc. since numbers
are probably being used for the questions themselves. The student’s guess may be
obtained with d

100 LET a$=INKEYS
110 IF a$<>"a" AND a$<>"b" AND a$<>"c” THEN GO TO 100

The problems occur when the choice is given in upper case letters. The statement
above is not obeyed if the student presses CAPS A to get the required entry
accepted. This problem is overcome on the Spectrum with the statement

LET z = CODE INKEY$

which places the ASCII value of the pressed key in z (or 0 if no key is being
pressed). The lower case ASCII value of any key is its upper case ASCII value plus
32, The following routine can thus be used to ignore the differences between upper
and lower case:

100 PRINT “Press Aor B or C”

110 LET z = CODE INKEY$S

120 IFz=0THENGOTO 110

130 IFz<97THEN LETz=2z+ 32

140 LETa$ =CHR$ z

150 IF a$ <> "a” AND a$ <> "b” AND a$ <> “¢” THEN GO TO 110

Alternatively the ASCII key values may be handled directly thus:
140 IF z<97 AND z>99 THEN GO TO 110

These ASCII values are given on pages 183 to 185 of the Spectrum user guide.
Their use to prevent novice users from crashing programs is recommended.

Whole words can be entered with INKEYS, one letter at a time, and the word
can be assembled from these letters. This avoids the problems of having to use the
ENTER key. but the possibility of erasing an error is then also removed (and has
to be programmed back in). The advantage of this clumsy methéd of entry is that
text can then be entered from the keyboard and printed at any part of the screen.
An example of this is MASTERMIND (4).

INKEYS has the particular advantage that it is continuous (unlike the GET of
most other microcomputers). This enables something to occur for as long as a
particular key is pressed, useful for games and for organ keys.

100 IF INKEY$ = “z" THEN BEEP.1.0
110 IF INKEY$ = "x" THEN BEEP.1,2

The ZX Spectrum in science teaching

120 IF INKEY$ = "C” THEN BEEP.1,4
130 GO TO 100

If you think this will make a good electronic organ, you will be disappointed.
BASIC is too slow and machine code routines are really needed.

Other techniques
Novices take ages to find a particular key on the keyboard. One way to overcome |
this is to use alternative methods of input. These also remove the need for
disabling keys and all the other problems encountered above. The best of these
devices is a light pen which can be pointed at a particular part of the screen. These
are available commercially and plug directly into the back of the micro-
computer.

For some responses, switches can be connected to the Spectrum through an
interface (see Chapter 4) and detected with fairly simple routines. An alternative
for the future is the soft or concept keyboard, which plugs into the microcomputer,
and where the number and function of the keys can be changed by the program
itself. The keys can thus become letters, numbers, pictures or special symbolic
characters as in BLISS. This is a far better way of communication with younger
pupils. avoiding all the above pitfalls and giving more freedom to the
programmer.

Crash protection

Ideally it should be impossible for a novice user to crash a program by
indiscriminately pressing the wrong keys. This can be such an effort (as the above *
discussion shows) that it may take too much time. The best way is to put key entry
checks into a separate subroutine, which already contains the protection. This can
then be called whenever it is needed. Even then a determined pupil can crash by
pressing the BREAK key. My solution is to teach pupils to be careful and not to press
all the keys in sight. The display should tell them exactly which keys to press and if
they press others, then they can jolly well find out how to recover from the crash
themselves. (Actually it is quite amazing how quickly even young children can learn
to use the machines properly: there is such a thing as over-protection.)

A8 it i vl

s e

gy

i

Processing the response 1
Once the response of the student has been collected, the microcomputer has to
process it. If the entry is the student’s name, presumably this is so that a personal
touch can be added to requests:

Now, Bob,
can you tell me.

This is achieved by printing out the string variable that was used for the original
input. That variable name must not be used again, or the microcomputer will later
change the student’s name to PHOTOSYNTHESIS or whatever. Note also the

50

Programming techniques

need to leave a long space after the student’s name. If this is not done, you will find
the computer responding to a long name with:

MNow, Stephanovitchi, can you tel

wrap-around is unforgiveable in video text.

The response PHOTOSYNTHESIS might be the answer to a question set by
the microcomputer. Once this response has been collected. the program has to
decide if PHOTOSYNTHESIS is the correct answer. A sequential list of
questions can retain the correct response in a DATA statement. which is then
collected by READ. If responses have to be accessed at random, then a better way
is to keep the correct responses in a string array, thus:

100 LET R$(1)="PHOTOSYNTHESIS"

110 LET R$(2)="RESPIRATION"

120 LETR$(3)=..... etc.

500 PRINT “What name is given to.. . ..
510 INPUT A$

520 IF A$ = R$(1) THEN PRINT “"CORRECT"
530 etc

The unfortunate thing about checking responses by the method shown in line 520
above, is that misspelled inputs or even things like PHOTO-SYNTHESIS are
considered incorrect. The program could contain a selection of possible
responses and check each one separately, but the range of possible correct
responses could be enormous.

One solution is to use the string slicing functions to check that the majority of a
word is correct, but every word tends to behave differently and about the best that
can be achieved is to disregard leading spaces and hyphens. The problem
mentioned above, about the use of upper and lower case letters, can be overcome
by the use of the CODE and CHRS functions.

One desirable feature of tutorials is to give clues if the student has no idea. In
the case above, after the first wrong response, the microcomputer could prompt
with

CLUE: PHOTO———

w8(1 to 5) is used to extract the initial letters, and this can be printed out on
top of

FOR I=1 TO LEN(wS(1)):PRINT"

=NEXT |

ELEMENTS (25) demonstrates the way that this is achieved in practice.

Techniques like these are learned by studying the user guide, the programs of
others and books specifically about BASIC and the Spectrum microcomputer (a
list of such books is given in the Appendix). The most essential requirement is
self-criticism.

51

The ZX Spectrum in science teaching

Writing a program

This topic is a subject in its own right and at least one book has been enlirel}
devoted to it. Thus it is not possible to do more than indicate the overall
principles. The whole process of writing a program can be subdivided into three
parts:

Design
Coding
Debugging

Of these the most important. and the one most often neglected. is the design stage,
There is always a great urge to begin coding. that is. to write BASIC statements
into the microcomputer. This should be resisted as long as possible. because the
faster one begins coding. the poorer the program will be.

Examples of this abound. Often a program is started with one plan in mind and
then extra features are added as they occur to the programmer. Then it is found
that certain things have been overlooked and the program needs extra routines
fitted in. Often there will not be enough room for these. so the programmer resorts
to using subroutines. where their use is unjustified. It soon becomes more and
more difficult to deal with new problems and the project is abandoned (or. worse
still. full of bugs and impossible to interpret. sold to unsuspecting teachers).

This is what can happen if the planning stage is neglected. What I have just *
described is called bottom up programming - starting from a simple idea and
adding refinements to it. Programs should be designed as a whole from the start |
and the problems that might arise should be anticipated. This is called top down
programming and is what the rest of this chapter is about. I do. however. wantto
give a note of caution. ;

It often happens that programs are developed by chance. For example my first ;
(PET) programs on wave motion were the result of an accident. I had spent some
time trying to make waves that moved across the screen. but BASIC was much too
slow. Then. while working on a routine to paint a picture on the screen in machine
code.Tassumed that the end of the screen was in position 40 (forgetting that it runs
from 0 to 39). The routine painted the picture quite happily, which then scrolled
across the screen. [realized that a sine curve would become a travelling wave and
the solution to my problem had been overcome. I was able to use this accidental
discovery to write several wave programs for the PET.

The point of this story is that planning by itself does not always produce a
program. There nearly always has to be interaction between experimentation and
program development. In the commercial world. program designers must specify
accurately what they want to do. Poorly constructed programs cost money, so top
down programming is an economic necessity. The educational world is not quite
the same as this. Teachers are almost certainly writing programs in their own
time. which is never costed. More importantly, they do not have all the necessary
programming skills at their fingertips beforechand. For them, strict top down

i

Programming techniques

pmﬁramming is not possible until they become more expert.)

I shall therefore describe a technique that can be used by non-experts. T_o ﬂ].d
the discussion we shall look closely at one particular program BYTE(_ES]. which is
listed in the Appendix. This is not a program merely _deve'loped to illustrate the
principles. but a genuine one. Thus it gives a better insight mto_the whole process
of program developments than any artificial ex_ample can prD\'ld‘C. Italso x_mhze_s
graphics and illustrates most of the interaction techniques discussed in this
::hnpler‘

| wanted a program to simulate what happens to a byte of memory. w?len
certain operations are carried out on it. These operations are left and n_ght
shifting. addition and subtraction. I also wanted to demonstrate the connection
between binary and decimal numbers. 1 had already seen the principle
demonstrated in the BBC television programme Making the Most of the Micro. so
1 had a good idea of what I wanted to achieve.

Design

The grugram would display a diagram of a byte of memory. with a statement of
what decimal number it contained. Inside the byte would be the binary number.
displayed as a series of Is and 0s. the user would b:la:ked to choose from
the options described above. If a number was required. this would be entered and
the display changed accordingly. ,

This specification immediately threw up problems. What measure of protection
was required? Considering the probable ability range of the users (secondary). |
did not consider that too much protection was necessary. 1 decided to trap the
obvious mistakes, such as numbers out of range and numbers instead of letters.
Further protection could be added after the evaluation stage. if it became clear
that it was needed.

When we have decided what we want to achieve, it is time to start top down
programming. We do not go straight to the computer and start programrming_ that
state is still some way off. We begin by writing the program on paper in pseudo
code; meaningful statements that can later be turned into BASIC statements (or
indeed any other language). For this code we recognize three distinct processes:

Sequence

Repetition

Choice

A sequence is a set of instructions that follow one another in strict order.
TRAFFIC LIGHTS in Chapter 4 is a good example of this.

Turn on red traffic light

Long delay

Turn on red and amber traffic lights
Short delay

Turn on green traffic light

Long delay

53

The ZX Spectrum in science teaching

Turn on amber traffic light
Short delay

Choice is achieved by IF.. THEN.. .ELSE. The sequence branches into two or
more separate routes depending upon the conditions encountered initially. !
Repetition is similarly obvious. but here there are different kinds. The traffic
lights sequence may need to be repeated forever. This can be achieved by a GO
TO back to the beginning. A pelican crossing has the green traffic light on until a
pedestrian requests the traffic to stop. This can be achieved by a WHILE. . .DO §
structure:

'WHILE the pedestrian is not requesting traffic to stop,
DO keep the green traffic light on.

A pedestrian crossing at crossroads may be incorporated into the traffic lights 8
sequence itself. but this is wasteful since it makes traffic wait when there are no %
pedestrians. It is better if the pedestrian request switch interrupts the normal
sequence to make it behave differently. The normal sequence is repeated until an
event occurs to change it - the REPEAT. . .UNTIL structure. Finally. it may be
necessary o repeat some sequences a given number of times. This uses the well-
known FOR. . NEXT structure.

In none of these processes are we concerned with BASIC - exactly how we
implement this pseudo code is irrelevant. Spectrum BASIC does not. in fact,
recognize all of them anyway. so some have to be specially constructed. "'WHILE
condition DO loop' is carried out by "IF condition THEN GO TO start of loop’.
REPEAT.. .UNTIL is implemented by a similar construction. For our purposes at
the moment. it is the process that is important. not how it is later turned into
BASIC. :

One way of designing a program (long taught in schools) is flowcharting. This
has sequences (rectangular boxes). choices (diamond boxes) and repetitions
(returning lines and junction boxes). To introduce the ideas of design. ©
flowcharting is a good method. but it is not popular with serious programmers.
Programs of any size spill over onto several sheets of paper and are difficult to
follow. Also it is not easy to plan a flowchart until all its limbs are known. This _
results in the same chart being endlessly redrawn to accommodate extra
requirements. Most programmers draw the flowchart after the program has been
written!

Top down programming allows the program to be developed from the general
plan right down to the level of coding in BASIC by a process known as stepwise
refinement. This cuts out a great deal of the redrawing (or rewriting in this case) =
of those elements that are already known. It also allows each step to be checked
for error before it is turned into code. In this way any bugs in the final program
will only require simple patches, not wholesale rewriting. Now that we have an
overall strategy for our program, let us begin this process.

A A

R T ITL R

et 7

i

Programming technigues

BYTE
1 Initialize variables etc.
2

Draw boxes for byte

3A Display options 1

3B REPEAT Collect option i1
3c Execute option il
3D UNTIL option is “finish’

4 Finish with program.

The structure of the program is becoming obvious. | and 2 are sequential and
are executed once each time the program is run. 3 is executed repetitively until
the program is halted by some means. Within this REPEAT...UNTIL loop, there
may well be other nested loops. each of which is terminated by a different
condition. The question raised now is. where to go next. As a rule one should stick
to the order of execution unless there are some processes that are not yet clearly
defined. These should be tackled first. because they may throw up problems that
cause the original design to be modified. The earlier such modification takes
place. the better. In our case we have to ask about 3C.

3C carries out the operation on the number in the byte. While it does so the
options are removed. Our program has made no allowance for recalling them. so
immediately there is a fault in the design. But it is far better to discover this now
than later. Qur first revision is thus:

BYTE
1 Initialize variables etc.

2 Draw boxes for byte

3A REPEAT display options
38 Collect option

3C Execute option
3D UNTIL option is “finish’

4 Finish with program.

Now let us look more closely at what 3C is required to do. There will be six
possibilities, depending on the option chosen:

POKE a number into the byte

ADD a number to the byte
SUBTRACT a number from the byte
LEFT SHIFT

RIGHT SHIFT

Finish

MDD WP

Each of these will be a subroutine. returning control to the main program once |
executed. Our refinement of this step will be as follows: 1

o
o

The ZX Spectrum in science teaching

3C Execute option

3CP IF option = P THEN subroutine P
3CA IF option = A THEN subroutine A
3Cs IF option = S THEN subroutine §
3CL IF option = L THEN subroutine L
3CR IF option = R THEN subroutine R
3CF IF option = F THEN subroutine F

Step 3B can also be modified further. It consists of collecting the option from |

the-user._pmbahly_ with a single key entry. It becomes clear that collecting an
option will follow immediately after displaying the options, so the two should go

together as a single subroutine. This could also contain a routine to remove the

choice of options immediately before executing them. So 3A and 3B become:
(S1) Subroutine to handle options
(S1)A Display options
(1) REPEAT

(S1)B collect option

(S1)C UNTIL option is acceptable

(S1)D Point to chosen option

(S1)E Clear choice of options from screen
(S1)F RETURN to calling routine

Refining this further gives:

(s1)8
(s1c

Collect single key entry

IF key is notone of P, A, S, L, Ror F
THEN collect another key

ELSE continue

Each of these can be instantly turned into code. since they are all straightforward.

We can therefore leave further development of this until later. We ought first to

check _through. that nothing has been overlooked. To do this we carry out a dry

run with dummy data. Imagine we can see the options displayed, something

like: -
Choose one from P, A, S, L, Ror F.

If the user presses Q. the routine will not accept it, but will instead wait until an
acceptable response is made. Atthis point 1 ask myself whether I ought to build in
some protection. Should I indicate that the response was not acceptable? On the
other hand, the instructions are explicit. If a user enters Q and gets no response.
then he or she has not obeyed the instructions. Should that user expect to get any
more information? I decide that this is unreasonable, so no action is to be
taken.

After this simple test. we need to see if there is anything else that is not yet
obvious. It is clear that we have still to do a great deal with the options.

56

o M el

|

Programming techniques

Considering each option in turn shows that options P, A and S require a number
10 be entered from the keyboard. In each case this number must be an integer
between 0 and 255. These options ought, therefore, to share a common
subroutine.

In this subroutine, it will not be possible to collect the number with a single
keystroke, it will have to be an INPUT statement. So this gives us:

(S2) Subroutine to collect a number

(S2)A Display range of acceptable inputs
(S2)B REPEAT
collect input number
convert to integer
UNTIL number is positive and less than 256
(S2)C RETURN to calling routine

The whole structure can be searched and refined further in just the same way
until it all ends up as simple statements, each of which can be converted into code
without problems. Before coding, though, it is necessary to check that all the likely
problems have been foreseen and allowed for. The programmer should make a
dummy run through the program with imaginary data to see what will happen, as
we did above. Such a dry run through the program might reveal several more
problems to be overcome. For example, how will (52)B cope with an alphabetic
input? Having discovered such problems. their solutions must be built into the
program at this planning stage.

This is the theory! In practice the strict pattern of top down programming
breaks down whenever a problem is encountered, for which the programmer can
see no solution. For example, I needed to know how to split the decimal number
up into a binary number. This is not something I had ever done before, so I could
not see how to do it. This is where the advice of computer scientists has to be
ignored; no amount of stepwise refinement will tell me how to do this, only
experimentation, that is bottom up programming. I used to feel guilty at ignoring
the advice of expert computer scientists, until I realized that they are dealing with
different problems. They already know how to handle their machines, so they do
not need to break off to find out. I have not yet reached this stage and I am sure
that few other science teachers have either. The problem with bottom up
programming is the restrictions it might impose on later top down refinements. It
is advisable to discard any code created during the experiment - its retention
might force the programmer into a predetermined mould and lead to later
problems.

Itis difficult to follow this advice because of lack of time. In my particular case, 1
could not display the binary number without the boxes to put the results into.
Checking this meant drawing the boxes and this, in turn, meant developing the
graphics characters. I decided to put the latter well out of the way. at line 9000
onwards. I then set up a routine to draw the boxes (line 1000 onwards) and finally
the routine to turn the decimal number into binary and display it (starting at line

57

The ZX Spectrum in science teaching

1500). I had several attempts at this (which explains the missing line numbers
1630 to 1690), before hitting on one that was acceptably fast.

All this meant that a good deal of the programming had already been done,
before the final structure was determined. Having developed some code that
works, I tend to want to keep it. Any major drawbacks. likely to be created by
beginning the coding early like this, are best overcome by writing it as separate
subroutines. It is then much easier to merge this with the main program later. or to
throw it away if it does not, in the end, work satisfactorily. Either way. it does not
become a millstone that forces subsequent planning into a predetermined mould.
In fact. such problems did occur. The subroutine to split up the number is called
repeatedly. The subroutine to draw the boxes is called once. By not rewriting this
part of the program already coded. I upset the natural order of the subroutines.
This feature remains. Of course I could have renumbered to get rid of it, but that
would have been cheating. That is not the way that it happened.

Coding

Having refined each process until we are sure how to do it (or experimenting with
the bits we are not sure about). we are now in a position to begin turning it into a
BASIC program. I did this linearly from the beginning. With the fundamental
structure developed, this was quite an easy job. Some problems were encountered
and needed ad hoc solutions (see later), but the structure remained intact
throughout. Even so, a structure alone does not necessarily lead to a readable
program. There are some ground rules for structured programming that should be
borne in mind.

One oft-quoted rule is ‘avoid GOTO and GOSUB'. I agree with thisup to a
point. Some programs are such a mass of convoluted GOSUBs and GOTOs that it
is impossible to see what different conditions are doing. Nevertheless. the
intention is to make the structure of the program as obvious as possible.
Contrived techniques for avoiding GOTOs may not necessarily achieve this end.
Structured BASICs are certainly easier to use, but even Spectrum BASIC is not
hopeless in this respect. The ability to have several statements following an IF
...THEN means that several GO TOs can be avoided (unlike the ZX81). Because
Spectrum BASIC allows the number in a GO TO statement to be a variable, it
becomes fairly easy to perform something akin to a procedure. Study lines 2290 to
2350 in conjunction with line 280 and you will see what [mean.

Many novice programmers fail to use REM statements. It is true that they
double the length of a program and take up memory space, which is important if
you only have 1K of it! The Spectrum user has no such excuse. Although REMs
take time initially, this is amply repaid later. If you can easily find each routine,
debugging is much faster. This is even truer if the debugging is separated from the
coding by more than a few days. In our case. speed was only important when
printing the binary number in the boxes, so REM statements could be paredto a

minimum there. Elsewhere I was able to be very liberal with REM statements,
using them to mark off the different sections and to explain what each was doing.

58

B e

B

Programming techniques

Another help in this respect is the Spectrum facility for using long variable names.
These do make life so much easier. My one regret about the Spectrum is, that this
facility does not extend to arrays and the counting variable in a FOR. . .NEXT
loop.

Debugging

As mentioned above, correcting any errors in the program is not something that
can be left until last. Each step should be checked with dummy data to ensure that
nothing has been overlooked. Even so there will be errors in the program once it
has been coded. Simplest to eliminate are syntax errors (or mistakes) since BASIC
contains error detection routines and obligingly tells the programmer where the
error has occurred. More difficult to determine are errors in the logic. Hopefully
these should not exist, but that is a counsel of perfection. In my case several such
problems arose, which were detected as soon as the program was first run.

For example, I wanted to show users what was happening to their option after
they had made their choice. In all cases except POKE. the delays incurred in
calculating meant that enough time was given to this. without any more being
needed. The POKE routine turned out to be much faster, so line 3095 was added
later to overcome this fault.

Iintended to display each option choice on one line, allowing the program to
ask for the number immediately following. The total length of line needed to do
this was too great in the case of the POKE statement. so some extra coding was
added (line 3093), to allow this to be written on two lines. I should have noticed
this at the planning stage. but it was, unfortunately, one that I failed to
observe.

After a program has been debugged by the programmer, it should be let loose
on users. This stage is about to be reached. The full listing of the program is in
the Appendix. Doubtless it contains further bugs, but in the time-honoured
method of all lecturers. I leave them as an exercise for the student.

59

§
$
1

Computation and
mathematical modelling

‘She can't do sums a bit!" the Queens said
together, with great emphasis.
(Lewis Carroll, Through the Looking Glass)

This chapter explores the uses of the Spectrum as a mathematical tool, including
calculations, graphical display of functions, plotting experimental data, simula-
tions using the random number generator and problem solving by iterative
methods.

The super calculator

Calculation is the traditional domain of the computer(as its name implies). There
are many books that deal exhaustively with this aspect of computing, with many
illustrative examples. In fact, there may even be too many! Why do so many books
of programs include one on the solution of quadratic equations? It is not because
there are many problems that require its solution, in fact. hardly anyone uses it
after leaving school. I suspect the real reason is that it has become a standard
example upon which mathematical programmers cut their teeth (while physicists
do radioactive decay and the rest write programs on sorting). The real value of
writing such programs is the insight they give the programmer into the nature of
the problem. Try writing your own quadratic equations program and you will see
what [mean. How do you interpret "too big’ or ‘syntax error? Perhaps you forgot
about equal or imaginary roots. If this is true, then one way to teach students
about LCR circuits might be to get them to write their own LCR circuit analysis
program.

There is no pointin using acomputer just to substitute numbers into equations.
Nor do we want students to enter a set of data into some previously prepared
program on, say, Newton's rings, that then automatically calculates the
wavelength of sodium light. In both cases the process is more important than the
product - we are trying to get students to appreciate the properties of the equations
being used.

The microcomputer can aid this understanding of equations and concepts in
two ways. One of these, the iterative method., is left until last. The other is the sledge-
hammer technique of getting the computer to solve an equation many times over
while varying one of the parameters. As an example, consider the motion of a
stone being thrown vertically against gravity (GRAVITY, program 35). By
entering different starting speeds a pupil should be able to discover the relation
between the vertical height reached and the initial speed. This technique may be

60

Computation and mathematical modelling

used with almost any other standard equation in science. It would be much better
though if the graphics capabilities of the microcomputer were used as well.

Producing a neat table of results is not easy with the Spectrum, since it has no
formatting statements. GRAVITY shows what can be achieved with the PRINT
AT statement. Small numbers cause problems since they are converted to
scientific notation, which overflows the space available. Such numbers may be
produced in lieu of an expected zero result, since microcomputers are calculating
in binary and decimal numbers do not always convert to an exact binary
equivalent. A calculation that should produce zero, such as (312-9) might well
produce an answer like 3.7252903E-9 rather than 0. The subroutine at line 1000 of
GRAVITY shows how such numbers can be ignored, while proper decimals are
converted to four digits (or five if the number is negative) before being
printed.

Graph plotting

The high resolution graphics of the Spectrum are particularly useful for sketching
functions. PLOT and DRAW are easily used and some very sophisticated graphs
can be drawn. The process is a little slow for complex functions, but this is not
necessarily a disadvantage. One can ask the students to predict ‘what will happen
next?. For those whose coordinate geometry is a little rusty, the following
discussion may be of assistance.

PLOT
The statement to plot a single dot is

PLOT 0,88

You may just be able to see the small dot on the left of the screen and half-way up.
which is the point you have just plotted. Now type

PLOT 10.88

which gives a point nearer to the right, but at the same height as the other point.
The first number in the PLOT command tells how far the point is from the left
edge. Type

PLOT 10,40

to get a point below the ones plotted before. This shows that the second number in
the PLOT command gives the vertical position of the point. The smaller the
number, the nearer itis to the bottom. The largest value for the horizontal position
is 255 (extreme right) and the smallest is 0 (extreme left). The largest value for the
vertical position is 175 (top) and the smallest is 0 (bottom). Any attempt to plot
points outside these limits cause a fatal error (the program crashes).

Clear the screen with CLS and prove for yourself the positions of the extreme
corners of the screen as follows:

61

The ZX Spectrum in science teaching

TOP-LEFT : PLOT 0,175
TOP-RIGHT : PLOT 255,175
BOTTOM-LEFT : PLOT 0,0
BOTTOM-RIGHT : PLOT 255,0

Lines

We get lines by drawing a set of dots close together using the DRAW statement.
This draws a line from the previous point visited (PLOT or a previous DRAW)
with the new dimensions specified in the DRAW statement. For example:

MOVE 0,0

DRAW 100,100 (diagonal line)
DRAW 50,0 (horizontal line)
DRAW 0,50 (vertical line)

This shows that the new line is drawn starting from the last point visited. DRAW
a.b does not draw to the point a.b. but a distance a in the x direction and a distance
b in the y direction. It is called a relative draw. To get an absolute draw. the
coordinates of the previous point visited have to be subtracted from a and b
beforehand. This can be most easily achieved by

DRAW a - PEEK 23677.b - PEEK 23678

This technique works because locations 23677 and 23678 are where the Spectrum
keeps a record of the x and y coordinates of the last point visited. Using this
method. the points on the screen have the coordinates x.y (as in coordinate
geometry) and lines can thus be drawn to an absolute position. To plot graphs
there must be some relationship between x and y. which must be included in the
program. Here is a simple example:

100 PAPER7

110 INKO

120 FORx= 0TO 255

130 LETy=x/2

140 DRAW x - PEEK 23677,y - PEEK 23678

150 NEXT x

Note how the program plots the equation given in line 130. Any equation
connecting x and y can be used. provided the equation is of the form y = function
of x only. If. however. the first point plotted is not 0.0. the first DRAW statement
produces an unwanted line from the bottom left corner of the screen. This can be
overcome with a flag. which is set after the first point has been plotied. If the flagis
set. a DRAW is executed and if the flag is cleared. then a PLOT is executed. The
subroutine to do this (and also to avoid out-of-range errors) is shown below.

100 PAPER7
110 INKO

i At o R 4

Computation and mathematical modelling

115 LETflag=0

120 FORx=0TO 255

130 LETy=200-x2

140 GOSUB 1000

150 NEXT x

160 STOP
1000 REM Draw a line to x,y
1010 IF x<0 OR x>255 THEN LET flag=0:RETURN
1020 |IF y<0 ORy>175 THEN LET flag=0:RETURN
1030 IF flag=0 THEN PLOT xy:LET flag=1
1040 DRAW x - PEEK 23677,y - PEEK 23678
1050 RETURN

Try this for yourself. with different equations in line 130. For example:

130 LETy= x*x/200
130 LETy= 250 — 3*x + x*x/100

Different origins
Axes can also be drawn as follows:

10 REM Draw axes
20 PLOT 0,0:DRAW 255.0
30 PLOT0,0:DRAW 0,175

This only allows us to plot graphs in one quadrant. for positive values of x and y.
Some graphs. particularly sines and cosines. produce negative values too. To plot
these requires us to draw the axes in a different place. To keep the origin of the x
axis at the left of the screen (x = o) and put the y axis in the middle (y = 88) we
write

10 REM Draw axes
20 PLOT 0,88:DRAW 255,0
30 PLOT0,0:DRAW 0,175

The graph will now show points in the range 0 to 255 (x coordinate) as before. but
—88 to +87 (y coordinate). Now to plot lines with this new origin requires the
addition of a displacement to the y value with

PLOT x,88+y

Another problem with sine and cosine graphs is that they are functions of
angles in radians. To get at least two cycles on the screen. the range for the angle
must be from 0 to 4*PI radians. The range for x is 0 to 255, so a conversion factor
has to be included to make 256 equivalent to 4*PL It is better to define a
conversion factor (confac) to carry out this operation at the start of the program
and to do this in such a way that it is obvious what is happening.

63

The ZX Spectrum in science teaching

LET cycles = 2
LET confac = 2 * Pl * cycles / 256

The value of any sine function goes from —1 to +1. 50 it must be multiplied by an §
amplitude (maximum of 87 to get the full range on the vertical axis). Here is the
program for the sine function. This shows the way of handling the new
origin.

10 REM Draw axes
20 PLOT 0,88:DRAW 255,0
30 PLOT 0.0:DRAW 0,175
100 PAPER7
110 INKO
115 LETflag=0
200 LET cycles = 2
210 LET confac = 2*Pl*cycles/256
220 LET amplitude = 60
230 FORx=0TO 255
240 LET y = amplitude*SIN (x*confac)
250 GOsuB 1000

{
F
1

260 NEXT x

300 STOP
1000 REM Draw a line to x.y
1010 LETa=x
1020 LETb=188+y

1030 IF a<O0 OR a>255 THEN LET flag=0:RETURN
1040 IF b<O OR b>175 THEN LET flag=0:RETURN
1050 IF flag=0 THEN PLOT a,b:LET flag=1

1060 DRAW a- PEEK 23677,b- PEEK 23678
1070 RETURN

A program to plot the cosine function involves changing line 240 to
240 y = amplitude * COS (x*confac)

A program to plot two functions at the same time requires two FOR-NEXT loops.
Letus plot three cycles of the sine function and two of the cosine function. The use
of DRAW within a single loop now becomes awkward and it is better to use two
separate loops. This also allows the two curves to be drawn in different
colours.
10 REM Draw axes
20 PLOT 0,88:DRAW 255,0
30 PLOT 0.0:DRAW 0,175
100 PAPER 7
110 INK1
115 LET flag=0

A

Computation and mathematical modelling

200 LET sincycles = 3
210 LET sinconfac = 2*PI*sincycles/256
220 LET sinamplitude = 60

230 FORx=0TO 255

240 LET y = sinamplitude*SIN (x*sinconfac)
250 GOSUB 1000

260 NEXTx

300 |INK3

310 LET flag=0

320 LET coscycles = 2

330 LET cosconfac = 2*Pl*coscycles/2566
340 LET cosamplitude = 80

350 FORx=0TO 255

360 LET y = cosamplitude*COS (x*cosconfac)

370 GOSUB 1000

380 NEXTx

500 STOP
1000 REM Draw a line to xy
1010 LET a=x
1020 LET b=88+y
1030 IF a<0 OR a>255 THEN LET flag=0:RETURN
1040 IF b<O OR b>175 THEN LET flag=0:RETURN
1050 IF flag=0 THEN PLOT a,b:LET flag=1
1060 DRAW a- PEEK 23677.,b - PEEK 23678
1070 RETURN

With other trigonometrical functions an error message is produced if the
plotted point is not within the range of the screen. The function plotted should
therefore be checked for its maximum and minimum values and the amplitude
adjusted. An example is the function 60sin(3A) + 80cos(2A). which can have a
value of 140, so the amplitudes in lines 220 and 340 should be reduced
accordingly. in this case by hall. To plot this function as well as the functions that
2o to produce it. add these lines to the previous program:

400 INK6

410 LET flag=0

420 FORx=0TO 255

430 LET y = sinamplitude * SIN(x * sinconfac) +
cosamplitude * COS(x * cosconfac)

440 GOSUB 1000

450 NEXT x

The function tan(A) goes to infinity when A is ninety degrees producing an
error. A sufficient knowledge of the properties of the function avoids crashing the
program. The following program plots tan(A) for two cycles:

65

The ZX Spectrum in science teaching

10 REM Draw axes
20 PLOT 0,88:DRAW 255,0
30 PLOT 0,0:DRAW 0,175
100 PAPER7
110 INKO
115 LET flag=0
200 LET cycles=1
210 LET confac = 2*Pl*cycles/256
220 LET amplitude =5
230 FORx=0TO 255
235 IF x=64 OR x=192 THEN GO TO 260
240 LET y = amplitude*TAN(x*confac)
2560 GOSUB 1000
260 NEXT x
300 STOP
1000 REM Draw a line to x,y
1010 LET a=x
1020 LET b=88+y
1030 IF a<0 OR a>255 THEN LET flag=0:RETURN
1040 IF b<0 OR b>175 THEN LET flag=0:RETURN
1050 IF flag=0 THEN PLOT a,b:LET flag=1
1060 DRAW a - PEEK 23677.b- PEEK 23678
1070 RETURN

Some functions still cause problems. Consider the equation of the circle
x2 + y2 = radius?

where the maximum value for the radius is 511. BASIC cannot handle the
equation as itis, it must be transformed to get a single value of y (or x) on the leftof
the equation.

y = SQR(radius*radius — x*x)

Care must now be taken to prevent the absolute value of x from exceeding the
radius, otherwise y becomes imaginary. Also the square root is automatically
positive, so we shall only get the whole circle by separately including the negative
value.

LET radius=400

FOR x = -radius TO radius

LET y = SQR(radius*radius — x*x)

PLOT x,88+y

PLOT x,88-y

NEXT x

This gives uneven spacing between the plotted points and a more satisfactory way.
which makes use of a separate parameter is preferred. For circular functions

) Al

Computation and mathematical modelling

angle is the most useful parameter. There is little point in doing this for circles.
since Spectrum BASIC already contains a CIRCLE statement. but for other conic
sections it is essential. The program for an ellipse is as follows:
10 REM Draw axes
20 PLOT 0,88:DRAW 255,0
30 PLOT 128,0:DRAW 0,175
100 PAPER 7
110 INKO
120 LET xradius=80
130 LET yradius=40
140 PLOT xradius+128,88:REM Move to first point
200 FORa=0TO 360 STEP 10
210 LET angle=a*Pl/180
220 LET x = xradius*COS(angle)
230 LET y = yradius*SIN(angle)
240 DRAW 128 + x - PEEK 23677,88 + y - PEEK 23678
250 NEXTa

The parabola is given by
x=2*a*t
y=a*t"t
For example:

10 REM Draw axes
20 PLOT 0.88:DRAW 255,0
30 PLOT 128,0:DRAW 0,175
100 PAPER7
110 INKO
120 PLOT 58,171:REM Move to first point
200 FORt=-70TO 70
210 LETx=t
220 LETy=1t*t/30-80
230 DRAW 128 + x - PEEK 23677,88 + y - PEEK 23678
240 NEXTt

Panicu!arly pleasing to the physics teacher is the production of Lissajous
figures using sine equations with different frequencies and phase angles.

100 CLS
110 PAPER 7
120 INKO

130 INPUT “Phase angle =
140 INPUT "Frequency Ratio =
150 LET amplitude = 80

160 LET phase=ph*PI/180

67

The ZX Spectrum in science teaching

170 PLOT 128+amplitude*SIN (phase).88

200 FORa=0TO 100000

210 LET angle = a*PL/180

220 LET x = amplitude * SIN{freq*angle + phase)

230 LET y = amplitude * SIN(angle)

240 DRAW 128 + x- PEEK 23677,88 + y - PEEK 23678
250 NEXTa

If non-integral values of the frequency ratio are desired. it can be many cycles

before the pattern repeats itself. hence the need for the large number of cycles in
3

line 200.

Applications

These ideas can be turned to practical classroom use in a number of ways. Once
the principles are appreciated a few hours at the keyboard will tell students more
about the behaviour of functions than a whole series of lectures.

Simple functions

If a phenomenon can be described by a simple equation then it can be plotted in
the ways just described. For example the distance-time graph of a body that falls
from rest can be plotted with the equation

s=g*t*t/2
This translates into a program as follows:

100 CLS

110 PAPER7

120 INKO

130 INPUT “Acceleration due to gravity = “;g
140 LETacc=-—g

150 PLOT 0,160

200 FORt=0TO 255

210 LETx=acc*t*t1/2

220 LETy= 160 + s/1000

230 IF y<O THEN GO TO 250

240 DRAW t— PEEK 23677,y - PEEK 23678
250 NEXTt

260 GOTO 130

Different values for gravity may be entered and their effects noted. In this
program values between 0 and 10 give the best results.

Wherever there are more than two variables. the others can be held constant
during each scan of the screen and altered later by entering new values in
precisely the same way as this. This process fits most equations experienced in O

68

Computation and mathematical modelling

level physics and chemistry. Typical examples are as follows:
V=I*R
W=I*I1*R
P *V = const
1w+ 1/u=1/f
F=k*m*M/(r*r)

Trigonometrical functions allow some of the properties of vibrations and waves to
be investigated. The superposition of two waves to give interference, beats and
modulated waves was demonstrated above. Here is another example: a program
for an object executing damped oscillations. This includes a plot of the wave
envelope too. so that the student can appreciate which part of the equation causes
the different shapes of the graph. This program is actually an oversimplification.
since no account has been taken of the effect of damping on the frequency of the
oscillations. A much better way of doing the whole thing is discussed later in this
chapter.

1 REM DAMPED OSCILLATIONS

10 CLS

20 PLOTO0.0

30 DRAW 0,160

40 PLOTO0.80

50 DRAW 2550
130 INPUT “Amount of friction (0 to 0.1) = “;friction
150 LET cycles=4
160 LET confac = 2 * Pl * cycles/256
190 LET amplitude = 75
200 PLOT 0,80 + amplitude
210 FORt=0TO 255
220 LET angle =t * confac
230 LET displacement = amplitude * EXP{-t * friction) * COS(angle)
240 DRAW t- PEEK 23677.80 + displacement - PEEK 23678
250 NEXTt
300 GOTO 100

A particularly satisfactory demonstration of the Fourier synthesis of a square
wave is obtained with the following program:

10 REM FOURIER SYNTHESIS
100 CLS
110 PAPER7
120 INKO .
130 PLOT 0.88:DRAW 255,0
140 PLOT 0,0:DRAW 0,175
150 PLOT 0.88

The ZX Spectrum in science teaching

LET cycles = 2

LET confac = 2 * Pl * cycles / 256

LET amplitude = 80

FOR x = 0TO 255

LET angle = x * confac

LET y1 = amplitude * SIN(angle)

LET y2 = amplitude / 3 * SIN(3 * angle)
LET y3 = amplitude / 5 * SIN(5 * angle)
LET y4 = amplitude / 7 * SIN(7 * angle)
LET y5 = amplitude / 9 * SIN(9 * angle)
LETy=y1 +y2 +y3 +y4 +y5
DRAW x - PEEK 23677,88 + y - PEEK 23678
NEXT x

Provided you are prepared to wait, this process may be continued for as many &

harmonics as you wish.

Complicated functions

Many functions cannot easily be rearranged to make one variable into the subject

of the equation. There is usually no necessity for this in any case as the
microcomputer is quite capable of carrying out the calculation in parts. A good
example of this is the voltage across a capacitor in an LCR circuit (Figure 3.1). If

this is plotted against frequency a resonance curve is produced. The input voltage
is assumed to be constant (E) and this produces a current in the circuit (I).

Lis given by E/Z, where Z is the impedance of the circuit at the given frequency
(f). The voltage across the capacitor (C) is thus I/2 7 fC. the value for Z is obtained
from the formula

=R+ (2rfl-1/27C)2

RESONANCE (36) plots the desired curve, The values of L and C should be chosen
to make the resonant frequency come near the middle of the screen (Plate 6).
Assuming inductances in millihenries and capacitors in microfarads, this gives

Figure 3.1 LCR resonance

70

Computation and mathematical modelling

Flate 6 Resonance curve

L =20 mH and C = 100 u F. (Strictly, this frequency is the angular frequency. but
this is not apparent in the final plot, so it is ignored here. If required it is simple
enough to allow for it.) Here is the essential structure of the program

INPUT “Inductance =" L

INPUT “Capacitance = " C

INPUT “Resistance = “ R

LET E = 50 :REM APPLIED VOLTAGE
FOR frequency = 1 TO 2500 STEP 10
LET XL = frequency * L

LET XC = 1/(frequency * C)

LET X = XL-XC

LET Z = SQR(R*R + X*X)
LET|=E/Z

LETVC=1*XC

DRAW frequency, VC

NEXT frequency

It can be seen how the final capacitor voltage is obtained after several separate

71

The ZX Spectrum in science teaching

calculations. each of which should be familiar to the student. By showing each
step of the calculation like this, it is easier to keep sight of the physics. The value of
this kind of program is that students can investigate the effects of carying on

parameter at a time.

Graph plotting with experimental data
Probably the most useful application of graphs in science is the plotting of’

experimental data. This is usually carried out to obtain the slope or intercept of a'

straight line graph, where the best line is obtained from the data by guesswork.
The computer can be a great help in teaching students to do this. since the ‘best’

line can then be obtained by the method of least squares. The use of PLOT and

the relative DRAW easily allows a cross to be produced at the point x.y

A complete program to accept students’ data and to process it is not easy if the

data can have all possible values. LEAST SQUARES PLOT (3) works to som
extent and may be adapted to suit any particular application.
For statistical data a bar chart is preferred. In this case the x coordinate is

L

probably discontinuous, but whether it increases in steps of one. two or five. etc. is |

amatter of choice in each case. So once again a single program will not suffice for

all occasions and the example given - SUM OF TWO DICE (30), will need to be

adapted for each particular case. Horizontal bar charts are just as easy to
achieve.

The use of RND

The random number function of BASIC is not provided just for computer games!
It is invaluable for carrying out statistical experiments, particularly where the
results can be displayed graphically. RADIOACTIVE DECAY (29) illustrates the
use of this function to decide which nucleus should decay next. Since the position
of this next nucleus is decided at random. the chance of choosing a position with
an undecayed nucleus depends upon the number of such nuclei remaining. This
therefore simulates radioactive decay quite well (Plate 7).

If one of the variables is discontinuous, then the bar chart is an obvious means
of display as SUM OF TWO DICE (30) illustrates. This is a standard experiment,
but few students could do it more than a few times as a practical exercise. so the
microcomputer can help to make the pattern more obvious. In the space of a few
minutes the experiment is performed hundreds of times.

The use of RND is particularly valuable in biology for simulating genetic
linkage and there are very many programs available for this. It is also used in the
simulation of Geiger and Marsden’s experiment discussed later (RUTHERFORD.
40).

Iterative methods

The Nuffield Advanced Physics originators were far-sighted in noting probable &

72

Computation and mathematical modelling

(-] 5 1@ 1S 20 25 30 35 40 tss
300:1

L BRERK

into program,

Plate 7 Radioactive decay

trends towards more and cheaper calculators. They describe several experiments
which run very nicely on a microcomputer. Basically they suggest that as well as
the traditional algebraic (usually integral calculus) analysis of physical pheno-
mena. teachers should explore numerical solutions. A good example is the
discharge of a capacitor through a resistor. This can be solved algebraically by
noting that the current flowing through the resistor is the differential of the charge
on and hence the voltage across the capacitor. Since this current is directly
proportional to voltage, all that has to be done is integrate a reciprocal and end up
with an exponential logarithm. The mathematics so obscures the physics that itis
hetter to seek a step-by-step solution to the problem.

The voltage (V) across the capacitor is related to the charge (Q) in the capacitor
by

a=v*cC (Eq. 1)

This voltage causes a current () to flow through the resistor according to the well-

known formula
V=I1*R (Ea. 2)

73

The ZX Spectrum in science teaching

If a current of one ampere flows for one second, the capacitor will lose one

coulomb of charge, so in one millisecond, say, it will lose one millicoulomb of
charge. Thus the remaining voltage on the capacitor after one millisecond is a bit
less than it was before. and we can use Eq. | to calculate exactly how much less.
This gives us a new value for V, with which to begin the next millisecond. By hand

it could take some time to see how the capacitor voltage is falling but the
microcomputer makes very short work of the calculations. The exponential curve
is obtained with only the three fundamental equations. The actual program is
listed as CAPACITOR DISCHARGE (37). and any student, particularly one able
to comprehend the calculus approach, could write such a program.

The main difficulty is ensuring that the chosen values give results that fit the
screen. The time axis (x axis) goes from 0 to 255 units. If these are seconds, then a
time constant of about 50 seconds is needed for the RC circuit. This is somewhat
unrealistic, so we pretend that our time scale is in microseconds instead. The
value for R can thus be a few ohms and the value for C between 1 and 10
microfarads. Since different values for R and C can be entered, students can be
asked to discover how the rate of decay depends upon R and C. In so doing. they
learn a great deal about the decay curve, which should aid their understanding of,
say, radioactive decay too.

This approach to the analysis of phenomena is called the iterative method. It
is applicable in very many areas (and not just physics). Programs 38 to 40 show
how it may also be applied to motion. Plate 8 shows the sort of results obtained
with PROJECTILES (38). The basic algorithm is as follows:

Assume initial position, velocity and acceleration.

Assume a small increment of time.

Determine the new velocity after this time interval.

Determine the distance travelled at this velocity during this time interval.
Calculate the new position.

Return to step 1, with new values of velocity and acceleration.

[= T T

This gives a delightful way of tackling simple (and damped) harmonic motion,
without recourse to differential equations.

1 REM DAMPED OSCILLATIONS
2 REM BY THE ITERATIVE METHOD

10 CLsS

20 PLOTO.0

30 DRAWO,160
40 PLOT0.80

50 DRAW 255,0
100 PRINT AT 0.0;"

110 PRINT AT 1,0:”
120 PRINT AT 2,0;"
130 INPUT “Amount of friction (O to 0.1) = “;friction

74

P

Computation and mathematical modelling

140 PRINT AT 0,0;"Amount of friction = “;friction
150 INPUT “Spring stiffness (O to 10) = ";spring
160 PRINT AT 1,0;"Spring stiffness =
170 INPUT “Mass of object (O to 10)
180 PRINT AT 2,0;"Mass of object = ;

190 LET amplitude = 75

200 LET displacement = amplitude

210 LET speed = O:REM INITIAL SPEED

220 MOVE 0,amplitude

230 LETtime=20

240 LET timeinc =1

250 PLOTO,155

260 Iteration begins

270 LET resteringforce = -spring * displacement/100
280 LET frictionalforce = ~friction * speed

290 LET totalforce = restoringforce + frictionalforce

300 LET acceleration = totalforce/mass

310 LET speed = speed + acceleration * timeinc

320 LET displacement = displacement + speed * timeinc
330 LET time = time + timeinc

340 DRAW time - PEEK 23677,80 + displacement — PEEK 23678
350 IF time<255 THEN GO TO 260

360 GOTO 100

On each run different values can be entered to discover the role that each variable
plays in the overall motion. If this is coupled with actual experimental work with
masses on the end of a spring. I believe the approach to be much more truly
physics than the traditional mathematical approach.

For projectiles there are two directions - x and y - to consider. However. these
can be considered entirely independently. so the only complication is that there
are twice as many calculations in each cycle. PROJECTILES (38) illustrates this:
the motion in the x direction is constant velocity, while that in the y direction is
constant acceleration. This program also shows how easy it now is to include
more difficult ideas. The usual treatment of projectiles ignores friction and leads
to the ideal case of 45 degrees as the angle for maximum range. PROJECTILES
incorporates a frictional drag. proportional to the speed, which reduces the speed
and leads to the idea of terminal velocity. The resulting motion is not unlike that
predicted by Bacon's impetus theory (Plate 8). The acceleration due to grav!
the friction (dragcoefl) can be altered for different effects (projectiles in
treacle?).

Motion under a central force is rarely understood. NEWTON (39) is a game
that any student should be able to solve, but it often fools physics graduates. The
objective is to put a rocket into moon orbit from outside. Try it and see if you
understand Newton's laws yourself. The program first calculates the distance

75

The ZX Spectrum in science teaching

Investigating angle

pPresent angle = 22

8 Projectile motion

between the rocket and the centre of the moon. This is converted into two forces,
one which affects the acceleration in the x direction. the other the y direction. This
in turn leads to predictions of where the rocket will be after the next unit of time
(timeinc) and the process reiterates until the rocket crashes on the moon’s surface
or disappears off the screen. The value of ‘timeinc’ can be altered as before to
achieve smoother if slower motion.

Alpha-particle scattering by a gold nucleus provides a classic derivation for
university undergraduates. I understand that the mathematics of this was too
difficult for Rutherford and was handed over to a mathematician. I imagine that
Rutherford would have loved the iterative method. The essential part of
RUTHERFORD (40) is very similar to its equivalent in NEWTON, except that
the force acting is reversed to produce repulsion instead of attraction. The motion
is also speeded up (with a loss in resolution) to allow a large number of particlesto
be observed. These are fired at random at the gold nucleus and only a few pass
close enough to be deflected (Plate 9)

So the mathematics is reduced to the level where any sixth former can
understand it. [am not sure that many teachers, particularly of physics. have yet
realized the implications of this. If, as I suspect it will, computer programming

76

Computation and mathematical modelling

Plate 9 Alpha-particle scattering

becomes the fourth R, then the traditional dependence of advanced science
subjects upon mathematics could be allowed to decline. thus opening them upto
mare students than hitherto

Modelling the environment

The iterative process has wider applications than those above and it was used by
the Huntingdon Project, which produced the well-known simulations in biology
and chemistry. One of these, POLLUT. analyses the effect of certain types of
pollutant upon water life and another, HABER. looks at the effects of changing
the temperature and pressure etc. of the reactants in an industrial process.
Practically anything that can be quantified, can be mathematically modelled,
although the accuracy of the predicted outcomes is not necessarily reliable. It
depends upon whether all the important factors have been taken into
dccount.

The principles are well illustrated by the FOX AND RABBITS program on the
Horizon introductory cassette that comes with the Spectrum. Fox and rabbit
Populations are modelled to predict how they change with time. It is assumed that
the rabbits” food is infinite so that they can reproduce without restriction. The

7

A

The ZX Spectrum in science teaching

growth in the fox population is dependent upon the supply of rabbits. If foxes only
eat rabbits, then they will begin to die if their population exceeds some factor of:
the rabbit population. Foxes with abundant food reproduce at a constant ray
which is also chosen before the start of the iteration. It is assumed that the
starvation rate of foxes depends upon the ratio of foxes to rabbits. which seems

reasonable. It is further assumed that the death rate of rabbits is proportional to &

the product of rabbits and foxes. This assumes that one fox with, say, 1000 rabbits "

will still eat twice as much as the same fox with 500 rabbits. (I greatly suspect lhe'
model at this point) The number of rabbits that are eaten depends upon the :
number of foxes and the number of foxes depends upon the number of rabbits. =
This classic problem can only be solved by an iterative process, since the
equations generated have no analytical solution. The essential structure of the

program is shown below.

REM FOX AND RABBIT SIMULATION

LET weeks = 0

LET rabbits = 3000

LET foxes = 20

REPEAT

LET babyrabbits = rabbits * rabbitgrowthrate
LET deadrabbits = foxes * rabbits / 1000
LET rabbits = rabbits + babyraboits — deadrabbits
LET babyfoxes = foxes * foxgrowthrate

LET deadfoxes = 5 * foxes / rabbits

LET foxes = foxes + babyfoxes — deadfoxes
LET weeks = weeks + 1

PLOT weeks,foxes

PLOT weeks,rabbits

UNTIL finished

As a physicist I find this much less satisfying than the same approach applied to
physics, because I can justify some of the values entered into the equations of
motion. [am not at all sure about the constants entered into the fox and rabbits
program.

78

4 Microcomputer timing and control

‘The question is,’ said Humpty Dumpty, ‘which
is to be Master - that's all.”
(Lewis Carroll, Through the Looking Glass)

Interfacing a microcomputer

Most control applications use two-state devices. An electric light switch canbe up
ordown. An electromagnetic relay can be on or off. A valve can be open or closed.
Digital electronic systems are used to switch such devices on or off. Although
quite complex, a microcomputer is still only another digital system, so it is
possible to use a microcomputer to control the above devices. It can switch lamps,
relays, motors and valves on or off.

This is not a normal function of a microcomputer and it has not been designed
specifically to do this. Consequently the current needed to switch on these devices
may be larger than that provided by the microcomputer output. There has to be
some interface between the microcomputer and the device being switched, to
boost the switching current to the correct levels.

A microcomputer can also be used to detect whether any particular two-state
device is in its on or its off state. Here, the switching voltages involved may be
different for each device, so some interface must be used to change the voltage
levels of the device to the levels acceptable to the microcomputer.

In digital electronics we are only concerned with two-state devices. ones that
can be switched on or off. Generally. to switch a device on. we send a HIGH
voltage to its input. To turn it off, we send a LOW voltage. HIGH and LOW are
obviously not the same for different devices. Here are a few examples:

Device On Off
Light-emitting diode 1.2V 05V
Torch bulb 30V 1.5V
Electromagnetic relay 50V 20V
Silicon transistor 07V 05V
TTL integrated circuit 24V 0.4V

To remove this uncertainty about what is ‘HIGH' and what is ‘'LOW’ engineers use
TTL logic levels. TTL stands for transistor transistor logic: it is a particular
standard used in the electronics industry. A TTL HIGH voltage is between 24 and 5.5
V. which. as you can see, will switch on all the above devices. A TTL LOW voltage is
between 0.4 and 0 V, which will switch all these devices ofl. A HIGH voltage is also
called a logic level 1 and a LOW voltage is called a logic level 0.

79

The ZX Spectrum in science teaching

Connections to the ZX Spectrum microcomputer are made through its extension
port. When this book was planned, it was intended to give details of how to
construct an interface to fit onto this port, to allow a whole range of control
experiments and measurements to be carried out [was then introduced to the
Interspec. designed by Dave Palmer and decided that I was wasting my time. This
interface did all that I required and cost much less than the average teacher would

pay for the components alone. I thus decided to abandon the original plan and just f:
discuss the uses of the Interspec. These are formidable and take up mostof the next =
two chapters. | make no apology for being so specific about one particular interface,
the general principles described are true for most other Spectrum interfaces too. &

Introduction

The outward appearance of the DCP interface (henceforth called the Interspec) is
shown in Plate 10. The initial applications of this. now described. assume no
understanding of electronics: they aim to show beginners how to use the Interspec
for experiments in science and control technology. Later applications are for
those who wish to write their own programs. They explain in more detail how the
interface works and give more examples of its uses. To understand these ideas you
will need some knowledge of digital electronics. such as is found in
Microelectronics (Hutchinson. 1984).

Plate 10 Interspec interface

80

Microcomputer timing and control

Eighteen of the programs listed in the Appendix. illustrate the use of the
Interspec. Some of these will be immediately useful in teaching, for example, the
time. speed and acceleration meter TSA (9). Others may be readily adapted for
this purpose. It is possible to load and run these progrms without being a
microelectronics expert. Many other short programs are listed in these notes as
examples to be entered from the keyboard. Their purpose is to demonstrate ideas
rather than provide working programs. Most simple programs listed require only
a 16K RAM Spectrum and they will also run on the larger 48K Spectrum. The
timing programs require a 48K Spectrum for the reasons given later.

Connecting the Interspec to the ZX Spectrum

The power to the Spectrum must be switched off before the Interspec is
connected. Failure to do this may damage both the Interspec and the
computer.

Unlike most other microcomputers, the ZX Spectrum does not have a user port.
Instead it has an extension connector at the back, which connects to the address
and data lines of the microprocessor. The Interspec must be plugged onto this
connector. The slot in the connector makes sure that the interface can only fitone
way. so there is no possibility of plugging it in wrongly. If the ZX printer is being
used too. the printer should be plugged in first and then the Interspec.

Some Spectrum power supply units do not seem able to cope with the printer.
Interspec and 48K Spectrum all at once. A dark band appears across the screen, indi-
cating a power overload. If you are in this situation, you will have to omit the printer
when the Interspec is connected. You should not connect a separate 5V supply to the
Interspec unless you are very familiar with the problems that this could produce.

In all cases the sockets and connectors should be eased together without twisting
them. The best way is to place them flat on the table and then push them together
gently but firmly. Careless connection may damage both the interface and the
microcomputer itsell. If you are unsure of what to do. please seek expert help. It is
better to lose a few days than to damage your microcomputer through ignorance.

Outputs

As mentioned above, different devices need different voltages and currents to
drive them. The Interspec has TTL outputs, but for most purposes the relay
outputs (Figure 4.1) are easier to use. These are the four yellow sockets on the left
side of the interface. The common terminal for these relay contacts is the green
socket next to these.

The relays are controlled through an output port of the interface. Each pair of
contacts can be opened or closed separately by writing a 1 or a0 into the correct bit
positions of this output port. This ‘writing’ is achieved with the OUT statement of
Spectrum BASIC. The address of the output port is 63, so the syntax is

OUT 63.X

81

The ZX Speetrum in science teaching

commsn
s e e
output 1 :—/
output 2 f——— "
BV
a3 "
HIGH (positivel

input® [3¢

Il

ov

input 1 [

input2

input3 [}

ov

Figure 4.1 Relay outputs and switch inputs

\\‘h.ere Xis a number between 0 and 15. Each relay is closed when its value is
written to the output port address according to the following table:

Relay number Bit pattern X value
3 1000 8
2 0100 4
1 0010 2
0 0001 1

OUT 63,0 (ir! binary 0000) opens all contacts.
OUT 63,8 (binary 1000) opens contacts 0, 1 and 2 and closes 3.

Combinations of different relays are made by adding these values together.

OUT 83,3 (binary 0011) opens contacts 2 and 3 and closes 0 and 1.
OUT 63,15 (binary 1111) closes all contacts.
This is called positive logic.

Ip (l.mier.to ‘see’ the relays operate. they need to be connected to lamps or light
:nultlpg dmd:.‘s (LEDs) or the relays can be connected to motors or other devices.
The diagram in Figure 4_.2 shows how to connect such devices to the relay sockets.
with the common terminal connected to an external power source,
Ph!ij?mc users may wish to use the lamp indicator units of the Nuffleld Advanced

sics course in the above arrangement instead. These work perfectly well with
an external 6 V power supply. For any external power supply. it must not be
connected to the 5 V terminal of the Interspec. One end of the external power
supply may be connected to the common terminal of the relays and in most cases
the other end may be connected to the 0 V terminal of the Interspec. Extra care

82

e

Microcomputer timing and control

=

—
 m— |
—
—

forward (M [reverse
I e W
S

“ov ¥

Figure 4.2 Connecting to the relay outputs

should be taken when the external power supply is mains-derived.

Others may wish to use the indicator units of the various digital electronics
hoards now available commercially. Rather than sourcing the LED as in Figure
4.2, such boards may sink them instead. with one of the methods shown in Figures
4.3 and 4.4. This 100 is quite satisfactory. except that the relay contacts may then
need to be connected differently. With the Unilab indicator unit. each input is
held LOW by a resistor. so the above discussion is valid. The Griffin indicator
unit does not have this resistor. so each LED is normally on when its input is left
unconnected (as is normal with TTL devices). So when the relay is open. the LED
comes on (the opposite of the above). The method of using the relays in this case is
to connect the common line o 0 V. so that it switches the LED off when the relay is
closed. The number to be sent to the output port is then the opposite or inverse of
the above. as follows:

Relay number Bit pattern X value
3 0111 7
2 1011 n
1 1101 13
0 1110 14

OUT 63,0 (in binary 0000) opens all contacts and switches all LEDs on.
OUT 63,8 (1000) switches LEDs 0, 1 and 2 on and switches 3 off.

The easiest way to remember this is to use the previous table. but to subtract the bit
value from 15 each time (see Example la below). This technique is called
negative logic. Whether any board uses positive or negative logic must be
determined by inspection or experiment.

Controlling the environment

The examples that follow show how to use the OUT instruction. The listings
provided are copies of printouts of real working programs. and we hope. contain
no typing errors. It should be possible for even a novice to enter and run these
programs with no further theory. For those wishing to write their own programs

83

The ZX Spectrum in science teaching

later chapters contain further help. Example 1 is written in two forms to illustrate

both positive and negative logic. All other programs illustrate positive logic only
and use a logic board like that shown in Figure 4.4, Those using the simpler form
shown in Figure 4.3 will need to alter the programs in the way discussed above,

These sink methods have been used because some readers may wish to utilize the §

TTL output port of the Interspec instead of the relay sockets. If this is done. then
the output address needs to be altered to 95 instead of 63 in the programs, Those
using the relay sockets only can simply drive the LEDs directly as shown in
Figure 4.2. The Griffin programmable logic board uses this method and so is
directly usable in the following applications.

C——r— = |45V
1k0 t
20R || | [] [] ., rea
A (v —cTZ| output 3
o red
e S @'—<—¢:::Y output 2

2 I
7. vellow

() %[output 1

ab xe!

[+
L green
o :D————h (i —=—w| output @
E’\, ﬁ SN 7404
[f — |ov
L——»jr\pu!@ common =0 V
L input 1
——————input 2

input 3

Figure 4.3 Negative logic

o—r +5V
ke Pt
270R I
| U ~2 red
A ¥ ——————rZ|output 3
N
D
~% red
B 'M,‘ L 1Y | output 2
c S Ll 1X| output 1
D Cﬁ:)—rl e Wi output @
N
]
d i
(o’ i ‘1’ == [}
Linput® common =0V
input 1
‘—'—‘—-—-—i‘nput 2
input 3

Figure 4.4 Positive logic

84

-

e S

Microcomputer timing and control

Increasingly in industry. the solutions to problems in electronics are becoming
ones of adapting a general purpose circuit to a specific application. rather than
designing a special circuit each time. Traditional control technology in schools
has laid emphasis upon the second of these approaches: the hardware solution.
The Spectrum and its interface can be used to demonstrate the more modern
software approach. The programs described below demonstrate how the unit can
be used to switch the LEDs on and off. Note that in each case. the electronic
circuit remains the same. it is only the program that is changed.

Example 1 Traffic lights (positive logic)
1 REM TRAFFIC LIGHTS
10 REM Define outputs
20 LETred=4
30 LET amber = 2
40 LET green =1
50 LET outputs = 63
100 REM traffic lights sequence
110 OUT outputs,red
120 PAUSE 250
130 OUT outputs,red + amber
140 PAUSE 100
150 OUT outputs,green
160 PAUSE 250
170 OUT outputs,amber
180 PAUSE 100
500 GO TO 100
Example 1a Traffic lights (negative logic)
1 REM TRAFFIC LIGHTS
10 REM Define outputs
20 LETred=4
30 LET amber =2
40 LET green =1
50 LET outputs = 63
100 REM traffic lights sequence
110 OUT outputs,15 — red
120 PAUSE 250
130 OUT outputs, 15 — (red + amber)
140 PAUSE 100
150 OUT outputs,15 - green
160 PAUSE 250
170 OUT outputs,15 - amber
180 PAUSE 100
500 GOTO 100

For this program it is assumed that three LEDs represent the red. amber and

85

The ZX Spectrum in science teaching

green traffic lights. The program shows how these lights can be controlled by |
sending the numbers 1, 2 and 4 (and combinations of them) to the output port. As

an exercise try switching on the LEDs in a different sequence. In particular make
them follow the continental system, where the lights change directly from red to
green.
Example 2 Random lights
10 REM RANDOM LIGHTS
20 REM Define outputs
50 LET outputs = 63
100 REM switch lamps
110 LET randnum = INT (RND*16)
120 OUT outputs,randnum
130 PAUSE 25
500 GO TO 100

To satisfy those critics of Example 1. that they can do traffic lights just as well
without a microcomputer. Example 2 is almost impossible with traditional
hardware - switching the LEDs on and off in random sequence. For this purpose
a random number between 0 and 15 is sent to the output port.

Example 3 Psychedelic lights
10 REM PSYCHEDELIC LIGHTS
20 REM Define outputs
30 LETodd=1+4
40 LETeven=2+8
50 LET outputs = 63

100 REM switch lamps

110 OUT outputs,odd

120 PAUSE 25

130 OUT outputs,even

140 PAUSE 25

500 GO TO 100

Patterns of lights can easily be achieved with this sort of program. Can you
discover other interesting sequences’
Example 4 A binary counter
10 REM BINARY COUNTER
20 REM Define outputs
50 LET outputs = 63
100 REM switch lamps
110 FORi=0TO 15
120 OUT outputs,i
130 PAUSE 50
140 NEXTi
500 GO TO 100

86

Microcomputer timing and control

This example also switches on the LEDs in a more orderly way. by adding | to the
numbersentto the output port each time. The LEDs thus countup in binary. Can
you discover how to make the LEDs count down in binary instead”?

Example 5 A shift register
10 REM SHIFT REGISTER
20 REM Define outputs
50 LET outputs = 63

100 REM switch lamps

110 OUT outputs.0

120 PAUSE 25

130 OUT outputs,1

140 PAUSE 25

150 OUT outputs,2

170 PAUSE 25

180 OUT outputs,4

190 PAUSE 25

200 OUT outputs,8

210 PAUSE 25

500 GO TO 100

One common chip used in microelectronics is the shift register. which is
simulated by this program. They are particularly useful for converting serial data
{where the bits are sentone alter the other along a single pair of lines) into parallel
data (where all eight bits are sent simultaneously along separate lines).

Example 6 A metronome

10 REM METRONOME

20 REM Define outputs

30 LETon=15

40 LEToff=0

50 LET outputs = 63
100 REM Collect frequency
110 CLS
120 PRINT AT 3,10;"METRONOME"
130 PRINT AT6 nter the number”
140 PRINT AT 8,0;"of beats per minute.”
150 INPUT beats
160 LET interval = 50*60 / beats — 2
170 PRINT AT 20,0;"Press any key to change.”
200 REM toggle relays
210 OUT outputs,on
220 PAUSE 2
230 OUT outputs,off
240 PAUSE interval

87

The ZX Spectrum in science teaching

250 IF INKEYS="" THEN GO TO 200
500 GO TO 100

This program uses the PAUSE instruction to determine the interval between
pulsing the lights. This instruction waits for the time interval (in fiftieths of a
second) to elapse before repeating the cycle. Line 250 tests the keyboard and. if
any key is being pressed. restarts the program.

Further ideas :
The outputs from the Interspec are so easy to control. that now use them for most
work in elementary electronics. The programs are quite simple - in most cases
simple sequential programs are sufficient (Example 3). Even those who have
never programmed a computer before can get control programs working in a very
short time. Couple this to the possibility of getting the programs to monitor and
check the student’s progress and understanding and you have the embryo of a
new way of teaching electronics in schools. This is currently being investigated
further. Some of this is described in more detail later.

By connecting a reversible electric motor to the relays (Figure 4.2). it is possible
1o drive the motor forwards or backwards. If the motor is joined to a model car
(Meccano. Lego or Fishchertechnik) the motion of this car can then be controlled.
The car could move forwards. stop for a given time and then reverse to its starting
point. Unfortunately. this system is unreliable: the car rarely returns to its exact
slarting point. so after a few cycles, it has tended to progress down the table.
Clearly there has to be some feedback to the microcomputer. so that it "knows'
exactly where the car is. We need to use the inputs of the interface too.

Inputs

The interface can be used to detect whether any particular two-state device is in its
on or its off state. Here again the voltages involved will be dependent upon the
devices. So the interface must change the voltage levels of the device to the levels
acceptable to the microcomputer. This is achieved by the four switch-inputs (the
white terminals on the left of the interface - Figure 4.1). When these inputs are left
unconnected. they are normally LOW. They can be switched HIGH by
connecting directly or indirectly to the red socket nearby. (It is possible to change
this way of working: details are given later.)

In this context HIGH and LOW refer to voltage levels. If a switch input is
connected to a voltage greater than 1.2 V. the interface interprets this as a HIGH
(or on) level. If the voltage applied to the switch input is less than 0.8 V. the
interface interprets this as a LOW (or OFF) level. These voltages are with respect
to the 0 Vline of the interface (the black socket). Voltages between 0.8 Vand 1.2V
may be interpreted as HIGH or LOW, so this region should be avoided. Voltages
outside the range 0 to 5.5 V may damage the interface. so care must be taken not to
use such voltages. This means that alternating voltages should not be connected
directly to the switch inputs.

88

Microcomputer timing and control

Alternatively, a switch input can be sent HIGH by connecting it to the red
socket through a resistorof less than 5 kilohms resistance. If the resistance is more
than about 15 kilohms. the switch input will be LOW. This is very useful since a
photocell or a light dependent resistor (LDR) can be connected directly
between these terminals to provide a light sensitive switch. Or the resistor could be
a thermistor thus giving a temperature sensitive switch.

Any real switch such as a float switch. mercury tilt switch or pushbutton switch
could also be used to provide inputs. The microcomputer can thus be used to
detect its environment and to respond to it in different ways. We now have a way
of communicating information to the microcomputer other than via the
keyboard.

The information about whether a switch input is HIGH or LOW. is sent to the
microcomputer by the interface. The microcomputer interprets it as a binary digit
(or bit). A LOW level is called a logic 0 and a HIGH level is called a logic 1. The
microcomputer reads the information from the input port. which shares the same
address as the output port above. This too is a four-bit port. meaning that the logic
levels of all four switch inputs are read at the same time. Each of the inputs is
connected to a different bitas before. Ifany inputis HIGH. its corresponding bit will
be a 1. If the input is LOW. then its corresponding bit will be a 0. In reality the input
port has eight lines of which we are using only the bottom four. The top four lines are
always HIGH. The whole set of eight bits is read at once, (thus giving a binary
number from 1111 0000 to 1111 1111, depending on the logic state of the inputs).
When the input port is read. this binary number is converted to its decimal
equivalent by the Spectrum, thus giving a number between 240 and 255. Subtracting
240 from this number (the top four bits) gives a value. between 0 and 15.

The address of the input port of the Interspec is 63. exactly the same as for the
output port. The BASIC statement

LET X=IN &3

will set the value of X to some integer between 240 and 255. depending upon which
of the switch inputs are HIGH and which are LOW. After subtracting 240 this
number will be inthe range Oto 15, In binary. these extremes are the numbers 0000
(corresponding to all four switch inputs being LOW) and 1111 (corresponding to
all switch inputs being HIGH). To determine which lines are HIGH and which
are LOW. this decimal number must be decoded into its equivalent bits using this
table:

Input number Bit pattern X value
3 1000 8
2 0100 4
1 0010 2
(o] 0001 1

If more than one line is HIGH. the X value will be a combination of the
corresponding numbers above. Thus if the X value is 12. this means that lines 2

89

The ZX Spectrum in science teaching

and 3 are HIGH and the others are LOW. Similarly, if LET X = (IN 63) - 240 |
yields the value 3, this means that the lines 0 and | are HIGH and the others are 3]
LOW. Routines can be written in BASIC to inspect the value in X to find out |
which lines are HIGH or LOW. !
The Spectrum can occasionally read wrong data from the Interspec. This can '
be cured by preceding each IN statement by a PAUSE statement. (We have no
idea why this works.) The following programs show how this is done. Recent '3
versions of the Interspec have the top four bits held LOW, so LET X = IN 63 gives
a value between 0 and 15. For this version omit the -240 from the programs.
Example 7 Switch indicator :
10 REM SWITCH INDICATOR
20 REM Define inputs and outputs
30 LETinputs =63
40 LET outputs = 63
100 REM Collect switch inputs
110 PAUSE 1:LET status = (IN inputs) - 240
120 REM Send to outputs
130 OUT outputs,status
500 GO TO 100

The first program in this section shows how the state of each line can be echoed to
LEDs connected to the relay outputs.
Example 8 Selective indicator
10 REM SELECTIVE INDICATOR
20 REM Define inputs and outputs
30 LET inputs = 63
40 LET outputs = 63
50 LETon=1
60 LEToff=0
100 REM Collect switch inputs
110 PAUSET:LET status = (IN inputs) - 240
120 LET A = off
130 LET B = off
140 LET C = off
150 LET D = off
160 IF status > 7 THEN LET status = status - 8 : LET D = on
170 IF status > 3 THEN LET status = status -4 : LETC = on
180 IF status > 1 THEN LET status = status - 2 : LET B = on
160 IF status > O THEN LET A = on
200 REM Send to outputs
210 LETW=A

220 LETX=
230 LETY=C
240 LETZ=

Microcomputer timing and control

250 LET result = 8*Z + 4°Y + 2*X + W
260 OUT outputs,result
500 GO TO 100

Example 7 does not allow individual switches to be inspected. Spectrum BASIC is
rather clumsy in this respect. but Example 8 does do this task satisfactorily.

Example 9 Logic maker
10 REM LOGIC MAKER
20 REM Define inputs and outputs
30 LETinputs =63
40 LET outputs = 63
50 LETon=1
60 LEToff=0
100 REM Collect switch inputs
110 PAUSE 1:LET status = (IN inputs) - 240
120 LET A = off
130 LET B = off
140 LETC = off
150 LET D= off
160 IF status > 7 THEN LET status = status— 8 : LET D = on
170 IF status > 3 THEN LET status = status— 4 : LET C = on
180 IF status > 1 THEN LET status = status— 2 : LETB = on
190 IF status > O THEN LET A= on

200 REM Send to outputs

210 LETW=AANDB

220 LETX=AORB

230 LETY=NOT(CANDD)

240 LET Z = NOT(C OR D)

250 LET results = 8*Z + 4*Y + 2*X + W
260 OUT outputs,result

500 GOTO100

This program shows how the switch inputs may be combined to affect the outputs
in different ways.

Output W is the AND combination of A and B.
Qutput X is the OR combination of A and B.
Output Y is the NAND combination of C and D.
Output Z is the NOR combination of C and D.

This program has simulated a hard-wired board with the gates shown in Figure
45. Clearly these gates may be changed to give any combination required. The
Spectrum is behaving like a programmable logic gate. which is the more modern
way of using electronics. Try out some logical combinations of your own by
changing lines 210 to 240 of Example 9.

91

The ZX Spectrum in science teaching

Figure 45 Simulated logic on the logic board

Sensing and controlling the environment

We have seen how to connect simple switches and LEDs to the Interspec to
simulate the real world. but we are not limited to these. The switch inputs can be
connected to different devices. such as photocells. trip switches. water-level
indicators. temperature switches and the like. The outputs can be connected to
motors. lamp indicators. heaters. water valves and pumps. It is thus possible 1o
produce an automatic washing machine with a suitable control program. The
examples that follow are more simulations to demonstrate how the inputs and
outputs are used together in such control systems.

Example 10 Pedestrian crossing
1 REM PEDESTRIAN CROSSING
10 REM Define inputs and outputs
20 LETred=4
30 LET amber=2
40 LET green
50 LET wait=8
60 LET outputs = 63
70 LET inputs = 63
80 LEToff=0
100 REM set lights at green and wait for pedestrian request
110 OUT outputs,green
120 PAUSE 1:LET status = IN inputs
130 PAUSE 1:IF status = IN inputs THEN GO TO 130
140 REM input status has changed
150 REM traffic lights sequence

Microcompurer timing and control

160 OUT outputs,(green + wait)
170 PAUSE 150

180 OUT relays,(amber + wait)
190 PAUSE 100

200 OUT relays,red

210 PAUSE 250

220 REM flash amber

230 FORc=1TO10

240 OUT outputs,amber

250 PAUSE 20

260 OUT outputs,off

270 PAUSE 20

280 NEXTc

500 GO TO 100

This program shows how the switch inputs of the Interspec can be used to send
information to the microcomputer. This program uses the same red. amber and
green lights as for TRAFFIC LIGHTS. but adds another. connected to output 3
which simulates the wait lamp on a pedestrian crossing. The pedestrian request
button of the crossing is simulated by momentarily closing (or opening) a switch
connected to any of the switch inputs. This simple arrangement allows for the
pedestrian to request the traffic to stop. upon which. the traffic lights go through
their sequence to red and the wait lamp then goes out to indicate that it is safe to
cross. This program could include a BEEP produced by the Spectrum’s own
speaker. but this is left for you to add.

Example 11 Burglar alarm
1 REM BURGLAR ALARM

10 REM Define inputs and outputs

20 LET outputs = 63

30 LET inputs =63

40 LEToff=0

50 LETon=1
100 CLS
110 PRINT AT 0.8:"BURGLAR ALARM™
120 PRINT AT 3,0;"Press ¢’ to set the system.”
130 IF INKEY$<>"c" THEN GO TO 130
140 PRINT AT 6,0; There will now be a short delay”
150 PRINT AT 8,0;"to give you time”
1860 PRINT AT 10,0;"to get out of the house.”
170 PAUSE 250
180 LET status = IN inputs
190 PRINT AT 15.,0:"The alarm is now set.”
200 PRINT AT 17,0;"Cross the light beam”
210 PRINT AT 19.0:"to set off the alarm.”

93

The ZX Spectrum in science teaching

220 PAUSE 1:IF status = IN inputs THEN GO TO 220
230 CLS:PRINT AT 1,0;"The photocell has been crossed.”
240 PRINT AT 3.0;"There will be a short delay”

250 PRINT AT 5,0;"to allow the owner to switch”
260 PRINT AT 7.0:"the alarm off before it sounds.”
270 PAUSE 250

280 IF INKEY$<>" " THEN GOTOQ 100

290 REM sound the alarm

300 FORc=1T020

310 OUT outputs,on

320 PAUSE 10

330 OUT outputs,off

340 PAUSE 20

350 NEXTc

360 GO TO 100

One of the traditional circuits for teaching about electronics is the burglar alarm.
The simple version of this suffers from all sorts of drawbacks. How does the owner
of the house getintoit. or even out of it. without triggering off the alarm? Example
11 is an alarm routine. which includes these extra features. Again sound can be
added if required.

Teaching electronic logic

Example 9 above indicated how the microcomputer might be used to simulate a
programmable logic array (PLA). This idea can easily be extended to the
teaching of electronic logic. In Microelectronics 1 proposed that one of the best
ways of introducing microelectronics is with a microcomputer. this view will now
be justified. For the following experiments a logic board should be connected to
the Interspec. This board can be the four-input logic board described previously.
although only three inputs are used. Better still. the Griffin programmable logic
board can be used (Figure 4.6)

These boards connect directly to the switch-input and relay output ports. The
power supply for the LEDs comes from the microcomputer itself. From the point
ofview of the user. the logic board consists of three input sockets and four LEDsto
indicate the logic state of the outputs. It can be used by the microcomputer to
simulate each of the standard logic gates and digital electronic circuits
encountered in elementary electronics. Once the board has been connected to the
microcomputer. LOGIC (1) should be loaded and run. It works in the following
way.

LOGIC presents a menu of options. most of which are self-explanatory. As an
example. choose the first option (Two-input logic gates). This option then asks
which logic gate is to be simulated (the choice is AND. OR. NOT. NAND. NOR.
EXCLUSIVE-OR or EQUIVALENCE). After the selection is made (by pressing
one of keys 1to 7) the screen displays a diagram of the board. indicates the current

94

Microcomputer timing and control

o— - 45V
red @ 3 —~———— output 3
red @ C——— output 2
yellow @ o ——— output 1
, green () —t——= output @
=] T | - ov

L nputo
input 1

————input 2
Figure 4.6 The three-input programmable logic board
logic states of the inputs and the output. displays the appropriate truth table and

highlights the particular line of this truth table which is currently being
implemented (Plate 11). .

LOGIC GRATES

AND (@loutput

HEERE880 | D
HEOORLES |0
HOROREORE | O

10 change

Plate 11 Logic gates

G

The ZX Spectrum in science teaching

The logic board has three input terminals labelled A. B and C and four outpug
terminals labelled W. X. Y and Z. which are connected to LED indicators to show
their logic state. When a terminal is HIGH. its LED is on. when a terminal is

LOW.its LED is off. The input logic levels can be changed by connecting them 1o+

the 5V terminals (red). which makes them go HIGH. or they may be connected to

the black 0 V terminals. which makes them go LOW. Unconnected inputs are *

LOW, which is not the normal condition for TTL devices but is easier for
beginners. When the logic level of ecither input is changed. the display also
changes accordingly.

Other options in LOGIC allow the logic board to become a shift register. binary
counter. J-K bistable. two-to-four decoder or to simulate three-input logic gates. The
program has been found to give a good introduction 1o the principles of digital
electronics. It also illustrates the way that a programmable device. like a
microcomputer. can be used to produce different logic functions under the control
of a program. In the same way that I deplore the unnecessary use of computer
simulations in science instead of doing the actual experiment itself. some teachers
may be horrified at the replacement of “real” chips by a microcomputer. [think the
latter is justified. because "chips” are not an essential part of electronics (whereas
science is mnot science without practical experimentation). When teaching
electronics in school. our aim is to introduce the concepts of logic gates and binary
counters: we are not too bothered whether such devices are implemented with
CMOS or TTL integrated circuits. with transistors or even with relays. In a sense the
computer is behaving like an uncommitted logic array. which is probably the best
approximation schools can get to current industrial practice.

After investigating the different types of logic gate. students can be asked to run
LOGIC TEST (2). which tests their understanding. The computer chooses a
particular logic gate from a set of ten options and sets up the two-input board to
simulate this gate. The student is invited to alter the input logic levels and observe
the LED output and so determine its truth table. He or she then guesses which
gate is being simulated and the computer marks this response. The program
demonstrates a further use of microcomputers in the laboratory. to monitor the
understanding of a practical activity. | am sure that this has applications in very
many more areas than the one chosen as an example.

Electronic logic is concerned with the solution of problems that require
different things to happen depending upon the input conditions. The burglar
alarm and pedestrian crossing programs are good examples. We used 1o build
these systems using integrated circuits. It is useful now to see what difference the
microprocessor has made. Before the invention of the microprocesor. in order to
make a new electror

¢ system. an engineer would have to design a new circuit. It
was most unlikely that new components could just be added on to a previous
circuit, so the whole system would have to be re-made from the beginning This is
how digital systems were built in the 1960s and 70s. from combinations of
separate integrated circuits. They were all wired together in the correct way 10
produce the desired function. Even if the system was sold in large numbers. each

96

Microcomputer timing and control

one had still to be built up separately on a printed circuit board. so that the
Jifferent gates could be correctly wired together.

The microprocessor changes this. because the same hardware can be made to
Jodifferentthings merely by changing its program. The same microprocessorcan
ihus be made to do many different things. from shearing sheep to controlling a
power station, making a teddy bear speak or running a microcomputer or even
video games. Because it is the same microprocessor in each case. a very large
number of them can be produced very cheaply.

With integrated circuits different Boolean functions are made by connecting
NAND gates together. Each function is made by combining the gates in a
Jifferent way. The advantage of a programmable system is that the same circuit
can be used to produce these different functions. under the control of the
program. The "User-defined logic” option in LOGIC behaves similarly allowing
cach of the four outputs to become different Boolean functions of the inputs.
1LOGIC MAKER (Example 9) behaves in the same way. allowing you to create
vour own Boolean functions. To do this. stop the program and LIST lines 200 to
300, You can create any function of your own, provided it conforms to the syntax
rules of BASIC and the ways already described for writing out Boolean functions.
After changing the program. re-run it to execute with your new function.

DIGITAL ELECTRONICS

topic _for study by
£¢n3 one of these numbers.

Two input Llogic gates

Three input Logic gates

The 2-to-4 decoder
user-defined Logic gates

The bistable

The binary counter

The shift register

The astable multivibrator
The monostable multivibrator

1
2
3
4
S
6
7
8
9

Plate 12 Digital electronics simulation

97

The ZX Spectrum in science teaching

For example:
210 LET Z= (NOTAORB)
210 LET Z= NOT(NOT A AND NOT B)

The variables should be A, B or C but you will not have to declare beforehand €

which you have used. The final outputs should be W. X. Y or Z. It is possible to use
other variables. although you will not be able to find out what values they take,
For example:

210 LETT= NOT AANDB
211 LETS=NOTBANDA
213 LETZ=TORS

This example also shows that it is possible to put in more than one line for the
function, provided it does not have to work backwards. That is. you cannot
pul

210 LETZ=NOTT
211 LETT=NOTBORA

because T does not have its correct value in line 211 until after line 210 has been
executed. This causes a 'no such variable’ message to appear. A few more
examples are given below. but the fun in this program is to create your own
functions and then see what you have produced. Do this by stepping through the
truth table and noting the outputs in each case.

210 LET Z= NOT (A OR B)

210 LET Z= NOT (NOT A AND NOT B)

210 LET Z= NOT (A AND B}

210 LET Z= (NOT A AND B) OR (A AND NOT B)
210 LET Z (A AND B) OR (NOT A AND NOT B)

Timing

One most important application of the digital interface is timing. particularly for
mechanics experiments. The Spectrum can be made to measure the time interval
between two logic-level changes at the switch inputs. These status changes can be
caused by switches or. more importantly, by photocells. The photocells can then
be operated as cards mounted on trolleys cross in front of them,

A simple photocell can be made by connecting a light-dependent resistor
between a switch input and the 5 V socket (red). This will. however. be too slow for
serious timing and a photodiode is essential. Two methods of connecting a
photodiode to a switch input are shown in Figures 4.7 and 4.8. It is important to
use some form of input buffer, like this, to prevent switching oscillations from
producing spurious pulses. On the other hand, such methods work by making the
switch-on level different from the switch-off level (a procedure known as

98

Microcomputer timing and control

hysteresis). This means that the light intensity required to switch the photocell on
is different from that needed to switch it off. This. in turn, means that the apparent
length of a card. passing in front of the photocell, is not its real length and this
introduces errors.

The best arrangement is to get the smallest width of light beam falling on the
photocell. This reduces errors due to the photocell switching on in a different
place from where it switches off as the card crosses in front of it. This chapter
assumes that two photocells are available. one connected to input 0 and the other
to input 1 of the swiitch inputs. For some programs only one of these is
needed.

The changes at the inputs are used to measure time intervals in the following
way. Inside the microcomputer a "clock’ is first set ticking away in some unit of
time. The switch inputs are read and stored in a memory location called status.

he current state of the inputs is then monitored continuously and compared

— 45V

input terminals

© I

— T 5V
S
|
100 k |
1M ™~
| l‘ S
| LM 324 switch input

.‘ ﬁmﬁk 1Mo
o l ov

photodiode

Figure 48 Connecting a photocell via an op. amp.

9

The ZX Spectrum in science teaching

with status. Normally it will be the same. but when it is different. this is because
one or other of the photocells has been activated. The contents of the clock are
then noted. When the timing is finished. the time intervals involved can be
calculated and displayed.

There are two ways of achieving the clock. The first is to make use of the
Spectrum’s own 50 Hz clock. The technique is to set this clock to zero when a
photocell is first triggered and to read it when the next “event’ occurs.

Example 12 A simple timer

1 REM SIMPLE TIMER
10 REM Define inputs
20 LET inputs = 63
30 PAUSE 1:LET status = IN inputs

100 REM wait for input status to change

110 PAUSE 1:IF status = IN inputs THEN GOTO 110

120 PAUSE 1:LET status = IN inputs

130 REM reset clock

140 POKE 23672,0

150 POKE 23673.0

160 POKE 23674.0

170 REM wait for input status to change again

180 PAUSE 1:IF status = IN inputs THEN GOTO 180

190 REM read clock

200 LET time1=65536*PEEK(23674)+256*PEEK(23673)+PEEK(23672)

210 LET time2=65536"PEEK(23674)+256*PEEK(23673)+PEEK(23672)

220 IF timel > time2 THEN LET time2 = time1

230 PRINT “Time taken = “;time2/50

This program assumes that switch inputs 2 and 3 are not used and are therefore
LOW. The status of the input port is monitored continuously and when it changes
for a second time. the number of elapsed fiftieths of a second is calculated. This is
done twice since it is possible to get a wrong time otherwise (see page 130 of the
Spectrum manual).

For the majority of timing purposes. BASIC is too slow. For example. in
mechanics experiments the card mounted on the air-track trolley crosses the
photocell in a few hundredths of a second. This requires machine code timing
routines, which are discussed later. For the moment we shall just make use of
these routines. without discussing them in detail.

REACTION TIMER (6) accepts input from the keyboard. After the screen
clears.the SPACE key should be pressed and the reaction time of the operator will
then be displayed on the screen in large digits. The Spectrum’s own 50 Hz clock is
used to measure this time interval.

STOPCLOCK (7) also uses the Spectrum’s 50 Hz clock in a similar way.
However. it now displays the elapsed time since the start of the timing sequence.
Calculating and displaying the figures in large digits takes too much time in

100

Microcomputer timing and control

PN D D m
for another
-easureuen‘.n q

pPress E

o E E
| |

Plare 13 STOPCLOCK

BASIC. so it is handled in machine code. Any change in logic level at input 0 or
input | will start the stopclock and any other change in either logic level wiil stop
it. leaving the elapsed time displayed on the screen. The SPACE key will halt the
display temporarily without stopping the internal clock at the same time (a lap
facility).

This program has many applications. It can replace a centisecond timer in
most instances. The usual problems over 'make to start, break to stop” are avoided.
since the routine detects any change at input 0 or |.

FAST TIMER (8) illustrates another method of timing - counting machine-
code cycles. The Z80A microprocessor in the Spectrum is itself under the control
of a crystal oscillator. which produces clock pulses at a frequency of 3.5 MHz.
Each machine code operation of the microprocessor requires a given number of
such clock pulses. These can be counted. thus giving a measured time interval,
Because the microprocessor is so [ast. very short time intervals can be measured
with this technique. in fact down to [ractions of a millisecond. One problem with
the method is that it requires a knowledge of machine-code programming to
understand how it works and this is not an easy subject. However. the timing
routine used in this program is of universal application and can be used in other

101

i
1
i
?
E
i
il
%
il
i

The ZX Spectrum in science teaching -g

—as 45V

foil 1 foil 2

input @

ut 1

Figure 4.9 Connecting foils to the switch inputs

programs without knowing how it works. It is cu?lefi frgrn w‘ilhin a B‘\ilc
pméram with the USR instruction and aflcrrihc timing is over. Vwminan 1.:s
returned to BASIC. To allow for easy use by bcs__.unner<. this routine is [‘}':ILle atthe
end of the program, where it can be mergcdru‘ru'h :lny'mher program rgqumnghn,
This and other programs also use a large d1\g|l$ routine to (hspluy_ nu.mhcrs that
can be read by the whole class. This routine is placed at the start of each program
using it. Its use is described more fully in Chapter 7.

Applications

; E ¢ d HIGH through the
i) Speed of a rifle pellet Inputs 0 and 1 should be connecte; : g
‘l)hirf:;iecefs ufjguil as in Figure 49. When the pellet breaks the first foil, the clock
starts and when it breaks the second foil. the clock stops. Thg program will then
note the elapsed time and display it in large digits on the video screen.

ii) Contact bounce Some idea of the speed of the timing routine can be gai;nedt:i
using a single push-button switch connecle‘_i to one of the inputs 0 or‘l, un i
program and when the display asks for an input. press the switch 0|jn.e‘ }n m .
instances the program will display a result. indicating that at least Fwo mlr‘;]is
changes have been detected. There were probuhiy many more changes ll‘;{an e
caused by the contact bounce in lhcswilch_ when itis closed. FAST TIMER is
enough to measure this contact-bounce time.

iii Switchover time Using the program with a two-way switch, as mdxca:ﬁd;:
Figure 4.10, enables the changeover time of this switch 10 be measured. &
interesting experiment is to see if the switchover time is dependent upon the spe
at which the toggle is operated.

iv) Camera shutter speed Instead of swilche_s to produce changes n? 1hc ;r;[;u;
status. this can also be done by the interruption of a beam of light fowmﬁmem
photocell. with the photocell connected to input Oor 1. It then becomes posslld o
measure the effective shutter "speed” of a camera. The photocell shou

102

Microcomputer timing and control

BV

L switch

input @

switch
input 1

Figure 4.10 Connecting a two-way switch

mounted inside the camera at the image of an external light source. When the
camera is operated. the time measured by the FAST TIMER program is a good
indication of the exposure time that the film receives.

v Trolley speed measurement 1§ a card attached to a trolley crosses a light beam
focussed on the photocell. the time taken for it to do so is measured by the routine
and displayed. In this instance both changes take place at the same input. If the
length of the card is measured too. the speed of the trolley can then be calculated
(or the Spectrum can automatically compute the speed if it is programmed to do
50).

Note that this program cannot be used with two photocells connected to
separate inputs. This would be very useful, since the speed of the card could then
be measured over a large distance. Unfortunately, as the card crosses the first
photocell, it starts and then stops the clock at this point. A more sophisticated
timing routine is needed to measure the time between two different photocells.

Advanced timing
The advanced-timing routine of the following programs needs some explanation.
Toenable multiple measurements of speed for studying the law of conservation of
momentum. there can be two photocells. Furthermore. in the latter experiment. it
18 possible for a second trolley to begin a transit of its photocell before the first has
linished crossing the other photocell. Thus it must be possible to detect the two
inputs independently and to keep their results separate. We still only need the one
clock, but at the start or finish of a transit. the time on the clock is copied into a
store. In fact up to thirty-two stores are available for each input. Thus. in the
conservation of momentum experiment. it is possible to have two trolleys
approach from different directions. to collide in the middle and both go off in one
narticular direction at different speeds. This involves two events at one input and
Six events at the other. but the routine can easily cope with this. (An event is any
change in logic level at either of the inputs.)

This advanced-timing routine can be called from a BASIC program ina variety

103

——

The ZX Spectrum in science teaching

Ready to take reading 3

3900
ms

Plate 14 Large-digit display

of ways. to measure time and speed as above and also to measure period.
r'n'quu:ncy and acceleration. All measurements are displayed in large digits on the
screen using a large-digit display machine-code routine in the manner described
in Chapter 7. The advanced-timing routine is used as follows. The nu_mt?cr of
events to be recorded is first placed in location 64247, For example. the timing of
the single pass of a card in front of a photocell requires two events. one o start the
clock and one 1o stop it. The measurement of acceleration with a double L‘:’ll’d
requires four events. two for each halfof the card. The routine is C;l“cd with USR
64000. which then waits for the photocell to be crossed the requisite number of
limes. Each time that such an event occurs. the current time. measured by an
internal clock. is copied into a fresh set of three bytes. When all events have h<.fe“
recorded. or if the SPACE key on the keyboard is pressed. the timing routin¢
hands back control to the BASIC program. "

If this return occurs after a proper liming sequence. the recorded times are first
converted into time intervals. The intervals recorded by the photocell cunnr.‘cledl
to switch input 0 are stored in locations 64256 to 64383. The intervals rcmnlcdl by
the photocell connected to switch input | are stored in locations M.‘-x; 0 M:l(|'_-
For most purposes. only the first few such locations will contain data. The BASI

104

Microcomputer timing and control

subroutine at line 4000 of TIME. SPEED and ACCELERATION METER
{program 9 - called TSA for short) collects the measured time intervals from these
locations and converts them into seconds. A study of programs 9 to 12 will reveal
exactly how this routine is used.

Speed and acceleration measurements with TSA are based upon the photocell
technigue using a card length of 40 mm. By changing lines 650 and 752 of the
program. this may be converted to any other length. However. there is
considerable inaccuracy introduced by the photocells. because the point at which
they switch on is not necessarily the same point at which they switch off. So a
40 mm card may not necessarily look like a 40 mm card to the photocell. The error
is only a few mm, and this is only important if very short cards are being used. If
great accuracy is desired. then 100 mm cards or longer should be used. The
advantage of short cards is that some meaning can be given to the difficult
concept of instantaneous velocity.

The double card shown in Figure 4.11 enables acceleration to be determined
and displayed directly. This quantity is computed from the standard equation

acceleration = (final speed - initial speed) / time taken

I'he double card provides for the two measurements of speed required in the
calculation. Only the 40 mm lengths of the card are critical. the distance between
them is not. If different lengths are used for this double card, then line 752 of the
program should be changed.

An interesting experiment is simply to drop this double card vertically in front
of a photocell. while TSA is being run. The screen will display the acceleration
due to gravity directly (but see the educational note below).

By connecting two photocells in series. they can be placed any distance apart.
and then a single card can pass in front of both photocells to provide the initial
and final speeds for this calculation. This would be a good way to introduce the
function of the double card.

TSA was not designed 1o explain how the microcomputer is making its
measurement. so ACCELERATION TUTOR (10) attempts to remedy that
situation. It is designed to be used with a trolley, carrying a single 40 mm card.
running down an inclined place. On the way it crosses in front of two photocells
connected in series to one of the switch inputs. The time taken for the card to cross
cach photocell can be displayed and used to determine the speed of the trolley in
two different places. The time taken for the trolley to get from one photocell to

-——— 40 mm — —— 40 mm ——s

-20mm+
(not critical)

Figure 4.11 The double card for measurement of acceleration

105

The ZX Spectrum in science teaching

the other can also be displayed, so that pupils can calculate the acceleration of the
trolley too. These values can also be calculated automatically by the program and
displayed for confirmation. Finally. the distance between the phom;ells can be
measured, thus enabling all of the common kinematic equations to be
investigated. 4

The advanced timing routine is also designed for measuring the speeds™
resulting from trolley collisions. It is incorporated into CONSERVATION OF
MOMENTUM (11). The same considerations about card lengths apply as above,
The speeds are displayed for each photocell separately. with the readings in
chronological order for each separate channel. In this case there should be two !
photocells, one connected to each input. The display will first list the speeds
recorded at switch input 0 (in the chronological order that they were measured).
Then the speeds measured at switch input 1 will be shown (againin chronological
order). Which of these represent the velocities before the collision must be
determined from an observation of the experiment itself. Usually there is no
confusion. so the initial and final momenta are easy to determine

Using a l6-slot card the speed of a trolley in front of a photocell can be
measured thirty-one times and distance-time and speed-time graphs can be
plotted and displayed automatically (SPEED-TIME PLOTTER. 12). This
program is useful for demonstrating the graphical relationships between
distance. speed and acceleration.

Educational note
Atthis point a cautionary note must be made to discourage the over-zealous use of
the microcomputer in the laboratory. The acceleration due to gravity experiment
mentioned above can be carried out much more easily and accurately by the
following program.

100 PRINT “Acceleration due to gravity = ";
110 PRINT "9.81 m/s2"

This is not. of course. a measurement, but to a pupil who does not know how a
microcomputer works, it is no less valid than the method described in TSA! It is
essential that pupils understand what the microcomputer is doing. when it is
taking measurements. This does not mean that pupils understand in the sense
that they should know about programming and interfacing: that is clearl.y
impracticable. What is needed is a demonstration that the microcomputer 15
giving the same results that could have been obtained by other. more long winded.
methods. The teaching sequence could be as follows:

i) Show the microcomputer as a measurer of time by getting pupils to press 8
switch for an estimated ten seconds. say. using the simple timer (Example
12). Then show the microcomputer being used as a stopwatch. .

ii) Show the microcomputer as a measurer of short time intervals. using

REACTION TIMER (6).

106

Microcomputer timing and control

iii) Measure the time of transit of a card in front of a photocell using TSA. Use
calculators to determine the speed of this card and then show that the
microcomputer can carry out the same calculations automatically.

i) Having shown how the microcomputer can calculate speed. allow it to
measure the speed of a trolley at several different places as it runs down an
inclined plane. ACCELERATION TUTOR (10) allows this to be done. so
that the times of transit of the cards and the time intervals between these
transits can be measured. Pupils can again use their calculators to
determine the acceleration of the trolley.

v) The principle of the double card should now be apparent - the micro-
computer is measuring three time intervals and using them to compute the
acceleration of the card. The acceleration due to gravity experiment can now
be understood.

vi) TSA can now be used to demonstrate Newton's second law. Because
acceleration is so easily measured. it is probable that pupils will get a better
understanding of this law than they usually do with ticker-timer measure-
ments of acceleration.

vii) Conservation of momentum experiments are now more easily carried out.
because it is no longer necessary to use stroboscopic techniques to measure
the speeds of the colliding trolleys. Nor is it necessary to restrict the
experiments to perfectly elastic or perfectly inelastic collisions.

Atall times the teacher must be wary of using the microcomputer ‘because it is
there”. It must offer a clear advantage over the conventional ways of teaching
before its use can be justified. The teaching of motion is an example of its
advantage: the measurement of time in hours and minutes just to display it as an
analogue clock on the video screen is a gimmick. there are better ways of doing
this. A microcomputer should not be used for such purposes.

Frequency measurement

The computer could be used to measure the input changes caused by an
alternating input voltage and use these to compute and display its frequency. This
would be accurate up to about | kHz. However. a purpose-built program would
allow higher frequencies to be measured.

The Z80 microprocessor has a very useful input-repeat facility. which allows
even short pulse lengths to be measured. thus producing a frequency meter for
square wave inputs. These can be obtained from sinusoidal waves with a suitable
squaring circuit. The alternating voltage to be measured is fed to one of the inputs
through this circuit. With time interval measurements of about 5 microseconds.
the maximum frequency that can be measured to an accuracy of 5 per cent is thus
about 10 kHz. FREQUENCY METER (13) is thus still of little use at the higher
frequencies. but it is invaluable for experiments in sound. for example. in
measuring the frequency of a sonometer wire.

The lower frequencies of a pendulum are more easily measured with the

107

The ZX Spectrum of science teaching

advanced timer routine. A 40 mm card is fixed to the pendulum. which the

swings in front of the photocell. The time for one complete swing (five events) ig

recorded and displayed as the measured period by the program PENDULUM
(14). i

Another aspect of timing is producing output pulses. for example. to take si ngle

film shots every five seconds for time-lapse photography. Example 6 showed this
technique using the PAUSE instruction to measure the time interval. Faster
pulses above say 10 Hz require a machine-code routine. such as thatin PULSER
(15). The length of each pulse and the time interval between pulses may be altered,
with pulses up to frequencies of 50 kHz possible. The machine code routine for
this program is discussed in Chapter 8.

Hardware details
Other digital features of the Interspec will now be discussed. The Interspec
connects to the spectrum via the usual gold-plated edge connector. If required. the
Interspec may be fitted to the ZX printer instead, after the latter has been plugged
into the Spectrum.

The addresses of the Interspec ports have been chosen to avoid conflict with the
Spectrum’s own hardware. They are as follows:

Address Command Operation
31 0QUT 31,a Select ADC channel (a= 010 7)
31 IN 31 Read selected ADC channel
63 OuT 63,a Relay outputs
63 IN 63 Switch inputs
95 QOUT 95,a Write to TTL output port
95 IN 95 Read TTL input port

Switch inputs

As supplied, the Interspec has its switch inputs connected to the 0 V line through
2.2 kilohm resistors. The adjacent red socket (common) is connected to the
positive 5 V line. Thus these inputs are normally LOW and may be sent HIGH by
connecting them 1o some external device or to the red socket. This may be
undesirable for some applications (for example, if driving the switch inputs from

TTL integrated circuits). so itis possible to alter this as shown in the Griffin I-pack
manual.

TTL ports

In addition to the switch inputs and the relay outputs so far described, the
Interspec contains an 8-bit input port and an 8-bit output port (Figure4.12). These
are TTL compatible and are an alternative to changing to the option for the switch
inputs mentioned above. The TTL ports are very useful for driving other
clectronic equipment. such as keyboards, digital displays and more extensive

108

Microcomputer timing and eontrol

Interspec
outputs inputs

oV 1

D¢ A
Dt

D2 —-+—
D31

D4

D6 D5 T gtc
D7+

+5V T

Figure 4.12 TTL ports

logic boards. This. therefore. takes the place of the user port founsl_ on other
m}crocompulers. These ports share the same address [l‘)i:. S0 l‘hal writing to the
output port is achieved with OUT 95.n. and the input portis read with LET X=1IN95.
Note that all lines of the input port are normally HIGH. unless pulled LOW by some
external device. Note too, that the output port cannot provide current for d.nvmg
external devices: it can ‘sink’ the usual 8 mA per bit (subject to an nvt'erall maximum
of 50 mA). but it will not ‘source’ more than 100 microamps. Connections to externz:ll
devices should therefore be made through suitable bufTers. The most useful ofthese is
an 8-input Darlington driver array (Figure4.13). which can be t:onnecled @lrectly to
more relays or other high current devices or to a set of LEDs. Itis now possxblc_ to get
seven or more such drivers on a single chip (RS Components 307-109). This can
provide currents up 1o 500 mA with driving voltages up to 50 V.

TTL '
output ' Darlington
driver array

Figure 4.13 Darlington driver array

The ZX Spectrum in science teaching

One useful display that might use this device is a seven-segment display.]?y‘-'
switching certain bits of the output port on, different digits can be displayed in

this way. An interesting project is a program to display these digits and as many

letters of the alphabet as possible. #

The inputs can be driven by any TTL compatible voltage levels, such_as fer £
switches or photocells as described earlier for the switch inputs. Ir_l conjunction
with the output port, the inputs could also be used to monitor a stmp_le
hexadecimal keyboard (Figure 4.14). Each row of the keyboard is pulled LOW in
turn and the columns are scanned to see if any of them have gone LOW. If so, then
the key at the intersection of that particular row and column is beingprts_sed. This
too could form a suitable programming project for a student looking for a
practical problem to solve.))

Connection to these input and output ports is best made with ten-pin Molex
plug connectors (RS Components 467-582). although if absolutely necessary
bared solid-cored wires can be used. The 5V and 0 V needed for small external
circuits can also be obtained through these ports, although care should be taken
not to overload the Spectrum's power supply.

¥

DCP bus o

The 15-way socket at the rear of the Interspec is provided for further circuits. One
of these is a digital to analogue converter. described in Chapter 5. It is quite easy
for the user to build his or her own circuits. The DCP bus provides all eight data
lines to the Spectrum, the 0 V. 5 V (regulated) and 9 V (unregulated) power
supplies and four device-select lines - NWR. NRD. NDCPADI and
NDCPAD2.

R RIR
DR RUR
RRR
ROR PR

relay
outputs

/,é/ ’//g ’//5/ r/g

switch inputs

Figure 4.14 Monitoring a keyboard

110

Microcomputer timing and control

NWR and NRD are the write and read signals from the computer. Whenever
the latter performs an IN instruction, the NRD line is pulled LOW. If the QUT
instruction is executed then NWR is pulled LOW. NDCPADI is pulled LOW
when IN 127 or OUT 127.n is executed. NDCPAD?2 is pulled LOW for IN 159 or
OUT 159. These signals may thus be ORed together to provide more input and
output ports, which are then addressed as follows:

Address Command

Operation
127 0UT 127,a Send data to port A
127 IN 127 Input data from port B
159 0uUT 159.a Send data to port C
159 IN 159

Input data from port D

For those with some knowledge of digital electronics, the DCP bus is very
useful for exploring the world of microelectronics. For most purposes the
Spectrum can take the place of simple microprocessor boards, like Micro-
professor. Because BASIC is readily available, students can be introduced to
microelectronics more gently.

One example of this is to produce an eight-digit. seven-segment display (similar
to a calculator). One output port provides the lines to the segments. while the other
pulls down each digit select line in turn. A full eight-digit number may thus be
displayed. With a suitable program, this could even remove the need for a TV set
to be connected to the Spectrum, so that it could become a dedicated laboratory
instrument. Plans are afoot for a whole range of add-on equipment, that can be
plugged into the Interspec. the possibilities for which are endless.

111

5 Analogue interfacing

*One side will make you grow taller. and the other side will make you grow
shorter.”
(Lewis Carroll, Alice’s Adventures in Wonderland)

Interfacing is the general name given to all connections between the micro-
computer and other equipment. In Chapter 4 we looked at ways of enabling the
Spectrum to monitor and control the outside world using digital interfacing. This
chapter extends these ideas to analogue input and output too, showing how their
use turns a microcomputer into a general purpose laboratory instrument. It would
be more usual to begin this discussion with a digital to analogue converter. but
this is not a standard part of the Interspec. Consequently I shall begin with
analogue 1o digital conversion.

Analogue to digital conversion

As we have seen a microcomputer uses two-state electronic devices to carry out all
ofits different functions, which is why it is possible for a microcomputer to detect
whether an external sensor is HIGH or LOW. However, if the microcomputer is
required to measure a voltage, that voltage may have any value within a given
range, it will not be limited to these two HIGH or LOW states. This problem is
overcome by changing the voltage being measured into a binary number. which
can have one of 256 discrete values. The analogue inputs of the Interspec can
convert a voltage in the range 0 10 2.5 volts into a binary number from 0000 0000 to
1111 1111. with an aecuracy of about 5 mV. All eight bits of this binary number are
read by the microcomputer simultaneously.

Each of these eight bits is digital, because it can only be switched HIGH or
LOW. The voltage being measured is an analogue. because it is able to take a
whole range of values within certain limits. Thus the interface uses an analogue
to digital converter (ADC) to change the analogue voltage into the eight digital
signals required by the microcomputer.

The Interspec contains eight analogue inputs (or channels). but only one ADC,
so it can only convert one of these input voltages at a time. This is done with a
switching system. selected by a number sent to the Interspec. Any particular input
is first selected by the instruction QUT 31.x, where x is the desired channel
(number from 0 to 7). This starts the conversion process and 100 microseconds
later, the binary equivalent of this voltage is available for reading. This time

112

Analogue interfacing

——+EV
zero offset
0k

-5V

input voltage

Figure 5.1 Voltage adjuster

interval is less than that taken by BASIC to get from one statement to the next.
so the reading can occur immediately after selecting the channel. This is
accomplished with the instruction LET V = IN 31, which sets the value of V to
some integer between 0 and 255, depending upon the voltage being measured. In
binary, these are the numbers 0000 0000 (corresponding to a voltage of 0 V) and
L111 1111 (corresponding to a voltage of 2.5 V).

Owingto the erratic clock of the Spectrum, wrong data can often be read if IN 31
follows immediately after OUT 31.n. This can be avoided by a short delay between
selecting the channel and reading the data. such as PAUSE 1. This is not
necessary if programming in machine code, as Chapter 8 will demonstrate.

The analogue inputs allow the microcomputer to measure different voltages.
But just to do this is rather pointless. a cheaper voltmeter will do the job just as
well and with far less trouble. The microcomputer should be used in areas where a
simple voltmeter is of no use. For example the speed of the microcomputer can be
used to measure voltages several thousand times per second or to measure several
different voltages repeatedly in rapid succession. The microcomputer memory
can be used 1o store these voltage readings for later output to a cathode ray
oscilloscope or to a chart recorder. The readings may also be listed on the
microcomputer screen or presented graphically as a bar chart or a graph.

Before measuring any voltage, a check should be made to see thatitis within the
range 0 to 2.5 V. If it is not. then the ADC will simply return the saturation values
0f 255 or 0. If the voltage to be measured is greater than 2.5V, it can be passed to a
suitable voltage divider network to reduce it to the acceptable range. If it is too
small, the voltage should first be amplified with a suitable op. amp. circuit. The
circuit shown in Figure 5.1 may be used to do both jobs.

ADC calibration
1 REM ADC CALIBRATION
10 PRINT AT 3,0;"Enter voltage as measured”
20 PRINT AT 5,0;"by the voltmeter.”
30 INPUTZ

The ZX Spectrum in science teaching

40 PRINT AT 8,0;"Enter channel number ”

50 INPUTc

60 IF c <> INT(c) OR c>7 OR ¢<0 THEN GO TO 50
70 OUT 31.c

80 PAUSE 1

90 LETV=IN31
100 LET convfactor = Z/V
110 PRINT AT 10,0; The conversion factor for”
120 PRINT AT 12,0;“channel “;c;" is ";convfactor

This program should initially be used to calibrate the ADC. to allow for differing
power supplies, etc. Connect the input terminal of a channel to a voltage of about
2V and measure it with a good voltmeter. Run the program and make a note of the
conversion factor produced. Check this for different voltages and different
channels. If necessary calculate some compromise value that suits most
circumstances.

Graphical display of voltage

1 REM ADC GRAPH PLOT
10 PRINT AT 0,5;"ADC GRAPH PLOT"
20 PRINT AT 3,0;"Enter channel number ”
30 INPUTc
40 |IFc <> INT(c) ORc > 7 ORc < O THEN GO TO 30
50 FOR x=0TO 255
60 OUT 31.¢
70 PAUSE1
80 LETV=IN 31
90 LETy=0.7*V
100 PLOT x.y
110 NEXT x

The Spectrum is capable of producing high resolution graphs of the voltages it
measures. In this program the voltage measurements are made continuously and
plotted on the screen immediately (after scaling to ensure that the plotted points
are on the screen). This example needs to be improved in several ways. Firstly.
axes should be drawn and labelled. Secondly. the time interval between readings
needs to be made variable. This allows readings to be taken at different data
acquisition rates, from about 100 per second up to several minutes per reading in
BASIC. This range may be extended with a machine-code routine to take the
readings. This is achieved with STORAGE OSCILLOSCOPE (18). In this
program, up to four channels may be monitored, provided one of these is channel
0. The time interval between successive readings may be adjusted in the range 100
microseconds to 25 milliseconds (10 000 readings per second to 40 per second).
Slower rates than this can be handled by BASIC. STORAGE OSCILLOSCOPE

114

Analogue interfacing

BV

ov . J T

Figure 5.3 Bias voltage

uses a machine-code subroutine to collect the readings and stores them in
succgssive memory locations, from where they are collected by the graph-plot
routine. 250 voltage readings are collected from each channel and later plotted on
the screen. At fast rates of measurement it is important for the microcomputer to
know when to start taking readings. This is done by waiting until the voltage being
monitored at channel 0 changes significantly. i.e. by about 80 mV. before
beginning to take readings.

A'I'his program is especially valuable for studying transient phenomena, like the
discharge of a capacitor through a resistor (Figure 5.2) or an inductor. In the latter
case, though, the voltage can go negative and a bias voltage must be added to
prevent this (Figure 5.3).

The same data acquisition routine can also be adapted to take 250 successive
rez_\ding& which are later output to a chart recorder or a cathode-ray oscilloscope
using adaptations of digital to analogue programs described later.

Current and resistance measurement

To measure current with the ADC. it should be allowed to flow through a known
resistor and the voltage across that resistor measured by the ADC. If both the
voltage across a component and the current flowing through it are measured at
the same time, their product gives the power developed in the component
Similarly. the resistance of the component can be calculated and displayed. This

115

The ZX Spectrum in science teaching

+5V
CH®
le [6 ‘
I
| 10R
ov+ 1
i

Figure 5.4 Resistance/power measurement

gives very effective demonstrations of the change of resistance of a lamp as it gets
brighter. DIGITAL MULTIMETER (20) does this. displaying voltage. current,
resistance or power in large digits. It requires a circuit like that given in Figure 5.4
(Plate 13).

Other measurements

Any other physical quantity that can be turned into a voltage can be measured by
the ADC oo, provided it is turned into a voltage within the correct range. Devices
that turn other physical quantities into voltages are called transducers and there

Plate 15 Digital multimeter

116

Analogue interfacing

are a large number of these available. Here are some examples from the current
RS Components catalogue:

RS stock no. Measurement Output range
308-809 Temperature Owo1V
303-337 Pressure Oto 75 mV
304-267 Magnetic field 0 to 400 mV
305-462 Light intensity Oto1V

In addition there exist transducers to measure force. displacement, wind speed.
humidity, oxygen content. acidity and sound intensity. The last of these is called a
microphone! This illustrates the point that alternating voltages are easily turned
into direct voltages using a.c. to d.c. converters. The latter can be a diode rectifier
or the more expensive r.m.s. to d.c. converter (RS Components’ AD536A). With
this range of transducers, an ADC and a microcomputer most laboratories will
need no other instrument.

Many useful devices convert some physical quantity into a change of
resistance. Examples of this are the thermistor (which changes its resistance with
temperature) and the light-dependent resistor. These devices can be turned into
transducers by putting them into a voltage-divider network connected to the op.
amp. circuit of Figure 5.1

Another device in this category is the strain gauge. which converts the strain in
a barof metal into a voltage. Since strain is proportional to stress, this allows force
and hence weight to be measured too. Also. by connecting a spring to the force
transducer and an object to the other end of the spring. the displacement of this
object may be measured too (replacing the metre rule?). Griffin and George
produce a whole range of devices that can be connected to the Interspec, as well as
auniversal laboratory unit to convert voltages to the correct range required by the
Interspec (called the Expand Pack).

Potentiometer

A potentiometer is a transducer too. It is particularly easy to connect a
potentiometer to the Interspec analogue input (Figure 5.5). Four such potentio-
meters may be mounted on a board side by side to simulate a control panel
Pushbutton switches from the switch inputs, and LEDs from the relay outputs.
may also be connected to make a control panel, enabling a range of industrial
processes to be simulated (Figure 5.6). The simulation of Millikan’s experiment

- | [—- T 5V
o Tl [hoss, s
a”mktr Ho qut cH2 Ll cH3
.
| o

Figure 5.5 Potentiometer input

..‘.4._.w:....,=.u.-_“t.r¢

The ZX Spectrum in science teaching

O ONONO

potentiometer control knobs

o] o)

push -button switches

Figure 5.6 A simulated control panel

is much more satisfactory if voltages are entered via a control knob than by typing
them in at the keyboard. This idea was suggested by M. Ryan and J. Stewart at the
Dundee College National Course in 1982.

If two potentiometers are mounted perpendicularly the result is a joystick (RS
Components 162-732). This allows the coordinates of a physical position (the
knob of the joystick) to be plotted directly on the screen (which is what many
video games are all about). The joystick is actually a displacement transducer, but
with two-dimensional capabilities. A two-dimensional plotter based on this idea
is as follows:

10 REM ETCHASKETCHA
100 QUT 31,0
110 PAUSE1
120 LETX=IN 31
130 OUT 311
140 PAUSE 1
150 LETY=0.7 *IN 31
160 DRAW X-PEEK 23677, Y-PEEK 23678
170 GOTO 100

XYPLOTTER(17) is a machine-code routine to carry out the same process very
much faster. This program may thus be used with rapidly changing voltages, in
much the same way as a cathode-ray oscilloscope when using its x plates.

Some devices do not produce values that are directly proportional to the
quantity being measured. For example, a simple thermistor or LDR in a voltage-
divider circuit gives an ADC reading that is related to the physical quantity but
not in a linear way. If twenty degrees produces an ADC value of 100. then forty
degrees will not produce an ADC value of 200. To obtain the true value (for
temperature, etc.) a look-up data table needs to be created. The next example
shows the general idea.

100 REM SET UP THE DATA TABLE
110 FORI=0TO 15
120 READ T$({)

Analogue interfacing

130 NEXTI
140 DATA "OUT OF RANGE”
150 DATA “IMPOSSIBLE TO MEASURE”
160 DATA “IMPOSSIBLE TQO MEASURE"
170 DATA “22 degrees C”
180 DATA “24 degrees C"
190 DATA “27 degrees C”
200 DATA “30 degrees C”
210 DATA "34 degrees C”
220 DATA “37 degrees C”
230 DATA “41 degrees C"*
240 DATA "46 degrees C"
250 DATA “50 degrees C"
270 etc.
3000 REM CONVERT READING AND DISPLAY IT
3010 OUT 31,0
3020 PAUSE 1
3030 LETX=IN 31
3040 PRINT “THE TEMPERATURE IS “;T$(X)
3050 etc.

This program should obviously be expanded to 256 or more values to become
sensible, otherwise a mercury thermometer is more accurate and easier to use.
Care should always be taken not to use the microcomputer where an ordinary
instrument does the job easier and more cheaply. The microcomputer is much
more suited to areas where a simple instrument will not work. For example, the
speed of the microcomputer can be used to measure voltages several thousand
times per second or to measure several different voltages repeatedly in rapid
succession. The microcomputer memory can be used to store these voltage
readings for later output to a cathode ray oscilloscope or to a chart recorder. The
readings may be listed on the microcomputer screen or presented graphically as a
bar chart or a graph. From there they can be printed out for everyone to seg using
the COPY facility of the Spectrum

Multi-channel measurements

1 REM MULTI-CHANNEL DATA ACQUISITION
10 PRINT AT 0,5;"DATA ACQUISITION"
20 PRINT AT 2,0;"This program takes readings”
30 PRINT AT 3,0;"every second at each channel.
40 REM n = number of readings
50 REM ¢ = number of channels
60 DIM V(255,7):REM stores for measured data
70 FORn=0TO255
80 FORc=0TO7

The ZX Spectrum in science teaching

90 0uUT31.c
100 PAUSE 1
110 LET V(nc) = IN 31
120 PRINT AT (n*2 + 5,0);"
130 PRINT AT (n*2 + 5,0);"Channel “;n;" reading ";V(n,c)

140 NEXTc
150 PAUSE 40
160 NEXTn

The technique of taking a large number of readings and storing them _is r_clatin:ly
simple. This program takes readings on all channels every second. printing them
on the screen and storing them in arrays at the same time. (Users with the 16K
machine will need to restrict the number of channels or readings taken to avoid
an out of memory error.) Later the readings can be recalled. printed or plotied on
the video screen. output to a chart recorder or otherwise processed. Ma_chmc-cor_ie
routines for doing the same at faster data-acquisition rates are discussed in
Chapter 8.)

The Spectrum screen is arranged so that it can be easily scrolled from side to
side. This is discussed in Chapter 7. If the measured voltages are plotted on the
extreme right of the screen at the same time. the effect is like a four-channel chart

oscilloscope

Channelt
Channel

Channel

Channel

Plate 16 Four-channel chart recorder

120

Analogue interfacing

recorder. CHART RECORDER (22) uses channels 1,2, 3 and 4 and is very useful
in biology for monitoring several variables at the same time. By introducing a
delay, the scrolling process may be slowed down to any acceptable rate. The
program has been arranged so that it may be stopped at any time and the display
copied using the COPY facility of the Spectrum (Plate 16).

Some phenomena occur extremely rapidly, and even 10 000 readings per
second are not enough. A faster ADC (Griffin ADpack) can be connected to the
DCP expansion bus of the Interspec. This is free running and requires no start
conversion pulse. The data is continuously available and is updated auto-
matically every ten microseconds, so that a data-acquisition rate of 100 000 per
second is theoretically possible. In practice, the need to store the readings taken
and to provide a variable delay. means that the actual rate is reduced to 60 000
readings per second. This is fast enough for most purposes and a suitable
program is listed as FAST ADC (19) in the Appendix. The converted data is
available at the address 127, so that all that has to be done is to read this address
with LET V=IN 127 (or its equivalent in machine code). Plate 17 uses FAST ADC
with the arrangement shown in Figure 4.10 to show the contact bounce that
occurs, when a simple push-button switch is pressed.

Data-acquisition routines can be expanded to take several thousand successive
readings. storing them in the memory and later outputting them to a chart

Aa A

S for same, N for new.

Plate 17 Storage oscilloscope

121

The ZX Spectrum in science teaching

recorder of a cathode-ray oscilloscope using adaptations of the DAC programsto

be described. In this case the microcomputer is being used as a data memory, later
displaying the readings it has remembered. Where the data is displayed
graphically on the screen instead. the program is also carrying out the function of
a storage ocsilloscope. This can replace the cathode-ray oscilloscope in many
instances. It is better for some purposes, since it only needs to take a single set of
readings, which can then be displayed indefinitely to allow measurements to be
taken (for example, the gradient of the graph). There is also the possibility of
overlaying two or more successive sets of results.

Educational note
We must again beware of using the microcomputer to carry out functions that are
more easily done with other instruments. One common program is to make a
microcomputer thermometer. At best this can only be accurate to the nearest
degree over the Celsius range 0 to 100, and a mercury in glass device is better. If,
however, the reading is displayed in large letters for the whole class to see, or if
multiple readings of temperature are taken simultaneously in different places,
then the use of the microcomputer may be justified. The value of the
microcomputer lies in its ability to take readings (quickly or slowly) and to store
them in memory until they are required. Merely to use the microcomputer as an
expensive voltmeter or thermometer is a misuse of a powerful resource.
Teachers should also be careful of the black-box nature of the microcomputer.
It is not at all obvious what a microcomputer is doing to measure temperature,
whereas the mercury in glass instrument is more transparent! The teaching
sequence must be carefully checked. so that pupils are convinced that the
microcomputer is measuring what the teacher says it is measuring.

Digital to analogue conversion

Digital to analogue conversion is the reverse process used by the Spectrum to
produce direct or alternating voltages of its own. This is done with a digital to
analogue converter (DAC). This uses all eight lines of an output port (a whole
binary number from 0000 0000 to 1111 1111) and converts them into a voltage
directly proportional to that number. Thus all eight lines of the output port are
connected to the DAC. Each of these eight lines is a digital line. because it can
only be switched on HIGH or LOW. Since an eight-bit number can have 256
possible values, the DAC can produce 256 different voltages. The DAC described
here produces voltages from 0 V to 2.5 V, in steps of 10 mV.

One simple way to connect a DAC to the spectrum is via the TTL output port of
the Interspec (Figure 5.7). Any number between 0 and 255 can then be sent to the
output port in the normal way (OUT 95,n). The required voltage appears at the
ZN425 output almost immediately (the conversion time is about one microsecond).
The op. amp. is necessary to boost the current that can be obtained.

Griffin and George have a DAC as an add on unit to the Interspec (called

122

Analogue interfacing

+5V

TTL
output
port

14
13
12
LM 324 11
10

DoooooOoog

output

ov

af-

Figure 5.7 ZN425 DAC connected to the TTL output port

the DAC-pack). Thus unit uses a ZN428 device and connects directly to the DCP
expansion bus using the address 127. The binary number to be converted is sent to
this address using the instruction OUT 127.n (where n is the decimal number
between 0 and 255, which determines the final output voltage). Either of these
arrangements greatly extends the applications of the Interspec as a laboratory

instrument. The first example described is a program to test a student’s ability to
read a meter:

1 REM VOLTMETER TUTOR
5 LET convfactor = 0.0048
10 LET randnum = INT (RND*256)
20 OUT 127.randnum
30 CLS
40 PRINT AT 3,0;"Enter the reading”
50 PRINT AT 5,0;"on the voltmeter.”
60 INPUTW
70 LET V = convfactor * randnum
80 IF ABS(V-W) > 0.01 THEN GOTO 200
100 REM Correct reading
110 PRINT:PRINT"Correct. Press 'Y for another guess.”
120 IF INKEY$<>"y" THEN GOTO 120

123

The ZX Spectrum in science teaching

130 GOTO 10

200 REM Wrong reading

210 PRINT:PRINT You are not right.”
220 PRINT:PRINT Press Y to try again.”
230 IF INKEY$ <> "y" THEN GOTO 230
240 GO TO 30

Connect a0 to 3 V(or0to 5 V) voltmeter betwen the output terminal of the DAC
and the 0 V terminal. The conversion factor in line 5 may need to be adjusted for
different DACs. The program sends a voltage to the voltmeter and the student is
asked to read it and enter the value obtained. A one per cent error is allowed. but
in the case of a discrepancy between the student’s result and the computer's, first
check that the voltmeter is sufficiently accurate

Sine waveform

1 REM SINE WAVE OUTPUT
10 FORa=0TO 255
20 LET radians =a * Pl / 128
30 LETv= 128+ 127 * SIN(radians)
40 OUT 127w
50 NEXTa
60 GOTO 10

As well as steady voltages. the DAC can also produce alternating voltages of
almost any waveform. This example gives a sine waveform. which is slow enough
to be observed on the voltmeter. The reason for choosing 256 readings (rather
than 360, for example) is because machine-code routines are then easier to
write.

Different waveforms can be produced by altering the equation in line 30. For
example:

30 LET v = a will produce a ramp voltage,
30 LET v = ABS(128 - a) will give a triangular waveform and
30 LET v = 255*NOT(128 > a) will give a square waveform.

The period of this oscillation is about twelve seconds. If a longer period is
required then a delay can be included; for example:

25 PAUSE 5

This principle may be used to produce an output slow enough for a chart
recorder to monitor. The DAC output should be connected directly to the chart
recorder input and the speed. gain and zero of the latter adjusted to give the best
results.

The production of higher frequency oscillations is more difficult owing to the

124

Analogue interfacing

slow speed of BASIC. One way is to reduce the resolution of the waveform, by
having fewer output points per cycle.

10 FORa=0TO 255 STEP 16
Another solution is to do all the calculations beforehand and to store them in the
memory as individual bytes. These can then be collected one by one from the
memory and sent directly to the DAC in a separate FOR...NEXT loop. This raises

the output frequency to a few hertz, but even with this technique, it is not possible
to achieve very much.

Data output
1 REM DATA OUTPUT

100 sossiiiaiiiiis:
M0 e DATA......
120 ..ACQUISITION....
130ROUTINE......
140 ...l
etc.

200 REM OUTPUT CHANNEL 1 DATA TO CHART RECORDER
210 FORn=0TO 255

220 O0OUT 127.V(n1)

230 PAUSE 10

240 NEXTn

Assuming that data has been collected with a routine like STORAGE
OSCILLOSCOPE. the readings may be output to a chart recorder with this
routine. The speed of the chart recorder and the length of the PAUSE may be
adjusted to give the best results.

Programmable oscillator

A faster way to send the stored values to the DAC is with a machine-code routine.
PROGRAMMABLE OSCILLATOR (16) contains a short delay to enable
different frequencies to be produced. The length of this delay is POKED into a
memory location prior to calling the routine. The whole range from a few hertz to
a frequency of 800 Hz can be obtained by adjusting this delay period.

The waveform of the output is determined by the function used to load the
memory with the initial data table. This function, which can be changed in line 20,
can be a sine, triangular or ramp function, similar to that used above. Even a
square wave can be produced by this method, but there are better ways of doing
this as we saw in Chapter 4. At the higher frequencies the waveform can be
inspected by connecting the output from the DAC to a cathode-ray oscilloscope.

Automatic graph-plotter
One interesting application is the use of an ADC to measure voltages that have

125

The ZX Spectrum in science teaching

4ZmDnco

i.0 1.5 2.5

2.0
UOLTARGE

Plate 18 Diode characteristics

been produced by the DAC. One example is the currenl-\'ollage_char;\cl‘crtist}c;:gf
a transistor, which may be plotted for different values of the hIE.IS L‘ll['h.l;-, i
transducers it would even be possible to plﬁtg:z;;lre-\-‘olumc curvesof a g

iffes er: : ee dimensiona .
li'[['_‘gf:;‘:;g:i:}' “;;0(::11; Figure 5.8 allows the characteristics of three E’_\-‘pcs'_olll'
diode to be plotted automatically on the same graph. I'V, PL,OTTF];AI‘”h‘;;h
carry out this task. The LED is particularly suitable for this, since it :[\ ? h(_)w
turn-on voltage and it also lights up when it starts to Con(.Iucrl(PI:{Ic_IB']‘ ! ;Jm;oc
the output from the DAC is used to produce the steadily |ncrua;1:15 \3’ i; e

Programs like this allow a large number of measurements m ;lnj.: ‘Lwasier
science laboratory. Because the graphicalhresuhshare q?lx;kly available. iti

ience, before it gets lost in the mathematics. i

“ ;?:cleh:hsec‘DAC can prodﬁce alternating \'Dll::lgcﬁ (with PROGR—\M‘?F\EL;
OSCILLATOR). it is possible to carry out experiments on phase lag a-nl : C‘:ning
reactive circuits in the same way. In such cases. it |s_lhe pe;\k wlueroflhe .1‘11_?{; oo
voltage that is required. This can be achieved with a simple dm}ic -rCL‘l s
smoothingcircuit. The values of Rand C nch to be chosen so lhe_ut L_l1n1L c- e
(R X C) is at least five times the period of the alternating voltage

126

Analogue interfacing

Figure 5.8 Diode characteristics

ineasured (L.e. RX C > 5/frequency). For accurate measurement it may be worth the
extra cost to obtain an rm.s. to d.c. converter (RS Components 308-786) instead.
Two most interesting applications of DAC and ADC techniques were
described by Paul Beverley at the 1982 MUSE Annual Conference. The first of
these consists in applying the voltage from a DAC to the input terminals of a chart
recorder. When the DAC output voltage is ramped (with the DAC treated like a
binary counter) the pen of the chart recorder moves steadily along. The pen is
replaced by a photocell and made to scan along the diffraction pattern produced
by a laser. The photocell is connected to an ADC channel and a plot of intensity
against position is made automatically on the screen. The effect is magnificent!
The second application uses a DAC to produce a direct voltage, which is then

jf+15\l

output

Figure 5.9 Waveform generator

127

The ZX Spectrum in science teaching

waveform generator
DAC

[F to V converter)

Figure 5.10 Spectrum analyser

fed to a waveform generator (RS Components 305-844) (Figure 5.9). The latter
produces sine waves for feeding into a circuit. and square pulses that can be
accurately counted by the microcomputer. The frequency of these sine waves is
proportional to the direct voltage fed to its input terminal. By ramping the DAC
voltage, a whole frequency spectrum is produced by the waveform generator. A
range of SlOO Hz to 20 kHz was produced with this arrangement.

VThe main problem of connecting the waveform generator to the DAC is that the
s:hre_cl vollage has to be applied to the former between its input and the +15 Vline,
not its 0 V_lme__ This is solved by typing its positive rail to 0 V and using an initial
op. amp. circuit to convert the voltage output from the DAC to the right levels. The
second op. amp. is to buffer the output from the waveform generator before it is
fed to a 30 W power amplifier (HY 60). The sine wave voltage is input to a filter
circuit. the output from which is connected to an ADC channel via an r.m.s. to d.c.
converter, thus measuring the output voltage from the filter (Figure 5.10). A plot of
the output voltage against frequency gives the frequency characteristics of the
filter circuit. The idea is such a beautiful application of hardware and software
techniques that it forms a fitting note on which to end this chapter.

128

6 The Z80 microprocessor

‘When I make a word to do a lot of work like that
said Humpty Dumpty, ‘T always pay it extra.’
(Lewis Carroll. Through the Looking Glass)

The microprocessor is the manager of all the operations that the microcomputer
undertakes. As in any organization, the best results are obtained by talking
directly to the manager! Unfortunately this one does not speak English,
communication with it is in machine code. This chapter is an introduction to
microprocessors and includes a detailed examination of one particular device,
the Zilog Z80.

Why use machine code?

We ought first to ask why anyone wants to write programs in machine code at all.
isn't BASIC good enough? The answer is that BASIC is good enough for some
purposes but not for all; there is no alternative if you want to have complete
control over the microprocessor. With this control you gain speed; machine-code
programs run up to 300 times faster than their BASIC equivalents. You also gain
compactness; a machine-code program occupies only a fraction of the memory
space needed to run an equivalent BASIC program. Thirdly, you gain freedom;
you become independent of the operating system of your microcomputer and
able to add extra facilities, which are not implemented by your machine. Finally,
it even becomes possible to build your own microcomputer for a particular task.
one that is self-contained with its own operating system, memory, program and
microprocessor. Such a system is said to be dedicated and can be produced
comparatively cheaply.

Many people start to learn how to write machine-code programs. Unfor-
tunately there are so many things to be learned to begin with, that some get
discouraged. After studying hexadecimal coding, addressing modes and indexa-
tion, the usual conclusion is that machine-code programming is too difficult. This
introduction tries to overcome these initial problems, by reducing the number of
ideas that have to be learned at the beginning. Each of the instructions of a
microprocessor is described in a visual way, so that its effects can be more easily
observed, thus making this introduction as easy as possible. Even so, machine-
code programming is not simple! .

Some people use the words ‘microprocessor’ and ‘microcomputer’ inter-
changeably, but they should be distinguished. The microprocessor is the silicon
chip which acts as the brain of a computer. A microcomputer contains a

129

The ZX Spectrum in science teaching

microprocessor, but it contains other chips too, especially memory and I/O chips,
(I/O stands for input-output, and refers to devices used for getting information
into and out of the microprocessor.) Usually a microcomputer will have a
keyboard and a TV screen controller too, but this is not always true. Confusion
arises because a dedicated system may contain a microprocessor and I/O and
memory all inside a single package. called a single chip microcomputer.
Nevertheless I reserve the word ‘microcomputer’ for complete machines like the
Spectrum and the BBC microcomputer and ‘microprocessor’ for the processing
unit inside the microcomputer that makes it work.

In this book we consider one particular microprocessor. the Zilog Z80, which is
found inside many different microcomputers (ZX81, RML 380Z, Exidy Sorcerer
and ZX Spectrum). There are several other microprocessors, another popular one
being the Rockwell 6502, which is used in the PET. Apple and BBC
microcomputers. The instruction set and the codes used for the Z80 are not the
same as for other microprocessors, so, unfortunately. you will not be able to use
this book to guide you in programming them.

To study machine-code programming, some sort of microprocessor develop-
ment system can be used, but I am assuming that most readers will not have
access to one of these. Instead, you may use a microcomputer for this purpose, but
that is not until the next chapter. In this chapter we shall only be using a
simulation of how the Z80 microprocessor behaves. One of the problems of real
microprocessors is that they have to be programmed exactly in the right way, or
they can cause the microcomputer to crash. The advantage of a simulation run
from BASIC is that mistakes in programming can be trapped to prevent such
disasters.

This program. called Z80 SIMULATION, uses the graphics capability of the
microcomputer to show what happens inside the Z80 microprocesor. It was
developed by Dr L. Firth of Paisley College of Technology and [am most
grateful to him for allowing me to make use of it here. With its aid you can write
machine-code instructions immediately and thus learn more quickly. what each
instruction does. The listing of this program is given in the Appendix (Z80SIM 5).
The simulation does not attempt to deal with all of the instructions that the Z80
can handle. only the more important ones.

Machine-code instructions and the microprocessor
In Chapter 2. we saw how a machine-code program stored in memory is executed
by the microprocessor. Each byte contains an instruction in code and the
microprocessor fetches each instruction in strict order and executes it. Some of
the instructions tell the microprocessor to collect data and some other
instructions tell it what to do with that data. Of course there has to be some clever
way for the microprocesor to distinguish between a binary number that is an
instruction code and a binary number that is data. We shall see later how this is
done.

The Z80 microprocessor contains several memories of its own called registers.

130

The Z80 microprocessor

Some of these are eight bits long and some sixteen. The address of the next
instruction to be executed is contained in a sixteen-bit register called the
PROGRAM COUNTER (PC). which is basically a binary counter. When the
microprocessor is ready it fetches the next instruction from the address indicated
by the PC. To do this it switches on some of the lines of the address bus to point to
the correct place (or location) in RAM: this is called putting the address on the
address bus. It then sends a signal to the addressed location. which says ‘tell me
what binary number you are storing’. This signal is called a read signal and the
READ line of the microprocessor goes LOW, indicating that a mémory read is
taking place. The addressed location responds by copying its contents onto the
data bus. and the microprocessor collects them from there. It has now fetched the
binary code for its next instruction.

The microprocessor then decodes this binary code. to see which instruction is
represented by it. Some instructions only affect the internal registers of the
microprocessor, they are called single-byte instructions. The microprocessor
simply executes these instructions straightaway. Some other instructions require
two bytes before they can be executed. When the microprocessor has fetched the
first byte and has decoded it, it knows if it has to fetch the rest of the instruction.
The PC is increased by one (incremented) to point to the next address and the
next byte is fetched from there. The first part of any instruction is the operation to
be carried out (like ADD or AND) and the second part tells the microprocessor
which data to use. This partis called the operand. The number of bytes needed for
the whole instruction may be anything from one to four bytes.

Memory
We saw in Chapter 2 that some of the microcomputer’'s memory is RAM and some
1s ROM. Both are used for storing instructions for the microprocessor to execute.
It is useful to imagine the microcomputer's memory as being like the stamp
locations in an album. with each location representing one byte. A particular
binary number (i.e. a stamp) can be put into any location or taken out of it at any
time. It is, of course. necessary to know where any particular stamp is stored, so
that it can be found again. Hence every location is given a different address. For
our purposes there are 256 pages in the album and 256 places (byte positions) on
each page. To refer to any particular location we must specify its page number
and its byte number within that page. Thus the fifty-first byte on page thirty-one
would be referred to as byte 51. page 31. To find its position with respect to the first
byte in the whole album, we need to calculate 256*page number + byte number.
This is called its decimal address.

We noted before how a sixteen-bit address can be contained in two eight-bit
bytes, the high byte giving the page address and the low byte giving the address
within that page. This is why some instructions take up three bytes - two bytes are
needed to specify the sixteen-bit address of the data to be used.

In the 16K Spectrum, the RAM goes from page 64, byte 0 (or decimal address
16384) to page 127. byte 255 (or decimal address 32767). In the 48K Spectrum, the

131

The ZX Spectrum in science teaching

RAM goes from page 64, byte 0 to page 255, byte 255 (or ;lecimal address 65535).
However the microcomputer uses some of the RAM for its own purposes. so not
all addresses are available to the user. In both models Ofl}'lt Speclmt:nls);)m.e"s:_ge;
of RAM are used for the screen memory and to store the ‘system vlz:na es’, ilu:
are used by the operating system as a sort ol_' d‘.mry of events. w e?[ic;um\::n; a
BASIC program. the operating system storesitin a parn(:‘ulﬂ.l'Paﬂfl e 21‘
and when you type RUN, the operating system atu!?maucally goes to

i and begins to collect and interpret it.
mllsl ?srcrf;?:ldifﬁcuh%o write a machine-code program. The programmer hz;'s to
decide where to put the program in the memory and tellthe mlcroprl?cessz{"w ere
the program has been placed. Thus there are two tasks to be performed:

1 Enter the instruction codes into their correct localion_s.)
2 Tell the microprocessor where to go to execute these instructions.

Before you can do either of these tasks. you need to ‘know whgtdsovnlsdf
instructions can be given to the microprocessor. The rest of this chaplelr ls[h:s:iwo
to a description of the Z80 instruction set. In Cha!:ner? weshallreturnto
tasks so that you will be able to run real machine-code programs.

i of the Z80 microprocessor
:I[":: ::agilrsll:;islcr is the ACCUI\I:IULATOR. This is »_«'herc l}’lE r.esqlls of most
calculations are stored. It is often referred to as the A register. Nextin lmpo!'t;ar:c;
is the B register. which is most often used for counting. Th?n thereisaC reglsr:o.
D register, an E register. an H register andr an L register. Bc-caus; rneh_ ;3
locations have sixteen-bit addresses, these registers are gml_.lped intot]r—ee _lg:cr
low pairs as follows: the BC register pair. the D!i register pair anddthe H llrje_iglsme
pair. In each pair the first register holdsA the high byl_e oflh§ ad l:;]css.hw ‘ljgress
second register holds the low byte. Thus if the HL register pair ho. s c; S
32006, H holds the value 125 and L holds the value 6. As a‘n‘(?te. the £ ec
address is obtained from H*256 + L. which gives 32006_1n this example. i
The Z80 microprocessor also has several sixteen-bit registers. ofwhqu:n;vc _S" e
concentrate solely on one - the X-INDEX. This has various uses. Mlm._b“"il o
described later. Unfortunately for the beginner, I have so far only descri Z ks
of the available registers of the Z80 microprocessor, but I shall slcplherc and stu
the ones | have mentioned. Even that will take up the rest of Lhns‘chapier: b
The ACCUMULATOR is the most used register. The results o; logné:cen

arithmetic operations are stored in the ACCUM}JLATO_R after they av;nary
executed. The ACCUMULATOR is an 8-bit register. so it can store any bi' s
number from 0000 0000 to 1111 1111. From the A_CCUMULATOR‘ this 1hl:'['\f
number (data) can be sent to other parts of the microcomputer, SI.}Lh‘]as g
screen or RAM. The B, C. D, E. H and L registers are all similar e
ACCUMULATOR - they too are eight-bit registers. They are o!'len uUim .
counters or stores for temporary data. Another important purpose 1is to p!
different memory locations.

132

The Z80 microprocessor

There are two other registers that are used by the microprocessor (although the
programmer is not usually aware of them): these are the PROGRAM
COUNTER andthe ADDRESS REGISTER. Each memory location holds the
eight-bit binary number which is the code for an instruction. As we have already
noted. the PC is used to point to the next location, so that each instruction code
can be fetched from the memory in strict order to be decoded by the
microprocessor. Some simple instructions only need one byte to tell the
microprocessor all that it needs to know. For example, the code 01000111 tells the
microprocessor to copy the data in the ACCUMULATOR into the B register; no
other information is required. Some instructions require two bytes. The code to
tell the microprocesor to put the number 0001 1001 (25 in decimal) into the
ACCUMULATOR is 0011 1110 0001 1001. The first byte (the operation) tells the
microprocessor what to do, while the second byte (the operand) tells it what data
1o use.

Some instructions expect the data to be collected from a location in the
memory. When the microprocesor wants to collect data from a particular
location. it puts the address of that location into its ADDRESS REGISTER. This
register is connected to the outside memory via the address bus. Each external
location looks at the address bus, but only one location responds, the one that sees
its own address on the address bus. This is like calling the class register in school;
all the pupils hear the name being called out. but only the pupil with that name
responds.

The addressed location can respond in two ways. If it is being read, then it
places a copy of the data it contains onto the data bus. This data bus is connected
to the DATA register in the microprocessor, so the data in the addressed location
is copied into this DATA register. If the instruction to the microprocessor is to
load the ACCUMULATOR with this data, then the DATA register transfers this
data into the ACCUMULATOR. The whole instruction is called loading the
ACCUMULATOR from memory. Note that the data is not removed from the
addressed memory location, itis only copied into the DATA register. From there
itis moved into the ACCUMULATOR and any data already in the ACCUMU-
LATOR will be destroyed.

If the instruction is load the contents of the ACCUMULATOR into memory,
the data moves the opposite way. A copy of the data in the ACCUMULATOR is
first placed in the DATA register and it travels alongthe data bus to the addressed
location in the memory. Only this addressed location will capture the data being
sent. This is called a write instruction. Note that the data in the ACCUMU-
LATOR is not destroyed by this instruction, it is only copied into the addressed
memory location. Clearly though, any data that was in the addressed location
before the write instruction, will be lost, replaced by the new data.

Since the microprocessoronly handles eight-bit data, the DATA registeris only
an eight-bit register. The data bus thus consists of only eight lines, one foreach bit
ofthe data. The PROGRAM COUNTER and the ADDRESS register are sixteen-
bit registers, because they are concerned with addresses rather than data. They

133

The ZX Spectrum in science teaching .

allow the microprocessor to collect data from any of 65 536 available addresses

and the address bus consists of sixteen lines going to different parts of the
microcomputer. To simplify matters, Z80 SIMULATION does not use all 65 536
addresses, but only the few from 32001 to 32007. These all have a high byte of 125
and a low byte from | to 7.

Mnemonic instruction codes

The instructions to the microprocessor are themselves binary numbers. The
microprocessor interprets them according to a special code. For Exan‘{p]u, the
code to instruct the microprocessor to load the decimal number 25 into the
ACCUMULATOR is

0011111000011001

It is clear that codes like this are difficult to remember and it would be easy to
make a mistake when programming a microprocessor with them. To make life
easier a special language has been developed, called mnemonic language. The
mnemonic for 0011111000011001 is LD A25 (meaning load the ACCUMU-
LATOR with the number 23). As you can see, the mnemonic is much easier to
interpret than the binary code.)

The instruction LD A.23 consists of two parts, the operation (LD), which tells
the microprocessor what to do and the operands. which tell it what data to use or
what registers to use. In this instruction the operand itself contains the data to be
used, so it can be immediately transferred to the ACCUMULATOR. Itis therefore
called a load immediate instruction.

Another instruction is ‘load from memory’. This has the mnemonic LD
A,(32001). The operation has the same mnemonic (LD) anr} the same ﬁr_st
operand (A). but the second operand is different, it is enclosed in brackets. This
tells the microprocessor that the operand is not itself data but is an address, where
the desired data can be found. LD A(32001) means load the ACCUMULATOR
with the data which is in the memory at the address number 32001 (i.e. at memory
location 32001). The data is collected from location 32001 by putting the number
32001 on the address. bus and collecting the data via the data bus. as described
above.)

To write data into a memory location the same load instruction is used, but with
the operands reversed. LD (32001)A means ‘copy the data from the
ACCUMULATOR into memory location 32001". There is no instruction like LD
A.25. because 25 is not an address, it is data. You can only store the contents of the
ACCUMULATOR in an addressed location. This means that if you want to
change the contents of memory location 32001 to the value 25, you must do it in
two stages. First you must load the value 25 into the ACCUMULATOR with the
instruction LD A25 and then you must store it in location 32001 with the
instruction LD (32001)A.)

If you want the data in location 32002 to be copied into location 32001, you

134

must also do it in two stages. First you copy the data from location 32002 into the
ACCUMULATOR with LD A,(32002). Next you copy it from the ACCUMU-
LATOR into location 1 with the instruction LD (32001).A. To show this. load and
run the simulation program (5) called Z80 SIMULATION., which is listed in the
Appendix. The program displays the following registers:

ACCUMULATOR

B, C, D, E, H and L registers

X-INDEX

PROGRAM COUNTER

ADDRESS register

The Z80 microprocessor

Italso shows the flag register and the STACK. but we shall not deal with these just
yet. The microprocessor is connected to the external memory via the data bus and
the address bus. Only seven memory locations are shown. from 32001 to 32007. In
a real microcomputer any of 65 536 locations can be addressed. In this respect this
simulation is invalid. but the change to full sixteen-bit addressing is not too
difficult, it is left until later.

At the bottom of the display is the INSTRUCTION register containing the
current instruction. Normally this instruction has been fetched from the
program memory at the address pointed to by the PROGRAM COUNTER. We
shall. however. enter instructions one at a time. so the PROGRAM COUNTER
will not actually be used in this way. Each instruction is shown in mnemonic
language, so that it can be more easily understood. but remember that each
instruction would really be stored as a binary number. After each instruction has
been executed. the INSTRUCTION register will display it.

After loading the program. lock the keyboard to upper case by pressing CAPS-
SHIFT and key 2 (CAPS-LOCK). Then type in the following instructions:

LD A,25

Ifyou make a mistake while typing. you can rub it out with the DELETE key in the
normal way. When you have typed LD A.25 correctly, press the ENTER key as
usual. The simulation program will then attempt to execute your instruction. If
vou have typed it wrongly (forexample if you have typed LDA.25 or LD A 25) the
simulation program will tell you that your instruction is not valid by displaying
ERROR. The commas and spaces are vital and must occur in the proper places.
otherwise an error will be signalled. After entering this instruction, you should
observe the number 25 enter into the ACCUMULATOR. The ADDRESS register
will not be affected. because it is not used for this instruction.

Now enter LD (32001).A and you should see that the number 25 in the
ACCUMULATOR is copied into location 32001. The original data in location
32001 is destroyed, but the 25 in the ACCUMULATOR is not lost. Because the
address bus is used to do this, the corresponding ADDRESS register is affected.
Finally copy the contents of location 32002 to location 32001. Enter:

The ZX Spectrum in science teaching

LD A,(32002)
LD (32001).A

Continue this investigation for yourself. Try changing the operand 25 to other
values in the range 0 to 255 and the operand addresses 32001 and 32002 to other
addresses in the range 32001 to 32007 (values outside these ranges will produce an
ERROR).

Data can be copied from any of the other internal registers into the
ACCUMULATOR in much the same way. For example:

LDAB

copies the data from the B register into the ACCUMULATOR, while
LD BA

does the reverse. Try your own variations of this and you will discover that data
can be copied from any of the A. B, C. D, E. H and L registers in to any of the
same set of registers. In addition. any of these registers can be loaded with data
directly. For example:

LD BA
LDCB
LDHL
LD L12
LD C,255

You can, however, only load from memory into the ACCUMULATOR. LD C,
(32001) is not allowed.

As a test of your understanding. try the following problems, the solutions to
which are given at the end of the chapter.

I Typein aseries of instructions to make the contents of location 32002 equal to
50.

2 Typeinaseries of instructions to make the contents of location 32006 equal to
the contents of location 32007, but do not change the contents of location
32007.

3 Typeinaseries of instructions to make the contents of location 32001 equal to
the number 1, the contents of location 32002 equal to 2 and the contents of
location 32003 equal to 3.

4 Type in a series of instructions to make all of the internal registers
contain 1.

5 Load the C register with the contents of location 32001. (Clue: use the
ACCUMULATOR))

6 Load location 32001 with the contents of the H register.

7 Whatis the difference between a ‘write to memory” and a ‘read from memory™?
Which occurs when the instruction LD A.(32005) is executed?

The Z80 microprocessor

Microprocesor arithmetic

In the Z80 microprocessor, addition is performed by adding data to the current
contents of the ACCUMULATOR. The instruction ADD A.30 will add 30 to the
existing contents of the ACCUMULATOR. The instruction ADD A.B will add
the contents of the B register to the existing contents of the ACCUMULATOR. In
both cases the result of the addition is left in the ACCUMULATOR and the
original contents of the ACCUMULATOR are destroyed. It is not possible to
leave the result of an addition in any of the other registers (although thereis also a
double byte ADD instruction, which can leave a resultin the HL register pair; we
shall look at this later).

To add together two numbers such as 5 and 6, we first of all execute the
instruction LD A.S. followed by the instruction ADD A6. You can try this for
yourself using the simulation program. You will see thatthe result(11) isleftin the
ACCUMULATOR.

LDAS
ADD A6

It is not possible to add the contents of a memory location directly to the
accumulator. One way of doing this is to load the first number and then keep this
in one of the other registers, as follows:

LD A,(32001)
LD B.A

LD A,(32002)
ADD AB

will add the contents of location 32001 to the contents of location 32002, leaving
the result in the ACCUMULATOR.

Now enter each of these instructions in turn. After each one, note the effect on
the contents of the ACCUMULATOR.

LD A5

LD (32001),A
LD A6

LD (32002).A
LD A.(32001)
ADD A,(32002)
LD (32003).A

Repeat this with some of your own numbers. Now try
LD A255
ADD A1

The result 0 remains in the ACCUMULATOR. A moment's thought will explain
this. The largest number that the ACCUMULATOR can storeis 1111 1111 (or 255
in decimal). If we try to exceed this number, it starts again from zero. (For the

137

The ZX Spectrum in science teaching

mathematically minded. the microprocessor is counting in modulo 256.) This is
like the milometer in a motor car: when the distance exceeds 99 999 miles. the
milometer starts again from zero. Although it is possible to tell from the
appearance of a car, whether it has travelled ten or 100 010 miles. the
ACCUMULATOR does not age in the same way. To show that the ACCUMU-
LATOR has exceeded 255 a special CARRY bit is used in the flag register. If the
result of the addition is greater than 255 then this CARRY bit is set to logic 1. If the
result of the calculation is not greater than 255, then this CARRY bit is cleared to
0. Check this by entering the following instructions:

LD A,100
ADD A,100
ADD A 100

The CARRY bit is particularly useful, since it enables the microprocessor to
add large numbers. (it would be very inconvenient if we could not deal with
numbers greater than 255). First of all. how does the microprocessor store such
numbers? This problem has to be solved in the decimal system too. since a set of
decimal digits can only count up to nine. To count higher numbers we use more
sets of digits. arranged in columns and called hundreds. tens and units. The
decimal number 23, is really 2 X 10 + 3.

Similarly. we can use two eight-bit bytes to store numbers larger than 256. This is
not simple because the two columns are not tens and units, but 256s and units. The
first column is called the high byte and the second is called the low byte.
Converting a two-byte binary number to decimal requires the following formula:

decimal = 256 * high byte + low byte

A further complication is that the Z80 collects its number in the order low byte
followed by high byte. We shall stick to this practice. even though we shall not be
dealing with the microprocessor directly for some time yet. When written in this low
byte/high byte order, the decimal number 4100 becomes 4,16, since 16 X 256 +4=
4100, Other examples are 3,12, which is 12 X 256 + 3= 3075 and 250,255 which is
255 X 256 + 250 = 65530. To convert a decimal number to a two-byte number.
divide the number by 256 - the integer part of the result is the high byte. Multiply
this by 256 and subtract it from the original number to get the low byte.

Problems for you to try:

8 Convert each of the following low byte/high byte numbers to decimal:

(i) 0.2
(ii) 10,12
(1)) 200,40
(iv) 0.80
v) 96,234
9 Convert each of the following decimal numbers to low byte/high byte
numbers:

138

The Z80 microprocessor

@ 256
(i) 1024
(iii) 8000
(iv) 8192
(v) 65535

Numbers larger than 255 are added in the following way. Each number is held in
two successive locations, low byte and high byte. First the low bytes of the two
numbers are added together and the result is stored. Then the high bytes are added
together and the result is stored also. If the CARRY bit was set after the low-byte
addition, it can be added in with the high bytes. The instruction to do this is ADC,
meaningadd with CARRY. In adding the low bytes. we do not want the CARRY bit to
be added in. So we use the simpler form ADD, which ignores the CARRY bit.

Since we cannot store both the high byte and the low byte together in the
ACCUMULATOR, we make use of the memory. This isillustrated in Figure 6.1. We
put the number 4100 in the two locations 32001 and 32002, with the low byte (4) in
location 32001 and the high byte (16) in location 32002. Then we put the number 510
into the next two locations (254 into location 32003 and | in location 32004).

Next we add together the low bytes of the two numbers using the ADD
instruction (like adding up the units in a decimal addition). Because the result is
greater than 255, the CARRY bit will be set (as in the decimal addition 5+ 8 =3,
carry 1). We store the result of this low byte addition in location 32005,

Then we add together the high bytes using the ADC instruction. As we do this
the CARRY bit from the low-byte addition is added in as well (as in decimal
addition, when we get to the tens column we add in the carry from the units). The
result of this is then stored in location 32006. The whole set of instructions for this
double-byte addition is given below. Enter each of these instructions in turn. As
each instruction is entered and executed, note what happens to the CARRY bitin
the flag register and to the contents of the ACCUMULATOR. The first eight
instructions are simply setting up the memory locations with the correct
numbers.

LD A4
LD (32001).A
LD A16

LD (32002).A
LD A, 254

LD (32003).A
LD A1

LD (32004).A
LD A.(32001)
LDE, A

LDA, (32003)
ADD AE

LD (32005).A

139

The ZX Spectrum in science teaching

+ [ow}—
2 [AFIGH}—
3 (Eow ()

~,
+ [Ewen ———4ad
5 fonuts CoW— |
o [t io}———

address

Figure 6.1 Two-byte addition

LD A,(32002)
LD AE

LD A/(32004)
ADC AE

LD (32006).A

The result is stored in locations 32005 and 32006, is it the result you expected?
Continue this investigation with large and small numbers. You will get the
correct answer as long as the result is not greater than 65 535. What happens 1flhe
result is larger than this? (Clue: look at the CARRY bit when all the instructions
have been executed.)
Problems for you to try:

10 Add together the numbers 45 and 54 (single byte addition) without using any
external memory locations. (Clue: use the immediate mode.) -
Add together the contents of locations 32004 and 32005 (single-byte addition)
and put the result in location 32003. -

Add together the numbers 450 and 540 using double-byte addition. Put one

double-byte number into locations 32001 and 32002 and the other into

locations 32003 and 32004. Then add the numbers and put the result in
locations 32005 and 32006.)

13 Put the single-byte number 225 into location 32001 and 200 into location
32002. Then add up the numbers and put the result into locations 32003 and
32004. The result is greater than 255, so be very careful about what happens 10
the CARRY bit.

14 Put the double-byte number 1000 into locations 32005 and 32006. Novu_r add 1
in immediate mode to the contents of locations 32005 and 32006, storing _the
result in the same locations. Consider how you will cope with the situation
where the low-byte addition results in the CARRY bit being set.

1

[

140 '

The Z80 microprocessor

!S What two decimal numbers can be added together, using double-byte
addition, to give the result 02 (Clue: there are 32 768 different answers!)

Subtraction

Subtraction can also be performed using the immediate mode or the register
mode. The instruction SUB 1 will subtract one from the contents of the
ACCUMULATOR. leaving the result in the ACCUMULATOR. Note that the
ACCUMULATOR is the only register that can be used to store the result. For this
reason it is not necessary to specify it in the mnemonics. Some books do this,
writing the above instruction as LD A.1, but we shall stick to the convention in the
Spectrum user guide - where only the ACCUMULATOR can be the first operand,
it is not specified.

The effect on the CARRY bit is the same as for addition. If the second number is
larger than the first. then one is borrowed from the next column. In the units
column this | becomes 256, so the result in the ACCUMULATOR becomes larger
than it was before. For example:

LD A10
SuB 11

results in the number 255 being left in the ACCUMULATOR and one is
borrowed from the next column. This ‘borrow’ is shown by the CARRY bit being
set to 1. If there is no borrow as in the following case,

LDA11

SuUB 10

then the CARRY bit is cleared to 0 after the subtraction. Check these ideas by

entering each of the above instructions, noting the status of the CARRY bit each
time.

Note how the following instructions

LD AD
suB 1

leave 255 in the ACCUMULATOR. thus indicating that 255 is equivalent to -1 in
this arithmetic.

The operation SBC automatically ‘pays back’ the CARRY bit (in the same way
that ADC automatically adds in the CARRY bit). SBC can, however, be used with
the HL register pair as the first operand, so it becomes essential to specify the
ACCUMULATOR if the latter is intended to be the first operand. For
example:

LD A10
SBC A1

will produce the result9 in the ACCUMULATOR if the CARRY bit was previously
cleared or 8 if the CARRY bit was previously set. To avoid errors in two-byte

141

The ZX Spectrum in science teaching

subtraction, the first subtract instruction should use the operation SUB and
subsequent subtractions on the higher byte should use t}}e SBC. Check these
ideas by entering each of the following instructions, noting the status of the
CARRY bit each time.

LD A10

SuUB 11 (this leaves the CARRY bit set)
LDAS

SBC A4

In the last case the result is 0, not 1, because the CARRY bit is subtracted as
well.)

If the process involves double-byte subtraction, SBC ensures that l}‘m bDrro.w is
repaid during the high-byte subtraction. Enter each of the following instructions
and observe their effect on the various registers:

Place the number 3.2 (decimal 515) into locations 32001 and 32002. Then subtraFt
5,1 (decimal 261) from the first number in immediate mode and place the resultin
locations 32003 and 32004,

LD A3

LD (32001).A

LD A2

LD (32002).A (puts the number into the two bytes of memory)
LD A,(32001)

SUB S

LD (32003),A (low byte subtraction)

LD A.(32002)

SBC A1

LD (32004).A (high byte subtraction)

Problems for you to try:

16 Load a numberintothe ACCUMULATOR. Then subtract (SUB) this number
from itself, leaving the result in the ACCUMULATOR. Do you get the
result 07)

7 Place a single-byte number into location 32001 and another number into
location 32002 Subtract the contents of location 32002 from the contents of

tion 32001, placing the result in location 32003.

18 Ll;)lilace a double~hpyte nugmber in locations 32001 and 32002. Add this number to
itself and put the result in locations 32003 and 32004. Th:_n subtract the
number in locations 32001 and 32002 from the number in locations 32003 a}'ld
32004, leaving the result in locations 32003 and 32004, What do you notice
about this result?

19 Place0 into the locations 32001 and 32002. Treat this as adnuble-l:!yle nurpher
and subtract one from it in immediate mode, leaving the result in locations
32001 and 32002. What do you notice about the result?

142

The Z80 microprocessor

Counting

Counting can be done by adding one repeatedly to the location being used as a
counter, but it can also be done with the single instruction increment. The
instruction INC A simply adds one to the contents of the ACCUMULATOR.
Similarly INC B, INC C etc. do the same for the other registers. There is. however, an
important difference with ordinary addition -~ INC does not affect the CARRY bit
LD A255
INC A

leaves 0 in the ACCUMULATOR. but the CARRY bit remains unaltered.

The decrement instruction, DEC A, is similar. but now the contents of the
ACCUMULATOR are reduced by one instead. In this case too. no account is
taken of the CARRY bit. This is not affected if a register is decremented below
Zero.

Both instructions are used a great deal in counting. It is often necessary in a
program to repeat an instruction or a set of instructions several times (like the
FOR ... NEXT loop in BASIC). Suppose we want to repeat it eight times. The
register being used as a counter is initially made equal to eight. After each cycle of
the required instructions. this counter is decremented. When it reaches zero, the
cycle has been repeated eight times. The B register is the one most often used for
counting.

Investigate this set of instructions:

LD A.253
INC A
INC A
INC A
INC A
LD B2
DECB
DEC B
DEC B
DEC B

Now try this:
20 Place 0 in the B register and 3 in the ACCUMULATOR. Now increment the B

register and decrement the ACCUMULATOR repetitively until the latter
reaches zero. What value is left in the B register?

Incrementing and decrementing cannot be carried out directly on a memory
location. To increment the contents of location 32001, say. it can first be loaded
into the ACCUMULATOR, altered and then returned. like this:

LD A,(32001)
INC A
LD (32001),A

143

Carrm e

S e

s

e

The ZX Spectrum in science teaching

Logic instructions

As well as its arithmetic instructions. the microprocessor can also perform logic
operations on data. Since the result of a logic operation can only be left in the
ACCUMULATOR. the latter is not specified as the first operand. Logic opera-
tions are concerned with individual bits, so since a single byte of data consists of
eightbits, the microprocessor has to perform eight logic operations at a time. Con-
sider the series of instructions:

LD A5
AND 6

The second data in this case is the binary number 0000 0110. This is ANDed with
the data already in the ACCUMULATOR. which is the binary number 0000 0101,
These two bytes are ANDed one bit at a time and the result is put into the
ACCUMULATOR.

6is 0 0 0 o© 0 1 1 0
5is 0 0 0 o 0 1 0 1
Resut 0 O 0 0 0 1 0 0

The result has a logic | only where there is a logic 1 in both of the corresponding
bit positions of the two bytes being ANDed. This is the bit 2 position. so the result
of ANDing 5 and 6 is 4.

ANDingis a good way of clearing particular bits to 0 without affecting the other
bits at the same time. If the ACCUMULATOR contained the value 3 (binary 0000
0011) and we wanted to turn bit 0 off. we could perform the instruction AND 254
(binary 1111 1110). which would only affect bit 0. (There are other, more direct
ways of doing this.)

LD A3
AND 254

Another use of the AND instruction is to mask an input (say from the
Interspec) to look at one particular bit (say bit 0). If we load the contents of
location 32005 into the ACCUMULATOR and perform the instruction AND 1.
the result will be 1 if bit 0 of location 32005 was set and 0 if bit 0 was cleared. In a
similar way.

LD B,127
LD A 128
AND B

leaves 0 in the ACCUMULATOR.

LD B.255
LD A,128
AND B

leaves 128 in the ACCUMULATOR.

144

The Z80 microprocessor

Logical OR is carried out with the OR operation. which can also have an
immediate mode or register mode operand.

LDBS
LD A6
ORB

The ACCUMULATOR contains 6 and this is ORed with 5. so the result is 7. as
follows:

6 is 0 0 0] 0 1 1 0
5is 0 o] 0 0 [} 1 0 1
Result 0 0 0 o] 0 1 1 1

There is a logic 1 in the resultif there is a logic 1 in either of the corresponding bit
positions of the two starting numbers,

One use of OR is to switch one particular bit on. without affecting the other bits.
To turn on bit 7 of location 32005, we load the contents of location 32005 into the
ACCUMULATOR. OR it with 1000 0000 (decimal 128) and store the result back
in 32005.

LD B,128
LD A127
ORB

leaves 255 in the ACCUMULATOR.

A less familiar logic instruction is EXCLUSIVE-OR. This gives a logic | output
if the two inputs to the gate are different. The EXCLUSIVE-OR output goes to
logic 0 if its two inputs are the same. It has the following truth table:

Input A Input B Result
o] 0
0 1
1 1
1 o]

-0 =0

The microprocessor operation which does this is XOR. This too can be used in
the immediate mode or the register mode.
LDAG
XOR 255
6is O 0O 0 0 O 1 1 0
255is 1 1 1 1 1 1 1 1
Result 1 1 1 1 1 0 0 1
XOR has one special property that makes it particularly useful. If the contents

of location 32005 are loaded into the ACCUMULATOR and then EXCLUSIVE-
ORed with 1111 1111, each bit that was previously on will be turned off, and each

145

bit that was previously off will be turned on. This can be seen from a comparison
of the two numbers above. If the data collected from location 32003 is 6. the result
shows a logic 0 in each bit position where it was previously a logic 1. and vice
versa.

Try each of the following sets of instructions:

The ZX Spectrum in science teaching

LD A,255 :This instruction will switch all

LD (32005),A ;bits of location 32005 on.

LD (32005).A

AND 16 ;This will switch off all

LD (32005),A ;bits except bit 4.

OR 128

LD (32005),A ;This will turn on bit 7 also.

XOR 240 :This will turn bits 4 and 7 off and

LD (32005),A ;bits 5 and 6 on.

Enter each of the following instructions in turn. Before each one. try to predict
what the result in the ACCUMULATOR will be. Then see if you were
correct.

LDA170
AND 3
OR 16
LD BA
AND 10
OR 15
XOR 10
AND 1
LD AQ
OR 1
AND 2
XOR B

Problems for you to try:

21 What is the result of ANDing 85 with 457

22 What is the result of ORing 85 with 45?7

23 What is the result of EXCLUSIVE-ORing 85 with 457

24 How could you switch off bits | and 2 of location 32005 without changing the
state of the other bits?

25 How could you switch bits 0. 1.2.3.4.5 and 6 of location 32005 on. yet not affect
bit 77

Indexed addressing
Ina BASIC program we often use an array to store a set of related data. which may
then be accessed by number. X(5) contains the fifth number of the array. In

146

The Z80 microprocessor

machine code a similar system is used. The data is stored in successive bytes of
memory and a special register is used as a pointer to point to each byte in turn. In
the Spectrum. the X-INDEX is the easiest pointer to use. For example, location
32001 could contain the square of the number 1. location 32002 could contain the
square of the number 2 and so on. Then. to find the square of a number in a
machine-code program. we only have to look it up in this table. We do this with
indexed addressing.

The instruction LD A,IX+35) loads the ACCUMULATOR with the contents of
a memory location. The chosen location is obtained by adding the X-INDEX to
the number specified (in this case. 5). This number is called the displacement.
Thus if the X-INDEX is initially set to 32000, the chosen location would have the
address 32000 + 5. which is. of course. location 32005. The contents of this
location would thus be loaded into the ACCUMULATOR. The X-INDEX is
loaded with its starting value with this instruction:

LD IX,32000

Then to collect the data from the fifth store. we say:
LD A(IX+5)

The displacement can only be added to the base address of the index and
cannot exceed 255. so only locations within 235 bytes of the base address can be
reached. To go further. the value of the X-INDEX must be altered. Since the X-
INDEX can have any value from 0 to 65535. then any desired location can be
reached in this way. However. Z80 SIMULATION only displays the location
32001 to 32007, so it is not possible to give indexed addressing a full test. All load.
arithmetic and logic instructions so far described can be used with indexed
addressing as well as with the other addressing modes already described

The advantage of indexing will not yet be apparent. because we have not
discussed how to repeat a series of instructions. Let us first learn how to use this
instruction. The following program will put the value 1 into location 32001, the
value 2 into location 32002 and so on. Enter this series of instructions and see what
happens each time. Note especially what happens to the ADDRESS register.

LD 1X,32000
LD A1

LD (IX+1).A

LD A2

LD (IX+2).A

LD A3

LD (IX+3).A

LD A4

LD (IX+4),A

etc.

This program can be greatly simplified by keeping the displacement fixed and

147

The ZX Spectrum in science teaching

by incrementing the X-INDEX each time instead. The program then becomes:

LD 1X,32000

LD A1

LD (IX+1).A ;puts 1 in location 32001
INC A

INC IX

LD (IX+1).A ;puts 2 in location 32002
INC A

INC IX

LD (IX+1)A ;puts 3 in location 32003
INC A

INC 1X

LD (IX+1).A ;puts 4 in location 32004

This is the same program but using INC [X. Note how the same set of instructions
is repeated over and over again. Clearly the machine-code equivalentofa FOR....
NEXT loop will make this a very simple program. when we come to it. Can you
repeat this procedure. but changing the load instructions to (1X+0) instead of
(IX+1)? What difference does it make”

Rewrite the above program to read the contents of each memory location into
the ACCUMULATOR. to add | and to store the result back in the same location.
The program should use indexed addressing to point to each location in turn.

The PROGRAM COUNTER

Although Z80 SIMULATION is useful for demonstrating the different instruc-
tions available in the Z80 microprocessor. it is not possible to make it run a
program. That is. it will not carry out a set of instructions automatically. It is as if
in BASIC we could only enter statements one at a time into a microcomputer. We
need a way of storing a whole series of instructions that the microprocessor can
execute one by one. This is the only way that we shall be able to repeat a cycle of
instructions for a given number of times. This will be shown in Chapter 7. Until
then we can only simulate a machine-code program.

Until now we have not bothered particularly about the PROGRAM
COUNTER. henceforth called the PC. This is a sixteen-bit counter that points to
the address of the next instruction, Try each of these instructions and note the
effect on the PC each time. Some (called single-byte instructions) increment the
PC by one. while others (double-byte instructions) increase it by two. There are
also three-byte and four-byte instructions. which are they?

LDA AB
ADD AC
SUBC

LD IX,32000
LD A(IX+1)

The Z80 microprocessor

LD (32001).A
AND (IX+1)
XOR (1X+2)
LD BS

INC A

INC IX

The address in the PC starts at 32500. which is roughly where many real
machine-code programs for the Spectrum begin. If you enter a very large number
of instructions you could get this to go right up to 65535. Further increases cause it
to reset to zero. 65 535 is the maximum number that a sixteen-bit register can hold.
In the memory a segment of a program would be stored sequentially like this:

32500 LDIX,32000 ;four-byte instruction
32504 LD (IX+3),B sthree-byte instruction
32507 LDA.25 ;two-byte instruction
32508 LDBA :single-byte instruction
32510 etc.

Notice how the PC seems to be giving each instruction a number as in BASIC.
Butitis not at all like BASIC. these numbers are the address of the first byte of the
instruction. some of which are four-. three-. two- and one-byte instructions. Each
byte contains part of the code for the complete instruction. Here is the same
program written out one byte at a time. to show the way that these codes are
stored:

PC Code Instruction
32500 221 LD I1X,32000
32501 33
32502 0
32503 125
32504 221 LD (1X+3).B
32505 112
32506 3
32507 62 LD A25
32508 25
32509 71 LD BA

The line numbers must be consecutive and none may be omitted. This is
annoying when writing machine-code programs. because if you later want to
insert another instruction. you have to move all the others down by one or two
bytes (which is one of the reasons why BASIC is a better language than machine
code). In BASIC. the next statement fetched is the one with the next highest
number. and it does not matter if some numbers are omitted. The line numbers in
machine-code programming represent the addresses in memory where the codes
for the instructions are stored. They are the values taken by the PROGRAM

149

The ZX Spectrum in science teaching

COUNTER to get each new instruction. Each time the PC executes an
instruction. it is simply incremented to point to the next instruction. If we put this
next instruction in the wrong place, the microprocessor will not notice, it will stjl|
fetch its next instruction from the nextlocation in memory. Itis quite possible that
this wrong instruction collected by the microprocessor will cause the whole
program to crash. Even worse. the microprocessor contains no error-checking
procedures like BASIC, so it will carry on trying to interpret its instructions. Since
data and instruction might be the same code. the microprocessor could get
hopelessly lost. ’

Using the address of the program counter. it is common to write out machine-
code programs like this:

32500 rpt LD 1X,32000 initialize X-INDEX

32504 LD (IX+3).B ;store contents of B register
32507 LD A25 ;initialize ACCUMULATOR

32509 LDBA ;save contents of ACCUMULATOR
32510 etc.

We are not bothered with how this program works. we are just looking at the
method of writing it. The first column is the value of the PC as before. which is the
address of the first part of each instruction.

The second column of the program listing is the name or label of the cycle of
instructions to be repeated (rpt). This way of labelling the program is to show us
where the cycle (or loop) begins. The microprocessor takes no notice of labels,
because it uses the PC to determine where this loop is. Z80 SIMULATION
likewise uses numbers to determine the next instruction. The label is only
included for our information. it cannot be entered as any part of an instruction in
Z80 SIMULATION. The third column has the mnemonic of the instruction as
before. The remainder of the line. after the semi-colon. is the comment column.
This is used to explain what is going on. rather like the REM statement in BASIC.
Z80 SIMULATION will not recognize such comments. even if there is room to
put them in. so these too should not be entered.

Program jumps
BASIC has two methods of jumping to a different part of the program. GOTO
and GOSUB. There are exact equivalents in machine code too. JP (jump) and
CALL (go to subroutine). The instruction JP 12000 loads the address 12000 into
the PC and the next instruction is fetched from that address. Execution then
continues line by line from this new position. JP therefore transfers control
completely to this new part of the program. The microprocessor loses all
knowledge of where it has come from and it has no way of getting back to it
(unless. that is. the new part of the program sends it back with another JP
instruction).

CALL 12000 puts the address 12000 into the PC in the same way. but the
previous address of the PC is first saved in a special memory called the STACK.

150

The Z80 microprocessor

The instructions beginning at line 12000 are then executed in order until the final
instruction RET (just like RETURN in BASIC). Control then passes back to the
main program at the address previously saved on the STACK.

JP and CALL are three-byte instructions so you might expect to see the PC
increase by three when they are used. However. these instructions change the
address in the PC, so you cannot really see this happen. Since the return address is
a sixteen-bit address, it is saved on the STACK as a two-byte address (written in
the low byte, high byte order). Note that the address saved on the STACK is not
exactly the same as that originally in the PC. The reason for this is because the PC
contains the address of the first byte of an instruction. By the time the PC has
reached the end of the instruction, it points to a slightly different address.

Enter these instructions and watch especially the STACK and how the PC
changes its address. Note that both the low byte and the high byte of the return
address are stored on the STACK and note how the STACK pointer (the arrow)
moves up and down. pointing to the last entry in the STACK Note the
relationship between the number pushed onto or pulled off the STACK and the
PC address. when the CALL and the RET instructions are executed.

PC
XXXXX JP 12000
12000 JP 10000
10000 JP 32000
32000 CALL 20000
20000 RET
32003 JP 30000

Do you see the difference between the JP and CALL instructions?

Problems for you to try:
26 What address would be leftin the PC after the following instructions had been
executed?
XXX JP 12000
12000 JP 20000
27 What would a microprocessor do if it met this instruction?
12000 JP12000

Conditional jumps
In BASIC the IF ... THEN statement allows the program to choose between
alternatives.

1000 IF Y=0 THEN GOTO 5000

1010 X=2

IfY is zero at statement 1000, this causes a jump to line 5000. If Y is not zero. the

151

The ZX Spectrum in science teaching

program continues with statement 1010. In machine code the condition_aljump
instructions have the same purpose. After nearly every instruction, a special bitin
the flag register, called the ZERO bit, is changed. It is set to 1 if the result of the
instruction is zero, it is cleared to 0 if the result is not zero. Watch the effecton the
ZERO bit (Z) in the Z80 SIMULATION. when each of the following is
executed:

LDAO
LDB1
ORB
XOR 255
AND O
DEC A
DECB

The JP NZ instruction (jump if non-zero) tests this ZERO bit and if it is
cleared to 0 (i.e. the result of the previous instruction was not zero), then the jump
is obeyed. If the ZERO bitis set to 1, then the result of the previous instruction was
zero. 50 the jump is not obeyed and execution continues with the next line.

The JP Z instruction (jump if zero) is the opposite of this. The jump is obeyed
when the ZERO bit is set and is not obeyed when the ZERO bit is cleared. Let us
now see how this conditional jumping is used. It is assumed that the following
program begins at 32500. You can get to this address by entering JP 32500.
Remember not to type in the label nor the comment columns.

32500 LD BS :Set counter

32502 LD IX.32000 ;Set pointer

32606 pt LD AN ;Get value

32508 LD (IX+1),A ;Save value

32511 INC A ;Next value

32512 INC IX :Next location

32514 DECB :Dec counter

32515 JP NZ32506 ;Repeat cycle

32518 ;remainder of program

This program first sets a counter (the B register) to 5 and sets the X-INDEX to
point to the memory location 32000. Then | is loaded into the ACCUMULATOR
and stored in location 32001. Both the ACCUMULATOR and the X-INDEX are
incremented and the counter is decremented. This instruction makes the B
register equal to 4, which is non-zero. so the ZERO bit remains cleared. The JP
NZ instruction thus succeeds and the PC returns to 32506 (the line called rpt). The
next time this loop is executed, the B register contains three and the loop is
repeated again. This continues until the B register reaches zero. Then the ZERO
bit is set, the JP NZ condition finally fails and there is no jump back to rpt. So the
program executes the loop five times, effectively copying the FOR... NEXT loop
of BASIC.

152

The Z80 microprocessor

An alternative type of jump is called a relative jump. In this case the operand is
not an address, but the number of bytes to be skipped over. JR + 8 is an instruction to
omit the next eight bytes. JR NZ + 8 means omit the next eight bytes if the ZERO bit
is cleared. The operand in a relative jump is called a displacement and it is the
number of bytes added to the PC. This displacement can be positive (a forward jump)
or negative (a backward jump). For Z80 SIMULATION we signify this with the + or
— symbols, which must be included. A real microprocessor has a special way of
distinguishing positive and negative numbers, which we shall deal with later.

32500 LD BS ;Set counter

32502 LD IX.32000 ;Set pointer

32506 pt LD A1 :Get value

32508 LD (IX+1).A :Save value

32511 INC A ;Next value

32512 INC IX :Next location

32514 DECB :Dec counter

32515 JRNZ-11 ;Repeat cycle

32517 ;remainder of program

In this program the JR NZ-11 instruction tells the microprocessor to go back
eleven bytes to the address 32506, labelled rpt. JR NZ stands for jump if the result
of the previous instruction is not zero. In this case the ‘previous instruction’ was
DEC B (decrement the B register). Since the B register starts at five, every time it
is decremented it becomes smaller, but not equal to zero. So the jump condition is
obeyed and the program jumps back to line 32506 each time. It does this by
adding -11 to the PC, thus making it point to the previous address. After the fifth
decrement, the B register finally becomes zero, so the ZERO bit is set and the
condition of the jump instruction is not obeyed. This time the PC is incremented
to 32517 and the next instruction is then fetched from this address instead.

The reason for jumping back eleven bytes and not ten is as follows. Look at
what happens if the ZERO bit is set, so that the jump condition is not obeyed. The
JR NZ-11 instruction is a two-byte instruction, starting at address 32515. After it
has fetched the operand (-11), the PC is equal to 32516, The jump condition fails,
so this instruction has now been completed and the PC is incremented to point to
the next instruction, which is at address 32517.

Now suppose that the B register was not zero so that the ZERO bit is cleared. In
this case the jump condition will be obeyed and -11 will be added to the PC, which
will thus become 32503, since 32516 + (-1 1) = 32505. This is the end of the current
instruction, so the PC isincremented (10 32506) and the next instruction is fetched
from line 32506. This is exactly where we want to be. The rule, therefore, is as
follows: all relative jump instructions must jump to the address immediately
before the desired address, so that when the PC is incremented prior to fetching
the next instruction, it then points to the correct address.

Let us see how this applies to the following program, which achieves the same
as the one above:

153

The ZX Spectrum in science teaching

32500 LD BS ;Set counter

32502 LD 1X,32000 ;Set pointer

32506 pt LD A1 :Get value

32508 LD (IX+1).A :Save value

32511 INC A ;Next value

32512 INC IX ;Next location

32514 DECB ; Dec counter

32515 JRZ+3

32517 JP 32506 ;Repeat cycle

32520 ;remainder of program

This time line 32515 is a forward jump JR Z.+3. This is after the instruction DEC
B and will thus be obeyed whenever the B register is zero. This does not occur for
the first five loops, so the PC is incremented to point to address 32517, which is a
jump to address 32506. On the last loop the B register becomes zero so the jump is
obeyed and the PC becomes 32519 (i.e. 32516 + 3). This is the end of the current
instruction, so the PC is incremented to point to the next instruction at address
32520. Note once again that the displacement added to the PC makes it point to
the address immediately in front of the desired address. This is to allow for the fact
that the PC is incremented before the next instruction is fetched. Of all the ideas
in machine-code programming, this is probably the most difficult to get right.

There are several other conditions that can be tested before a jump. The only
other one we shall deal with now is testing the CARRY bit. JP NC means jump if
the CARRY bitis cleared and JP C means jump if the CARRY bitis set. Otherwise
their use is identical to the JP NZ and JP Z instructions. There are also the relative
jump instructions JR NC and JR C, and you should be able to guess what they
mean.

Comparison

So far we have only looked at counting down to zero: this is too restrictive. To
enable us to count up as well, the ability to compare two sets of data is essential.
The CP (compare) instruction performs this function. It does not need the first
operand to be specified, since this is always the ACCUMULATOR. Suppose the
B register contains the data 5, the instruction CP B carries out the following
steps:

The data in the operand (in this case the B register) is subtracted from the data
in the ACCUMULATOR and the result is stored internally. The data in the
ACCUMULATOR is not changed.

2 Ifthe operand data is equal to the ACCUMULATOR data then the result will
be zero and the ZERO bit will be set, otherwise it will be cleared. Thus if CP B is
followed by JP Z, the jump will be obeyed if the ACCUMULATOR also
contains 5.

5 If the operand data is greater than the ACCUMULATOR data, then the

CARRY bit will be set to 1, indicating that a borrow has occurred. If the

154

The Z80 microprocessor

operand data is not greater than the ACCUMULATOR data then the CARRY

bit will be cleared. These conditions can be detected by the jump instructions

JP NC (jump if the CARRY bit is cleared) and JP C (jump if the CARRY

bit is set)

To summarize:
CP 5 followed by JP NC will jump if the ACCUMULATOR data is greater than or

equal to 5.

CP 5 followed by JP C will jump if the ACCUMULATOR data is less than 5.
CP 5 followed by JP Z will jump if the ACCUMULATOR data is equal to 5.
CP 5 followed by JP NZ will jump if the ACCUMULATOR data is not equal

to 5.

The CP operation can have an operand in the immediate, direct. register or
indexed modes. In all cases the data obtained from the operand will be compared
with the ACCUMULATOR data.

Try each of the following sets of instuctions. Make sure that you understand
why the jump operands have the values they do. Try to predict what each program
should do, then see if you were correct. You will have to re-enter the instructions in
the loop (32508 to 32516) three times over, because Z80 SIMULATION will not
remember them. In a real microprocessor this will not be necessary.

Program to place the square of the number 3 into location 32005

32500 LD CoO ;Set result to zero
32502 LD B3 :Set counter
32504 LDEB ;Keep value
32505 loop LD AE ;Get value

32506 ADD AC ;Add result
32507 LDCA ;Keep new result
32508 DECB :Dec counter
32509 JR NZ-6 :Repeat loop
32511 LD (32005).A

The loop adds together the contents of the E register. called value and the C
register called result. This loop is performed a total of three times, initially set by
the counter. The final resultat the end will thus be 3+ 3 + 3 or 3 squared, which is
finally stored in location 32005.

Problem for you to try:

28 Whatwould happen ifthe JR NZ.-6 instruction in line 32509 were replaced by

JR NZ-T or by JR NZ-5?
The CALL instructions can also be conditional. as follows:

CALL 2000 is an unconditional jump to a subroutine.

CALL NZ,2000 means jump to subroutine if the ZERQ bit is cleared.
CALL Z,2000 means jump to subroutine if the ZERO bit is set.

CALL NC,2000 means jump to subroutine if the CARRY bit is cleared.
CALL C,2000 means jump to subroutine if the CARRY bit is set.

155

The ZX Spectrum in science teaching

The return from subroutine instructions have similar forms. thus:

RET
RET NZ
RET Z
RET NC
RETC

Negative numbers

So far we have written -5. say. to indicate a backward jump. The microprocessor
needs some other way of indicating whether a number is positive or negative. It
does this by a coding technique known as twos complement. A clue to this concept
lies in the single-byte addition programs we wrote. We tried the effect of adding
255 to a number and noted that it reduced the value of that number by one. (Yes.
the CARRY bit is also set. but we take no notice of that.) This is standard practice
in binary arithmetic and is known as subtraction by twos complement
addition. This relies on the phenomenon that 256 is actually equivalent to O if the
CARRY bit is ignored. Hence 255, which is one less than zero. is equivalent to -1,
which is also one less than zero. A table of some of these equivalents shows this
more clearly:

Positive Positive Twos complement Negative
decimal binary binary decimal
128 1000 0000 1000 0000 -128
127 o111 1000 0001 -127
126 01111110 1000 0010 -126
125 01111101 1000 0011 -125
41 0010 1001 1101 0111 -41
40 0010 1010 1101 1000 -40
39 0010 1011 1101 1001 -39
38 0010 1100 1101 1010 -38
30 0001 1110 1110 0010 =30
20 0001 0100 1110 1100 -20
10 0000 1010 11110110 =10
2 0000 0010 11111110 -2
1 0000 0001 11111111 -1
0 0000 0000 0000 0000 0

An inspection of the table shows that we can now represent both positive and
negative numbers with binary numbers. depending upon which form of binary
coding us being used. Twos complement coding represents numbers in the range
-128 to +127 only. and it is possible to tell the negative numbers. because their
most significant bit (bit 7, at the left end) is always 1. For all positive numbers
this bitis 0. Thus we need only test the most significant bit position to see if itisa |
or al. The Z80 microprocessor is aware of this need and sets the SIGN bit in the
flag register to tell us if a number is positive or negative. We do not have to bother

156

The Z80 microprocessor

about this unless we want to make use of twos-complement coding. The numbers
behave quite normally and it is up to us to decide what we want those numbers to
represent. The operand of a relative jump instruction is the number of bytes of the
machine-code program to be skipped over. This is not difficult to calculate,
provided you remember that the program counter is incremented immediately
before the next byte of an instruction is fetched from memory. So a jump must go
to the byte immediately preceding the desired instruction.

In the case of forward branching, one counts up in the normal way until one
reaches this preceding byte. The number obtained is the required operand. For
example:

16100 ANDO
16102 JRZ+2
16104 YYY 22

16106 PPP 4q

After JR Z+2, the PC is at memory location 16103. To this is added +2, giving
16105 and the PC is then incremented to 16106. The next instruction is fetched
from 16106. Instruction ppp qq will be executed next after the jump instruction.
For backward jumping the operand should really be a twos-complement
number. but Z80 SIMULATION has been programmed to accept negative
numbers instead. Later we shall have to do this properly. but for the moment we
can ignore this
This idea of twos-complement coding is used for another type of conditional
jump. Ifbit 7is setto | aftera previous instruction. then the number is regarded as
negative. if bit 7 is 0 then the number is regarded as positive. So the operation JR
M (jump if minus) will succeed if bit 7 is a | and the operation JR P (jump if
plus) will succeed if bit 7 is cleared to 0. For example:
16100 OR 255
16102 JRM,+2
16104 Yyy 2z
16106 PPP qq

will cause instruction ppp qq to be executed next after the jump instruction.
whereas

16100 OR 255

16102 JRP+2

16104 YYY 2z

16106 PPP aq

will cause instruction yyy zz to be executed next after the jump instruction. In
both cases the microprocessor tests another bit in the flag register. called the
SIGN bit. Z80 SIMULATION does not have room to display this bit, but it
checks it nevertheless.

The ZX Spectrum in science teaching

Bit instructions
The following program can be used to test bit 2 of location 32001 to see if it is
HIGH or LOW:

LD (32001),A
AND 4

This may then be followed by a conditional jump instruction like JP Z. If the bit4
is LOW. the jump will be obeyed. The Z80 has a whole set of instructions which
carry oul operations on single bits, thus avoiding the above. rather clumsy.
method. For example:

BIT7.B

tests bit 7 in the B register. If it is LOW, the ZERO bit is set, if HIGH. the ZERO bit
is cleared. To set one particular bit in a register to zero. there is

SET 3.A
and to clear (or resest) a particular bit. there is
RES 5.C

These instructions are very useful for switching bits on and off in control
situations.

Shift instructions

This set of instructions is often used in binary multiplication and division.
Multiplying by ten with decimal numbers holds no terrors. we simply add a 0.
Similarly. in binary. multiplication by two is accomplished by adding a 0. The
instruction to do just that is SLA (shift left arithmetic). This causes each bit in
the specified register to move into the next position left. with 0 loaded into the
lowest bit. If the number was originally greater than 127 (or negative in twos
complement coding) then the 1 originally in bit 7 is shifted into the CARRY
bit. For example:

LD AB1
SLA A

(The ACCUMULATOR now contains 162.)
SLA A
(The ACCUMULATOR contains 68 and the CARRY bit contains | (which is
really 256), so that 256 + 68 = 324.)
Two-byte shifting can also be performed. by allowing the CARRY bit to be
shifted into bit 0 of the high byte. This is done with the RL instruction (rotate left).

This causes the CARRY bit from the low byte (if any) to be shifted into bit 0 of the
high byte (Figure 6.2). For example:

158

The Z80 microprocessor

CARRY high byte CARRY low byte
bit bit

Figure 6.2 Right shifting on two bytes

LD C.181
LD B,O
SLAC
RLB
SLAC
RLB
SLAC
RLB

will cause the original two-byte number (181.0) to be multiplied by eight.

A similar set of instructions can be used to divide by two. This time the routine
starts with the high byte and performs an SRL instruction (shift right logical) on
it. Bit 7 becomes 0. bit 6 becomes equal to the previous value of bit 7. etc. and the
contents of bit 0 are shifted into the CARRY bit. This instruction can be followed
by an RR instruction (rotate right) and the CARRY bit is pushed into bit 7 of the
low byte. Bit 0 of the low byte is pushed into the CARRY bit itself (Figure 6.3).
(This is very useful for determining if the original number was odd or even, since
only an odd number leaves the CARRY bit set to 1.)

In several cases so far we have carried out additions. etc. on two bytes
separately. The Z80 instruction set contains a whole series of instructions that
operate on two bytes at once. You will have noticed that the registers are grouped
in pairs. called the BC register pair. the DE register pair and the HL register
pair. In each case the first register contains the high byte and the second contains
the low byte. The number of register pair instructions available is far less than for
asingle register. but they are correspondingly more powerful. Forexample. here is
a program to add together two double-byte numbers:

LD HL,6000
LD DE,8000
ADD HL,DE

You will observe that the result is left in the HL register pair. In a sense the

SAL RR

high byte CARRY low byte
bit

Figure 6.3 Left shifting on two bytes

The ZX Spectrum in science teaching

HL register pair is acting like the ACCUMULATOR - it is the normal place for
the result of a double-byte calculation.

Itis possible to load a register pair directly from memory. But since the memory
consists of single bytes, the register pair loads two successive bytes from the
memory. For example:

LD BC.(32001)

loads the contents of location 32001 into the C register and the contents of
location 32002 into the B register. (Note once again the low/high order.) The
instruction

LD (32001),BC

does the reverse of this. This applies to the X-INDEX too.

A few arithmetic operations also exist for register pairs. We have already seen
INC X and DEC X and these also exist as INC BC, DEC HL. etc. Above we
introduced ADD HL.BC and this is paralleled by the following too:

ADD HL,DE
ADC HL.BC
SBC HL.DE

There is no simple SUB instruction when using register pairs. To be certain that
the CARRY bit is not included when it should not be. it can be cleared by a
dummy instruction. such as:

AND A

which does not alfect the ACCUMULATOR. but does clear the CARRY bit.
The most valuable use of the register pairs is for a new and powerful addressing
mode - indirect addressing.

LD HL,32001
LD A,(HL)

causes the contents of location 32001 to be loaded into the ACCUMULATOR. It
works like this. The first instruction sets the HL register pair to contain 32001. In
the instruction LD A(HL). the (HL) is effectively replaced by (32001). So instead
ofloading the contents of HL. this instruction treats those contents as an address,
from which the data is collected. This is why it is called an "indirect’ instruction. It
is a powerful addressing mode. since it is easy to increment or decrement the HL
register pair to point to the next memory location. In fact any number can be
added or subtracted from the HL register pair. using the arithmetic instructions
mentioned above.

The HL register pair can be used like this in place of any of the other registers.
Here are a few examples:

The Z80 microprocessor

BIT 5,(HL)
SET 3,(HL)
RES 1,(HL)
LD B.(HL)
LD (HL)A
ADD A,(HL)
SBC A,(HL)
AND (HL)
CP (HL)
INC {HL)

Indirect jumps can also be carried out.
JP (HL)

jumps to the address contained in the HL register pair. Since these contents can
be adjusted easily. this gives the Z80 the facility for a computed GOTO.

The STACK
Another set of instructions is concerned with the STACK. which is a double-byte
register. The instruction PUSH BC makes the stack pointer move down to point
to the next STACK position and then pushes the contents of the BC register pair
onto the STACK. for temporary storage. The reverse instruction POP HL will
pull the contents of the current position off the STACK. place them in the HL
register pair and make the stack pointer move up one. Try these examples:

LD BC,32000

PUSH BC

LD DE,21000

PUSH DE

POP BC

POP DE

and watch the movement of the stack pointer in each case.

This sequence swaps over the contents of the BC and DE register pairs. There is.
however. a single instruction for swapping the HL and DE register pairs directly.
This is:

EX DEHL

This does not, however, work with any of the other register pairs.

No operation

The most mystifying instruction must surely be NOP (no operation). It simply
causes the microprocessor to waste time. None of the registers is affected in any
way. except for the PC. which is incremented to point to the nextinstruction. The
main use of NOP is to adjust delay loops to get the correct delay time. Try it for
yourself and see its lack of effect.

161

The ZX Spectrum in science teaching

DIY

Try out your own ideas using Z80 SIMULATION. Apart from the restriction on
memory locations (range 32001 to 32007 only) the simulation supports most Z80
instructions. A limited set of the instructions that can be implemented has been
described in this chapter, so try them out for yoursell. There is no doubt that the
ability to handle the mnemonics properly does speed up the writing of machine-
code programs.

Machine-code programming
This brief tour of the Z80 microprocessor has shown only some of the available
instructions and their effects on the internal registers of the microprocessor. You
should now be able to move on to the more exciting challenge of putting these
instructions into a real machine-code program and seeing their overall effect.
Although we have used mnemonics. the microprocessor stores all the
instructions and data as binary codes or numbers. When we start to write
machine-code programs, we shall have to translate our mnemonics into these
codes, so that the microprocessor understands. The way that this is done depends
on the addressing modes used. The numbers may be in decimal or hexadecimal
(see Chapter 2). so both are given.

i) Immediate mode The operand is the actual number to be loaded into the
register.

Decimal code Hex. code
62,42 3E 2A

Mnemonic
LD A42

ii) Direct mode 1fwe wantto load the ACCUMULATOR with the contents of a
particular memory location, we use the direct addressing mode. in which the
operand is an address. The microprocessor goes to that address to find the
number to be loaded into the ACCUMULATOR. Since there are so many
different addresses. the operand consists of two bytes, the low byte of the address
followed by the high byte. As an example, we could fetch the contents of address
32768 (8000H):

58,0,128 3A 00 80 LD A,(32768)

The brackets indicate the direct addressing mode. Note that the numeric code for
LD is different from that in the immediate addressing mode.

ifi) Indirect mode The HL register pair holds the address of the data.

33.20 210200 LD HL.2
126 7E LD A,(HL)

i) Indexed addressing The final address is calculated by adding the X-INDEX
to the displacement. The microprocessor then goes to this final address to get the
desired data.

162

i

The Z80 microprocessor

221,33.0.125
221,126,5

DD 21 007D
DD 7E 05

LD 1X,32000
LD A,(IX+5)

The complete set of Z80 codes is not given here, reference should be made to the
books in the Bibliography. Even then the lists of codes are not always helpful. By
writing them in a particular way. a definite order can be discerned. The following
lists show the decimal codes only.

LD instructions (eight bit)

Destination Source register
register B (v D E H L (HL) A

64 65 66 67 68 69 70 n
72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87
88 89 90 91 92 93 94 95
96 97 98 99 100 101 102 103
104 105 106 107 108 109 110 111

) 112 113 114 115 116 117 118 119
120 121 122 123 124 125 126 127

rIrImoo®m

Arithmetic and logic instructions (eight bit)
In each case the destination register is the ACCUMULATOR.

Instruction Source register

B c D E H L (HL) A N(direct)
ADD 128 129 130 131 132 133 134 135 198
ADC 136 137 138 139 140 141 142 143 206
sue 144 145 146 147 148 149 150 151 214
SBC 152 153 154 155 156 157 158 159 222
AND 160 161 162 163 164 165 166 167 230
XOR 168 169 170 171 172 173 174 175 238
OR 176 177 178 179 180 181 182 183 246
cpP 184 185 186 187 188 189 190 191 254

Other instructions (eight bit)

Destination Instruction
register INC DEC LD reg.number (direct)
8 4 5 6
[12 13 14
D 20 21 22
E 28 29 30
H 36 37 38
L 44 45 46
(HL) 52 53 54
A 60 61 62

163

The ZX Spectrum in science teaching

Solutions to problems

1

2

LD A50

LD (32002),A

LD A(32007)

LD (32006).A

LD A1

LD (32001).A

LD A2

LD (32002).A

LD A3

LD (32003),A

LDA1 or LDAN
LD B1 LD BA
LDC1 LDCA
LD D1 LD DA
LDE1 LDEA
LD H.1 LD HA
LD L1 LD LA
LD A(32001)

LDCA

LD AH

LD (32001).A

A ‘write’ places data from the ACCUMULATOR into a byte of memory. A
‘read’ takes the data from the memory and places itin the ACCUMULATOR.
LD A,[32005) is a read instruction.
i) 512

(i) 3082

(i) 10440

(iv) 20480

(v 60000

i) 0,1

(i) 0.4

(i) 64,31

(iv) 0.32

(v 255,255

LD A45

ADD A54

LD A,(32004)

LDEA

LD A,(32005)

ADD AE

LD (32003).A

Note: E could also be any of B, C, D, Hor L.

12 LDA194
LD (32001)A
LD A1
LD (32002),A
LD A28
LD (32003).A
LD A2
LD (32004).A
LD A,(32001)
LD EA
LD A,(32003)
ADD AE
LD (32005),A
LD A,(32002)
LDEA
LD A,(32004)
ADC AE
LD (32006).A
LD A225
LD (32001)A
LD A,200
LD (32002).A
LD A,(32001)
LD EA
LD A(32002)
ADD AE
LD (32003),A
LD AD
LDEO
ADC AE
LD (32004).A
LD A.232
LD (32005).A
LD A3
LD (32006).A
LD A,(32005)
ADD A1
LD (32005).A
LD A.(32008)
ADC A1
LD (32006),A
1 and 65535
2 and 65534
3 and 65533, etc.

The Z80 microprocessor

The ZX Spectrum in science teaching

16

17

LD A1

SUB 1

LD A5

LD (32001).A
LD AS

LD (32002).A
LD A(32002)
LDEA

LD A(32001)
SUBE

LD (32003).A
LDA78

LD (32001).A
LD A29

LD (32002).A
addition

LD A(32001)
ADD A78

LD (32003).A
LD A,(32002)
ADC A,29

LD (32004),A
subtraction

LD A,{32001)
LD EA

LD (32003).A
SUBE

LD A,(32003)
LD A(32002)
LDEA

LD (32004).A
SBC AE

LD (32004),A
The result is the original number.
LD AQ

LD (32001).A
LD (32002).A
LD A,(32001)
SUB 1

LD (32001).A
LD A,(32002)
SBC AO

LD (32002).A
The result is 255,255 or -1 in twos complement coding.

21
22
23
24

2

o

26
27

2

@

The Z80 microprocessor

The B register contains 3.

85 AND 45is 5

85 0R45is 125

85 XOR 45 is 120

LD A,(32005)

AND 252

LD (32005).A

LD A.(32005)

OR 127

LD (32005).A

The PC would contain 20000.

The microprocessor would continuously jump to location 12000 forever
(like the BASIC statement 10 GO TO 10).

The microprocessor would jump to the middle of an instruction, which it
would interpret wrongly. The program would probably crash.

167

S R .

B —

7 Machine-code graphics

*If you want to get somewhere else, you must run at
least twice as fast as that!”
(Lewis Carroll, Through the Looking Glass)

Microcomputers are not designed for running machine-code programs in the
same way thatthey are for BASIC. There are generally more problems in entering.
saving, loading and running such programs. In particular, machine-code
programs contain no error-checking procedures like BASIC. If you ask the
microcomputer (in BASIC) to divide by 0. it will stop and tell you that this is not
possible. If you tell a microprocessor to jump to the wrong address, it will still
jump and may cause a crash. This may mean that you lose all control of the
machine and have to reset to regain control.

Crashes are quite common in machine-code programming and unfortunately
the Spectrum cannot recover from such events without losing the program. This is
not a disaster provided you saved the program on cassette tape before it was run.
Cultivate the habit of saving and verifying every program before you run it,
otherwise you will spend fruitless hours typing it in all over again.

Machine-code graphics

Machine-code graphics give a particularly good introduction to machine-code
programming in general. as well as being important in their own right. The screen
gives a visible record of the contents of the memory locations. so direct
observations on the course of the program can be made. In Chapter 2 we looked at
BASIC methods of making the *-character move around the screen. A machine-
code program allows instructions to go directly to the microprocessor. which
means that it doesn’t have to waste time translating BASIC instructions. itcan get
on with the job immediately. Thus machine-code programs run several hundred
times faster than their BASIC equivalents. For example, a routine to bounce a ball
around the screen is perfectly satisfactory in BASIC (in fact a PAUSE has to be
introduced to slow it down). So games like BRICKOUT can be written without
machine code. But try moving a hundred molecules around the screen and the
resultis jerky and unacceptable. This chapter looks at those graphics applications
that require machine-code programs and then offers some advice on machine-
code programming in general.

A machine-code program to fill the screen with *-characters is not at all easy. so
we revert to the method used in Chapter 2, We first fill every screen position with a

168

Machine-code graphics

*-character. setting the attributes of each position. so that the *-characters become
invisible. the following BASIC program does this:

10 INK 7:PAPER 7

20 FORY=0to 21

30 PRINT ATY,0, **rssssssnsssnsrsnsrsnsnnsnrarss

40 NEXTY

A BASIC program to display these characters, by changing the ink to black in the
ATTRIBUTES file. is as follows:

100 FOR X = 22528 TO 23295

110 POKE X,56:REM Turn ink to black

120 NEXTX

The machine-code PRINT statement is somewhat difficult to use. so let us keep
this part of the program in BASIC. The second part is much simpler. consisting of
sending the value 56 to each of 768 memory locations (the ATTRIBUTES). This
can be achieved for the top row of stars thus:

LD B32 ;32 *-characters
LD HL,5800H ;First attribute position
LD A56 ;Black ink, white paper
next LD (HL).A :Place * in screen position

INC HL :Move to next position
DEC B :Decrement counter

:All positions done?
JRNZ-5 ;No,do next position
RET ;Yes, so finish

The program works like this. First the B register is initialized to count up to
thirty-two (since each line on the screen has thirty-two characters). Next the HL
register pair is initialized to point to the first ATTRIBUTE position (5800H is
22528 in decimal). Note that addresses should be left in hexadecimal. since they
are then easier to convert to low byte, high byte pairs. The number 56, loaded into
the ACCUMULATOR. produces black ink and white paper in each
ATTRIBUTE position. We are now ready to begin.

The first memory location (first ATTRIBUTE position) is loaded with the
contents of the ACCUMULATOR. using the indirect addressing mode. Then the
HL register pair is incremented to point to the next position. The counter is
decremented and. if it has not yet reached zero, the program jumps back to the
label 'next’ and repeats for the next ATTRIBUTE position. This continues for
thirty-two loops (the top row on the screen), at which point the jump instruction
fails and the program moves on to the RET instruction. This sends the
Spectrum microcomputer back to BASIC. with the results of the machine-code
routine clearly visible.

The listing for this program has a label column (containing the label ‘next’), a
mnemonics column and acomment column. Only the mnemonics are significant

169

The ZX Spectrum in science teaching Machine-code graphics

for the process of turning the program into code. Each one has to be converted into

32000 6
the binary codes that the microprocessor understands. There are three ways of 32001 32
doing this. two of which involve hand compilation as follows. Each mnemonic is 32002 33
looked up in a table and converted into its correct decimal or hexadecimal code. 32003 0
Displacements are carefully converted to twos complement numbers and actual 32004 88
addresses calculated and split into their high byte. low byte components. Finally, 5 32005 62
the codes are entered into the memory from BASIC. Let us tackle each of these 32006 56
tasks, using decimal numbering rather than hexadecimal. i 32007 19
g 32008 35
4 Coding 32009 5
;i Each of the mnemonics in the program must first be converted to its proper 32010 32
0 decimal code. A complete list of all the codes is not given, but a selection was listed 32011 251
k at the end of Chapter 6. For a complete list consult the books in the Bibliography 32012 201
] or the table at the back of the Spectrum user guide. The result of this hand i L : o - P
g assembly s as follows: Turning the mnemonics into machine codes in this way is called cqmpnlmg
the program. The next step is to get the codes into their chosen locations. It is
6.32 LD 8,32 :32*-characters possible to put each code into its proper place with a succession of POKE
33.0.88 LD HL,5800H ;First attribute position commands. but the following program makes this easier.
62,56 LD A56 ;Black ink, white paper
119 next LD (HL).A ;Place * in screen position 10 CLEAR 32000
35 INC HL ;Move to next position 20 FOR i = 32000 TO 32012
5 DECB ;Decrement counter 30 lNPUf %
;All positions done? 40 POKE ix
32,251 JRANZ-5 :No, do next position 50. (MEXT
201 RET Yes, so finish The correct numbers would then be INPUT from the keyboard when this
The next step is to decide where these codes are to be put in the memory. As program 18 ren. . d
noted in Chapter 6, short machine-code programs can be placed at the location To check that the codes are correct. another program can be used. as
32000 upwards. To prevent BASIC from using these locations too, we first tell the follows:
Spectrum to keep clear of it. This is achieved with the BASIC statement: 60 FORi= 32000 to 32012
CLEAR 32000 70 PRINT i, PEEK i
80 NEXT i
We must now put each code into its correct position. Let us first see where these Bog i Eant disetupthe
are. Here is the program again (with the comment column omitted) showing Now the codes are in place. B_efurethe program can be run. we need tose)up
where the codes will be placed: screen. so that the top row is filled with invisible stars. This can be done
32000 632 LD B,32 vl
32002 33,088 LD HL,5800H 90 INK 7:PAPER 7 .
32005 6255 D ALS 100 PRINT AT 0,0;"###s#sssnsasssansanssrnsansanses
32007 119 next LD (HL.A Finally, to execute the machine-code program, we have to tell the micro-
32008 35 INC HL processor to go and collect its instructions from location 32000 onwards. There
32009 5 DECB are several ways of doing this:
32010 32,251 JRNZ-5
32012 201 RET RANDOMIZE USR 32000
LET k = USR 32000
This is even more obvious if each byte is written out separately:
171
170 3

‘

The ZX Spectrum in science teaching

or any other statement that contains USR 32000 will do. such as
PRINT USR 32000

This executes the machine-code routine and, upon returning to BASIC, prints the
current value of the BC register pair. This can be a useful check for a routine that
seems to be working wrongly. We shall use

110 LET k = USR 32000

Control passes to the routine starting at location 32000 and continues until a
RET instruction (code 201) is reached. This is why a machine-code program has
to be perfect every time. If. for any reason, the microprocessor does not find the
RET instruction. it will never return to BASIC. Pressing the keys has no effect and
the screen may remain blank. The only solution is to reset, (switch off the
microcomputer, wait a few seconds and then switch on again).

Ifyou have notyet done so. enter. save. verify and run this program. You should
observe that the *-characters all appear at the same instant (even though there is
an initial delay while the invisible stars are'printed).

To save the machine-code program on tape is just a matter of using the correct
Spectrum syntax.

SAVE “starbytes” CODE 32000,13

The "32000" is the address of the codes and the 13" is the number of bytes to be
saved. This information is also stored on the tape. Apart from this, the SAVE
routine is exactly the same as for a BASIC program. However. we also need to save
line 10 and lines 90 to 110 of the above program. These are not in the machine-
code routine. yet they are essential if it is to work correctly. This is done in the
usual way

Reloading the program from the tape also needs to be done in two stages. First
the BASIC part of the program is loaded in the normal way. Then the machine-
code part is loaded with:

LOAD “starbytes” CODE

This collects the codes from the tape and puts them into the address originally
specified. when they were saved. Instead of the usual signal ‘Program:, the signal
‘Bytes:" is given to show that a machine-code program is being loaded. After this
the program can be run as before.

Automatic load and run
Itis possible to make the BASIC program load its own machine-code routine. The
technique is to save the BASIC partfirstincludinga LOAD... CODE instruction.
To show this the whole of this program is written out again.

10 CLEAR 32000

20 LOAD “starbytes” CODE

S

Machine-code graphics

20 INK 7:PAPER 7
100 PHINT AT 0.0;“'ttili'd‘l‘ut!tttl‘l“tt“tt“‘”
110 LET k = USR 32000

This should be saved first using the command
SAVE “stars” LINE 10

Then the machine codes should be saved with
SAVE “starbytes” CODE 32000, 13

making sure that the program name is the same as in the LOAD ... CODE
statement. To load and run. rewind the tape and type

LOAD “stars” or even LOAD "

and both parts of the program will be loaded and run automatically. The whole pro-
cess is messy and cumbersome. so if you want a much better way. read on!

A BASIC loader
The technique just described suffers from one major difficulty (in addition to the
hassle). If a program needs to be debugged. how do you edit it? It is quite
possible to make a few changes with a POKE into the location containing the
offending byte. But often you need to insert extra instructions and all the existing
codes must then be moved to new locations. This means that the machine codes
and the BASIC program to load and run them must be saved again.

A much better method is to put the machine codes into DATA statements as an
integral part of the BASIC program. For example:

110 FOR i= 32000 TO 32012

120 READx
130 POKE ix
140 NEXTi

150 DATA 6,32,33,0,88,62,56,119,35,5
160 DATA 32,251,201

Each DATA statement (except the last) should contain ten bytes, for later ease of
checking. The complete program is now as follows:

10 INK 7:PAPER 7
20 FORY=0TO21
30 PRINTAT Y0 s#ssssssssssnsssssanssnsannannn:
40 NEXTY

100 CLEAR 32000

110 FORi = 32000 TO 32012

120 READ x

130 POKE ix

140 NEXTi

173

P R

The ZX Spectrum in science teaching

150 DATA 6,32,33,0,88,62,56,119,35,5
160 DATA 32,251,201
200 LET k = USR 32000

You may save and verify this program as if it were entirely in BASIC (which it
is!). For an automatic start, it can also be saved with

SAVE “stars” LINE 10

This technique is much less bother than the one described above. It is true that it
takes up far more memory. since each byte of code now takes up several bytes of
memory. (The machine-code part of the above program requires over 120 bytes,
yetitonly consists of 13 bytes of code.) This vast consumption of memory does not
matter unless you have a very long machine-code program. If that is the case, you
should not be using either of these methods in the first place!

Machine-code monitor

It should be apparent that loading and running machine-code programs is a
complicated business. The situation can be improved by using a machine-code
monitor. This is a program that is loaded into the Spectrum beforehand. It allows
machine codes to be entered in hexadecimal, which is much easier because most
books on machine-code programming use hexadecimal. The best program that 1
have tried so far is the Picturesque monitor. available through Griffin and
George. This allows memory locations to be loaded with the hexadecimal codes,
checked and saved with the minimum of hassle. It also contains a hex.-dec./dec.-
hex. converter as a useful addition.

To allow the insertion of extra code. the monitor lets you move chunks of
machine code around from one location to another or to display the contents of
any part of the memory. Even more useful is the ease with which machine-code
programs can be run. At various stages throughout the machine-code program,
the monitor allows for the insertion of breakpoints. The program can be run up to
these points and the status of the different Z80 internal registers displayed. This
makes it easier to locate bugs. Finally. the Picturesque monitor contains a
disassembler, which is a useful check on whether the correct codes were entered in
the first place. This takes the machine codes and turns them back into
mnemonics.

Assembler

Even with its impressive aids. a monitor is not the best way of entering a machine-
code program. An assembler makes life easier still. This is the third and best way
of entering machine-code routines. An assembler is basically a program that
allows machine-code routines to be written directly in mnemonics. The assembler
does the job of working out the correct codes for each instruction. It also provides
facilities for editing the mnemonics and for discovering where they need to be
edited.

174

Machine-code graphics

The Picturesque assembler/editor fulfils both functions. In the 48K Spectrum it
is possible to have the machine-code monitor as well, thus giving the best of all
worlds (apart from BASIC. that is). The Picturesque editor allows you to write.
edit and save program lines, in much the same way that you can in BASIC. Lines
of assembly mnemonics can be numbered for reference. so that extra lines can be
inserted or redundant ones removed. It is possible to display any line or lines of
the program and alter them as required.

The Picturesque assembler then compiles the program (turns the mnemonics
into code). and it keeps the resulting code in any part of the memory. not
necessarily the same place where it will eventually reside. This is because the
assembler program normally sits at the top of the memory. which is precisely
where machine codes usually go. The code is kept in a buffer. from whereitcan be
relocated (put somewhere else) or saved on tape and verified. Syntax errors are
reported during or after the compilation. This is an important difference between
an interpreter (like the BASIC interpreter) and a compiler. In BASIC. syntax
errors are not reported until they are reached. With a compiler. syntax errors are
fatal. You cannot just compile the bits of the program that are correct: it must all
be correct beforehand.

The great advantage of an assembler is that symbols and labels may be used.
Symbols are like variable names in BASIC. Instead of writing LD B.32. we could
declare the variable max and write LD B.max instead. This makes the machine-
code programs more meaningful. labels are the names of lines to which we shall
want to jump. such as the label ‘next’ in the program above. Spectrum BASIC
objects if a variable is used before it has been declared (given a value).
This often happens in machine code, because of the need to jump forward to a
label that has not yet been given an address. The Picturesque assembler solves
this by making a first pass through the mnemonics to assign values 1o all labels
and symbols and a second pass to carry out the compilation.

In the program above. comments were included to explain what the program is
doing. The Picturesque assembler allows such comments, provided they are
enclosed in inverted commas and follow a semi-colon. It also accepts directives.
These are instructions for the compiler. such as ORG. which tells it the ultimate
location of the code or EQU. which allows a symbol to be given a value. For
example. to declare the variable max. we say:

max EQU 32

To show what an assembly language program looks like. the stars program above
is rewritten in the form acceptable to the Picturesque assembler.

1000 ORG 32000
1010 ; “Stars”
1020 ;

1030 max EQU 32
1040 screen EQU 5800H

175

The ZX Spectrum in science teaching

1050 char EQU 56
1060 H

1070 beginLD B, max
1080 LD HL, screen
1090 LD Achar
1100 next LD (HLLA
1110 INC HL

1120 DECB

1130 JR NZ,next
1140 RET

When this program is compiled, the assembler prints a report. which looks
something like this:

32000 06 20 LD B.max
32002 21 00 58 LD HL,screen
32005 3E 38 LD A.char
etc.

General format

In listing machine-code programs throughout the remainder of this book, I am
aware that readers might be using any of the three methods mentioned above. I
have, therefore, adopted the policy of writing most programs in the following
format:

max =32
screen = 5800H
char =56

32000 06 20 LD B,max ;32 *-characters
32002 21 00 58 LD HL,screen ;First attribute position
32005 3E 38 LD A.char ;Black ink, white paper
32007 77 LD (HL).A ;Place * in screen position
32008 23 INC HL :Move to next position
32009 05 DECB ;Decrement counter

;All positions done?
32010 20 FB JR NZ,next ;:No, do next position
32012 C9 RET ;Yes, so finish

DATA 6.32,33,0,88,62,66,119,35,56
DATA 32,251,201

This is a compromise, but can be readily understood by users of any of the
techniques described above. Those with an assembler can enter the mnemonics,
those with a monitor can enter the hex. codes and those with neither can use a
BASIC loader and the data statements, which contain the codes in decimal. All

176

Machine-code graphics

BASIC programs listed in the Appendix use the BASIC loader method. Let us
now begin machine-code graphics in earnest.

Screenprint

Our stars program placed the *-characters on the screen in BASIC with the
statement PRINT AT row,column;"*”. Let us now see how to do this in machine
code. The Spectrum allows us to make use of its machine-code printing routines
for ourselves. The technique is to send the correct codes to a special subroutine,
which is entered with the instruction RST 10H. The codes are carried to this
routine in the ACCUMULATOR. This machine-code program will do exactly the
same as PRINT AT 0,0;"*".

32000 3E16 LD A 16H ;Send PRINT AT
32002 D7 RST 10H

32003 3E00 LD A,00H ;Send row
32005 RST 10H

32006 LD A,00H ;Send column
32008 RST 10H

32009 LD A2AH ;Send *-character
32011 RST 10H

32012 RET ;Finish

The BASIC loader and program to run this routine is given below.

10 CLEAR 32000
20 FOR i = 32000 TO 32012
30 READ x
40 POKEix
50 NEXTi
60 DATA 62,22,215,62,0.215,62,0,215,62
70 DATA 42, 215, 201
100 RANDOMIZE USR 32000

The memory space from 32000 upwards has been reserved for our use, even
though our machine-code program only uses thirteen bytes. This is because we
shall want to add more code to this program later.

This technique can be used to print any character in any position, even a user-
defined character. The code used for the character is its ASCII code. A full list of
these for the Spectrum is given in the user guide (Appendix A). To make the
routine more general, we need variables in place of the 0.0 values (row, column).
We could use two memory locations for this, or two of the internal registers, such
as the D and E registers. If we do this, the C register could be used to hold the
ASCII code for the character to be displayed. The routine then becomes:

32000 3E16 LD A16H :Send PRINT AT
32002 D7 RST 10H
32003 7A LD AD ;Send row

i The ZX Spectrum in science teaching Machine-code graphics
i
32004 D7 RST 10H This is still not very flexible. a better method would be to write all the required 1
i ggggg ;3 ll;cg‘:‘lEUH :Send column Ch:ll'i\L‘lL?f:V into succesive memory locations first. Another table could hold the ‘ i
B row position and another the column position for each character, We could then I
32007 79 LD AC ;Send character g alila) P |
32008 D7 RST 10H Just o down ll’je tables. collect the \a}gis and send them to our printing {
32009 c9 RET -Finish :Il:l'hr:)utm‘e :3: u[sl:ng rhel X}-'I[NDTEX as ? p'mmefr:) lheblluhlle_l\we could increment
is to point to the next character each time. The table is kept in the memory
DATA 62,22,215,122,215,123,215,121,215,201 locations 32256 (TEOOH) upwards.
Now the parameters for the row, column and the character can be passed to this .
routine from outside. We can treat it as a subroutine. exactly as with BASIC. This Location Contents Character
program writes a whole name in the middle of the screen. 7EOOH 42H B
7EO01H 6FH [}
32500 16 0A LD D.10 ;Row 10 7E02H 62H b
32502 1E 10 LDE16 ;Column 16 7EO3H 20H {Epscel
32504 0E 42 LD C.42H ;Letter B 7TEO4H 53H s
32506 CD 00 7D CALL 32000 ;PRINT AT 10,16;"B" TEOSH 70H 5
32509 16 0A LD D,10 ;Row 10 7E06H 61H a
32511 1E 11 LDE17 ;Column 17 7EO7H 72H ;
32513 OE 6F LD C,6FH ;Letter o 7E08H 6BH K
32515 CD 00 70 CALL 32000 :PRINT AT 10,17;"¢" 7E09H 65H 5
32518 16 OA LD D10 ;Row 10 7EOAH 73H 5
32520 1E 12 LDE,18 ;Column 18 7EOBH 20H (space)
32522 0E 62 LD C.62H ;Letter b JEOCH 31H 1
32524 CD 00 70 CALL 32000 ;PRINT AT 10,18;"b"
32527 C9 RET ‘Return to BASIC LED = s
' TEOEH 38H 8
The BASIC loader and program to run this is given below: 7EQOFH 33H 3
10 CLEAR 32000 Location Contents Row
15 REM SUBROUTINE TE10H 0AH 10
20 FOR i= 32000 TO 32009 7E11H 0AH 10
30 READ x 7E12H 0AH 10
40 POKE i,x JE13H 0AH 10
50 NEXT i JE14H 0AH 10
60 DATA 62,22,215,122,215,123,215,121,215,201 TE15H 0AH 10 fT:I
100 REM MAIN PROGRAM TE16H 0AH 10 i
110 FOR i= 32500 TO 32527 TE17H 0AH 10 b
120 READ x JE18H 0AH 10
130 POKE ix } JE19H 0AH 10
140 NEXT i 7E1AH 0AH 10
150 DATA 22,10,30,16,14,66,205,0,125,22 TE1BH 0AH 10
160 DATA 10,30,17,14,111,205,0,125,22,10 7E1CH 0AH 12
170 DATA 30,18,14,98,205,0,125,201 7JE1DH 0AH 12
180 REM 7E1EH 0AH 12
500 REM RUN PROGRAM 7E1FH 0AH 12
510 RANDOMIZE USR 32500

The ZX Spectrum in science teaching

Location Contents Columns
7E20H 10H 16
JE21H 11H 17
7E22H 12H 18
7E23H 13H 19
7E24H 14H 20
7E25H 15H
TE26H 16H
7E27H 17H
7E28H 18H
7E29H 19H
TE2AH 1AH
7E2BH 1BH
7E2CH 13H
7E2DH 14H
7E2EH 15H
TE2FH 16H

Display program

32500 LD B,16 ;Display 16 characters
32502 00 7E LD 1X,32256 ;Point to start of table
32506 10 LD D,(IX+10H) :Row

32509 20 LD E,{IX+20H) :Column

32512 00 LD C,(IX+00H) :Character

32515 70 CALL 32000 ;PRINT AT row,column;char
32518 INC IX ;Point to next character
32520 DECB ;All characters done?
32521 JR NZ.next ;No do next character
32523 RET ;Yes return to BASIC

The BASIC loader and program to run this is given below. This is the last time
that this will be given. in future you will have to work out for yourselves what
values to put in the FOR .. . NEXT loops.

10 CLEAR 32000

15 REM SUBROUTINE

20 FOR i = 32000 TO 32009

30 READ x

40 POKE i.x

50 NEXT i

60 DATA 62,22,215,122,215,123,215,121,215,201
100 REM MAIN PROGRAM
110 FOR i = 32500 TO 32523
120 READ x
130 POKE i,x

Machine-code graphics

140 NEXT i

150 DATA 6,16,221,33,0,126,221,86,16,221
160 DATA 94,32,221,78,0,205,0,125,221,35
170 DATA 5,32,239,201

200 REM TABLES

210 FORi=32256 TO 32303

220 READ x

230 POKE i.x

240 NEXT i

250 REM CHARACTERS

260 DATA 66,111,98,32,83,112,97,114
270 DATA 107,101,115,32,49,57,56,51

280 REM ROWS

290 DATA 10,10,10,10,10,10,10,10

300 DATA 10,10,10,10,12,12,12,12

310 REM COLUMNS

320 DATA 16,17,18,19,20,21,22,23

330 DATA 24,25,26,27,19,20,21,22

500 REM RUN PROGRAM

510 RANDOMIZE USR 32500

Note that the data statements in lines 250 to 330 are in sets of eight.

It should not be too difficult to see how this process could be extended to fill
large parts of the screen. The main difficulty over this is that the displacement in
the LD D(IX+disp) instructions can only go up 255. To overcome this. we can use
the HL register pair as a pointer instead. This can be increased one page atatime,
by incrementing the H register. In this way up to 256 characters could be
displayed on the screen at once. Beyond this, it becomes easier to ignore the rows
and columns and just fill all the places on the screen, even if many of these will
contain blanks. The technique then, is to point to each character in turn, and to
place it in the next screen position. At the end of one line, the row counter is
incremented to point to the next.

By way of example. we return to the problem we originally started with, how to
fill the whole screen with *-characters in machine code. For this we can use the
print subroutine developed before (32000 to 32009) and keep the D and E registers
as pointers to the rows and columns. The character to be printed can be obtained
from a table. as indicated above. This table runs from 7JA00H to 7CFFH. which
means that the top of memory must now be set lower than 32000. CLEAR 31000
will give plenty of room. For this particular application, we always send the same
character, so the X-INDEX is not strictly needed as we shall see later. We are,
however, trying to show how a complete picture could be transferred. In such a

case, the character at each position could be different. To fill this table with the
*-character is quite easy.

&

FIEESHOR" TR

B O R TSR Y SR T T

The ZX Spectrum in science teaching

400 FORi=31232T0O 31999
410 POKE i,42

420 NEXT i

Screenfill

32500 DD 21 007A LD IX,7A00H ;Initialize pointer
32504 16 00 LD DO ;Initialize row counter

32506 1E 00 nxrow LD E,0 ;Initialize column counter
32508 DD 4E 00 nxcol LD C(IX+0OH) :Getcharacter

32511 CD 00 7D CALL 32000 ;Print character
32514 DD 23 INC IX :Point to next character
32516 1C INC E ;Next column

32517 3E 20 LD A32 :End column?

32519 BB CPE

32520 20 F2 JR NZ,nxcol ;No, do next column
32522 14 INCD ;Yes, move to next row
32523 3E 16 LD A22 ;Last row?

32525 BA CPD

32526 20 EA JR NZ,nxrow :No, do next row
32528 C9 RET :Yes, return to BASIC

DATA 221,33,0,122,22,0,30,0,221,78
DATA 0,205,0,125,221,35,28,62,32,187
DATA 32,242,20,62,22,186,32,234,201

To make this program a little more sensible for filling the screen with the same
character, line 32508 can be replaced by

OE 2A LDC42 ;get *-character

This line is placed at the beginning since we do not want to waste time by
executing it over and over again. Lines 32500 and 32514 can be omitted altogether,
since we are no longer using the character table. Unlike BASIC, we cannot just
omit these lines, because they are not just arbitrary line numbers; they are the
locations of the codes and none may be omitted. Finally, note how the jump
displacements have to be altered because some code has been omitted. These
changes give a revised listing as follows:

Starfill
32500 OE 2A LD C.42 ;Get *-character
32502 16 00 LD D.O ;Initialize row counter

32504 1E 00 nxrow LDEO
32506 CD 00 7D nxcol CALL 32000

;Initialize column counter
;Print character

32509 1C INC E :Next column

32510 3E 20 LD A32 :End column?

32512 BB CPE

32513 20 F7 JR NZ.nxcol ;No, do next column
32515 14 INCD ;Yes, move to next row

182

it

Machine-code graphics

32516 3E 16 LD A22 ;Last row?
32518 BA CPD
32519 20 EF JR NZ,nxrow ;No, do next row

32521 C9 RET

DATA 14,42,22,0,30,0,205,0,125,28
DATA 62,32,187,32,247,20,62,22,186,32
DATA 239,201

:Yes, return to BASIC

Attribute change

A similar technique can be used to alter the attributes of each screen position.
This is slightly easier, since we can change them directly, as we did at the
beginning of this chapter. We cannot use exactly that routine, since the B register
only goes up to 255 and we shall want to affect all 768 screen positions. We could
use the X-INDEX as above, but we still have to count 768 bytes. But an astute
observer would note that 768 is exactly three pages, so it is easier to use the HL
register pair to point to each position in turn. The attributes start at S800H and go
up to SAFFH, so that when the HL register pair reaches 5BO0OH, we have finished.
Although there is no sixteen-bit comparison instruction, we only need to test the
H register, which will contain 5BH at the finish.

32521 3E 5B LD A5BH ;Set end position
32523 21 00 58 LD HL.5800H ;Initialize pointer
32526 16 3F LD D,63 ;White paper, white ink
32528 72 nxatt LD (HL).D ;Paint attribute
32629 23 INC HL :Next column

32520 BC CPH

32531 20 FB JR NZ,nxatt ;No, do next position
32533 C9 RET ;Yes, return to BASIC

DATA 62,91,33,0,88.22,63,114,35,188
DATA 32,251,201

This routine is designed to follow immediately after the print * routine. When run,
the *-characters should be printed on the screen and almost immediately erased
by this attribute fixing routine. We have now developed a machine-code routine
for filling the screen with invisible *-characters, a process that originally took four
lines in BASIC. But weonly need to dothis once, so the machine-code routine will
now be discarded in favour of that BASIC program, there is no point in using
machine code when we don’t have to!

Large letters

An application of the PRINT AT routine is to create large characters that can be
seen across the classroom. The technique is fundamentally quite simple. When
creating user defined characters, we saw that each consists of eight rows of eight
dots. If. instead of printing single dots, we print quarter-square blocks, each
consisting of sixteen individual dots, then each character is sixteen times bigger
and can be read at four times the normal distance. Each enlarged character will

183

T e —— e ————

%

o

e o

The ZX Spectrum in science teaching

occupy sixteen PRINT AT positions, so we need atable of sixteen bytes to hold the
required quarter-square characters. Printing them is handled by the routine
described above; the next problem is to choose which quarter-square characters
are to be used.

The codes for each of the standard characters are stored in ROM in sets of eight
beginning at location 6100H. Only characters with ASCII values from 32 to 127 are
stored here. and a pointer (called CHARS) is kept in the system variables. (This can
be altered to point to any other location: you could. for example, define a set of gothic
oritalic characters and use them instead of those provided.) To point to a particular
set of codes. we load the HL register pair with the value 6000H and the DE pair with
the ASCII value of the desired character. The DE pair is then multiplied by eight
(three left shifts) and added to HL. which thus points at the first row of the desired set
of codes. For example, if CHRS 63 is chosen, 8 X 63 gives 520 or 0208H. The HL pair
will thus point at 6208H, which contains the codes for A as follows:

Location Contents
6208H 0
6209H 60
620AH 66
620BH 66
620CH 126
620DH 66
620EH 66
620EH 0

The first character that can be accessed in this way is CHRS 32 and its codes reside
in locations 6100H to 6107H. This is why CHARS points at a location 256 below
this beginning of the character table. If user-defined graphics are used, we send
fictitious "ASCII" values starting from 0 and point to the actual beginning of the
character table instead.

The BIGLETT routine scans each row of these defining codes in turn and
where a bitis on, it sets up the appropriate quarter square in the sixteen-byte table.
This is done by shifting the code for each row into the CARRY bit and testing it
with JR NC.

The Spectrum user is fortunate in that the set of quarter-square characters is
logically given the codes 128 (blank or space) to 143 (black). Subtracting 128
produces the numbers from 0 to 15. This means that the quarters have values 2, 1,8
and 4 and all combinations can be made by adding these numbers together.
BIGLETT keeps a note of which row and which column a particular dot is in and
converts this into a single number from 0 to 15. It then adds the required quarter
square to any that already exist and stores them in the table. From here they are
transfered directly to the screen.

The ASCII value of the character to be printed is poked from BASIC into
location 32272 (character) and the required PRINT AT position is poked into
locations 32273 (column) and 32274 (row).

184

i

BIGLETT

32000 06
32002 21
32005 36
32007 23
32008 10
32010 2A
32013 3A
32016 5F
32017 16
32019 CB
32021 CB
32023 CB
32025 CB
32027 CB
32029 19
32030 06
32032 O€
32034 5E
32035 CB
32037 30
32039 78
32040 cCB
32042 30
32044 79
32045 C8B
32047 30
32049 16
32051 18
32053 16
32055 18
32057 79
32058 CB
32060 30
32062 16
32064 18
32066 16
32068 18
32070 16
32072 ES5
32073 78
32074 EB

00
00

FB
36
10

00
23
23
12

12

00
00

38
1F

3F
0D

3F
04
01
06
02
02

OE

7E

5C
7E

nxbyt

nxrow

nxcol

xevenl

xeven2

nosq
cont

LDB,16

LD HL,7EQ0H
LD (HL).0
INC HL
DJINZ,nxbyt

Machine-code graphics

:Clear 16 bytes for table
;Point to first byte

;Next byte
;Repeat 16 times

LD HL,(CHARS):Initialize pointer

LD A,(char)
LD EA

LD D.O
SLAE
SLAE
RLD
SLAE
RLD

ADD HL.DE
LDB.O
LDC0

LD E,(HL)
ASLE

JR NC,nosq
LDAB
SRL A

JR NC,yeven
LDAC
SRLA

JR NC,xeven1
LD D.4

JR cont

LD DB

JR cont
LDAC
SRL A

JR NC.xeven2
LD DA

JR cont

LD D,2

JR cont

LD DO
PUSH HL

LDAB

AND 14

:Get character code

;Set up DE with code
;Mult by 2

;Mult by 4

;:MSB into high byte
;Mult by 4

;MSB into high byte
sHL points at codes
;Point to first row
;Point to first column
;Get a row of bit codes
;Shift bit into CARRY
;Is there a bit?

;:0dd or even row?
;Shift LSB into CARRY
;Check CARRY bit
:0dd or even column?
;Shift LSB into CARRY
:Check CARRY bit
:0dd row, odd column
:Continue

:0dd row, even column
:Continue

;0dd or even column?
:Shift LSB into CARRY
;Check CARRY bit
;Even row, odd column
;Continue

;Even row, even column
;Continue

;Blank

:Keep note of code
address

:Convert row to table
position

i(row DIV 2)*2

185

The ZX Spectrum in science teaching

32076
32078
32079

32080
32082
32083
32084
32086
32087

32088
32090
32091

32092
32093
32094
32096
32098
32099
32100
32101

32103
32105

32109
32112
32114
32116
32117
32118
32119
32120
32121

32122
32123
32124
32125
32127
32128
32129
32130
32131

CcB
6F
79

cB
85
6F
26
7E
82

21

06
3E
D7
7A
D7
78
D7

D7
23
1c
10
14

1D
1D
1D

27

3F

7E

80

08
C1

o8
58
00

04
16

F3

11 7E

7TE

nxtr
nxtc

SLAA
LD LA
LDAC

SRL A
ADD AL
LD LA
LD H,126
LD A(HL)
ADD AD

OR 128

LD (HLLA
POP HL
INCC
LDAC

cps

JR NC.nxcol
INC HL

INC B

LD AB

CP8

JR NC,nxrow
LD DE,(rowcol)

LD HL,32256
LD B4

LD A16H
RST 10H

LD AD

RST 10H

LD AE

RST 10H

LD A,(HL)

RST 10H
INC HL
INCE

JR NZ,nxtc
INC D
DECE
DECE
DECE
DECE

(row DIV 2)*4

;Keep low byte of pointer
;:Convert column to table
position

:Column DIV 2

:Keep low byte of pointer
;High byte of table

:Get current contents
;Add new quarter square
code

:Set MSB

;Save new contents
:Restore code pointer
:Next column

:Eight columns done?

:No, do next column
:Point to next row of code
:Next row

;Eight rows done?

:No, do next row
;Point to PRINT AT
position

;Point to table of bytes
;Four bytes per row
;Send PRINT AT

;Send row
;Send column

;Send quarter square
character

:Next byte

;Next PRINT AT column
:Do next column

;Next PRINT AT row
;Restore beginning of row

32132
32133
32135
32137

Machine-code graphics

70 LD AL ;All bytes done?
FE 16 CP 16

20 E7 JR NZ,nxtr :Do next row
c9 RTS

A BASIC program to load this routine is given below. This program prints each of
the ninety-six characters on the screen in order for inspection. To appreciate
them. stand at least four metres from the screen.

1
2
100
110
120
130
140
150
160
170
180
190
200
210
220
1000
1010
1020
1030
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1300
1310
1320
1330

CLEAR 32000
GOSUB 1000

FORNn=32TO 127

LETc = INT (n/32)

LETr=n-c* 32

LETs =INT (r/ 8)

LETt=r-s*8

POKE row.4 * s

POKE column,4 * t

POKE character,n

PRINT AT 0,0

LET I = USR 32000

PAUSE 25

NEXT n

STOP

FOR i = 32000 TO 32137

READ x

POKE i,x

NEXT i

DATA 6,16,33,0,126,54,0,35,16,251

DATA 42,54,92,58,16,126,95,22,0,203
DATA 35,203,35,203.18,203,35,203,18,25
DATA 6,0,14,0,94,203,35,48,31,120

DATA 203,63,48,13,121,203,63.48,4,22
DATA 4,24,19,22,8,24,15,121,203.63
DATA 48,4,22,1,24,6,22,2,24,2

DATA 22,0,229,120,230,14,203,39,111,121
DATA 203,63,133,111,38,126,126,130,246,128
DATA 119,225,12,121,254,8,32,193,35,4
DATA 120,254,8,32,183,237,91,17.126.33
DATA 0.126,6,4,62,22,215,122,215,123
DATA 215,126,215,35,28,16,243,20,29,29
DATA 29,29,125,254,16,32,231,201

LET character = 32272

LET column = 32273

LET row = 32274

RETURN

187

The ZX Spectrum in science teaching

The routine can be changed to print large versions of user-defined graphics by
altering the address of the character codes from the system variable CHARS to
UDG. so that line 1110 becomes:

1110 DATA 42,123,92,58,16,126,95,22.0,203

These characters have the codes 0 to 20. If undefined by the user. each is initially
setup to its corresponding upper case letter. It should be clear that this technique
makes the creation of chunky pictures much easier than by drawing each with
successive PRINT AT statements. The picture is first drawn with user-defined
graphics and then enlarged in the manner shown above. We shall return to this
routine again when considering animated graphics.

Particle motion

One of the earliest applications of microcomputers in science was the use of fast
machine-code animations to simulate wave motion and the movement of
molecules etc. We have already seen how the screen can be filled with the *-
character. Let us now look at how the motion of this character may be achieved in
machine-code graphics. The obvious way of achieving horizontal motion is to
paint the character successively one screen position further to the right each time
as we did in the BASIC program in Chapter 2. Note that the *-characters must
already be in position. so that we merely expose them by changing the
ATTRIBUTE file.

The following program paints the *-character into the thirty-two contiguous
positions at the top of the screen. It is similar to the program discussed before,
exceplt that this time a new instruction has been introduced. This is DINZ
(decrement and jump if not zero). It combines the two separate instructions
used previously DEC B and JR NZ. DINZ decrements the B register and jumps to
the required place if the B register has not reached zero. This instruction is the
reason for using the B register as a counter on so many occasions.

Stars 2

max =32

screen = 5800H

char =56

32000 06 20 LD B,max ;32 *-characters
32002 21 00 58 LD HL,screen ;First attribute position
32005 3E 38 LD A.char :Black ink, white paper
32007 77 next LD (HL)A ;Place * in screen position
32008 23 INC HL ;Move to next position
32009 10 FC DJNZ next Al positions done?
32011 c9 RET :Yes, so finish

DATA 6,32,33,0,88.62,56,119,35,16
DATA 252,201

e s i it il

Machine-code graphics

When you run this program. you will not get motion but merely a set of stars. Why,
though, do we not see the stars appear in succession, why do they all come at once?
The reason is not hard to find. but it requires a little more knowledge about the
microprocessor.

Because so many things are happening in the microcomputer, everything is
under the control of the system clock, which beats away regularly at about 300
nanosecond intervals (a frequency of 3.5 MHz). Each pulse is called a T-state.
Single-byte instructions require four T-states usually, so they take about one
microsecond to be executed. If the operation requires an external location. then
the execution time is increased. Some instructions need one extra byte for the
operand while others need two. An example of a two-byte instruction is LD
A.7CH and an example of a three-byte instruction is LD HL.7C00H. Two-byte
instructions are generally executed in two microseconds. while three-byte
instructions take about three microseconds (for the extra byte to be fetched and
decoded). Thus it is not difficult to predict how long a particular program will take.
The execution time for each instruction can be looked up in a table and the total
time calculated. For our particular program, the number of T-states is as
follows:

LD B,max i

LD HL.screen ;10

LD A.char ;7

loop begins

LD (HL).A H

INC HL 6

DJNZ next :8 if unsuccessful

:13 if successful

The first three instructions are only executed once, taking twenty-four T-states.
The next three instructions normally take twenty-six T-states. except for the last,
when the test condition fails. The number of T-states is then twenty-one. The total
is thus 24 + 31*26 + 21, which is 851 T-states or about 250 microseconds. No
wonder the *-characters appeared instantaneously! The solution is obvious, we
must find a means of making the microprocessor waste time.

There is a single-byte instruction in the Z80 set, which performs just this
function - NOP (no operation). It takes four T-states to execute and causes
absolutely nothing else to happen. Unfortunately, we are looking for a much
longer delay than this and must go elsewhere. The most efficient time-wasling
technique is to ask the microprocessor to count up to some number each time
before proceeding with the rest of its instructions. In BASIC this is known as a
delay loop.

100 FORT=1TO 1000:NEXT T

In machine code the simplest delay loop uses one of the internal register pairsan_d
since we are using the HL-pair as a pointer. we shall have to use the DE-pair

189

T

T G A

e

The ZX Spectrum in science teaching

instead. This causes its own problems, since none of the sixteen-bit INC or DEC
instructions has any effect on the flags. How shall we know when we have finished
counting? The solution of this problem is to split the DE-pair into separate bytes
and to check them independently. If we count down, rather than count up, we can
quite easily check when both the D and E registers are at zero as follows:

LD DE,count ;Initialize DE register pair

loop DEC DE ;6 T-states
LD AD ;4 T-states
ORE ;4 T-states
JRNZloop ;12 T-states if successful
;7 T-states otherwise
etc.

The DE register pair is initialized to some count value, say 10 000. The DE pair is
then successively decremented. It is tested to see when it reaches zero, by ORing
its two halves together. If it is not equal to zero, then the program jumps back to
the second instruction, labelled loop. When the DE pair is decremented on the
10 000th time, it becomes 0000 0000 0000 0000. ORing the two halves gives zero, so
the looping is then terminated. The execution times for each instruction are shown
in the comment column, and it can be seen that this loop takes 26 T-states per loop
or about 7.5 microseconds. The total delay is thus 7.5 X count, which, in our case,
gives 75 ms.

The time to place all thirty-two *s on the screen is thus increased to more than
two seconds, which is appreciable. The number written into ‘count” before the
routine is called can be varied from 1 to 65 535. The total time needed to place all
the *s on the screen can thus be varied from about 0.3 ms to several seconds.
Longer delays than this are unnecessary, since the program would then be slow
enough for BASIC.

How do we insert this delay routine into our machine-code program? It could
be fitted in after the * has been sent to its screen position and before the pointer is
incremented to the next position, but there is a strong reason for not doing that. It
is possible that the routine for producing a delay will need to be used several times
more, and every time we use it, it will have to be written out again. So a better
technique is to place the delay loop in a separate subroutine. The memory
locations in the delay program have been chosen to run almost from the end of
the previous routine upwards (so that the BASIC loader becomes easier to
write).

The *-painting program, that we started with, must now be altered to take
account of this delay subroutine. In addition, each star must be erased from the
screen after its has been placed there. to produce the illusion of motion. We do this
by painting the attribute position with white ink soon after it was painted with
black ink. I say “soon after’ and not ‘immediately after’ because we want to leave
the *-character long enough to be able to see it. The best place is therefore after the
delay subroutine as follows. The value for the timing variable (count) is written

190

et i ey

ki3 e B

directly into two successive locations (32510 or 7TEFEH and 32511 or 7EFFH) from

|

|
Machine-code graphics] |

{

BASIC and this sets the speed at which the star moves across the screen.

Star 3
max
screen
char
delete
count

32000
32002
32005
32007
32008
32011
32013
32014
32015
32017
32018
32019
32020
32021
32022
32023
32024
32025
32026
32027
32028
32029
32030
32031
32032
32033
32034
32035
32036
32037
32038
32039
32040
32041
32042

=32

=5800H

=56
=63

=32510 and 23511

20
00 58
38

32 7D
3F

Fa

next

LD B.max
LD HL.screen
LD A,char
LD (HL).A
CALL delay
LD A.delete
LD {HL)L.A
INC HL
DJNZ next
RET

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

;32 *-characters

;First attribute position
;Black ink, white paper
;Place * in screen position
‘Wait

White ink, white paper
;Delete *

;Move to next position
;All positions done?
;Yes, so finish

:Filler

The ZX Spectrum in science teaching

32043 00 NOP

32044 00 NOP

32045 00 NOP

32046 00 NOP

32047 00 NOP

32048 00 NOP

32049 00 NOP

32050 ED 5B FE7E delay LD DE,(count) ;Get delay time
32054 1B loop DEC DE

32055 7A LDAD ;Check for finish
32056 B3 ORE

32057 20 FB JR NZ, loop

32059 C9 RET ;Finish on timeout

Toillustrate how the various parts fit together. the complete BASIC program to
load and run this routine is as follows:

10 CLEAR 32000
20 REM Get delay time
30 INPUT "Enter delay (range 1 to 65000) “;delaytime
40 LET count = 32510
50 LET highbyte = INT(delaytime / 256)
60 LET lowbyte = INT(delaytime — 256 * highbyte + .1)
70 POKE count, lowbyte:POKE (count + 1),highbyte
80 INK 7:PAPER 7
90 FORY=0 TO 21:PRINT AT 0,Y;" stoatas FETUNEXT Y
100 REM load machine code
110 FOR i=32000 TO 32059

120 READ x
130 POKE i.x
140 NEXT i

150 DATA 6,32,33,0,88,62,56,119,205,50

160 DATA 125,62,63,119,35,16,244,201,0,0

170 REM filler

180 DATA0,0,0,0,0,0000.0

190 DATA 0,0.0.0.0,0,0,0,0,0

200 DATA 0,0.0.0.0.0.0.0.0.0

210 REM delay subroutine

220 DATA 237,91,254,125,27,122,179,32,251,201
500 REM run machine code routine

510 LET k=USR 32000

So far we have only considered what happens when the pointer to the next
screen position (the HL-pair) is increased. You can probably guess that if we were
to decrease the pointer instead. then the star would move backwards across the

192

Machine-code graphics

screen from right to left. The instruction to decrement the HL-pair is DEC HL,
and when executed. the HL-pair points to the previous screen position, rather
than the next one.

What we shall do. is wait until the star reaches the thirty-first screen position
and then. instead of finishing as at present. we shall decrement the HL-pair
successively until it reaches the beginning again. We can detect when it gets there
in two ways, either by resctting the B register to thirty-two and decrementing it
until it reaches zero, or by waiting until the HL-pair reaches its starting value of
5800H. i.e. when the L register reaches zero. We opt for the first method and the
extra instructions to do this are listed below. starting from the location where they
are different from the previous listing.

32017 06 20 LD B,32 ;32 positions

32019 21 1F 58 LD HL.581FH ;Start at end of line
32022 3E 38 nxrev LD A.char ;Black ink, white paper
32024 77 LD (HL),A ;Place * in screen position
32025 CD 32 7D CALL delay ‘Wait

32028 3E 3F LD A.delete ;White ink, white paper
32030 77 LD (HL),A ;Delete *

32031 2B DEC HL ;Move to previous position
32032 10 F4 DJNZ nxrev ;All positions done?
32034 C9 RET ;Yes, so finish

160 "DATA ik 6.32,33

180 DATA 31,88,62,56,119,205,50,125,62,63
190 DATA 119,43,16,244,201,0,0,0,0,0

It is left as an exercise for you to work out exactly how to insert these extra codes
into the program (although strong clues are given). They replace some of the Os
already sitting in the data statements.

Instead of a return to BASIC in line 32034, a jump to the start of the program
would keep the star in continuous motion. But how then would we ever leave this
program? It would continue for ever until the power is removed and this is not an
clegant way to finish. A better way is to look at the keyboard to see if any key is
being pressed and. if so. to return to BASIC with RET. If this keyboard routine is
placed at the end of the main program it will only be effective when the star
reaches the left side of the screen. A better way would be to place the keyboard
routine inside the delay subroutine so that the keyboard will be checked more
often. Unfortunately this means that we cannot then immediately return to
BASIC with RET. because we are still in a subroutine. We must first pull a double
byte off the STACK to get at the BASIC return address.

Keyboard-sensing routine

The instructions used in the keyboard-sensing routine have not yet been
introduced. Fundamentally. they are the same as PEEK and POKE. but they
operate on 1/0 devices rather than on internal memory. The actual instructions

193

The ZX Spectrum in science teaching Machine-code graphics
are IN and OUT and they behave in the same way as the BASIC IN and OUT 32059 3E T7F LD A 127 ;Select correct section
discussed in Chapter 4. To see if a key is being pressed. the keyboard is scanned 32061 DB FE IN A,(254) ;Scan this section
with the instructions 32063 F6 EO OR 224 ;Set the top three bits

LD An 32065 FE FE CP 254 ;Is it the SPACE key?

IN A(254) 32067 28 01 JR Z finish :Yes, so fimgh)

32069 C9 RET ;No so continue bouncing

where n depends upon which part of the keyboard is being scanned. When the IN 32070 C1 POP BC :Pull address off STACK
A.(254) instruction is executed. the microprocessor places the current contents of 32071 C8 RET ;Return to BASIC
the ACCUMULATOR onto the high byte of the ADDRESS register. It then ; . -
places 254 into the low byte of the ADDRESS register and reads the data on the The extra decimal codes are as follows:

data bus. The keyboard is in eight sections and each section responds when a

particular bit of the high byte address goes LOW, DATA 62,127,219,254,246,224,254,254,40.1,201,193,201

LOW bit High byte Low byte Decimal address Keys With this keyboard-sensing routine the star can now bounce back and forth until
Bit O 254 254 65278 CAPS to V you stop it by pressing the SPACE key. At some speeds the motion of the particle
Bit 1 253 254 65022 AtoG is rather jerky because the screen refresh rate is out of synchronization with the
Bit 2 251 254 64510 QtoT display of the particle. There ought to be a way of preventing this by maintaining
Bit 3 247 254 63486 1t05 control over when the screen is refreshed. but [have yet to discover how. The full
Bit 4 239 254 61438 Oto6 program is listed below for those still not quite sure how to convert an assembly
Bit5 223 254 57342 Pto7 listing into a BASIC loader.
Bit 6 191 254 49150 ENTER to H Stars 4
Bit 7 127 254 32766 SPACEto B 10 CLEAR 32000
The keyboard responds by putting a byte onto the data bus corresponding to 20 REM Get delay time
the key being pressed. If no key is being pressed in the selected section. then all 30 INPUT “Enter delay (range 1 to 65000) “;delaytime
bits are HIGH and the value returned is 255. If the end key of the chosen section is 40 LET count = 32510
being pressed. then bit 0 goes LOW, giving a value of 254, etc. This way it is 50 LET highbyte = INT(deIayF\me/ZSG))
possible to scan the whole keyboard to see which key. if any. is being pressed. In 60 LET lowbyte = INT(delaytime — 256"highbyte + .1)
our case, we are only using this facility to tell a machine-code routine to stop. so it 70 POKE count, lowbyte:POKE (count+1),highbyte
is irrelevant which key we choose. An obvious one is SPACE. since that is 80 INK 7:Paper 7
associated with BREAK. The instruction to detect this key is. therefore: 90 FOR Y=0TO 21:PRINT AT Y,0;"*****" NEXT Y
i 100 REM load machine code
LD A,127 ;Select ::_orrect_secuon 110 FOR i=32000 TO 32071
IN A,(254) ;Scan this section 120 READ x
OR 224 ;Se-l the top three bits 130 POKE ix
cP 25f1-‘ :Is it the SPACE key? 140 NEXTi
JhZhinish 3 Yes, 90 finish 150 DATA 6,32,33,0,88,62,56,119,205,50
b oS contanie 160 DATA 12562,63,119,35,16,244,6,32,33
The reason for setting the top three bits is because these can have any value, 180 DATA 31.88.62,56,119,205,50,125,62,63
depending upon the colour chosen for BORDER. A black border. for example. 190 DATA 119.43,16,244,201,0,0.0,0.0
sets all three bits LOW, so the test for the SPACE key would then have to be CP 200 DATA0,0,0,0.0,0,0,0,0,0
A30. It is easier just to set the three bits HIGH every time. so that this variation 210 REM delay subroutine
can be ignored. 220 DATA 237,91,254,125,27.122,179,32,251,62
This routine is to be placed at the end of the delay subroutine as follows: 230 DATA 127.219,254,246,224,254,254,40,1,201

240 DATA 193,201

194 195

The ZX Spectrum in science teaching

500 REM run machine code routine
510 LET k=USR 32000

Adding .1 to 256*highbyte in line 60 is to avoid rounding errors.

Molecular motion

The machine-code routine for MOLECULAR MOTION (34) is similar to its
BASIC equivalent in ONEMOL (33). The top and bottom walls are coloured
black (ATTRIBUTE = 0) and the side walls blue (ATTRIBUTE = 9), so it is easy
for a molecule to determine which sort of wall it is colliding with. This collision is
detected in this way. For each particle its current position is stored in one table
(poslo and poshi) and its current direction in another (dirlo and dirhi). The
direction is first added to the old position and the new position is checked to see if
itis currently occupied. Ifitis occupied by another molecule (ATTRIBUTE = 56),
the latter is ignored. (Two colliding particles of the same mass simply exchange
velocities anyway, so, if the molecules cannot be distinguished, the effect is the
same as if the molecules had ignored each other in the first place.) If the new
position is occupied by a wall, the direction is altered to represent a different
direction of motion and dirlo and dirhi are updated accordingly. If the new
position is empty or only contains another molecule (ATTRIBUTE = 63 or 56)
the old position on the screen is deleted (painted white) and the ink is changed to
reveal the molecule in its new position. The values of poslo and poshi are then
updated accordingly. This process is repeated for each individual molecule. The
C register is used to point to the current position in each table and the required
table is selected by altering the B register. Any particular table value is then
obtained with LD A(BC).

To simulate different temperatures a delay is introduced in BASIC between
calling the molecule routine each time. The number of molecules is determined
by the contents of the location called number. Normally this is a variable.
although in the program as listed under MOLMOT (34), the number of molecules
has been fixed at thirty-five. The more sophisticated programs, of which
MOLMOT is a sampler, provide the ability to choose the number of molecules.

MOLECULAR MOTION
Note: codes are given as decimals in this listing.
number =30592

poslo = 7AQOH to 7AFF

poshi = 7BOOH to 7BFF

dirlo = 7COOH to 7CFF

dirhi = 7DOO0H to 7DFF

30464 58,128,126 LD A.(number) :Get number of molecules
30467 79 LDCA :Pointer to current molecule

:Get current position in HL
30468 6,122 nxmo LD B,poslo ;High byte pointer to position

30470
30471
30472
30473
30474

30475
30476
30477
30478
30479
30480
30481

30482
30483
30485
30488
30480
30483
30485

30498
30499
30501

30503
30505
30507
30509
30511
30513
30515
30517
30519
30522
30525
30528
30531

30534
30537
30540
30543
30546
30549
30552

10
111
4
10
103

4
10

95

4

10

87

25

126

254,63
202,13.120
254,0
202,128,119
2549
194,13,120

123
254,223
40,22
254,255
40,24
254,31
40,26
254,225
40,28
2541
40,30
17.31,0
195,0.120
17,225,255
195,0.120
17.1.0
195,0,120
17,330
195.0.120
17,223,255
195,0,120
17,255,255
195,0,120

se

nw

sw

ne

LD A,(BC)
LD LA
INC B

LD A,(BC)
LD HA

INC B

LD A.(BC)
LDEA

INC B

LD A.(BC)
LD D.A
ADD HL.DE
LD A.(HL)
CP 63

JP Z.empty
CPO

JP Z,horiz
CP39

JP NZ.empty

LD AE
CP 223
JR Z,nw
CP 255
JRZw
CP 31

JR Zsw
CP 225
JR Z.ne
CP1
JRZe
LD DE,31
JP dirend
LD DE~-31
JP dirend
LD DE.1
JP dirend
LD DE,33
JP dirend
LD DE,-33
JP dirend
LD DE-1
JP dirend

Machine-code graphics

,Get low byte of position
;Save in L

. Point to poshi table

.Get high byte of position
:Save in H

.Get current direction in DE
;Point to dirlo table

:Get low byte of direction
;Save in E

;Point to dirhi table

;Get high byte of direction
;Save in D

:Find new paosition

:Get current contents

iIs it empty?

iYes

:Top or bottom wall?

Yes

;Side wall

:No, so ignore current contents
;Side wall — change direction
:Get current direction
:North-west?

Yes

‘West?

Yes ~

;South-west?

Yes

:North-east?

Yes

:East

Yes

:Go south-west

;Change of direction finished
:Go north-east

;Go east
:Go south-east
:Go north-west

:Go west

The ZX Spectrum in science teaching

198

30555 0

30592

30593

30595
30597
30599
30601

30603
30605
30607
30609
30611

30613
30616
30619
30622
30625
30628
30631
30634
30637
30640
30643
30647
30650

30720
30721

30722
30723
30724
30725
30728
30729
30730
30732
30733
30734
30736

30737
30739

123
254,31
40,22
254,32
40,24
254,33
40,26
254,223
40,28
254,224
40,30
17,330
195.0,120
17,223,255
195,0,120
17,224,255
195,0,120
17,225,255
195,0,120
17.31.0
195,0.120
17,320
195,0,120

195,32,120
0
0
0
0
0

54,56
229

6,122
10

LD AE
cP 31
JR Zhsw
CP 32
JR Zhs
CP 33
JR Zhse
CP 223
JR Zhnw
CP 224
JR Zhn
hne LD DE.33
JP dirend
hsw LD DE-33
JP dirend
hs LD DE-32
JP dirend
hse LD DE-31
JP dirend
hnw LD DE,31
JP dirend
hn LD DE,32
JP dirend
NOP

dirend LD A.D
LD (BC).A
DECB
LD (BC).A
DECB
JP cont
NOP
NOP
NOP
NOP
NOP

empty LD (HL),56
PUSH HL

LD B,poslo
LD A.(BC)

;Horiz. wall- change direction
;Get current direction
;South-west?

;Yes

;South?

iYes
;South-east?
Yes
;North-west?
Yes

:North?

‘Yes

;Go south-east
;Change of direction finished
;Go north-west

:Go north
;Go north-east
:Go south-west

:Go south

;Save new direction

;Continue with next molecule

;Insert in new position

;Save new position

;Delete old position

;High byte pointer to position
;Get low byte of position

30740 111
30741 4
30742 10
30743 103

30744

30746 225

30747 124
30748 2
30749 5
30750 125
30751 2
30752 13

30753

30756 201

Moving pictures
The above techniques can also be applied to moving whole pictures around the
screen. The method is identical to the BASIC methods discussed in Chapter 2,
using the machine-code PRINT AT routine described earlier. When executed.
this program demonstrates BASIC and machine code side by side. so that their
respective performances can be compared.

PICMOVE

32000
32004
32007
32011
32013
32014
32015
32016
32017
32018
32019
32020
32021

32022
32024
32025
32028
32029
32030
32031

ED 5B 20 7E
2A 24 TE
ED 4B 22 7E

3E 16
D8

3A 23

20 FB

54,63

194,4,119

7E

next

restor

POP HL

LD AH

LD (BC).A
DEC B
LDAL

LD (BC).A
DECC

JP NZ.nxmol
RET

LD DE,{postn)
LD HL,{ptr)
LD BC,{colrow)
LD A16H
RST 10H

LD AD

RST 10H

LD AE

RST 10H

LD E(HL)
RST 10H

INC HL

INC E

JR NZ,next
INC D

LD A,(cols)
DECE

INC B

CPB

JR NZ,restor

Machine-code graphics

:Save in L

;Point to poshi table

:Get high byte of position
;Save in H

:Delete from old position
;Retrieve new position

;and insert into position table
;Save high byte

;Save low byte
;Point to next molecule

;Back to BASIC if all done

:Point to PRINT AT position
;Point to table of bytes

;Number of rows and columns
;Send PRINT AT

:Send row
:Send column
;Send code for character

:Next code

;Next PRINT AT column

;Do next column

iNext PRINT AT row

iNumber of columns in picture
:Restore beginning of row

;All done?
;Do next

199

The ZX Spectrum in science teaching

32033 0D DECC ;Move to next row
32034 20 E7 JR NZ,next
32036 C9 RTS

A BASIC program to load this routine is given below. This program defines a
racing car and then moves it across the screen, first via BASIC and then via the
above machine-code routine. It is left for you to judge whether there is any
significant difference. If you judge that there isn't. then increase the size of the
picture to, say. an 8 X 8 matrix. The starting address, where the bytes for this
picture are stored. has to be poked into the pointer (pointerlo and pointerhi) and
the routine also needs to be told the number of columns and rows in the picture.
Note that this is in the reverse order. so that the number of rows is loaded into the
C register and the number of columns into the B register. Used in this way the
machine-code routine is clearly superior. Likewise the machine-code routine
would be more useful when moving several cars at once.

1 CLEAR 32000
2 GOSUB 1000
10 REM Define the picture
20 GO SUB 2000
30 REM Move car via Basic
40 FORx=0TO 27
50 PRINT AT 5, ABAC" (Note: these are defined
60 PRINT AT 6,x,” FG D" graphics characters)
70 PRINT AT 7" IHIE"
80 PAUSE 2
90 NEXT x
100 REM Load character codes into table
110 FOR =32256 TO 32270
120 READ code
130 POKE i.code
140 NEXTi
150 REM initialize pointers
160 POKE rowcount,3:POKE colcount,5
170 POKE pointerlo,0:POKE pointerhi,126
200 REM Move car via machine code
210 FORx=0TO 27
220 POKE row,10:POKE column,x
230 LET I=USR 32000
240 PAUSE 2
250 NEXT x
260 STOP
1000 FOR =32000 TO 32036
1010 READ x
1020 POKE m,x

200

Machine-code graphics

1030 NEXTi

1100 DATA 237,91,32,126,42,36,126,237,75,34
1110 DATA 126,62,22,215,122,215,123,215,126,215
1120 DATA 35,28,16,243,20,58,35,126,29,4
1130 DATA 184,32,251,13,32,231,201

1200 LET column=32288

1210 LET row=32289

1220 LET rowcount=32290

1230 LET colcount=32291

1240 LET pointerlo=32292

1250 LET pointerhi=32293

1260 RETURN

2000 REM Define graphics characters

2010 FORi=0TO8

2020 FOR=0TO7

2030 READ code

2040 POKE USR CHR$ (i+144)+j.code

2050 NEXTj

2060 NEXTi

2100 DATA 255,255,255,24,24,255,128,128
2110 DATA0,0,0,0,0,255,0,255

2120 DATA0.,0,0,0,0,192,32,16

2130 DATA8.4,2,1,1,24,8

2140 DATA 16,32,192,0,0,0,0,0

2150 DATA 129,129,129,129,129,129,129,129
2160 DATA 255,33,113,121,121,113,33,2565
2174 DATA 255,0,255,0,0,0,0,0

2180 DATA 128,128,255,24,24,255,255,255
2200 RETURN

3000 REM codes for car positions

3010 DATA 32,144,145,144,146

3020 DATA 32,149,150,32,147

3030 DATA 32,152,151,152,148

In both cases a 5 X 3 matrix is moved horizontally, so that the picture contains
following blanks to eliminate the rear of the picture as it moves. Movement in
other directions is more difficult, since the whole picture has to be erased first. The
bytes of the picture are pointed at through locations 32292 and 32293, so it is a
simple matter to point these at a set of fifteen blanks (CHRS 32) and to obliterate
the whole picture by calling the routine again at the same place.

High resolution plotting
It is occasionally necessary to plot points on the screen in machine code.
Examples are STANDING WAVES (31) and LONGITUDINAL WAVES (32).

201

The ZX Spectrum in science teaching

where the screen picture has to be changed quite often to give the appearance of
motion. Let us first look at the algorithm used to do this.

The high resolution screen runs from 4000H (top-left corner) to 5TFFH. As we
saw in Chapter 2, each bit of each byte controls one pixel of the screen. The
memory map of the screen is not contiguous. Running the following program
shows that each character position (eight by eight bits) is made from eight
separate bytes, but these bytes are not together in the memory. Thirty-two
contiguous bytes form a line and the next thirty-two bytes form another line eight
pixels further down the screen. After 2048 bytes the whole of the top third of the
screen is filled and it is then the turn of the middle third.

100 FORi= 16384 TO 22527
110 POKEi.255

120 PAUSE 1

130 NEXT i

The algorithm to plot the point (x.y) directly is as follows:
byte number = base address + third + block + line + position

The base address is 4000H in all cases. The equation is interpreted as follows, The
byte which contains the point x.y must be located within:

a) a particular third of the screen

The top third (y < 64) adds 000H to the base address.

The middle third (63 < y < 128) adds 800H to the base address.
The top third (127 < y < 192) adds 1000H to the basc address.
Mathematically this is described by

third = 800H * INT(y / 64)

b) a particular block (where a single character can be printed

The top block adds 00H to the base address.

The second block down adds 20H to the base address.

The third block down adds 40H to the base address.

This continues, with 60H, 80H, AOH, COH and EOH being added.

In general the block positions are multiples of 20H for each block and there are
eight of them in each third of the screen. This situation is described by

block = 20H * INT (y/8)

¢) a particular line within any one block

The top line in a block adds 000H to the base address.
The next line in the block adds 100H to the base address.
The next line in the block adds 200H to the base address.
In general, this can be described by:

line = 100H * (y MOD 8)

Machine-code graphics

(y MOD 8 means the remainder left over after y has been divided by 8.)
d) a particular horizontal position along the line
The leftmost position adds 1 to the base address.
The next position adds 2 to the base address.
The next position adds 3 to the base address.
In general, since each position has eight pixels:
position = INT(x/8)
The bit within the byte is quite simple, it just follows the normal bit pattern. The
leftmost bit is 0} H, the next is 02H, the next 04H, the next 08H and so on up to 80H.
This is back to front for us, but it is not difficult to turn the byte round the other
way, as we shall see.

There are two things that can be done to a bit, ence it has been located - to turn
it on or to turn it off (in both cases leaving adjacent bits unaffected). Let us first
look at the machine-code routine which locates the bit. This is a subroutine called
find. The C register holds the x-coordinate and the D register has the y-
coordinate. This is not quite right because the top-left of the screen is now the
origin (0,0). This is a situation that Apple II users have long been used too. For
most programs it is not a serious problem, the point (x,192-Y) has to be plotted
instead. For wave motion programs this complication is ignored completely.

On return from the subroutine, the HL register pair holds the address of the
screen byte containing the pixel required. The ACCUMULATOR contains a
particular number. which is later used to determine the actual bit itself.

Find

28960 7A LDAD ;Determine which line
28961 E6 07 AND7

28963 67 LD HA ;Equals 100H*(y MOD 8)
28964 7A LD AD :Determine which block
28965 E6 38 AND 38H ;Equal to 8*INT(y/8)
28967 07 RLCA :Multiply by 2

28968 07 RLCA :Multiply by 2

28969 6F LD LA ;Equal to 20H*INT(y/8)
28970 7A LDAD ;Determine which third
28971 E6 CO AND COH ;Equals 64*INT(y/64)
28972 OF RRCA ;Divide by 2

28973 OF RRCA ; Divide by 2

28974 OF RRCA ;Divide by 2

28975 C6 40 ADD A40H ;Add base address
28977 84 ADD AH ;Add in line byte
28978 67 LD HA ;Save high byte address
28979 79 LD AC ;Determine which position
28980 E6 F8 ANDOF8H ;Equals 8*INT(x/8)
28982 OF RRCA ;Divide by 2

28983 OF RRCA ;Divide by 2

i
|
|
1

The ZX Spectrum in science teaching

28984 OF RRCA ;Divide by 2
28985 85 ADD AL ;Add block
28986 6F LD LA ;Save low byte address

28987 79 LD AC ;Determine which bit
28988 2F CPL ;Turn byte round

28989 E6 07 AND7 iMask to get lowest bits
28991 07 RLCA :Multiply by 2

28992 07 RLCA :Multiply by 2

28993 07 RLCA :Multiply by 2

28994 C9 RET ;Return to calling program

The routines to erase and plot the bit once it has been located are now discussed
They use the RES and SET instructions respectively. They work on a most
peculiar principle. On return from the find subroutine. the ACCUMULATOR
contains a number as follows:

If bit 7 is chosen, the ACCUMULATOR contains 00H
If bit 6 is chosen, the ACCUMULATOR contains 08H
If bit 5 is chosen, the ACCUMULATOR contains 10H
If bit 4 is chosen, the ACCUMULATOR contains 18H
etc.

To this is added 86H for an erase or C6H for a plot. This produces the correct
machine code to erase or set the required bit in the RES or SET instruction. It is
therefore inserted into the actual program. which is reached immediately
afterwards and executed. This is an example of a program that writes its own code
- a self-modifying program. Such programs are very bad, because (as you can
see) they are very difficult to describe and even more difficult to debug if they are
found to be faulty. In defence. I find this the fastest way to do it, and speed takes
precedence over good programming style on occasions.

Erase

28928 CD 20 71 CALL find ;Get byte and bitcode

28931 C6 86 ADD A.86H ;Add to get RES machine code
28933 32 09 71 LD (28937),A ;Put code in program

28936 CB 7 RES 7,(HL) ;Execute this code

28938 C9 RET ;Return to calling program

The address 28937 is where the code to erase the chosen bit is stored. Hence. we
cannot at this stage say what that code should be, the first part of the program
determines it and changes the value accordingly. To show this, a *" has been
placed in the program. in the appropriate place in the DATA statement. so
an arbitrary code like 0 must be inserted. This will be changed before it is
executed, so the actual number does not matter.

To plot the dot requires a similar procedure, but with the SET instruction
instead.

204

Machine-code graphics

Plate 19 Standing waves

Plot

28944 CD 20 71 CALL find ;Get byte and bitcode

28947 C6 C6 ADD A,C6H ;Add to get SET machine
code

28949 32 19 N LD (28953),A ;Put code in program

28952 CB 77 SET ?,(HL) :Execute this code

28954 C9 RET ;Return to calling program

This routine is used extensively in the programs listed in the Appendix.
STANDING WAVES (31) is a machine-code version of what is essentially a
simple process. To create a wave on the screen we need to plot a sine wave, erase it
and replot itone pixel to the left or right. In BASIC this takes far too long and wave
motion is not apparent. Unfortunately, a machine-code routine to work out sines
is beyond my capabilities. The solution is to use BASIC to work out the sines
beforehand. These values are then stored in a table (sintbl). which is accessed in
machine code using a pointer. Ifthe X-INDEX points to the start of the table, then
LD A(IX+25) will retrieve the sine of 25 from the table. The table is loaded with
the correct values by a program like this:

205

E—:

The ZX Spectrum in science teaching

2000 REM Set up sine table

2010 REM contains 256 values
2020 FORi=0 TO 255

2030 LET angle=i*PI/128

2040 LET val=SIN(angle)

2050 POKE (40000+1)=INT(20%*val)
2060 NEXTi

This produces sines of amplitude 20. There has to be a different table for each
different amplitude. Fortunately, the total number of amplitudes needed is
usually sufficiently low that this can be done. STANDING WAVES uses a fixed
amplitude just to show the principles (Plate 19).

The algorithm used to draw the waves is rather like that used to plot the
molecules. For each x coordinate the present y-value of the wave is kept in a table
(opos) and accessed via the BC register pair. This value is retrieved and passed to
the erasing routine above. The current x position is then multiplied by a constant
(called wv1n) and another constant (time) is subtracted to give the position so far
reached in the table. The correct displacement at the current position is thus
retrieved from the table. To this is added an offset to get the waves to the correct
height and the new point is plotted. It is also put back into the table of positions
ready to be erased the next time round.

Fundamentally, we are computing the wave displacement from the equation

displacement = amplitude*SIN(wvin*x-time)

Physicists will appreciate that the constant called "wvIn’ is actually the reciprocal
of the wavelength. This could be altered to change the number of waves that
appear on the screen (and hence their wavelength). By adjusting "time” at the
completion of each cycle, the wave can be made to move through the table faster
or slower. This is a means of adjusting the speed of the waves. The third variable
(frequency) depends upon both speed and wavelength and cannot be
independently varied.

The great advantage of this technique is the ease with which the wave can be
made to travel backwards. The constant ‘time’ is added instead of subtracted to
produce the result. The two displacements for the two waves are then added
together to produce the standing waves. Close inspection of the listing in the
STANDING WAVES program will reveal exactly how this is done. If you want
both waves to travel in the same direction, producing interference. then “time’
must be added or subtracted from both. The program STANDING WAVES does
not provide all these facilities, since it is only a sampler. The more sophisticated
versions are available from Griffin Software. By way of recompense. LONGI-
TUDINAL WAVES (32) was written after the Griffin package had been put into
production, so it does not contain this interesting program. Longitudinal waves
are very easy to derive from transverse waves. Instead of plotting the displacement
in the vertical direction. it is added to the horizontal position and a line is drawn

206

Machine-code graphics

Pulse reflection

Press Z 10 send a single pulse

Hold Z to make CONlinuUous waves
and CAPS-SHIFT 10 StoP the pulse

Press X to change the reflection
coefficient

The reflection coefficient

is 1 at present

Plate 20 Longitudinal waves

in the required position (Plate 20). No full description is given. but interested
readers can disassemble LONGITUDINAL WAVES to see how it is done.

Screen scroll

The layout of the screen makes it possible to shift each pixel into the neighbouring
position. using the rotate instruction. This has several applications as we shall see
later. I was first alerted to this possibility by Dr S. Rushbrook-Williams of the
Microelectronics Educational Development Centre in Paisley.

The Spectrum screen is exactly 256 dots wide. which is perfect for machine
code. since this is very easy to count with one of the Z80 internal registers. These
dots are held in 32 successive bytes. so a routine to scroll the whole screen
sideways is almost trivial.

31474 21 00 40 LD HL,4000H ;Start of screen memory
31477 3E CO LD A,0COH ;192 rows

31479 A7 nxrow AND A :Clear the CARRY bit
31480 06 20 LD B.20H :32 bytes per row
31482 CB 1E nxbyt RR (HL) ;Shift right one bit

31484 23 INC HL ;Move to next byte

207

| |

The ZX Spectrum in science teaching

31485 10 FB DJNZ nxbyt ;32 bytes done?
31487 3D DEC A :Yes, do next row
31488 20 F5 JR Z.nxrow ;All rows done?
31490 C9 RET ;Yes, return to BASIC

This routine is listed below as a BASIC program. which can be entered and RUN
like any other. Line 210 calls’ the scroll routine to shift the whole screen one dotto
the right. This version of the program works with a 48K or a 16K Spcctruml.

A particularly useful application of this routine is to add together two sine
waves to demonstrate interference or beats. The two component waves and their
sum are plotted at the zero x coordinate and the screen then slcrolls sicways to
display the full wave. In practice the wave motion is rather JFI’k}'. but th\s is
because so much of this program is still in BASIC. A full machine-code version
has been developed. which is available from Griffin Software.

CLEAR 31400

1

2 FOR i= 31474 TO 31490

3 READ x

4 POKE i.x

5 NEXT x

6 DATA 33,0,64,62,192,167,6,32,203,30
7 DATA 35,16,251,61,32,245,201

10 REM Select the frequencies
20 PRINT “Enter the frequency of wave 1"
30 PRINT “(recommended range 10 to 20)
40 PRINT
50 INPUT f1
60 PRINT “Enter the frequency of wave 2"
70 PRINT “(recommended range 10 to 20)
80 PRINT
90 INPUT f2

100 REM Main program

110 FOR a = 0 TO 10000 STEP 0.01

120 REM Plot the first wave

130 LET y1 = 15*SIN(a*f1)

140 PLOT O.y1+88

150 REM Plot the second wave

160 LET y2 = 15*SIN(a*{2)

170 PLOT 0,y2+140

180 REM Plot the sum of the waves

190 PLOTOy1 +y2+ 38

200 REM Scrall the screen

210 RANDOMIZE USR 31474

220 NEXT a

208

Machine-code graphics

There are many other uses for this routine. for example. a multi-channel chart
recorder. The data from an analogue to digital converter would be plotted instead
of the waves. This is discussed in the next chapter.

The facility on the ZX Spectrum for loading data from tape into the screen
memory is often used for creating pictures (see for example, the introductory
Horizon tape). These pictures build up gradually line by line until the loading is
complete. The result is less than satisfactory and some software houses prefer to
load the bytes onto a black screen first and then switch on the ATTRIBUTES to
expose the picture. Apart from the difficulty of using colour properly, this method
is still not fast enough. What is required is a machine-code routine to transfer data
from another part of the memory into the screen memory.

The following routine makes use of the *block transfer’ instruction of the Z80
microprocessor. The instruction LDIR transfers up to 65 535 bytes from one place
to another in a fraction of a second. The Z80 internal registers first have to be set
up to indicate the source. where the date comes from (called SRCE). the
destination. where the data goes to (called DEST) and how many bytes should be
transferred (called NMBR).

For our purposes. this destination is the screen memory. This consists of two
parts. the DISPLAY file. which tells us which dots on the screen are turned on
(and which are off) and the ATTRIBUTES. which hold the information about
the foreground and background colour in each screen position. Fortunately. these
two are contiguous. the DISPLAY file running from location 16384 to 22527 and
the ATTRIBUTE file from 22528 to 23295. The destination thus starts at 16384
(4000H in hexadecimal) and continues for a total of 6912 (1BO0OH) bytes.

The gource is the place where the picture bytes are stored prior to sending them
to the screen. This will be different for 16K and 48K microcomputers. The 16K
source address begins at 25088 (6200H). while the 48K source address begins at
57856 (E200H).

In Z80 assembly language the transfer routine is as follows:

LD BC,NMBR
LD HL,SRCE
LD DE,DEST
LDIR
RET

The LDIR instruction works as follows, The HL register pair contains the source
address. The microprocessor goes to this address and collects one byte. The DE
register pair contains the address where this byte is to be put. so the
microprocessor sends the byte to that address. The HL register pair is then
incremented to point to the next memory location. The DE register pair is also
incremented to point to the next destination address. Finally. the BC register pair
is decremented. The process is then repeated. When the BC register pair reaches
zero. NMBR bytes have been transferred as required. A very short routine like this
(twelve bytes) can go right at the top of memory. This is where the Spectrum keeps

209

The ZX Spectrum in science teaching

a note of user-defined characters, so it is quite safe (unless you are using such
characters). This is as follows:

16K..... locations 32750 to 32761
48K locations 65520 to 65531

Two versions of this program are given for the two different memory sizes:

16K version
1 FORi=32750T0 32761
2 READx
3 POKE ix
4 NEXTi

5 DATA 1,0,27,33,0,98,17,0,64,237,176,201

48K version
1 FORi=65520T0 65531
2 READ x
4 NEXTi
5 DATA 1,0,27,33,0,226,17,0,64,237,176,201

When run, this loader places the codes of the DATA statement into their correct
locations. To execute the machine-code program. enter
RANDOMIZE USR 65520 (or 32750)
You should see the screen go black instantly, This is because you have transferred

a set of 0s to the screen: there was no picture in the source memory to begin with,
How do we put one there?

Painting a picture s
The introductory Horizon tape contains a useful screen draw utility. which can be
used to build a picture. Alternatively. you can write a program to PRINT blocks of
colour. lines and any other user-defined characters you wish. When you have
finished and the picture has been created. save it on tape. The command for
this is

SAVE “picture” SCREENS
This is equivalent to

SAVE “picture” CODE 16384,6912
which saves all 6912 bytes of the screen memory.

The syntax to recall the picture to the screen is

LOAD “picture” CODE

210

Machine-code graphics

which automatically loads the bytes from the tape into the screen memory. You
observe the picture being built up line by line.

Our improvement on this loads the picture bytes into a different area of
memory and transfers them to the screen memory instantaneously. This other
memory area must first be protected from BASIC. by altering the top of available
memory locations. This is done with the CLEAR command.

16K version
CLEAR 25087
(reserves about 7000 bytes starting at location 25087)

48K version
CLEAR 57855
(reserves about 7000 bytes starting at location 57855)

The picture bytes can be inserted into this memory area by specifying the starting
address at the time of loading. thus:
16K version
LOAD “picture” CODE 25088

48K version
LOAD “picture” CODE 57856

Finally. the USR function calls the machine-code routine and transfers the
picture to the screen.

The transfer program
If all this seems complicated. here it is agai
save this program as “transfer™.

n the one program. First enter and

16K version

1 CLEAR 25087

2 FOR i = 32750 TO 32761
3 READ x

4 POKE i,x

5 NEXT i

6 DATA 1,0,27,33,0,98,17,0,64,237,176,201
7 LOAD ” " CODE 25088
8 RANDOMIZE 32750
K version

1 CLEAR 57855

2 FOR i = 65520 TO 65531

3 READ x

4 POKE i.x

B NEXT i

6 DATA 1,0,27,33,0,226,17,0,64,237,176,201

|
|

The ZX Spectrum in science teaching

7 LOAD “ “* CODE 57856
8 RANDOMIZE USR 65520

The picture should be created and saved as indicated above. Then the transfer
program should be loaded and run. The screen will go blank as the Spectrum
exccutes line 7 and tries to read data from the tape. Rewind the tape to the
beginning of the picture bytes and play it back in the usual way. Line 7 does not
specify any particular picture. so any properly prepared tape will be loaded by this
I

e

The same routine may be used to transfer several different pictures onc after the
other in rapid succession. This gives a cartoon effect. which can be used for
animations. The 16K Spectrum has too little memory for this. but the 48K
machine allows five such pictures to be stored in different sections of the memory.
1o be recalled at will. This is useful for flashing instant pictures. for example. the
happy face or sad face to indicate a correct or incorrect response to a

question.

Large digits

The first machine-code graphics routine I ever wrote was for displaying numbers
in large digits. This routine has been used extensively ever since. It also appears in
several of the programs listed in the Appendix. Fundamentally. it produces
figures that are eight times their normal size. By using the standard seven-
segment type display. ‘chunkiness in the displayed digits is avoided, Instead of
swilching a single pixel on or off. they switch whole ATTRIBUTE positions. The
positions of the ATTRIBUTES to be turned on or off are held in a digits table
(Plate 21).

The routine discussed below resides near the top of RAM in the 48K Spectrum.
but it can be relocated. REACTION TIMER (6) uses the same routine in locations
below 32768, which is the version of the routine for the 16K Spectrum.

Because there are thirty-two squares across the screen (nearly five times six)
and there are twenty-four down the screen (three times eight) then the choice of a
six by eight matrix allows fifteen different large digit positions on the screen. or
three rows each of five digits. Even with a negative sign and a decimal point.t
enough. Each digit actually only occupies five columns and seven rows of the
matrix. thus allowing a border to separate each character from its neighbour.

We use eight bytes o store the rows of any one large digit. using one bit for each
column position in each row. If the bit al. say. position 7 is a 1. then the screen
square corresponding to that position in the matrix is turned on (black square). If
the bit in position 7 is a 0 then the corresponding screen position is turned off
(white square). Thus a row of eight black and white squares can be stored in a
single byte. In practice only five of these bits arc used (bits 0 to 4), bits 5to 7 are
switched ofT. The sets of eight bytes for each digit are stored sequentially in a table
called dgttbl. The first part of the program gets the digit code (which is passed via
BASIC in a location called dgtval - 0FE02H). multiplies it by eight and enters

Machine-code graphics

o s b i .
Plate 21 Auribute manipulation in machine code

bittbl to collect the eight bytes of the selected digit. These are keptin a set of cight
lemporary stores called temp. i

lh_e starting position for each large digit is specified by passing it through
Iucanonv.\ OFEO0H and OFEOI H. The full screen can be considered as ha ving up-m
twenty-four columns on any of three rows, Then it is only necessary to pu\ﬁ\ two
\-‘;l].ucx currcsppmling to the ultimate row and column pc:s)ilions of the large ;jiuil
Tll{ﬁ isthe !)osuion ofits upper-left corner. These locations are loaded into the I:IL
rcgrs_{cr pair. which then points to the required screen values position. Having
obtained the bytes of the digit to be displayed and its screen position, it rc-muim to
look at cflcll bit of each byte in turn and to send a black or a white uh‘dmclcr Eo.lhc
nppropn.ulc position on the screen. This is done using the RRA instruction
(rotate right ACCUMULATOR) and looking at the CARRY bittoseeifitisa0
ora 1. The routine needs three counters. one to keep the screen pu:\il:‘:;n (HL pAzlir)
one to count the eight bytes of each digit (D register) and a third to keep track ol.'
the bits within each byte (E register). ’

The ZX Spectrum in science teaching

BIGDIG
row = OFEQOH
col = OFEO1H

dgtval = OFEO2H

dgttbl = OFDOOH upwards
65040 2A 00 FE
65043 3A 02 FE
65046 37

65047 3F

65048 17

65049 17

65050 17

65051 4F

65052 06 FD

65054 16 08

65056
65057 1E 06
65059 1F
65060 30 04
65062 36 00
65064 18 02
65066 36 38
65068 2C
65069 1D
65070 20 F3
65072 F5
65073 7D
65074 C6 1A
65076 6F
65077 F1
65078 OC
65079 15
65080 20 E6
65082 C9

nxbyte

nxbit

white
bitdone

Conclusion

LD HL,(OFEOOH) ;Get screen location

LD A,(dgtval) ;Get digit code value
SCF

CCF ;Clear CARRY bit

RLA ;Multiply by eight

RLA

RLA

LD CA ;Point to correct digit
LD B.dgttbl :Point to digits table
LD D,08H ;Eight bytes

LD A,(BC) :Get byte

LD E.O6H ;Six bits

RRA ;Rotate bit into CARRY
JR NC,white ;Black square?

LD (HL),00H ;Yes

JR bitdone :Try next bit

LD (HL),38H :Send white square
INC L :Move to next position
DECE ;All bits done?

JR NZ nxbit :No, do next bit

PUSH AF ;Save ACCUMULATOR
LD AL :Move down to next row
ADD A,1AH

LD LA

POP AF ;Restore ACCUMULATOR
INCC ;Next byte

DECD ;All bytes done?

JR NZ nxbyte ;No, do next byte

RET ;Yes, all done.

This chapter has come a long way and some readers may well feel that it is not for
them. I did warn that machine-code programming was not easy. but no matter.

Study the program listings to see the
then be able to make use of them yo!

way that each routine is used and you should
ursell. even if you cannot see how they work.

Using the techniques discussed in this chapter. there is no reason why you cannot
create your own machine-code graphics routines. It is a difficult art to master. but
the rewards are well worth it. Commercial games packages rely heavily on

214

machine-code graphics. and it is ag
educational software. What will be
alternative?

Machine-code graphics

ainst these that our pupils will compare
their response if we offer an inferior

8 Interfacing in machine code

‘Now! Now! cried the Queen. ‘Faster! Faster!’
(Lewis Carroll, Through the Looking Glass)

This chapter brings together previous ideas to produce useful routines for making
fast measurements. First, let us look at the Interspec from the point of view of
machine code. The addresses are exactly the same and the instructions used to
access them are the assembly language equivalents of the BASIC IN and OUT

instructions.
Relay outputs (OUT 63,8 in BASIC)
3A 08 LDASB
D3 3F OUT (A).63 ;Output bit 3 on, all others off

Switch inputs (LET status = IN 63)

DB 3F IN A.(63)

50 nnnn LD (status),A

Analogue input (OUT 31,1:PAUSE 1:LET X = IN 31)

3A O1 LD A1

D3 1F OuUT (A),31 :Select channel 0

CD nnnn CALL delay ;delay for 100 microseconds

DB 1F IN (A).31 ;Read selected channel
STOPCLOCK

Using machine-code versions of the programs discussed in Chapters 4 and 5
allows faster measurements and turns the microcomputer into a very powerful
laboratory aid. One example of this is STOPCLOCK (7). the use of which was
discussed in Chapter 4. This prints the current value of a centisecond clock on the
screen in large digits, which is updated fifty times a second. This clock’ is actually
the internal clock of the Spectrum (known as the frame counter). which is
accessed in machine code through location 23672. The Spectrum’s own operating
system updates this clock every fifticth of a second.
The full BASIC program is listed in the Appendix. The following description
may help to explain it
Lines 29 to 44: the special codes for the large digits, the letters m. s and the decimal
point. These are used by the BIGDIG subroutine, which is loaded by lines 10 t022.

216

Interfacing in machine code

Lines 45 to 78 are the main timing routine.
Lines 80 to 87 contain the routine to display the contents of the minute, second
and centisecond timers continuously.

The assembly language routine

6400 to 64095: the minute, second and centisecond stores are initialized to zero
and then displayed on the screen by the subroutine called showtimes.

64096 to 64117: bits 0 and 1 of the user port are collected and stored in STAT. The
program then sits at this point until one or other of these bits changes.

64118 to 64250: the centisecond store is cleared and the timing begins. Every
fifticth of a second the Spectrum operating system adds one to the frame
counter in location 23672 (called CSLO). If this location contains a number
less than five, the routine jumps to see if any key on the keyboard is being
pressed. If not, the current time measured by the clock is displayed. If a key is
being pressed, the showtimes routine is bypassed and the clock display freezes
atits previous value although the timer itself continues to measure time. After
the current time has (or has not) been displayed, the routine checks the inputs
to see if any have changed. If so a return to BASIC is made. If not the routine
goes back to check the current value of CSLO (tmwait).

When CSLO exceeds five, it is reset to zero and CSHI is incremented. thus
effectively counting ten centiseconds. When it reaches ten, it too is reset and
one second is added to the time. This process continues up to 100 minutes or
until the input status changes. The clock stores continue to be incremented
every two hundredths of a second even if the display is temporarily frozen. It
would be more difficult to do this if a timing loop was being used to generate
the time intervals.

64256 to 64376: the showtimes subroutine collects the contents of each of CSLO,
CSHI, etc. and displays each in its correct position with the large-digits display
subroutine discussed in Chapter 7. In this listing the codes are in decimal.

64000 62,0 LD AQ ;Initialize clock stores
64002 50,0,252 LD (CSHI),A

64005 50,1,252 LD (SECLO).A

64008 50,2,252 LD (SECHI),A

64011 50,3252 LD (MINLO),A

64014 50,4,252 LD (MINHI)LA

64017 0 NOP

64018 0 NOP

64019 62,12 LD A12 ;Display letter m
64021 50,2.254 LD (DGT).A ;Send digit code
64024 62,24 LD A24 :Fifth position
64026 500,254 LD (POS).A

64029 6288 LD A.88 ;Top row
64031 50.1,.254 LD (ROW).A

217

|
|

The ZX Spectrum in science teaching

64034
64037
64038
64039
64041

64044
64046
64049
64051

64054
64057
64059
64062
64064
64067
64069
64072
64075
64077

64080

64083
64085
64087
64090
64092
64094
64095
64098
64099
64101

64102
64105
64107
64110
64113
64115
64118
64120
64123
64126
64128
64131

218

205,16,254
0

o

62,13
50,2,254
62,24
50,0,254
62,89
50,1,254
205,16,254
62,10
50,2,254
62,6
50,0,254
62,90
50,1,254
205.,16,254
62,0
50.120,92

205,0,251

219,63

230,3

50,5,252
219,63 wait
230.3

62.0
50,120,92
58,120,92 tmwait
2545
218,223,250
62.0
50,120,92
58,0,252
198,1
50,0,252
254,10

CALL display ;Display in chosen place
NOP

NOP

LD A13 :Display letter s

LD (DGT).A ;Send digit code

LD A24 ;Fifth position

LD (POS).A

LD A.89 :Middle row

LD (ROW).A

CALL display

LD A10 ;Display decimal point
LD (DGT).A ;Send digit code

LD A6 :First position

LD (POS).A

LD A90 ;Bottom row

LD (ROW).A

CALL display

LD A0

LD (CSLO),A :Zero centisecond digit

;This is the frame counter
CALL showtim :Show current time
;Wait until an event occurs

IN A,(63) ;Get input status

AND 3 ;Mask to get lower bits
LD (STAT).A :Save in status store

IN A,(63) ;Get input status again
AND 3 ;Mask to get lower bits
LD BA ;Keep in temp store

LD A,(STAT) :Compare with previous status
CPB

JR Z wait ;Wiait till input changes
LD AB ;Alter status store

LD (STAT),A :Initialize clock

LD AO

LD (CSLO).A :Set frame counter to zero
LD A,(CSLO) ;Wait for timeout

CP5 ;Five fiftieths?

JP C.cont ;No, check inputs
LD AO ;Reset to zero

LD (CSLO)A

LD A,(CSHI) :Update next digit
ADD A1

LD (CSHILA

CcP10 ;Ten tenths?

64133
64136
64138
64141
64142
64143
64146
64148
64151
64153
64156
64158
64161
64162
64163
64166
64168
64171
64173
64176
64178
64181
64182
64183
64186
64188
64191
64193
64196
64198
64201
64202
64203
64206
64208
64211
64213
64216
64218
64221
64222

218,223,250
62,0
50,0,252

0

0

58,1,252
198,1
50,1,252
254,10
218,223,250
62,0
50,1,252

0

0
58,2,252
198,11
50,2,252
254,6
218,223,250
62,0
50,2,252
o]
o]
58,3,252
198.1
50,3,252
254,10
218,223,250
62,0
50,3,252
0
0
58,4,252
198.1
504,252
254,10
218,223,250
62,0
50.,4,252
o]
o]

JP C.cont

LD AD

LD (CSHI).A
NOP

NOP

LD A.(SECLO)
ADD A1

LD (SECLO),A
CP1

JP C.cont

LD A0

LD (SECLO).A
NOP

NOP

LD A.(SECHI)
ADD A1

LD (SECHI),A
CP6

JP C,cont

LD AD

LD (SECHI).A
NOP

NOP

LD A{MINLO})
ADD A1

LD (MINLO).A
CP10

JP C.cont

LD AQ

LD (MINLO).A
NOP

NOP

LD A(MINHI)
ADD A1

LD (MINHI).A
CP 6

JP C.cont

LD A0

LD (MINHI),A
NOP

NOP

Interfacing in machine code

:No, check inputs
;Reset to zero

;Update next digit

:Ten seconds?
;:No, check inputs
:Reset to zero

;Update next digit

;Sixty seconds?
:No, check inputs
;Reset to zero

;Update next digit

:Ten minutes?
:No, check inputs
:Reset to zero

:Update next digit

;100 minutes?
:No, check inputs
:Reset to zero

;Check SPACE key

The ZX Spectrum in science teaching

LD A 127

IN A,(254)

OR 224

CP 255

JP NZ tmwait

CALL showtim ;Display digits
IN A,(63) ;Check inputs
AND 3

LDBA

LD A.(STAT)

CPB

JP Ztmwait

RET ;Finish at this event

LD A,(CSLO) ;Display CSLO (fiftieths)
RLCA ;Multiply by two for centisecs
LD (DGT).A ;Send digit code

LD A,18 ;Fourth position

LD (POS).A

LD A, 90 ;Bottom row

LD (ROW).A

CALL display

LD A,(CSHI) :Display CSHI

LD (DGT).A ;Send digit code
LDA12 ;Third position

LD (POS).A

LD A90 ;Bottom row

LD (ROW),A

CALL display

NOP

LD A,(SECLO) ;Display SECLO

LD (DGT).A ;Send digit code
LDA18 ;Fourth position
LD (POS).A

LD A.89 ;Middle row

LD (ROW),A

CALL display

NOP

LD A.(SECHI) :Display SECHI
LD (DGT).A ;Send digit code
LD A12 :Third position
LD (POS).A

LD A.89 ;Middle row

64223 62,127 cont
64225 219,254
64227 246,224
64229 254,255
64231 194,110,250
64234 205,0,251
64237 219,63
64239 230.3
64241 71
64242 58,5,252
64245 184
64246 202,110.250
64249 201
Subroutine to display current time (showtime)
64256 58,120,92
64259 7
64260 50,2,254
64263 62,18
64265 500,254
64268 62,90
64270 50,1,254
64273 205,16,254
64276 58,0,252
64279 50.2.254
64282 62,12
64284 50.0,254
64287 62,90
64289 50,1,254
64292 205,16,254
64295 0
64296 58,1,252
64299 50,2,254
64302 62,18
64304 500,254
64307 62,89
64309 50,1,254
64312 205,116,254
64315 0
64316 58,2,262
64319 50,2,254
64322 62,12
64324 500,254
64327 62,89

220

64329 50,1,254
64332 205,16,254
64335 0

64336 58,3,252
64339 50,2,254
64342 62,18
64344 50,0,254
64347 62,88
64349 50,1,254
64352 205,16,254
64355 0

64356 58.4,252
64359 50,2,254
64362 62,12
64364 50,0,254
64367 62,88
64369 50,1,254
64372 205,16,254
64375 0

64376 201

Timing-loop routines

We saw in Chapter 4 how the relay outputs may be switched on for controlled
intervals of time using simple PAUSE instructions in BASIC. The maximum rate
at which these outputs can be'switched on and off in this way is limited to about
100 Hz and this is inadequate for most purposes. A better way is to use machine-
code delay loops. as we did when moving characters across the screen in Chapter
7. However we were not then interested in accuracy.

Since timing loops are used extensively for accurate measurement of short
intervals, they will now be described. We shall use them to switch outputs rapidly
on and off to produce sound in a suitable loudspeaker. This particular
application (chosen only to illustrate the principles) is not a sensible way for
making sound because BEEP already exists in Spectrum BASIC. It is, however. a
useful way of producing square wave pulses and is the assembly-language routine

LD (ROW).A
CALL display
NOP

LD A,(MINLO)
LD (DGT).A
LD A18

LD (POS).A
LD A.88

LD (ROW).A
CALL display
NOP

LD A,(MINHI)
LD (DGT).A
LD A12

LD (POS).A
LD A 88

LD (ROW).A
CALL display
NOP

RET

for PULSER (15). The algorithm is as follows:

i) Switch the output on
i) Delay for half-period

ili) Switch the output off

iv) Delay for other half-p
v) Go back to step i

Each machine-code instruction takes a specific number of T-states. In the
Spectrum the T-states occur at 3.5 MHz so it is possible to calculate accurately

eriod

Interfacing in machine code

:Display MINLO
;:Send digit code
:Fourth position

:Middle row

:Display MINHI
;Send digit code
;Third position

:Middle row

221

The ZX Spectrum in science teaching

how long any set of instructions lasts. There are two major problems. Firstly, the
ULA in the Spectrum is continually interrupting the microprocessor to update the
frame counter. This causes unpredictable delays in the timing loop. To avoid this
the interrupts from the ULA are prevented by disabling all interrupts with the DI
instruction. Before returning to BASIC, the interrupts are enabled again with EL
Unfortunately, this does not always work, since the ULA in the Spectrum appears
to have priority over the microprocessor. To avoid conflict between the two, they
must be kept separate. The ULA only accesses the lower 32K of memory. so if the
microprocessor is temporarily restricted to the top 32K. the interrupt problem is
avoided. Thus all timing routines based upon the method of counting T-states
must be located at the top of the memory.

The second problem is that conditional instructions take different times to
execute, depending on whether the condition succeeds or fails. Generally, a
condition that succeeds takes five T-states longer than one that fails. This has to
be calculated and allowed for.

PULSER
64000 243 DI
64001 62,255 rmt LD AZ255
64003 211,95 OUT (95).A
64005 237,75,0.251 LD BC,(length) ;Pulse length (20 T-states)

:Disable interrupt system
;All outputs on

64009 13 diyl DECC +(4 T-states)
64010 32,253 JR NZ.diy1 :(7 or 12 T-states)
64012 16,251 DJNZ diy1 ;(8 or 13 T-states)
64014 62,0 LD A0 ;All outputs off

64016 211,95 OUT (95).A
64018 237,75.2,251 LD BC,(time) ;Time between pulses

64022 13 dly2 DECC

64023 32,253 . JR NZdly2

64025 16,251 DJNZ dly2

64027 62,127 LD A127 ;Check keyboard for return
64029 219,254 IN A,(254)

64031 246,224 OR 224

64033 254,255 CP 255

64035 40,220 JR Zrpt ;No key. continue pulses
64037 251 El ;Restore interrupts
64038 201 RET

The length of the pulse is collected from locations 64256 (low byte) and 64257
(high byte) and placed in the BC register pair. C is decremented to zero and when
it reaches zero the B register is decremented. This is better than decrementing the
BC pair as a whole, since DEC BC does not check when the final result is zero.
The total time elapsed is as follows. Suppose the location length contains 1000,
(low byte 232, high byte 3). The pair of instructions in lines 64009 and 64010 above
are first executed 232 times. For the first 231 times, the jump condition fails. so the

222

Interfacing in machine code

time taken is 4 + 12 T-states. On the last occasion the condition fails, so it takes 4 + 7
T-states. At this point the DINZ dlyl instruction is executed, which takes 13 T-states
(since it succeeds). The C register is then decremented 256 times more, 255 taking 16
T-states and one taking 11 T-states, This is repeated until the B register reaches zero
and the timing loop ends. The time to load the BC register pair and the time to
execute the instructions to switch the outputs must also be added in. This gives:

pt LD A255 :7 T-states
OUT (95),A ;11 T-states
LD BC.(length) :20 T-states
First time:
diy1 DECC ;16%*231+11 = 3707 T-states

JR NZdly1

The following occurs three times

diy1 DEC C :16%255+11 = 4091 T-states
JR NZ,dly1
Finally
DJNZ diy1 ;13*2 48
TOTAL 7+11+20+3707+3*4091+26+8 = 16052

The time before switching on again is similarly calculated, except that 43 T-states
must be added for the keyboard sensing routine, as follows:

LD A127 ;7 T-states

IN A,(254) ;10 T-states

OR 224 ;7 T-states

CP 255 ;7 T-states

JR Z,rpt :12 T-states unless routine finishes

On this occasion the length of the timing loop is determined by the contents of
locations 64258 and 64259 (called time). Assuming that time also contains 1000,
then the time from the "off edge to the ‘on’ edge is thus 16052 + 43 or 16095 T-
states. The pulse frequency is therefore 16052 + 16095 or 32147 T-states, which
takes 9.185 milliseconds (each T-state takes 1/3.5 microseconds).

The basic routine makes several approximations to this process, but uses
fundamentally the same calculation in reverse to determine what numbers to
POKE into length and time before the routine is called.

The principle of measuring time intervals is similar. The inputs are read and
stored in a memory location called status. The current state of the inputs is then
monitored continuously and compared with status. Normally they will be the
same, but when they are different, this is because an input has been activated. A
clock is then started and the new status of the inputs is saved in status. When the
inputs again change state, the current contents of the clock are noted and copied
into a store. The time interval involved can then be calculated and displayed. We

223

The ZX Spectrum in science teaching

saw in Chapter 4 how this routine was used with the internal clock to produce
SIMPLE TIMER in BASIC (Example 12).

Accurate timing of short intervals is only possible using machine-code
routines, since BASIC is too slow to respond to input changes. The use of timing
loops for this purpose will now be described.

FAST TIMER

64000 243 [»]] ;Disable interrupts
64001 1,00 LD BC,00H ;Set timer to zero
64004 219,63 wtoff IN A(63) ;Get input status
64006 2301 AND 1 :Mask to get bit 0
64008 32,250 JR NZwtoff ;Wait till bit goes off
64010 219,63 wton IN A(63) ;Get input status
64012 2301 AND 1 :Mask to get bit 0
64014 40,250 JR Zwton :Now wait till bit goes on
64016 3 count INC BC ;Begin timing

64017 219,63 IN A,(63) :Get input status
64019 230.1 AND 1 ;Mask to get bit 0
64021 32,249 JR NZcount ;Continue till finished
64023 251 El ;Restore input status
64024 201 RET

The statement in line 800 of the BASIC program (listed in the Appendix) places
the final contents of the BC register pair into the variable t automatically. From
there the value is converted to a time interval and sent to the large-digit routine to
be displayed.

The timing on this occasion is

count INC BC ;6 T-states
IN A(63) ;10 T-states
AND 1 ;7 T-states

JRNZcount ;12 T-states

The total time per loop is thus 35 T-states, or ten microseconds. This is dependent
on the accuracy of the Spectrum crystal oscillator, and if found to be inaccurate,
the conversion factor in line 810 of the BASIC program will need to be changed
accordingly.

The maximum count is 65535, giving a maximum measurable time of 655
milliseconds. If this is exceeded, a wrong answer will be displayed. since the
routine has no mechanism for checking an overflow of the BC register pair.

For still longer time intervals, a three- or four-byte clock may be used. The
method of incrementing this clock is not now visible, since compensatory delays
are needed to allow for the occasions when the higher bytes are not incremented.
It is better to use the technique of adding one unit to the clock during each loop
instead. The CARRY bit from a low-byte addition can be added in to the next byte
by adding in zero each time. The three bytes for the clock are kept in registers E.D

224

Interfacing in machine code

and L, called clocklo, clockmid and clockhi respectively. This 24-bit clock can
count up to 16 777 216 and can measure times up to several minutes.

Counr subroutine

count LD A,clocklo 4 T-states
ADD A1 7 T-states
LD clocklo.A 4 T-states
LD A,clockmid 4 T-states
ADC A0 7 T-states
LD clockmid,A 4 T-states
LD A clockhi 4 T-states
ADC A0 7 T-states
LD clockhi,A 4 T-states
IN A,(254) 10 T-states
AND 1 7 T-states
JR Z,done 7 T-states unless routine finishes
IN A,(63) 10 T-states
AND 3 7 T-states
LDCA 4 T-states
CP status 4 T-states
JR Z.count 12 T-states unless timing has finished.

It takes 106 T-states to complete this loop so the clock will increase by one unit
approximately every thirty microseconds. The exact time was determined by
accurate measurement over a long time period and the conversion factor in line
4005 of the BASIC programme (TSA. 9) was adjusted accordingly.

Once entered, this loop continuously counts the time. There are two ways of
leaving the loop. If the SPACE key is pressed during the timing, then the keyboard
detect routine will detect it and will terminate the loop. Alternatively, if there has
been some change at either of the inputs so that it no longer compares with status,
then the program goes off to find out what caused the change.

This routine could be used as it is, to measure short time intervals. With a
photocell (connected to bit0 of the switch inputs) and mounted inside a camera to
measure how long its shutter remains open. However, the routine actually used in
programs 9 to 14 has been made even more powerful by including extra facilities.
Firstly, it allows up to thirty-two different time intervals to be measured
consecutively. This means that it can be used for a variety of purposes,
particularly the measurement of an a.c. frequency (which requires several cycles
to be counted), the measurement of the speeds of a trolley as it runs down an
i_nclined plane and the measurement of acceleration. TSA (9) uses this advanced-
timing routine and the large-digits routine to display the results.

To allow the measurement of speed when studying the laws of collision
between two trolleys. there must be two photocells. It is possible for the second
trolley to begin a transit of its photocell before the first has finished crossing the
other. Thus it must be possible to detect two inputs independently and to keep

225

The ZX Spectrum in science teaching

their results separate. We still only need the one clock, but at the start or finish of a
transit. the time on the clock is copied into a store. In fact. up to sixteen stores are
available foreach input and the pointers (ptr) keep track of which status change is
currently being timed. Thus in the collision experiment it would be possible 10
have two trolleys approach from different directions, to collide in the middle and
both go off in one particular direction at different speeds. This involves two events
at one input and six events at the other, but the routine can easily cope with
this.

Thewhole routine has a method for deciding how long it has to continue taking
readings, since the number of events is kept in location 64247 (evntctr)
beforehand. It also has an escape route, for the occasion when you run the
program and find that the photocell is not working. This is achieved by the
keyboard-detect routine.

The final part of the routine (done) is a means of converting the recorded clock
times into time intervals. This is carried out for all of the stores even if most of
them are empty.

Store=0FBOOH (up to OFBFFH)
evntctr=0FAF7 (number of events)
status is B register

clocklo is E register

clockmid is D register

clockhi is L register

64000 243 DI

64001 6.0 LD B,00H ;Set counter to 256
64003 221,33,0,251 LD IX,0FBOOH ;Clear all stores

64007 221,54,0,0 nxt LD (IX+00H),0

64011 221,35) INC 1X :Next store

64013 16,248 DJNZ nxt

64015 220 LD clocklo,0

64017 30,0 LD clockmid,0

64019 46,0 LD clockhi,0

64021 62,252 LD A,252 ;Set pointers to -4
64023 50,243,250 LD (ptr1lo).A ;Save channel 1 pointer
64026 62,124 LD A124

64028 50,245,250 LD {ptr2lo),A :Save channel 2 pointer
64031 62,251 LD A,251 ;Set high byte of pointers
64033 50,244,250 LD (ptr1 hi),A

64036 50,246,250 LD (ptrZhi).A

64039 219,63 IN A,(63) ;Get input status
64041 2303 AND 3 ;Mask for bits 0 and 1
64043 71 LD status, A ;Keep current status
64044 219,63 IN A,(63) ;Get input status
64046 2303 AND 3 ;Mask for bits O and 1

226

64048
64049
64050
64052

64053
64054
64055
64056
64058
64060
64062
64063
64065
64067
64068
64071
64073
64076
64080
64082
64085
64087
64090

64094
64097
64100
64103
64106
64107
64110
64112
64113
64115
64116
64117
64119
64120
64121
64123
64124
64126
64128

121 query

58,243,250 chan 1
198,4

50,243,250
221,42,243,250
24,12

58,245,250 chan2
198,4

50,245,250
221,42,245,250

221,115,0 store
2211141
221.117.2
58,247,250

61

50,247,250

40,28

123 count
1981

95

122

206.0

87

125

206,0

11

219,254

2301

40,10

Interfacing in machine code

LD CA :Keep current status

CP status ;Same status?

JR Zwait ;Wait till it changes

NOP ;Status has changed
;Determine which channel

LD AC :Retrieve new status

XOR status ~ ;Which channel?

LD status..C :Keep new status

CP1 :Channel 17

JR Z,chan1 Yes

CP2 ;Channel 27

JR Z,chan2 Yes

LD AC :Both channels at once

XOR 2 :lgnore channel 2 this time

LD status A

LD A.(ptr1) :Point to channel 1 counter

ADD A4 ;Update pointer

LD (ptr1),A ;Save pointer

LD IX,(ptr1) :Set IX to pointer

JR store :Store current time

LD A,(ptr2) ;Point to channel 2 counter
ADD A4 :Update pointer

LD (ptr2),A ;Save pointer

LD IX(ptr2) ;Set IX to pointer
;Save current clock

LD (1X+0).clocklo

LD (IX+1),clocklo

LD (IX+2).clockle

LD A.(evntctr) ;All events done?

DEC A

LD (eventctr)

JR Z.done :Quit if all events done

LD A.clockle ;Increment clock

ADD A1

LD clocklo,A

LD A,clockmid

ADC A0

LD clockmid,A

LD A.clockhi

ADC A0

LD clockhi,A

IN A.(254)

AND 1

JR Z,done

;Check keyboard
;Finish if SPACE pressed

227

The ZX Spectrum in science teaching

64130 219,63 IN A,(63) :Check input status
64132 2303 AND 3 ;Bits 0 and 1 only
64134 79 LDCA ;Save new status
64135 184 CP status :Has it changed?
64136 40.230 JR Z,count ;Continue if no change
64138 24,169 JR query ;Check which channel

64140 6,64 done LD B,40H ;64 stores to be altered
64142 221,33,248,251 LD IX,0FBF8H ;End store
64146 221,126,4 nxsub LD A(IX+4)

64148 221,150,0 SUB (IX+0)
64152 221,119.4 LD (IX+4).A
641556 221,126,5 LD A(IX+5)
64158 221,158.1 SBC A (IX+1)
64161 221,119,56 LD (IX+5).A

64164 221,126,686 nxsub LD A(IX+6)

64167 221,158.2 SBC A,(IX+2)

64170 2211196 LD (IX+6).A

64173 221,45 DEC IX

64175 221,45 DEC IX

64177 221,45 DEC IX

64179 221,45 DEC IX ;Point to next block
64181 16,219 DJNZ nxsub

64183 251 El

64184 201 RET

Fast digital to analogue conversion

In Chapter 5 we noted that the frequency of the alternating voltage produced by a
DAC via BASIC was limited to a few hertz. 1 stated then that for higher
frequencies it is necessary to do all the calculations in BASIC beforchand and
store the results in the memory as individual bytes. These are then collected one
by one from the memory and sent directly to the DAC using a machine-code
routine. The waveform is created by BASIC before the machine-code routine is
called, This gives a table of numbers between 0 and 255 held in a set of sixty-four
locations called store. The machine-code routine outputs these numbers to the
DAC one by one. A delay routine similar to that used before alters the rate at
which the numbers are sent to the DAC and thus changes the frequency of the
waveform. The length of this delay is loaded from BASIC into a location called
count before the DAC output routine is called.

PROGRAMMABLE OSCILLATOR (16) is based upon this routine. As with
the BASIC programs already discussed. different waveforms are produced by
altering the defining equation. The waveform can be inspected by connecting the
DAC output to a cathode ray oscilloscope or turned into sound with a suitable
amplifier and loudspeaker.

228

e

Interfacing in machine code

PROGOSC
count = OFAG64
store = OFACOH to OFAFFH

64000 243 DI
64001 33,192,250 rpt LD HL,store ;Set pointer
64004 126 nxt LD A, (HL) ;7 T-states

64006 211,127
64007 58,100,250

QUT (127).A :11 T-states
LA A,(count) ;13 T-states

64010 61 dly DECA ;16*(count}-5

64011 32,253 JR NZ.dly ;12 T-states unless end
64013 44 INC HL :Point to next data
64014 32,244 JR NZ.nxt

64016 62,127 LD A127 ;Quit if SPACE pressed
64018 219,254 IN A,(254)

64020 246,224 OR 224

64022 254,255 CP 255

64024 40,231 JR Z,rpt ;Continue if no key
64026 251 El

64027 201 RET

The period varies from about 3750 T-states to about 265 000 in steps of 1024,
depending upon the value in count. This gives a frequency between 13 Hz and
1 kHz approximately. Higher frequencies can be obtained by putting more than
one cycle of the waveform into store to begin with, although this will reduce the
resolution obtained. Even so,-a mere eight voltage levels per waveform cycle still
gives acceptable sound. in which case the frequency can be as high as 8 kHz.

This routine is incorporated in the program PROGRAMMABLE
OSCILLATOR (16), which is very useful for producing alternating voltages.
From an electronic engineering viewpoint, its waveform can have almost any
shape, soitcan be used to analyse the behaviour of filter circuits. For this purpose
the output from the DAC can be boosted as described in Chapter 5.

Fast analogue to digital conversion

In Chapter 5 we saw how readings from the ADC may be plotted on the screen. If
the measured voltages are changing rapidly however. BASIC is too slow and a
machine-code routine is needed to collect the readings and to process them or
store them for future use.

One possible application is to read the voltage input at two channels and to plot
them directly on the screen with the plot routine described in Chapter 7. The
resultis rather like a cathode-ray oscilloscope in X-Y mode., with the advantage of
producing a fixed display. It can thus be used for transient phenomena as before,
The important part of the routine is as follows:

229

The ZX Spectrum in science teaching

32000 62,0 nxt LD A0

32002 211.31 OUT (31).A ;Select channel O

32004 62,50 LD A50 ;Delay for 100 microseconds
32006 61 dlyl DEC A

32007 32,253 JR NZ.diy1

32009 219,31 INA,(31) ;Read y-value

32011 47 CPL sInvert it

32012 254,176 CP 176 ;Too big for screen?

32014 56,2 JR Ciinrng :Acceptable value

32016 62,175 LD A175 ;Reset to maximum value

32018 87 inrng LD DA :Keep y-coordinate

32019 62,1 nxt LD A1

32021 211,31 QUT (31),A ;Select channel 1

32023 62,50 LD A,50 :Delay for 100 microseconds
32025 61 dly2 DEC A

32026 32,253 JR NZ.dly2

32028 219,31 IN A(31) :Read y-value

32030 79 LDCA ;Keep x-coordinate

The remainder is the plot subroutine similar to that previously described.

The four-channel chart recorder (22) uses the same procedure, except that the
values read from the ADC channels are first divided by eight and then plotted at
various heights on the left of the screen. After cach reading. the screen is scrolled
to the right with the scroll routine described in Chapter 7.

Storage oscilloscope

The program STRGOSC (18) reads up to four channels in rapid succession. The
minimum time between starting and completing a conversion is about 200
microseconds. which is the best that can be achieved considering the erratic
nature of the Spectrum clock. Because of the time needed to collect the results, the
minimum delay between readings is about 250 microseconds or 40 000 readings
per second. To decrease this is simply a matter of increasing the delay loop. This
provides a maximum delay of about fifty milliseconds (twenty readings per
second). Lower rates than this can conveniently be handled in BASIC.

At full speed the time required to collect all 256 readings is only a few
milliseconds. There thus has to be some means of telling the routine when to
begin taking readings. A hardware solution is to use the relay contacts to begin the
transient, but this can cause contact bounce problems (themselves of the order of
a few milliseconds).

The software solution to this problem is based on the assumption that nobody
is interested in the voltage until it starts to change. So the routine waits until it
changes, before beginning to store readings regularly. In practice. ordinary
fluctuations due to electrical noise means that the required change should be
substantial, a change in the lowest four bits at least. This is a little complicated,

230

Interfacing in machine code

since the change may be positive or negative, so the absolute value of the change
must be retrieved before the comparison can be made.

A faster and simpler technique is to compare the measured ADC value with a
previously declared threshold value. When the measured value exceeds the
threshold, then readings can begin. Unfortunately, this method means that the
program cannot be used with, say, capacitor discharge. where the voltage
gppruuchcs the threshold from the other direction. In such cases the JR NC
instruction needs to be replaced by JR C. The ‘wait for a change’ method covers
both eventualities. although it may take too long for some purposes (e.g. the light
output from a flashgun). Which technique is used depends on the application.
Only channel 0 is monitored in this manner. so channel 0 should be used to signal
the first event from which readings are taken. The full assembly listing is given
below.

STORAGE OSCILLOSCOPE
63996 243 DI
63997 33,6.251 LD HL.OFBOG6 ;Set pointer to stores

64000 620 LD A0 :Select channel 0
64002 205,100,250 CALL get :Collect ADC reading
64005 87 LD DA ;Save input voltage
64006 620 wait LD AO ;Select channel 0
64008 205,100,250 CALL get :Collect ADC reading
64011 95 LD EA :Save new input voltage
64012 146 SUB D :Find difference

64013 48,1 JR NC,pos ; Positive difference

64015 47 CPL ;Negative so invert
64016 230,240 pos AND 240 :Eliminate lower four bits
64018 40,242 JR Z,wait ;Wait till change is larger
64020 115 LD (HL).E :Save first reading
64021 58,200,250 next LD A (chan) ;Get number of channels
64024 2542 cP2 ;Two channels?

64026 56,38 JR C.one ;No one channel only
64028 36 INC H ;Next channel

64029 62,1 LD A1 ;Select channel 1

64031 205,100,250 CALL get ;Collect ADC reading
64034 119 LD (HL).A ;Save input voltage
64035 58,200,250 next LD A,(chan) :Get number of channels
64038 2543 CP3 ;Three channels?

64040 56,23 JR C.two :No two channels only
64042 36 INC H :Next channel

64043 62,2 LD A2 :Select channel 2
64045 205,100,250 CALL get ;Collect ADC reading
64048 119 LD (HL),A ;Save input voltage

64049 58,200,250 next LD A.(chan) ;Get number of channels

231

The ZX Spectrum in science teaching

64052 2544 CP 4 ;Four channels?
64054 56,38 JR Cthree ;No three channels only

64056 36 INC H ;Next channel
64057 62,3 LD A3 :Select channel 3
64059 205,100,250 CALL get ;Collect ADC reading
64062 119 LD (HL),A :Save input voltage
64063 37 DECH

64064 37 three DECH

64065 37 two DECH

64066 62,127 one LDA127 ;Check keyboard
64068 219,254 IN A,(254)

64070 246,224 OR 224

64072 254,255 CP 255

64074 32,22 JR NZfinish

64076 44 INC L :Next set of readings
64077 40,19 JR Zfinish ;Finish if all done

64079 58,201,250 LD A,{count) ;Delay between readings
64082 40,6 JR Z.dlydn

64084 71 LD BA

64085 205,110,250 dly Call delay ;Delay for 100 microseconds
64088 16,251 DJNZ dly 7
64090 62,0 diydn LD AO ;Take next set of readings
64092 205,100,250 CALL get

64095 119 LD (HLLA

64096 24,179 JR next ;Do next channel
64098 251 finish El

64099 201 RET

64100 21131 get OUT (31).A

64102 205,110,250 CALL delay

64105 219,31 IN A,(31)

64107 201 RET

64108 0 NOP

64109 O NOP

64110 62,50 delay LD A.50

64112 61 diy2 DECA

64113 32,253 JR NZ.dlys

64115 201 RET

The problems over timing led to the development f)fa faster ADC based upon
the ZN448 device described in Chapter 5. This has its own inbuilt clock. 50 the
erratic time-keeping of the Spectrum is eliminated. It is also much faster. A single
delay loop provides data acquisition rates between 1000 and 59 000 readings per
second. This is ideal for fast transient phenomena such as the light output froma
flashgun.

232

Interfacing in machine code

The ZN448 normally has to be triggered to start a conversion. As used in the
Griffin AD-pack, this is done automatically every ten microseconds. In the
program FAST ADC. the data is read with IN A(127). To achieve the maximum
acquisition rate, the INI instruction is used. This reads the data from the I/O
address contained in the C register, stores it in the location pointed at by the HL
register pair, increments this pointer and decrements the B register, which acts as
a counter - all this in fifteen T-states!

FAST ADC

64000 243 DI

65001 33,6,251 LD HL,0FBO6 :Set pointer to stores
64004 58,192,250 LD A,(count) ;Get delay time
64007 95 LDEA ;Save it

64008 6,250 LD B.250 ;250 readings in counter

64010 14,127 LD C.127 ;Set C to ADC read address
64012 219,127 IN A(127) :Read ADC

64014 87 LD DA :Save reading

64015 219,127 nxtry IN A,(127) ;Read ADC again

64017 119 LD (HL)A ;Save new reading

64018 146 SUB D ;Compare with previous reading
64019 48,1 JR NC,pos ; Positive result

64021 47 CPL :Negative - so invert

64022 230,192 pos AND 192 :Eliminate lower six bits

64024 40,245 JR Z.nxtry ;Wait till change is larger
64026 44 . INCL ;Point to next position
64027 83 next LD D,E ;Get delay time

64028 21 dly DECD ;Delay between readings
64029 32,253 JR NZ.dly

64031 237,162 INI ;Take next reading, etc.
64033 32,248 JR NZ,next :Take next reading
64035 251 El

64036 201 RET

Itis almost impossible to make up a single data acquisition program to cover all
desirable types of data. The advantage in developing your own routines is that
they can then be made to fit any requirements. It is hoped that the discussions in
this chapter will allow you to do this and thus make your microcomputer even
more cost effective.

233

9 Dedicated systems

‘I see you're admiring my little box.” the kqighl
said in a friendly tone. ‘It's my own invention.
(Lewis Carroll, Through the Looking Glass)

Permanent programs

Most microprocessors spend their time doing one set of tasks only. It is only the
few that find their way into personal or school microcomputers, that are given
different tasks from day to day at the whim of the programmer. The
microprocessor inside a calculator has been preprogrammed o carry out
calculations only. It will not be asked to play tunes or measure time intervals or
temperatures etc. The microprocessor in a supermarket checkout will not be
asked to play space invaders as well. The microprocessors in these systems are
said to be dedicated to their one function. The programs that run these dedicated
systems are usually frozen in ROM. because there is no need to change them once
they have been written and debugged.

ROM is produced by a silicon chip manufacturer exactly as requested by the
purchaser. The program is placed in the ROM by a process called mask
programming. An individual ROM may contain 32 000 or more bytes. which is
256 000 different bits. Each bit of every byte in the ROM is initially switched on.
Then. by a photographic process, each individual bitis marked. either as one tobe
left on, or one to be switched off. The final process then permanently switches
each bit off, or leaves it on, according to the information printed on it. Once the
program has been produced in this way. it is not possible to alter it later. The
program remains in the ROM even if the power supply to the equipment is later
switched off. When this ROM is coupled to a microprocessor, the latter will only
carry out the program in the ROM. o

The making of the masks for a ROM is a very expensive business and it is not
done unless several thousand such ROMs are required. In the development stage,
therefore, before the bugs have been ironed out, a different form of ROM is used,
called programmable ROM. One version of this is especially useful: it is called
EPROM or electrically programmable ROM. This allows programs to be
burned in, just as with ROM, but it is also possible to erase this program and burn
in a different one, if the first is found to contain bugs. The equipment needed to
burn a program into an EPROM is not too expensive (fifty pounds or so for an
add-on unit to the Spectrum), but it is probably not worth the average user getting
such equipment. Local polytechnics and FE colleges usually possess it and are
willing to let visitors make use of it under supervision.

234

Dedicated systems

EPROM enables the programmer to store machine-code routines permanently
in his or her microcomputer, which can then be called from BASIC in the usual
way (RANDOMIZE USR nnnnn). The exact value for ‘nnnnn’ depends upon
where in the memory space the EPROM is placed. The most convenient EPROM
is the 2516 (also known as the single-rail 2716), which can hold 2048 eight-bit
bytes. A larger EPROM is the 2532, which can hold 4096 bytes.

Because the 48K Spectrum has so much memory. it has none to spare for an
EPROM, although there are ways of overcoming this. The 16K Spectrum,
however. has plenty of space for such EPROMS, addresses from 8000H to FFFFH
are generally free. Thus EPROMSs could be connected to the Spectrum and the
routines contained in them could be accessed via machine code. Several
commercial concerns make such add-ons for the Spectrum and also give details
of how to make use of them (see Suppliers).

For physics teachers an obvious resident program for an EPROM is the timing
routine discussed in the last chapter. To get such a routine into the EPROM, the
hexadecimal code is usually typed into an EPROM burner and checked. Then a
freshly erased EPROM is placed in one socket and the burn commences. Each
binary code in turn is sent to its correct address and stored there by sending a
voltage pulse along the program line. It takes one or two minutes for this process,
after which the EPROM can be installed in the microcomputer. An EPROM can
be erased again (for example, if a mistake has been made or if a better version has
been developed) by exposing it to the correct dose of ultra-violet radiation. Any
establishment with an EPROM burner will probably possess such a UV eraser
100,

If this sounds a little complicated. then there is EAROM (electrically
alterable ROM). This too can be programmed and retains its program after the
power has been switched off. Its program can be changed later, without having to
erase the whole program first, since each memory location can be changed
independently. EAROM is unfortunately much more expensive than EPROM.
but does not need special equipment to program it. It is simply placed into an
extension socket and treated like ordinary RAM. only it retains its program after
the machine is switched off.

RAM has such tiny power requirements that a suitable battery can maintain a
program in it for years after it has been programmed. Some RAM units therefore
have a built-in battery to retain a program after the main power has been switched
off. Here too, it is not necessary to buy special burner and eraser equipment, since
the device behaves like any other RAM from the point of view of the
microcomputer,

A stand-alone system

The above system is still just a microcomputer with some special resident
routines. It would be possible, however. to buy a Spectrum, add an EPROM and
use it purely as a dedicated system. Fundamentally this is what has happened to

235

The ZX Spectrum in science teaching

some older microcomputers: for example my PET is now used exclusively Al‘or
wordprocessing. However. the manufacturers of. say. video games. are not going
10 do it like this. For them most of the microcompuler. such as lhc_ BASIC
interpreter and the keyboard are unnecessary. Their proccd_urc is to design c_;u:h
system specially, using only those components necessary for the task required.
This is also a technique which we can use too. ' o
A dedicated system will need some means of collecting data and giving
information back to the user. In a microcomputer this is the typewriter K 'boa_rd
and video display. In a control system this could b?' a scnaur:mfl a few switches for
input and an electromagnetic relay as an output (Ior_cxamplc. in a system to open
the garage doors automatically upon the arrival of a motor car). In both cases.
however. some sort of input/output device will be needed and the technigues
discussed in Chapter 4 are relevant in this context.))
The system will also need a microprocessor and some RAM for storing variable
data. The amount of RAM depends upon the system: a garage doors system may
only need a few bytes, whereas a programmable electronic organ may need
thousands. Finally the dedicated system will need its program stqrcd in ROM or
EPROM. Small dedicated systems can be developed around muhl-purpusc chips.
such as the RRIOT (which contains ROM. RAM. input and output lines and a
timer). The user's program is burned into the ROM when itis mapulncn_lrcd. Thlb
is combined with a microprocessor to give a two-chip system. thc ultimate is a
single chip containing all the RAM. ROM and 1/O and the microprocessor as
well. Such a chip is called a single-chip microcomputer.) 7
These reductions in chip count give an obvious saving in cost. since the inter-
connections between the different parts of the system have already been made. All
that is needed is a small printed circuit board to take the remaining components
and a socket for the single-chip microcomputer and the complete system is

ready. ¢)
LTI-;L: brings us right up to the present in microelectronic lcc_hno]ogy._ﬁncc itis
the use of such dedicated systems that is so profoundly al'fcclmg our lives. They
are found in washing machines, sewing machines. knitl.ing n_lachmcs. motor cars,
supermarket checkout points. video games and electric train sets. They _‘unlrol
robots in factories. word processing equipment in the ol‘ﬁcc‘and automatic slocrk
delivery and despatch in the warchouse. What else they will do in the future is
speculation. but 1 think it is safe to bet that those who can understand and
program microelectronic systems are more likely to be employed than those who

cannot.)

This book was originally intended to be a part of a complete inlroducu‘on o
microelectronics. beginning with transistors and ending with compl.etc single-
chip microcomputers. This proved to be too amhiliou'\ and the emphasis was thus
changed 10 using an existing microcomputer (in this case the Spectrum) to do
most of the tasks that a microprocessor normally does. 1 do want to c():nplglc the
picture, however. and to encourage some of you to build your own dedicated
systems.

236

Dedicated systems

The first problem with any dedicated system is the number of connections
needed. By the time an EPROM.. an I/O device. RAM. address decoders and a
microprocessor are connected together. the resulting forest of wires is quite
alarming. A printed circuit board (PCB) is a much better proposition. It isn't
difficult to make a PCB but. by the time the above devices have been added. the
cost is well over fifty pounds. So much of the Spectrum is concerned with
graphics. that it probably isn’t sensible to use one of them in a dedicated system
either. but this does not apply to the ZX81. The basic ZX81 now costs less than
thirty pounds. so it seems far more sensible to use a ZX81. an 1/O device and an
EPROM instead. There are hundreds of simple systems that could be produced
with this arrangement. although some expertise in machine-code programming
and a good knopwledge of the Z80 are needed before such a project is tackled. The
input to this system would be the normal keyboard. but there is probably little
point in using a TV set for output. It is perfectly possible to connect a seven-
segment display (like those in a calculator) to the I-pack and use that for feedback
to the user. Different characters are displayed by controlling each segment of each
digit independently. Calculator-style displays also have the advantage of being
inexpensive. By alternating between upper and lower case letters. it is even
possible to display enough letters of the alphabet to present such words as
rTEAdy’. 'yES' and 'no’.

At first sight it looks as if the requirements of the eight-digit. seven-segment
display arc impossible to meet. The number of segments is actually eight. because
of the decimal point. and this mightimply that 8 X 8 or 64 lines are needed to drive
all eight digits. In practice. only one digit is displayed at any one time and only the
segments needed for that particular digit are switched on. This technique is called
multiplexing and is the standard procedure for this type of display. (If the
number 8388888888 is entered into a pocket calculator, which is then waved
about. it becomes obvious that this is happening.) With this method we can use
the same eight lines to run the segments for all of the digits and we only need eight
more lines, one for each digit.

To provide temporary storage for input data and to allow a working space for
the operating system some RAM is necessary. Rarely need this be more than the
normal I K. buta 6K RAM pack can just as easily be added to a dedicated system.
The program needed to run the system will need routines for handling the display,
for sending and receiving the data and for processing it and for interacting with
BASIC. This might sound a great deal. butin fact machine code is very sparing in
its use of memory. so the two kilobytes of a single 2716 EPROM are more than
enough.

Originally I made several stand-alone systems based upon a 6502 system (see
The BBC microcomputer in seience teaching). 1 actually wrote the programs
for these systems using an Apple Il microcomputer. The address and data lines
from an Apple connector socket were connected 1o a VIA and the outputs from
this went to the keyboard. display and I/O lines of my system. The programs were
written in the Apple’s memory and when they had been debugged. the

237

The ZX Spectrum in science teaching

hexadecimal codes were copied out by hand and changed to fit thAdCLiIC ted
system. They were then taken to Glasgow University and typed into their EPROM
burner. The EPROM was then plugged into the final system. To my utter
astonishment it worked first time! One of the systems [made using the Apple was
a simple microprocessor tutor, now marketed by Griffin and Geo rge as the Mini-
microprocessor. 1 have been hooked on dedicated systems ever since.

The method proposed for using the ZX81 is. however. very much easier to
handle. Currently under development is a complete dedicated laboratory
instrument. When finished, this will allow any measurements to be maclg[hrgugh
the I-pack interface and its peripherals (for some details. see The ZX81 in science
teaching). More importantly. since such an instrument is h-(_nsed upon mass-
marketed equipment. itis very much cheaper than a purpose hunil‘laho_rulory a ‘d
(and more "versatile” too!). I hope that others will follow this path and discover for
themselves the joys of building dedicated systems.

Suppliers

At the time of writing several commercial interfaces are available for the ZX
Spectrum microcomputer. Soon there will be an overwhelming supply. Unfor-
tunately. the cost of an interface is no guide to its facilities. So what criteria should
be used in selecting one for use in the science laboratory?

A useful laboratory interface would have a fast analogue converter. perferably
with up to four channels. A data acquisition rate of at least 10 000 readings a
second is needed for measuring transients. The inputs may be a.c. or d.c. and it
should be possible to alter the sensitivity and the bias. so that. for example. the
voltage across a capacitor could be measured as it discharged through an
inductor. A useful facility would allow the alteration of the threshold level at
which the measurements begin to be taken.

The interiace ought also to provide a digital to analogue converter with
sufficient power output to drive current through an LCR circuit or a lamp. Even |
better would be an a.c. output with controllable frequency as described in Chapter 5.

The digital side should have relay outputs for driving motors and heaters and
TTL outputs for driving other integrated circuits. Inputs that can be driven
directly from a switch or a photocell are also desirable. The minimum number of
oulputs is four and at least two inputs are needed. Eight of cach is very nice if the
expense can be justified. Ideally the interface should have a 5V output too. with
sulficient current capability (o drive LEDs, etc

There is no commercially available interface that yet fulfils all of these
requirements. Efforts are being made by Griffin and George to come up to the
above specification and the Interspec (called the I-pack by Griffin and George) is
the first of a series of stackable units, which. when put together. will meet most
needs. A DAC-pack (digital to analogue converter) and an AD-pack (very fast
analogue to digital converter) are already available and a conversion unit
(Expand-pack) is planned. which will allow the measurement of the complete
range of voltages and currents encountered in the laboratory.

For further details contact:

Griffin and George Lid
Ealing Road
Wembley HAO 1HJ

Printer interface

The ZX printer is not good enough for readable listings. The listings in the
Appendix were obtained with an Epson MX80 printer connected to the Spectrum
via a Centronics interface. available from:

The ZX Spectrum in science teaching

Kempston Microelectronics
180a Bedford Road
Kempston

Bedford MK42 8BL

Electronic components

Chapters 4 and 5 describe several interfacing circuits that can casily be made in
school. Components are the biggest problem. but those mentioned are normally
available from one of the following suppliers:

Farnell Electronic Components Lid.
Canal Road
Leeds LS2 2TU

RS Components Ltd.
13-17 Epworth Street
London EC2P 2ZHA

Verospeed Components
Stansted Road

Boyatt Wood

Eastleigh

Hants SO5 42Y

240

Bibliography

Introductory books are not included

BASIC
L. Poole and M. Borchers, Some Common BASIC Programs, Osborne/McGraw
Hill, 1979

J. 8. Coan, Advanced BASIC, Hayden Book Co. Inc., 1977
1.S. Gilder, BASIC Computer Programs in Science and Engineering, Hayden Book
Co. Inc., 1980

R. E. Myers, Microcomputer Graphics with Apple IT examples, Addison Wesley

Assembly language
L. A. Levanthal, Z80 Assembly language programming, Osborne/McGraw Hill
I Logan, Understanding your Spectrum, Melbourne House, 1982
L. Logan and F. O'Hara, The Complete Spectrum ROM disassembly, Melbourne
House, 1983

L Sinclair, Introducing Spectrum machine code, Granada Publishing. 1983

W. Tang (ed.). Spectrum machine language for the absolute beginner. Melbourne
House, 1982

Electronics
Malmstadt, Enk and Crouch, Electronics and Instrumentation, Benjamin/
Cummings Pub. Co, Inc., California, 1981

Education
C. Doerr, Microcomputers and the 3Rs, Hayden Book Co. Inc., 1979

241

Program listings

Program 1 DIGITAL ELECTRONICS

1 REM DIGITAL ELECTRONICS
2 REM by R.A.Sparkes
3 REM begun Sept. 12th. 1983
4 PRINT AT 10,10; "Please wait"
S5 G0 SUB 3000: REM define graphics
7 CLS : PRINT AT 0,6;"DIGITAL ELECTRONICS"
8 PRINT AT 2,0;"Chcose a topic for study by"
9 PRINT AT 3,0;"pressing one of these numbers.”
10 PRINT AT 5,0;"1 Two input logic gates”
11 PRINT AT 7,0;"2 Three input logic gates”
12 PRINT The 2-to-4 decoder”
13 PRINT User-defined logic gates®
14 PRINT The bistable”
1S PRINT AT 15,03"6 The binary counter”
16 PRINT AT 17,0;"7 The shift register”
17 PRINT AT 19,0;"8 The astable multivibrator®
18 PRINT AT 21,0;"9 The monostable mul tivibrator"
19 REM Initialize variables
2ater e 0: REM i t data from Interspec
=0: LET b=0: LET c=0: input data
§é t:; :13.-5: LET oldb=S: LET oldc=S: LET edge=0: LET cp=0: REM input status
23 LET p=11: REM pointer to truth table
24 LET inputs=43: LET outputs=&3
25 DIM e$(4,30)
26 LET a$=INKEY$: IF a$<"1" OR a$>"9" THEN G0 TO 26
27 LET choice=VAL as: REM menu value of choice
28 GO 'T0 100%choice
100 IF INKEY$<>"" THEN GO TO 100
101 CLS : PRINT AT 0,7;"LOBIC GATES"
102 PRINT AT 2,13"Select desired function by
103 PRINT AT 4,1;"pressing one of these numbers”
104 PRINT AT 6,5;"1 AND*

105 PRINT AT 8,5;"2 0R*

106 PRINT AT 1G,5;"3 NOT A*

107 PRINT AT 12,5;"4 EXCLUSIVE-OR"
108 PRINT AT 14,5;"5 EQUIVALENCE"
109 PRINT AT 16,5;"6 NAND*

110 PRINT AT 18,5;"7 NOR™

111 LET s$=INKEY$

112 IF s$<"1" QR s$>"7" THEN 60 TO 111
113 LET s=VAL s$: REM menu value of function
114 LET clda=S: REM reset old values
120 REM display functions and terminals
121 CLS

122 GO SUB 1000: REM display box

123 LET 1=s¥10+1090

124 GO SUB 1

125 PRINT AT 4,12;p$

126 PRINT AT 4,23;"(Joutput®

127 PRINT AT 0,11;"LOGIC GATES"

128 60 SUB 1200: REM draw truth table

242

Program listings

129 REM display inputs

130 IF s=3 THEN 60 SUB S000

131 IF s¢>3 THEN GO SUB 5100

132 PRINT AT 21,0;"Press C to change or E to end.”
150 LET a$=INKEY$

151 IF as="c" OR a$="C" THEN GO TO 100

152 IF as="e" DR'a$="E" THEN GO TO &

153 B0 SUB 9000: 'REM Get input status

154 IF same THEN GO TD 150

160 REM change input values on screen

161 IF s=3 THEN PRINT AT 4,4;a: 60 T0 170
162 PRINT AT 5,4;b

163 PRINT AT 3,4;a

170 REM display line of truth table

171 PRINT AT p,2;" "

172 PRINT AT p,25;" .

173 PRINT AT p,19;* *

174 LET p=12+2b+4ta

175 PRINT AT p,2;" "

176 PRINT AT p,25;" "

180 REM calculate output data

181 LET 1=s£100+2000: 60 SUB 1

182 REM Send output to logic board

183 PRINT AT 4,245va

184 PRINT AT p,19jvo

185 DUT outputs,Bivo

185 GO TO 150

200 IF INKEY$<>"" THEN 6O TO 200

201 CLS : PRINT AT 0,2;"THREE-INPUT LOGIC GATES®
202 PRINT AT 2,1;"Select desired function by "
203 PRINT AT 4,15"pressing one of these numbers"

204 PRINT AT &,5;"1 AND"
205 PRINT AT 8,5;"2 DR*

209 PRINT AT 10 NAND"
210 PRINT AT NOR" .

211 LET s$=INKEYS

212 IF s$<*1% O s$>"4" THEN G0 TO 211

213 LET s=VAL s$: REM menu value of function

218 LET olda=S: REM reset old values

220 REM display functions and terminals

221 €S

222 GO SUB 1000: REM display box

223 LET 1=11008(s=1)+1110% (=2} +11508 (s=3) +1160% (5=4)
224 60 SUB 1

225 FRINT AT 4,12;p%

226 PRINT AT 4,23;"()output”

227 PRINT AT 0, 11;"LOGIC BATES"

228 GO SUB 1400: REM draw three-input truth table
229 REM display inputs

230 G0 SUB 5200: REM Add three inputs

232 PRINT AT 21,0;"Press C to change or E to end."
250 LET a$=INKEY$

251 IF as="c" OR a$="C" THEN 60 TO 200

252 IF as="e" OR a$="E" THEN GO TO &

253 B0 SUB 9000: REM Get input status

254 IF same THEN GO TO 250

250 PRINT AT 2,4;a

261 PRINT AT 4,4;b

262 PRINT AT 6,4;c

270 REM display line of truth table

271 PRINT AT p, 13" "

The ZX Spectrum in science teaching

272 PRINT AT p,26
273 FRINT AT p,19
274 LET p=ll+c+2¢b+ata

275 PRINT AT p,13" =

276 PRINT AT p,263" »

280 REM calculate output data

281 LET 1=s#50+2750: GO SUB 1

282 REM Send output to logic board

283 PRINT AT 4,24;v0

284 PRINT AT p,19:ivo

285 OUT outputs,B%vo

286 GO TO 250

300 IF INKEY$<>"" THEN GO TO 300

301 CLS

302 PRINT AT 0,10;"2-TO-4 DECODER"

303 GO SUB 1070: REM display box

304 FRINT AT 4,0;"address”

305 PRINT AT 3,7;"A()"

306 PRINT AT 5,7;"Bt 1"

307 PRINT AT 7,4;"data()"

0B GO SUR 1600: REM draw data chart

309 PRINT AT 21,0;"Press E to end.”

310 LET olda=S: LET 1=2: LET p=0: REM initialize variables
311 PLOT 108, 116: : PLOT 108,115: DRAW 42,p
312 LET as=INKEY “ THEN GO TO &
313 GO SUB 9000: REM Bet input status

314 IF same THEN 60 TO 312

319 PRINT AT 1,20;" "

320 PLOT 108,116: DRAW OUER 1342,p: FLOT 10B,115: DRAW OVER 1342,p
321 PRINT AT 3,%:a

322 PRINT AT 5,%;b

323 PRINT AT 7,%c

324 LET 1=8-4%a-2fb

325 PRINT AT 1,205¢

324 LET p=55-1%8

327 PLOT 108,116z DRAW 4Z,p

328 PLOT 108,115: DRAW 42,p

330 REM change outputs

331 LET vo=(2*(2ta+b)) AND ¢

332 OUT outputs,vo

333 60 TO 312

400 IF INKEY${>"" THEN B0 TO 400

410 CLS : PRINT AT 0,7;"USER-DEFINED LOGIC"

411 PRINT AT 3,03"This program allows you to make®
412 PRINT AT 5,0;"your own logic gates.”

413 PRINT AT 7,0;"You may only use the variables®
418 PRINT AT 9,0;"4, B, C (or a, b, €}, Oor 1"

415 PRINT AT 11,0;"and say whether W, X, Y or 1"
416 PRINT AT 13,0;"is to produce the output.”

417 PRINT AT 15,0;"You may only use the Boolean™
418 PRINT AT 17,0; "operators NOT, AND and OR and”
419 PRINT AT 19,0;*brackets () in your expression.”
420 PRINT AT 21,0;"Press SPACE to continue.”

421 IF INKEY$<>" " THEN GO TO 421

422 CLS : PRINT AT 0,7;"USER-DEFINED LOGIC"

423 PRINT 0;"Here are a few "

424 PRINT Output: z
425 PRINT Expression: NOT(A AND b} OR 1*

426 PRINT Dutput: tor X)*

427 PRINT AT 13,0;"Expression: OR (a AND NOT B)"

428 PRINT AT 14,0 "Operators NOT, AND and OR MUST ": PLOT 208,39: DRAW OVER 13

429 PRINT AT 18,0;"be typed as SINGLE KEYSTROKES"
430 PRINT AT 21,0;"Press C to continue.”

431 IF INKEY$<>"c" AND INKEY$<>“C* THEN GO TO 431
434 REM initialize boolean expressions

435 LET e$(1)="0"

436 LET e$(2)="0"
437 LET e$ (3
438 LET e$(4)="0"
440 CLS : PRINT AT 0,7;"USER-DEFINED LOGIC"
441 GO SUB 1070

442 PRINT AT 3,7;"A()"

443 PRINT AT
444 PRINT AT
446 LET w=0: =0: LET y=0: LET
449 PRINT AT 20,0;s8;

450 INPUT "Qutput w, %, y or :? (s to stop)“;o$
451 IF CODE 0$>%0 THEN LET o$=CHR$ ((CODE o$)-32)
452 IF o$="S" THEN GO TO &

453 IF o$3"I" OR o$<"W" THEN GO TO 450

455 INPUT “Boolean expression? "y
456 PRINT AT 12428 ((CODE o0$)-B7),0;5%: PRINT s8
457 PRINT AT 12+28((CODE o%)-87),0;08;" = ";f$

460 LET a=0: LET b=0: LET c=0
461 LET olda=S: REM reset status
483 REM evaluate expression
454 IF of="W" THEN LET es(l)=f%
X" THEN LET e$(2)=f¢
Y" THEN LET es$(J)=fs
w " THEN LET es\a)=fs

PRINT AT 20,0;"Press N for %) g
471 PRINT AT 21,0i"0r £ to stop.s
472 LET as=
s THEN GO TO &
N OR a$="n" THEN GO TO 449
475 .60 SUB 9000: IF same THEN 60 TO 472
476 LET AL (es(1))
477 LET AL (e$(2))
478 LET y=VAL (e$(3))
479 LET z=VAL (e$(4))
480 REM change screen logic levels
481 PRINT AT 3
482 PRINT AT
483 PRINT AT
484 PRINT AT
48S PRINT AT
48B4 PRINT AT
487 PRINT AT
450 REM change outputs
491 LET vo=8fz+48y+28x+w
492 OUT autputs,vo
495 GO TO 472
500 IF INKEY$<>"" THEN GO TO S00
501 CLS : PRINT AT 0,8;“THE BISTABLE"
502 PRINT AT
503 PRINT AT
S04 PRINT AT
505 PRINT AT
506 PRINT AT
507 PRINT AT 14,0
508 LET s$=INKEYS$
509 IF s$<"1" DR s¢>"3* THEN GO TO S08
510 CLS : BO SUB 1090: REM draw bistable

The SET-RESET bistable"
The D-input bistable”
The J-K bistable”

Press 1, 2 or 3 to select one.”

Program listings

I ———

The ZX Spectrum in science teaching

511 PRINT AT 2,27;
512 PRINT AT 8,25; "NOT-0"

513 LET olda=5: REM reset status flag

514 PRINT AT 21,0;"Press C to change or E to finish®

519 GO0 TO S10+108VAL =%

520 REM SET-RESET bistable

521 PRINT AT 3,3;"SET ()": PRINT AT 7,3;"RESET()"

522 60 SUB 1700: REM Draw data chart

523 LET ks=INKEYS: IF k$="e" OR k$="E" THEN GO TO &

524 IF k$="c" OR ks$="C" THEN B0 TO 500

525 GO SUB 9000: IF same THEN GO TO 523

526 IF (a AND c) OR (NOT a AND NOT c) THEN GO SUB 575: GO TO 523
527 LET v=(c AND NOT a) OR NOT (a AND NOT c)

=28 GO SUB 570

529 GO TO 523

530 REM D-input bistable
531 PRINT AT 3,33* D ()": PRINT AT 5,3;"CLK ()"
532 GO SUB 1900: REM draw data chart

533 LET v=0: 6O SUB 570

534 LET k$=INKEYS: IF ks="e" OR ks="E" THEN GO TO &
535 IF ks="c" OR k$="C" THEN GO TO 500

534 B0 SUB 9000: IF same THEN G0 TO 534

537 IF edge=0 THEN GO SUB 575: GO TO 534

538 LET v=a: GO SUB 570

539 GO TO 534

540 REM J-K bistable

541 PRINT AT 5,3;" CLK ()"1 PRINT AT 3,3;" J ()"
542 PRINT AT 7,3;" K ()"

543 GO SUB 1800: REM draw data chart

544 LET v=0: GO SUB 570

545 LET k$=INKEYS: IF k$="e" OR k$="E" THEN GO TO &
544 IF k$="c” OR k$="C" THEN GO TO 500

547 GO SUB 9000: IF same THEN GO TO 545

548 IF cp=0 THEN 60 SUB 575: GO TO 545

549 IF NOT a AND NOT c THEN GO SUE 575: GO TO 545

550 IF NOT a AND c THEN LET v=0: B0 SUB 570: GO TO 545
551 IF a AND NOT c THEN LET v=1: GO SUB 570: GO TO 545
552 IF a AND c THEN LET v=NOT v: 6O SUB 570: G0 TD 545
570 REM Change outputs on logic board and screen

571 LET vo=88v+NOT v .

572 OUT outputs,vo

573 PRINT AT 2,20;v

574 PRINT AT B,20;NOT v

575 PRINT AT 3,%;a

576 PRINT AT 5,9;b

577 PRINT AT 7,%;c

580 RETURN

400 IF INKEY$<>"" THEN 60 TO 400

401 REM Binary counter

£10 CLS : PRINT AT 0, 10;"BINARY COUNTER"

411 60 SUB 1070: REM display logic board

512 PRINT AT INPUT() *

613 FRINT AT
514 PRINT AT RESETZ ()"

615 PRINT AT 11,0;"Pulses are counted in binary®
416 PRINT AT 13,05 "when applied to the INPUT."

617 PRINT AT 15,0;"At least ONE pé the RESET inputs”
518 PRINT AT 17,0; "nust be LOW 4o this to happen.”
619 FRINT AT 21,03"Fress E to finish®

620 LET prev=0: LET vo=4: LET olda=5

630 IF INKEY$="e" OR INKEY$="E" THEN GO T0 &

631 GO SUB 9000: REM Bet input status

246

632 IF same THEN GO TO 630

633 IF b AND c¢ THEN LET vo=0: LET prev=0: GO TO 440
634 IF prev=1 AND a=0 THEN LET prev=0: LET vo=vo+l
&35 IF a=1 THEN LET prev=1

436 IF vo=16 THEN LET vo=0

446 GO SUB 650

547 60 TO 430

650 LET g=vo: LET z=0: LET y=0: LET x=0: LET w=0
651 IF q»7 THEN LET g=g-B: LET z=1i

652 IF 93 THEN LET g=q-4: LET y=1

653 IF q>1 THEN LET q=g-2: LET x=t

654 LET w=q

655 PRINT AT 2,205z

656 PRINT AT 4,203y

657 PRINT AT 4,203

658 PRINT AT 8,20;w

459 OUT outputs,vo

460 PRINT AT 3,9;a

461 PRINT AT 5,9;b

662 PRINT AT 7,%c

466 RETURN

&90 STOP

700 IF INKEY$<>** THEN GO TO 700

701 REM Shift register

710 CLS : PRINT AT 0,10;"SHIFT REGISTER®

711 GO SUB 1070: REM display logic board

712 PRINT AT 5,3;" CLK ¢)"

713 PRINT AT 7,3; "INPUT()"

714 PRINT AT Each clock pulse shifts the data"
715 PRINT AT 13,0;"along by one bit."

716 PRINT AT "The data is entered through the"
717 PRINT AT 17,0;"INPUT terminal.”

719 PRINT AT 21,0;"Press E to finish"

720 LET vo=4: LET olda=5

725 GO SUB &50 N

730 IF INKEY$="e" DR INKEY$="E" THEN GO TO &
731 B0 SUB 9000: REM Get input status

732 IF same THEN B0 TO 730

733 IF cp=0 THEN GO SUB &40: 6O TD 730

735 LET vo=votvo+c

735 IF vo»15 THEN LET vo=vo-16

740 GO SUB 450

750 60 TO 730

800 IF INKEY$<>"" THEN GO TO 800

BIO CLS : PRINT AT 0,7;"ASTABLE MULTIVIBRATOR®
811 GO SUB 1090: REM display logic diagram

B12 PLOT 0,153: DRAW Sé&,0: PLOT 88,44: DRAW 55,0
B1Z PRINT AT 3,0;"INHIBIT ()*

B14 PRINT AT 21,0;"Press E to finish"
815 PRINT AT 12,0;"The astable is free-running”
816 PRINT AT 14,0;"as long as INHIBIT is HIGH."
817 PRINT AT 14,0;"1f this terminal goes LOW,"
818 PRINT AT 18,0; "the oscillations stop."
819 IF INKEY$="e" OR INKEY$="E" THEN GO TO &
820 OUT outputs,8
821 PRINT AT 2,20;"1"
822 PRINT AT 8,20; "0"
B23 PAUSE 20
B25 GO SUB 9000: REM Get input status
826 PRINT AT 3,9;a
B30 OUT outputs, 1
831 PRINT AT 2,20;"0"

Pragram listings

The ZX Spectrum in science teaching

832 PRINT AT B,20;"1"
B33 PAUSE 20
835 G0 SUB 9000: REM Get input status
B34 PRINT AT 3,%;a
B38 IF INKEY$="e" OR INKEY$="E" THEN 60 TO &
B39 IF a=0 THEN GO TO B30
B840 GO TO B1S
900 IF INKEYS{>"" THEN 60 T0 900
910 CLS : PRINT AT 0,5;"MONOSTABLE MULTIVIBRATOR™
911 GO SUB 1090: REM display logic diagram
912 PRINT AT 7,1;"INPUT2 ()"
213 PRINT AT S,1;“INPUT1 ()"
914 PRINT AT 21,0;"Press E to finish”
915 PRINT AT 11,0;"The monostable is normally®
914 PRINT AT 13,0;"in the reset state.”
917 PRINT AT 15,0;"A LOW-HIGH change at INPUT1 or"
918 PRINT AT 17,0; "HIGH-LOW change at INPUT2 will®
919 PRINT AT 19,0;“create a single output pulse.”
920 REM begin
921 OUT outputs,1
922 PRINT AT 2,20;"0"
923 PRINT AT 8,20;"1"
924 GO SUB 9000: REM Get input status
925 LET prev=c
926 PRINT AT 5,9;"b"
927 PRINT AT 7,9;"c”
930 1F INKEY$="g" OR INKEY$="E" THEN GO TO &
931 60 SUB 9000: REM Get input status
932 IF same THEN GO TO 930
33 IF edge THEN GO TO 950
934 IF prev=c THEN GO TO 926
935 IF c=0 THEN LET prev=0: GO TO 950
936 6O TO 925
950 OUT cutputs,8
951 PRINT AT 2,2
952 PRINT AT 8,20;"0"
953 PAUSE 20
954 GO TO 920
1000 REM display box
1010 PRINT AT 2,11
1020 PRINT AT 3,11;
1030 PRINT AT 4,11
1040 PRINT AT 5,1 P
1050 PRINT AT &, 113 "uooocoooooop”
1060 RETURN
1070 REM display logic board

tannnnnnnnnp *

] "
P laaaaa

Program listings

1096 PRINT AT &,11;"p p
1097 PRINT AT 7,11; "pa p*
1098 PRINT AT 8, 11;"p ty p*
1099 PRINT AT 9,11; “uooooooonoooop™: RETURN
1100 LET p$=" AND ": RETURN

1110 LET ps=" RETURN

1120 LET RETURN

1130 LET RETURN

1140 LET : RETURN

1150 LET RETURN

1160 LET "z RETURN

1200 REM draw truth table

1210 PRINT AT B, 8; “tnnntnnntnnnnnnnp*
1220 PRINT AT 9,8;"p A p B poutput p*
1230 PRINT AT 10,B; “uoooucocucoooooop *
1280 PRINT

1300 PRINT
1310 PRINT AT 18,8;"p 1 p 1 p u
1320 PRINT AT 19, B; "uo0ouooouncacooop ™
1350 RETURN

1400 REM draw 3-input truth table

1410 .PRINT AT 8,6;"faaaiaaaiaaaiaaaaaag”
1420 PRINT AT 9,45"c A c B ¢ C coutputc”
1430 PRINT AT 10,4;" jaaabaaabaaabaaaaaak®

1250 PRINT ::-
1260 PRINT p"
1270 PRINT p"
1280 PRINT p"
1290 PRINT p"
P
P

1440 PRINT AT 11,65"c 0 c Q0 c O ¢ c"
1450 PRINT 0OcOcilc [
1460 PRINT 0clcoc [
1470 PRINT Octlelc "
1480 PRINT 1e0coOc c*
1490 FRINT 1cOcdc c”
1500 PRINT lelcoc c"
1510 PRINT ieléele c”
1520 PRINT AT 19,4;"daaahaaahaaahaaaaaae”

1530 RETURN
1600 REM draw data table

1610 PRINT AT 11, 3;“tnnntanntnnnannnrannnannng *
1620 PRINT AT 12,3;p A p B paddressg output p*
1630 PRINT AT 13,3; "uoooucooucooocoosonoooooop”
1640 PRINT AT 14,3;"

1071 PRINT AT 1,11;"tnnnnnnnnnnnnp”
1072 PRINT AT 2,11 (11 p
1073 PRINT AT 3,11 p"
1074 PRINT AT 4,11 Ly p"
1075 PRINT AT 5,11;"pa p"
1076 PRINT AT &,11;"p (X p”
1077 PRINT AT 7,11 p"
1078 PRINT AT 8,113"p (om p*

1079 PRINT

AT 9,11; "uocooooocoooop

1080 RETURN
1090 REM bistable

1091 PRINT AT 1,11;"tnnnnnnnnnnnnp”
1092 PRINT AT 2,11) p"
1093 FRINT AT 3.11 '
1094 PRINT AT 4,11 p*
1095 PRINT AT 5,11;"pa 'S

248

P PP q p"
1650 PRINT pPOp 00 g W pr
1660 PRINT plp 01 g x pv
1670 PRINT poOp 10 q ¥ p°
1680 PRINT plp 11 z p"
1690 PRINT LOOOUBBOD00OSOBABERCCR
|

1699 RETURN
1700 REM draw bistable data chart

1710 PRINT
1720 PRINT
1730 PRINT
1740 FRINT
1750 PRINT
1760 PRINT
1770 PRINT
1780 PRINT
1790 PRINT

1799 RETURN

AT 11,3; "tnnntnnntnnnanrnnnnnnnnp
AT 12,3;"p SpRp 0 g NOT-Q p"
AT 13, 3; "uonoucoouooooosoooocooop
AT 14,5 p p q B
AT 15,3;"p 0 p 0 p no change "

p

p*
AT 17,33 Gplp 1 g O p*
AT 18,3;"5 1 p | p no change p*
AT 19, 3; "uooouoooucoooosooocacoop

1800 REM draw J-K bistable data chart

The ZX Spectrum in science teaching

*tnnnntnntnrnnnnrannnnnng®
pCLK pd pKq @ q NOT-@ p"
LUOOOOUDOUDS0000S0000000p *
P P P9 Q p"
pO pOg no change p*
pOplg 0g 1 p"
plply 1gq 0 p*
p1 plg changeover p"
000OUOOUOS0000S0000000P

1810 PRINT AT 11,
1820 PRINT AT 12,
1830 PRINT AT 13,
1840 PRINT AT 14,
1850 PRINT AT 15,
1840 PRINT AT 16,
1870 PRINT AT 17,
1880 PRINT AT 18,
1890 PRINT AT 19,
1899 RETURN

1900 REM draw D-inputbistable data chart

1910 PRINT AT 11,3; "tnnnntnnntnnnnarnnnnnnnnp®
1920 PRINT AT 12,3;*pCLK p D p @ q NOT-@ p"
1930 PRINT AT 13, 3; "uo0oouooouoo000§00000000)]
1940 PRINT AT 14,3;p p P q

1950 PRINT AT 15,3;"p ~ pOp 0 g 1 P"
1960 PRINT AT 14,33p ~ pip 1 g o p*
1970 PRINT AT 17,3;"p p X p no change p*
1980 PRINT AT 18,3; “UOCOCUOOOUCOOD0S0000000aR "
1990 RETURN

2000 REM Determine outputs for each function
2100 REH AND function

2110 LET vo=a AND b

2150 RETURN

2200 REM OR function

2210 LET vo=a OR b,

2250 RETURN

2300 REM NOT function

2310 LET vo=NOT a

2350 RETURN

2400 REM EXCLUSIVE-OR function

2410 LET vo=1

2420 IF a=b THEN LET vo=0

2440 RETURN

2500 REM EQUIVALENCE function

2510 LET vo=0

2520 IF a=b THEN LET vo=1

2540 RETURN

2600 REM NAND function

2610 LET vo=NOT (a AND b)

2660 RETURN

2700 REM NOR function

2710 LET vo=NOT (a OR b}

2740 RETURN

2800 REM 3-input AND function

2810 LET vo=a AND b AND c

2820 RETURN

2850 REM 3-input OR function

2860 LET vo=a OR b OR c

2870 RETURN

2900 REM 3-input NAND function

2910 LET vo=NOT (a AND b AND c)

2920 RETURN

2950 REM 3-input NOR function

2940 LET vo=NOT (a OR b OR c)

2970 RETURN

3000 REM line graphics

3010 FOR i=0 TO 20

3020 FOR §=0 TO 7

3030 READ row

3040 POKE USR CHRS (i+144)+j,row

3050 NEXT j

P
P
P
P
ut

p"
p*

250

3070 NEXT i

3080 RETURN

3100 DATA ©,0,0,255,255,0,0,0

3110 DATA 16,14,16,255,255,16, 16,16

3120 DATA 16,16,1b,16,16,14,14,14

3130 DATA 16,16,16,31,31,0,0,0

3140 DATA 1b,164,1b,240,240,0,0,0

3150 DATA 0,0,0,31,31,16,16,16

3140 DATA 0,0,0,240,240,16,15,16

3170 DATA 16, 16,16,255,255,0,0,0

3180 DATA 0,0,0,255,255,16,16, 16

3190 DATA 1&,16,16,31,31,16,16,16

3200 DATA 1&,16,16,240,240,16,16,16

3210 DATA 128,128, 128, 255, 255, 128, 128, 128
3220 DATA 0,0,60,36,34,36,36,231

3240 DATA 255,0,0,0,0,0,0,0

3250 DATA 0,0,0,0,0,0,0,255

3260 DATA 128,128, 128, 128,128, 128, 128, 128
3270 DATA 1,1,1,1,1,1,1,1

3280 DATA 255,1,1,1,1,1,1,1

3290 DATA 1,1,1,1,1,1,1,255

3300 DATA 255,128,128,128,128,128, 128,128
3310 DATA 128,1 128,128,128,128, 128, 255
5000 REM Append inputs

5010 REM One input

5020 PRINT AT 4,1;"A ()aaaaa”

5030 RETURN

5100 REM Two inputs

5110 PRINT AT 3,1;"A ()aaaaa”

5120 PRINT AT S,13"B ()aaaaa”

5130 RETURN

5200 REM Three inputs

5210 PRINT AT 2,1;"A ()aaaaa"

5220 PRINT AT 4,1;"B ()aaaaa"

5230 PRINT AT &,13"C ()aaaaa”

5240 RETURN

9000 REM get input data

9010 LET a=0: LET b=0: LET c=0

9020 PAUSE 1

9025 LET g=(IN inputs)

9030 IF q>127 THEN LET g=q-128

9031 IF q>63 THEN LET g=q-84

9032 IF q>31 THEN LET g=q-32

9033 IF q>1S THEN LET gq=q-16

9034 IF q>7 THEN LET g=q-8

9035 IF q>3 THEN LET
9036 IF q»1 THEN LET b=
9037 LET a=q

LET g=q-4
+ LET g=q-2

9038 IF olda=a AND oldb=b AND oldc=c THEN LET same=1: RETURN

9040 LET cp
9050 IF edge=1 AND b=0 THEN LET cp=1
9090 LET edge=0

9100 IF oldb=0 AND b=1 THEN LET edge=1
9108 LET olda=a

9109 LET oldb=b

9110 LET oldec=c

9111 LET same=0

9112 RETURN

Program listings

The ZX Spectrum in science teaching

Program 2 LOGIC TEST

1 REM LOGIC TEST

2 REM by R.A.Sparkes

4 PRINT AT 10,10;"Please wait™

5 G0 SUB 3000: REM define graphics

10 DIM 1(10): REM number of options

20 LET a=0: LET b=0: REM input data from Interspec
30 FOR m=1 TO 10: LET 1(m)=0: NEXT m

40 LET s=0: REM menu value of function

40 LET inputs=63
70 LET outputs=63
80 LET score=0

90 FOR m=1 TO 10
95 60 SUB 5000
99 LET attempt=0
100 CLS
102 PRINT "Question ";m
105 PRINT : PRINT “Which function®
104 PRINT : PRINT “is the board”
107 PRINT : PRINT “now making?"
108 PRINT : PRINT "Press a key from 0 to 9."

120 BO SUB 7000: REM draw gate
121 PRINT AT 11,0;"0. A AND B 1. A OR B"
122 PRINT AT 13,0;"2. NOT B 3. NOT A"
123 PRINT AT 15,0;"4. (NOT A AND B) OR (NOT B AND A)"
124 PRINT AT 17,0;"S.(NOT A AND NOT B) OR (A AND B)"
125 PRINT AT 19,0;"4. NOT(A AND B) 7. NOT(A OR B) "
126 PRINT AT 21,0;"8. NOT A AND B 9. NOT A OR B*
200 REM simulate the gate

220 LET olda=5: LET oldb=5: REM reset input status
230 GO SUB 6000

240 LET s$=INKEY$: [F s$="" THEN GO TO 230

250 IF s$<"0" OR s$>"9" THEN GO TO 210

260 LET s=(CODE s%)-48
340 REM check the response
350 IF s=n THEN GO TO 400
IS5 LET attempt=1

340 REM wrong response
345 CLS

370 FLASH 1: PRINT AT 2,5;"WRONG": FLASH 0

375 PRINT

376 GO SUB 1000+s

380 PRINT AT 5,0;"Press key C to try again.”
“Press key A for the answer.”

I90 LET 1$=INKEY$: IF 13<>"c" AND 1$<>"A" AND 1$<{>"C" AND 1${>"a® THEN GO TO 3
0

395 IF 1s="c" OR 1$="C" THEN B0 TO 100

396 CLS

397 PRINT “Check the truth"

398 PRINT : PRINT "for yourself®

399 60 TO 450

400 REM correct response

410 CLS

420 IF attempt=0 THEN LET score=score+l

430 IF attempt=0 THEN PRINT "Correct first time"

440 IF attempt=1 THEN PRINT "Correct this time"

450 REM display gate

470 GO SUB 7000

480 GO SUB 1000+n

500 REM display truth table

505 GO SUB 1200

Program listings

510 FOR a=0 TO 1
520 FOR b=0 TO |
530 BO SUB n
540 LET p=12+28a+4h
550 PRINT AT p,1%;vo
540 NEXT b
570 NEXT a
SBO PRINT AT 21,0;"Press Q for next guestion.”
590 LET rows=13
500 PRINT AT row,2;" "
610 PRINT AT row,25;" .
615 LET alda=S: LET oldb=S: REM reset input status
420 GO SUB 5000
630 LET row=12+28a+4tb
640 PRINT AT row,2;"
450 PRINT AT row,25;
460 IF INKEY$="g" THEN GO TO 890
470 B0 SUB &000: REM read input status
700 IF same THEN GO TO &40
750 GD TO 00
890 NEXT m
900 REM score routine
?10 CLS
920 PRINT AT 3,0;"You got "jscore;” correct.”
930 IF scored THEN PRINT AT 5,0;"This is poor. Repeat the test.”
740 1F score<7 AND score)3 THEN FRINT AT 5,0;"This is fair but not good.”: PRI
NT AT 7,03"You may wish to repeat the test.”
::g ;D:corem THEN PRINT AT 5,0;"This is a good score. Well done."
1000 PRINT AT 3,23; "AND": RETURN
1001 PRINT AT 3,23; "OR": RETURN
1002 PRINT AT 3,22;"NOT B": RETURN
1003 PRINT AT 3,22;"NOT A": RETURN
1004 PRINT AT 3,22;"EX-OR": RETURN
1005 PRINT AT 3,22; “EQUIV™: RETURN
1006 PRINT AT RETURN
1007 PRINT AT RETURN
1008 PRINT AT 2,22;“NOT A": PRINT AT 4,22;"AND B": RETURN
1009 PRINT AT 2,22;"NOT A": PRINT AT 4,22;“OR B": RETURN
1200 REM draw truth table
1210 PRINT AT 8,8;"tnnntanntnnnnnnnp®

1310 PRINT AT 18,8;"p L p 1 p
1320 PRINT AT 1%,8; "ucoouccoucoooosop”
1350 RETURN

2000 REM AND function

2010 LET vo=a AND b

2050 RETURN

2100 REM OR function

2110 LET vo=a OR b

2150 RETURN

2200 REM NOT B function

2210 LET vo=NOT b

2250 RETURN

1220 PRINT A p B poutput p*
1230 PRINT uoooucooucoooooop”
1240 PRINT P P B p"
1250 PRINT pPOpoOp p*
1260 PRINT PP P B’
1270 PRINT AT 14,8;p O p 1 p B
1280 PRINT AT 15,8;"p p p p"
1290 PRINT 5P 1p0Op p"
1300 PRINT AT 17,8;"p p p pe

p

P

The ZX Spectrum in science teaching

2300 REM NOT A function

2310 LET vo=NOT a

2350 RETURN

2400 REM EXCLUSIVE-OR function
2410 LET vo=1

2420 IF a=h THEN LET vo=0
2440 RETURN

2500 REM EQUIVALENCE function
2510 LET vo=0

2520 IF a=b THEN LET vo=1
2540 RETURN

2600 REM NAND function

2610 LET vo=NOT (a AND b)
2660 RETURN

2700 REM NOR function

2710 LET vo=NOT (a OR b}

2760 RETURN

2800 REM NOT A AND B function
2810 LET vo=(NOT a) AND b
2850 RETURN

2900 REM NOT A DR B function
2910 LET ve=(NOT a) OR b
2950 RETURN

3000 REM line graphics

3010 FOR i=0 TO 20

3020 FOR

§=0 10 7

3030 READ row

3080 POKE
3050 NEXT
3070 NEXT

USR CHRS (i+144)+j,rom
i
i

3080 RETURN

3100 DATA
3110 DATA
3120 DATA
3130 DATA
3140 DATA
3150 DATA
3160 DATA
3170 DATA
3180 DATA
3190 DATA
3200 DATA
3210 DATA
3220 DATA
3240 DATA
3250 DATA
3260 DATA
3270 DATA
3280 DATA
3290 DATA
3300 DATA
3310 DATA

0,0,0,255,255,0,0,0
16,16,16,255,255,14,15,16
16,16,158,16,16,16,16,18
16,16,16,31,31,0,0,0

16,16, 16,240,240,0,0,0
0,0,0,31,31, 16,18, 16
0,0,0,240,240, 16,14, 16

16, 18, 16, 255,255,0,0,0

0,0, 0,255,255, 16, 1,16
16,16,16,31,31,16,16,14

18,16, 16,240,240, 16,16, 16

128, 128, 128, 255,255,128, 128,128
1,1,1,255,255,1,1,1
255,0,0,0,0,0,0,0
0,0,0,0,0,0,0,255

128, 128, 128,128, 128, 128,128,128
1,1,1,1,1,1,1,1
255,1,1,1,1,1,1,1
1,1,1,1,1,1,1,255

255,128,128, 128,128,128, 128,128
128, 128, 128, 128, 128,128, 128,255

4000 REM collect input status
4010 LET a=0: LET b=0

4011 PAUSE 1: LET g=IN inputs
4012 IF q»127 THEN LET g=q-128
4013 IF q>63 THEN LET q

4014 IF

4015 IF g»15 THEN LET g=g-16
4030 IF g7 THEN LET q=q-8
4080 IF >3 THEN LET g=q-4
4050 IF q>1 THEN LET b=1: LET g=q-2

254

4060 IF q>0 THEN LET a=1

4070 LET same=0

4100 IF olda=a AND oldb=b THEN LET same=1
4110 LET olda=a: LET oldb=b

4120 RETURN

5000 REM choose function

5010 LET n=INT (RNDX10)

5020 IF 1(n+1)<>0 THEN 60 TO 5010
5030 LET 1(n+1}=1

5S040 LET fn=2000+100%n

5050 RETURN

6000 REM organize the gate

6010 GO SUB 4000: REM collect input status
8015 IF same THEN RETURN

4020 PRINT AT 2,1B;a: PRINT AT 4,18;b
6030 REM compute output

6040 GO SUE +n

4050 REM send output

6060 OUT outputs,Btvo

6070 PRINT AT 3,30;vo

6080 RETURN

7000 REM draw gate

7010 PRINT AT 1,21;"tnnnnnnp"

7020 PRINT AT 2,16;"A()ap p*
7030 PRINT AT 3,21;"p 10~
7040 PRINT AT 4,16;"B()ap P
7050 PRINT AT 5,21;"uoooooop®

7070 RETURN

Program 3 LEAST SQUARES PLOT

1 REM least sguares plot

1000 REM SERRESQEERTERRRRTERELY

1010 REM

1020 REM Collect data

1030 REM

1040 REM SEERRRERXEESRATARILULL

1050 REM

1060 CLS

1070 PRINT AT 0,4; "LEAST SQUARES PLOT®

1080 PRINT AT 3,0;"Enter the number of data pairs"
1090 INPUT "Number of readings *;numreadings
1095 DIM x (numreadings)

1096 DIM y (numreadings)

1100 PRINT AT 5,0;nunreadings

L110 PRINT AT 7,0;"Enter each pair of readings"
1120 PRINT AT 9,0;"in the order »-coord, y-coord."
1130 FOR n=1 TO numreadings

1140 INPUT “x-coord= ";x(n)

1150 INPUT “y-coord = ";y(n)

1155 PRINT x(n);" ";yin)

1160 NEXT n

1170 CLS : GO SUB B000: REM list readings

1180 PRINT : PRINT "Do you wish to change"

1190 PRINT : PRINT “any readings? Enter Y or N."
1200 INPUT a$

Program listings

1210 IF a$<3"N" AND a$<>"n" AND a$<>"Y" AND as{>"y" THEN GO TO 1200

1220 IF a$="N" OR as="n" THEN GO TO 2000

1230 PRINT : PRINT "Enter the reference number for"
1240 PRINT : PRINT "the data pair you wish to change"
1250 INPUT m

1260 IF m>numreadings THEN PRINT :

+ PRINT “You did not enter this.": GO TO 1170

The ZX Spectrum in science teaching

1270 PRINT : PRINT "Enter the new pair of readings.”
1280 INPUT "x-coord = "3x (m)

1285 INPUT "y-coord = "jy(m)

1330 60 TO 1170

2000 REM REEttEEXIETRRTLLLERL

2010 REM

2020 REM Determine axes

2030 REM

2040 REM $3Esstrgggisssissssxss

2050 REM

2060 CLS .
2070 PRINT : PRINT "Enter the x-axis maximum
2075 PRINT : PRINT "as a multiple 10.”

2080 INPUT xmax -
2090 PRINT : PRINT "Enter the y-axis maximum
2095 PRINT : PRINT "as a multiple 10."

2100 TNPUT ymax

2110 LET xscale=xmax/10

2115 LET yscale=ymax/10

5000 REM BRREEERETEREREREIRRELL

5010 REM

5020 REM Draw axes

5030 REM

5040 REM ##SREISREEEEEELRRLIRAL
5050 REM

5060 CLS

5070 PLOT 8, DRAW 0,175

5080 PLOT 0,8: DRAW 255,0

5100 FOR y=0 TO 10

5110 PRINT AT (21-28y),0;y8yscale
5120 NEXT y

5130 FOR x=0 TO 10

5140 PRINT AT 21, (x#3);x¥xscale;
5130 NEXT x

5200 REM $ERREERREEREETRRILRLLL
5210 REM)

5220 REM Linear regression

5230 REM

5240 REM SEEREEERERERERERTRTLLL
5250 REM

5270 LET xtotal=0

5280 LET ytotal=0

5290 LET sumxsquares=0

5310 LET sumsyproduct=0

5320 FOR n=1 TO numreadings

5330 LET x=24,5%x(n) /uscale

S340 LET y=14.58y(n)/yscale

5360 LET xtotal=xtotal+x

5370 LET ytotal=ytotal+y

5380 LET sumxSQUAares=sumxsquares+xix
5390 LET sumxyproduct=sumryproduct+xiy
5400 PLOT x+b,y+B: DRAW 4,0

5410 PLOT x+B,y+&: DRANW 0,4

5420 NEXT n

5430 REM $EEEIERTIEXEILARKEARAL
5440 .REM

S450 REM Calculate slope & intercpt
5470 REM EXEEEREIEREsesesssessy
5480 REM

5490 IF numreadings<2 THEN GO TO 5740

5500 LET slope=(numreadingsisum:yproduct-xtotal iytotal)/ (nuareadings¥sum:squares

256

S

Program listings

-atotal sxtotal)

5510 LET intsrc!pl=tytnta]—slupelatotal)fnumr!adxng!
5520 REM Etsssissxsssssidndsss

5530 REM

5540 REM Plot line

5550 REM

5560 REM I3RERSTEXESPedRtttssss
5570 REM

5580 REM plot minimum x-value

5585 LET x=0

5590 LET y=intercept+slopetx

5595 IF y<-B THEN LET x=x+10: GO TO 5590
5600 PLOT x+8,y+8

5810 LET x=245

5620 LET y=intercept+slopetx

5625 IF y>165 THEN LET x=x-10: GO TO 5620
5630 DRAW x+B-PEEK 23677,y+8-PEEK 23478

5640 INPUT “Press ENTER to alter readings";ps
5650 CLS

5660 GO SUE 8000

5670 GO TO 1230

8000 REM List readings

8010 CLS

8020 PRINT AT 0,0;"n x
8030 FOR n=1 TO numreadings
8040 PRINT n;* "sa(n),y (n)
8050 NEXT n

8060 RETURN

Program 4 MASTERMIND

10 REM Mastermind
20 DIM a(4)
30 DIM b(4)
40 DIM c(4)
50 DIM r(25)
60 DIM s(25)
70 DIM t(25)
80 DIM z (25)
100 PRINT AT 0,5; “MASTERMIND*
110 PRINT AT 3,0;"This g lets you guess®
120 PRINT AT 5,0;"four digits, chosen at random."
125 PRINT AT 8,0;"Press 1 if you want instructions”
126 PRINT AT 10,0; "otherwise press SPACE."
127 LET AS=INKEYS
128 IF As: " THEN GO TO 300
129 IF AS<O“i* THEN GO TO 127
130 CLS : PRINT AT 0,5; “MASTERMIND"
I35 PRINT AT 2,0;"The game works like this.” [
140 PRINT AT 4,0;"If I pick the sequence | 2 3 4% |
130 PRINT AT 6,0;"and your guess is 4 2 & 3, "
140 PRINT AT 8,0; "then you score cne BULL," |
170 PRINT AT 10,0;"because 2 is correct and is”
180 PRINT AT 12,0;"also in the correct position.” |
|
|

[

190 PRINT AT 14,0;"You score two COWS, because 4"
200 PRINT AT 16,0;"and 3 are correct digits, but"
210 PRINT AT 18,0,
220 PRINT AT 21,
230 LET AS=INKEY$ [
240 IF AS<>"g" AND ASC>"G" THEN GO TO 230

300 LET z=1

“they are in the wrong positions.*” |
i "Press G for a game." {

The ZX Spectrum in science teaching

330 CLS
340 PRINT AT 0,0;"Choose the difficulty level.”
350 PRINT AT 2,0;"This is the number of different”
360 PRINT AT 4,0;"kinds of digit I may choose from"
370 PRINT AT &,0;"Pick one from the following list®
380 PRINT AT 8,0;“Level 4 (digits 1,2,3 or 4)"
390 PRINT AT S (digits 1,2,3,4 or 5"
400 PRINT AT & (digits 1,2,3,4,5 or &)"
410 PRINT AT 14, 7 (digits 1 to 7)"

420 PRINT AT 16,0;"Level 8 (digits 1 to 8)"

430 PRINT AT 18,0;“Level 9 (digits 1 to 9)°

440 PRINT AT 21,0;"Press a number from 4 to 9.";
450 LET As=INKEY$: IF As="" THEN GO TO 450

455 LET A=VAL As

460 IF A<4 OR A7 THEN B0 TO 330

500 CLS

530 FOR n=1 TO 4

540 LET a(n)=INT (RND$A)+1

550 NEXT n

560 PRINT AT 2,0;“Now make your guess.”

570 PRINT : PRINT "Type out your next four digits,
580 PRINT

500 PRINT "type 0000 to be told the answer."

610 FOR i=1 T0 4

520 LET b#$=INKEY$: IF bs="" THEN 60 TO 620

425 FOR w=1 TO 20: NEXT w

530 IF bs=CHRS (12) AND i>1 THEN LET i=i-1: PRINT AT 20,5+2ti;" ": 60 TO 620
640 IF CODE b$>57 OR CODE b$<48 THEN GO TO 620

650 LET b(i)=vAL b

660 IF b(i)>A THEN PRINT AT 21,0;"That digit is out of range.”3: GO TO 620
670 PRINT AT 21,0;" "3

680 PRINT AT 20,5+2%i5bti)

490 NEXT i

700 IF b(1)=0 AND b(2)=0 AND b(3)=0 AND b(4)}=0 THEN GO TO 1140
710 LET r(z)=10008b{1)+100%b (2) +10%b (3)+b(4)

720 LET y=0: LET x=0

730 FOR n=1 TO 4: LET ci(n)=afn): NEXT n

740 FOR n=1 T0 4

750 IF cin)<>b(n) THEN GO TO 770

760 LET x=x+11 LET c{n)=99: LET bin)=100

770 NEXT n

780 FOR n=1 TO 4: FOR m=1 TO 4

790 IF c(n)<>b(m) THEN B0 TO BIO

800 LET y=y+1: LET c(n)=99: LET bim}=100

810 NEXT m: NEXT n

820 CLS

830 PRINT "GUESS BULLS COWS GUESS NO.*

840 LET s(z)=x: LET t(z)=y
850 FOR 1=1 TO z: PRINT r(l};*
850 IF x=4 THEN 60 TO 890
B70 LET z=z+i: IF z>15 THEN GO TO 940

880 GO TO 570

890 PRINT : PRINT "Hell done, you guessed correctly”
900 PRINT "You took "jz;" guesses.”

910 PRINT "Press Y to try again.”

920 LET q$=INKEY$: IF q$="" THEN GO TO 920

930 IF gs="y" DR g$="Y" THEN GO TO 330

935 .STOP

940 CLS : PRINT : PRINT “You don’t seem to know how"
950 PRINT : PRINT "to play. You should not just”
940 PRINT : PRINT "make wild guesses."

970 PRINT : PRINT "Use the information about®

“ailg” et "31: NEXT 1

258

Program listings

980 PRINT : PRINT “BULLS and COMS to help you."

990 PRINT

1000 PRINT : PRINT "Only change one digit each time"
1010 PRINT : PRINT "then you can see if your score"
1020 PRINT : PRINT "goes up or down."

1030 PRINT : PRINT "Press Y for a new game. "

1040 GO TO 920

1140 REM Bive correct answer

1150 CLS

1160 PRINT : PRINT “My

number is "; ali);a(2);al3)za(4)

1170 PRINT : PRINT ;"Do you see your difficulty?"
1180 PRINT : PRINT "Try again. Press Y."

1190 BO TO 920

Program 5 Z80 SIMULATION

1 CLEAR 45000

2 REM ICODE by L.D.Firth April 1983
3 PRINT AT 10,0) “When display shows,set CAPS LOCK"

4 B0 SUB 9000
8 G0 SUB 7000
10 LET ag=""

15 DIM r(24): REM registers

16 LET x#="ABCDEHL"
18 DEF FN r$(r)=("
19 DEF FN S$(r)=("

"+ETR¥ r) (LEN STR$ r TO)
“+STR$ r) (LEN STR$ r TO)

20 LET c=0: REM carry

22 LET tm&4

24 LET b=254&

26 LET =500

28 LET q=32000

30 LET z=c

32 LET m=0

35 LET a=32500: REM

prog counter

40 DIM m(10): REM memory
45 DIM s(6): REM stack

30 G0 TO 505

&0 INPUT a$: REM instruction
*

&1 LET 1=LEN a

42 RESTORE

&4 FOR n=1 TO 17
646 READ d¥

68 IF 1<LEN d$ THEN

60 TO 72

70 IF a$<>d$ AND a$(TO LEN d#)=d$ THEN GO TO %0

72 NEXT n
74 G0 TO 495

80 DATA "LD (*,“LD ","INC *,“DEC ","AND ","OR *,"XOR *,"CP “,*ADD ", "SUB *,“AD
N '

€ ","SBC ","JR","PUSH

" “pOp

“CALL ", "RE™

90 LET b$=a$(LEN d$+1 TO)

95 6O TO 95+S#n

100 IF 1<9 THEN GO TO 495

101 IF b$(TO 4)="HL)
102 IF b$="DE),A" OR

2" OR b$(TO 3)="Ix+" THEN GO TOD 1000
b$="BC),A" THEN GO TO 1000

103 IF b$(TO 4)="3200" THEN GO TO 1025

104 GO TO 495

105 IF 144 THEN GO TO 495
106 IF b#="A,(BC)* OR b¥="A,(DE)}" OR b$(2 TO)=",(HL}" OR b$(2 TD 1=5)="y (IX+"

THEN 60 TO 1120
107 1IF bs(TO Zr="IX,
THEN GO TO 1145

" OR b$(TO 3)="BC," OR b$(TO I)="DE," OR b¥(TO I)="HL,"

108 IF a$(5)="," AND b$>="A" THEN GO TO 1100+50%(b%{ TO Ir=ra, (")

109 GO TO 495

115 IF 1=5 THEN GO TO 1300
:1& IF Dt':(HLl" OR b$(TO 1-&)="(IX+" THEN GO TO 1430
17 IF b#=“BC" OR b$="DE" OR b$="HL" DR b$="IX" THEN GO TO 1470

117 GO TO 495

R EEE—————LS|

The ZX Spectrum in science teaching

130- IF LEN b$<4 THEN GO TO 1600
131 IF b$="(HL)}" OR b$(TO 4)="(Ix+" THEN GO TO 1300
135 IF 1<7 THEN GO TO 1700
136 IF bs="(HL)" THEN GO TO 1470
137 IF bs(TO 4)="(IX+" THEN B0 TD 1660
138 GO TO 495
155 IF 1<7 THEN GO TO 495
156 IF b$="A, (HL}" OR b$(TO 1-6)="A, (IX+" THEN
157 1F b$(TO 2)="A," THEN GO TO 2100
158 IF b$(TO 3)="HL," THEN GO TO 1800
159 60 TO 495
160 IF a$(3)=" * THEN GO TO 2200
161 IF 1<S THEN GO TO 495
162 IF (a$¢ TO S)="JRNC " OR a${ TO S)="JRNZ “} AND 1>5 THEN GO TO 2750
163 IF (as¢ TO 4)="JRC " OR a$(TO 4)="JRZ “) AND 1>4 THEN GO TO 2750
= 164 GO TO 495
170 GO TO 2400
175 IF a$(&)<="9" THEN 6O TO 2500
176 IF 1<8 THEN GO TO 495
178 GO TO 2750
180 IF bs="T" THEN GO TD 2600
1B1 LET c$=(b$+" ") (3 TO 4)
182 IF c$="NC* DR c#="NI" DR c#="C " OR c#="Z " THEN GO TO 2760
495 LET a$=as$+": ERROR"
496 GO TO 502
501 LET a=a+1+(a$(l)>="0% AND a$(l)<="F")+(a$(l)="X"}
503 PRINT AT 19,2; (a$+" ") ¢ TO 18)
510 PRINT AT 15,14;FN S$(a);AT 11,14;FN SSCINT m+q)3AT 7,12;FN r$(r (1)) ;AT 3.4
FN r$(r(2));AT 3,65FN r$(r(3))38T 7,2;FN r$(r(4))jAT 7,61FN r&(r(5)) ;AT L1,2f
r$(r(8))3AT 11,6;FN rEir(12));AT 15,3;FN S$(ber(F)+r (24));AT 3,115c3AT 3,14z
515 PRINT AT 3+4r(7),213"1";AT 14r(7),213" “;AT S+r(7),213" "
520 FOR n=1 TO 7
526 PRINT AT n#3-2,25;FN r$(min))
530 1F n<»>7 THEN PRINT AT 2+n,173FN rf(s(n))
535 NEXT n
540 LET di
400 GO TO &0
1000 LET vé=a$(9 T0O-1)
1001 IF b#>"I" THEN GO SUB 3500
1002 G0 TO 3000
1010 LET m=b#r (CODE a$(S5)—t)+r (CODE a%(&)-t)-g+dis
1015 IF m>.1 AND m<8 THEN LET mim)=v
1020 GO TO + .
1025 IF a%(9)<="0" OR a$(9)>="8" THEN GO TO 495
1027 LET m=VAL a¥(9)
1030 LET b#=a$(10 TO 1)
1035 IF b#="),A" THEN GO TO 1050 .
1040 IF b$="),IX* OR b#=") ,BC" OR b#="),DE" OR b$=") ,HL" THEN GO TO 1070
1045 GO TO 495
1050 LET v=r (1)
1052 LET a=a+2
1055 GO TO 1015
1070 LET mim+1)=r (CODE b#(3)-t)
1075 LET mim)=r (CODE b$ (4)-t)
1078 LET a=a+3
1080 B0 TO +
1100 LET v#=a$(é6 TO 1)
1102 GO TO 3000
1105 LET n=2.05
1106 LET vé=a$(4)
1107 LET val=v
1108 GO TO 3080
1110 LET r{CODE v$-t)=val
1115 60 TO +
1120 IF b$(4)="1" THEN GO SUB 3500
1122 LET m=b#r (CODE a$(7)-t)+r (CODE a$(8)-t)-g+dis
1125 60 SUB 4010
1130 60 TO 1105

60 TO 2000

N

260

Program listings

1150 IF b#{ TO 7)<>"A, (3200" THEN GO TO 495

1152 IF b#(B)>="1" AND b$(B)<="7" THEN LET r(l)=m(VAL b$(8))
1155 LET a=a+2

1160 GO TO +

1165 IF a$(7 TO 1-2)="(3200" THEN
1170 LET v#="0"+a%(7 TQ 1)

1172 LET n=2.7

1173 6O TO 3000

1175 LET a=a+1+(a$(5)
1180 GO TO 1485

1185 IF a$(12)<="0" OR a$(12)>=
1 LET m=VAL a$(12)

1188 LET r (CODE a%(S5)—t)=m(m)
1190 LET r(CODE a#(4)-t)=(a<7)*m(m+1)

1193 LET a=a+3

1195 GO TO +

1300 LET vé=a$(5)

1301 LET n=4

1302 GO TO 3080

1305 LET v=v+l-2#(a$C"E")

1310 GO SUB 2800

1315 LET r(CODE a#(l)-t)=v

1320 60 TO +

1430 IF b$(2)="1" THEN GO SUB 3500

1435 GO SUB 4000

1840 LET v=v+1-2# (a$<"E")

1445 GO SUB 2800

1450 LET m(m)=v

1455 GO TO ¢

1470 LET v=b*r (CODE a$(S)—t)+r (CODE a#(é)-t)
1475 LET v=v+1-2#%(a$<{"E")

1480 LET v=v+b*b# ((v<0)=(v>=h#b})

1485 LET r(CODE a$(6-(n<3))-t) =v-b#*INT (w/b)
1490 LET r (CODE a$(S-(n<3))-t)=INT (v/b)
1495 GO TO

1500 IF b$(2)="1" THEN
1510 GO SUB 4000

1550 60 TO 1605

1600 LET vE=b$

1602 LET n=7

1603 GO TO 3000

1605 LET d=d%((a$>"N")+(a$>"W"))

1610 POKE 65002,r (1)

1615 POKE &5004,d

1620 POKE &S006+d,v

1625 LET v=INT ((USR &5001)/b)

1630 6O SUB 2800

1635 LET r(1)=v

1640 GO TO ¢

1660 GO SUB 3500

1670 B0 SUB 4000

1685 G0 TO 1705

1700 LET v#=bs$

1704 GO TO 3000

1705 LET w=r(1)-v

1710 60 SUB 2800

1720 6O TO

1800 LET c#=a$(1-1 TO 1)

1802 IF NOT (c$="BC" OR c#="DE" OR c#="HL") THEN
1805 IF n=10 THEN GO TO 495

1810 LET v=b#r (8)+r (12)

1820 LET v=v+(b#r (CODE a$(8)-t)+r (CODE a$(%)-t)+cs ~

(o Loy Loy saer foaDe (ds t)+c#(n>10)) *56N (67-CODE a$)

1840 LET vev+b#b# ((v<0) - (v>=beb))

1850 IF n>10 THEN LET zav=0 ‘
1855 LET a=a+(n>10)

1840 GO TO 1485

2000 IF b$(4)="I" THEN GO SUB 3500

GO TO 1185

X

THEN GO TO 495

B0 SUB 3500

GO TO 493

261

The ZX Spectrum in science teaching

2010 GO SUB 4000
2030 G0 TO 2105
2100 LET vs=a$(7 TO 1)
2101 LET n=12
2102 GO TO 3000
2105 LET v=r (1)+{v+c#(a$(3)="C")) #S6N (67-CODE a%)
2110 GO SUB 2800
2120 LET r(l)=v
2130 GO TO
2200 LET vé=as$(4 TO 1)
2202 GO _TO 3000
2205 LET a=asv
2210 BO TO f
2280 GO TO 4 REM 1
T ri&)=2ecez: agre
::g: l;E NOT (B#esI%~ OR b#=+AF" OR bS="BC" OR be="DE" OR b$="HL") THEN GO T04
El
2410 IF n=15 THEN GO TO 2450
2415 LET v=b#r (CODE a#(&)-t)+r (CODE a¥(7)-t)
2420 IF r(7)=6 THEN B0 TO f
2425 LET s(r (7)+1)=INT (v/b)
2430 LET s(r(7)+2)=v-b#INT (v/b)
2840 LET r(7)=r (7)+2
2445 B0 TO §
2450 IF r(7)=0 THEN G0 TO ¢
2455 LET r(7)=r(7)-2
2440 LET r(CODE a$(S)-t)=s(r(7)+1)
2470 LET r(CODE a# (&) —t)=s(r (7)+2)
2475 LET flags=r (6)—4#INT (r(&)/4)
2480 LET c=INT (flags/2)
2485 LET z=flags-2%c
2490 GO TO f
2500 LET v&=a$(6 TO 1)
2502 GO TO 3000
2505 LET olda=a+3
2510 LET a=v-2
2315 LET v=olda
2520 GO TO 2420
2575 LET a=a+l
2580 GO TO +
2600 IF r(7)=0 THEN B0 TO f
2610 LET r(7)=r(7)-2
2620 LET asb#s(r(7)+1)+s(r (7)+2)-1
2630 60 TO + :
2680 GO TO +
2750 LET v#=b$(3+(b#(1)=
ET c#=b$(TO 2)
g;zg l;F celcS(1)m"C*)+z#(cH(1)="Z")+(NOT c)#(c$="NC"}+(NOT z)#(c$="NZ") THEN L}
-400% (n=17)
zlgo:?gezxu)o"c" AND c$<>"NC" AND c$(1)<>"Z" AND c$<(>"NZ" THEN GO TO 490
2780 GO TO 970+100%n
2800 IF N>3 THEN LET c=(v>=b)+(v<0)
2810 LET wev+b#((v<0)-(v>=b))
2820 LET z=v=0
2825 RETURN
3000 FOR d=1+(d$="JR" AND v$(1)="-") TO LEN v&
3010 IF v$(d)<"0" OR v$(d)>"9" THEN GO TO 3070
3020 NEXT d
3030 LET v=VAL v$
3040 IF d$="JR" AND INT (.S5+v/b)<>Q THEN GO TO 470
3050 IF v>=b+(n=2.7 OR d$="CALL “)®*&5280 THEN GO TO 490
3060 GO TO 905+100%n
3070 IF n>12 THEN GO TO 490
3080 FOR x=1 TO 7
3090 IF x$(x)=v$ THEN GO TO 3200
3095 NEXT x
3100 GO TO 490

» TO)

262

3200 LET v=r (CODE v$-t)

3210 GO TO 905+100%n

3500 LET dp=4+(n=2 OR n>8) #2+(n>1)

3505 IF b$(dp)<"O" OR b$(dp)>"7" THEN GO TO 490
3510 LET dis=VAL b$(dp)

3520 IF bstdp+1)<>")" THEN GO TO 490
3522 LET a=a+2

3525 IF LEN b#<dp+3 THEN RETURN

3530 LET v#=b$(dp+3 TO LEN b$)

3540 RETURN

4000 LET m=b#r (9)+r (24) -q+dis

4005 IF dis=.1 THEN LET m=b#r(8)+r(12)-q
4010 IF m<1 OR m>7 THEN GO TO 4050

4020 LET wv=m(m)

4030 RETURN

4050 LET v=0

4060 RETURN

7000 REM machine code routine for logic instructions
7010 POKE 45001,62

7011 POKE &45003,24

7012 POKE &500%5,230: REM AND

7013 FOKE 65007,71

7014 POKE &5008,201

7015 POKE 65009,246: REM OR

7016 POKE &45011,71

7017 POKE 65012,201

7018 POKE 65013,238: REM EXCLUSIVE-OR
7019 POKE &5015,71

7020 POKE &5016,201

7500 CLS
8000 PRINT AT 0,0; "faaaaaaaaaaaaaaaaaaaaag faaagAdd”
8002 PRINT “c C Z STACK © c c 1

daaae"
faaag"
c e 2%
daaae"

8004 PRINT “cfaaaiaaagfagfagfaaag
B800& PRINT "cc €c cc cc
8008 PRINT “cdaaahaaaedaedaec
8010 PRINT "c B cC Flagsc
8012 PRINT "cfaaaiaaag faaagc
8014 PRINT "ec ¢ cc cc

nnnnnn

ANANAAANANANANARNARNNAARN
a
w
v
»
o

80146 PRINT “cdaaahaaae daaaec daaae"
8020 PRINT "c D E ACC daaae faaag"
8022 PRINT "cfaaaiaaag faaaaaaag 4 c 4"
8024 PRINT "cc c c c c

8026 PRINT “cdaaahaase daaaaaaae
8028 PRINT "¢ H L ADDR REG
8030 FRINT “cfaaasaaag faaaaaaag
8032 FRINT “cc c c c
8034 PRINT “cdazaaaaae daaaaaaae
8036 PRINT “c X-INDEX PROG CNTR
BO38 PRINT "cfaaaaaaaaaaaaaaaaaag
8040 PRINT “cc c
B042 PRINT "cdaaaaaaaaasaaaaaaaae c daaae”
8044 PRINT "daaaaaaaaaaaaaaaaaaaaae 32000+"
8200 RETURN

9000 REM graphics

9001 RESTORE 9000

9002 FOR i=0 TO 11

9004 FOR j=0 TO 7

9010 READ row

9020 POKE USR CHR$ (i+144)+j,row

9030 NEXT j

9040 NEXT i

9100 DATA ©,0,0,255,255,0,0,0

Program listings

The ZX Spectrum in science teaching

9110 DATA 14,16,16,255,255,16,16,16
9120 DATA 16,16,16,16,16,16,16,16
9130 DATA 14,16,16,31,31,0,0,0

9140 DATA 16,16,16,240,280,0,0,0
9150 DATA 0,0,0,31,31,16,16,16

9160 DATA 0,0,0,240,240,16,16,16
5170 DATA 1&,16,16,255,255,0,0,0
9180 DATA 0,0,0,255,255,16,16,16
9190 DATA 1&,16,16,31,31,16,16,16
9200 DATA 1é,16,16,240,240,16,16,16
9210 DATA 16,32,64,255,64,32,16,0
9220 RETURN

9400 INPUT r
9500 LET r#=("
9600 PRINT r#
9700 G0 TO 9400

"+STR# r) (LEN STR$ r TO)

Program 6 REACTION TIMER

1 REM REACTION TIMER
10 CLEAR 31473
1S DIM g(4): REM digits for display
14 PRINT AT 10,0;"Loading data, pl
20 FOR 1=31474 TO 31516
30 READ x
40 POKE i,x
50 NEXT i
50 DATA 42,0,125,58,2
70 DATA 125,55,63,23,23
80 DATA 23,79,6,126,22
90 DATA 8,10,30,6,31
100 DATA 48,4,54,0,24
110 DATA 2,54,56,44,29
120 DATA 32,243,245,125, 198
130 DATA 26,111,241,12,21
140 DATA 32,230,201
200 FOR i=32256 T0 32375
210 READ x
220 POKE i,x
230 NEXT i
240 DATA 31,17,17,17,17,17,31,0
250 DATA 4,4,4,4,4,4,4,0
260 DATA 31,17,16,18,31,1,31,0
270 DATA 31,17,16,30,16,17,31,0
280 DATA 1,1,1,9,31,8,8,0
290 DATA 31,1,1,31,16,17,31,0
300 DATA 31,1,1,31,17,17,31,0
310 DATA 31,18,16,16,16,18,16,0
320 DATA 31,17,17,31,17,17,31,0
330 DATA 31,17,17,31,16,16, 16,0
340 DATA ©0,0,0,0,0,0,4,0
350 DATA 0,0,0,30,0,0,0,0
350 DATA 0,0,31,21,21,21,21,0
370 DATA 0,0,30,2,30,16,30,0
380 DATA 17,17,17,31,17,17,17,0
390 DATA 0,0,31,16,31,1,31,0
20 Pl 8; "REACTION TIMER"
220 PRy AT 3¢ ! +The screen will go blank betwesn®

550 PRINT AT 11,
560 PRINT AT 13,
570 PRINT AT 15,
580 PRINT AT 17,0; “displayed.”
590 IF INKEY$<>"g" THEN GO TO 590
600 LET max=S500+INT (SOORND)
610 PRINT AT 20,0;"The screen will soon go blank.”
620 FOR t=1 TO max
625 IF INKEY$="b" THEN GO TO 900
627 NEXT t
630 CLS
640 POKE 23472,0
650 IF INKEY$="b* THEN GO TO 700
650 IF PEEK 23472>100 THEN GO TO 800
&70 GO TO 450
700 LET rt=(PEEK 23472)/50
705 LET g=rt
710 B0 SUB 1000: REM sort and display digits
720 PRINT AT 1,5;"Press 'C’ for another go, "
730 IF rt<0.2 THEN LET as="EXCELLENT": B0 TO 770
740 IF rt<0.3 THEN LET a$="G00D": GO TO 770
750 IF rt<0.4 THEN LET a$="FAIR“! 6O TD 770
760 LET a$="PODR"
770 PRINT AT 19,0;“Your reaction time is ";as
780 IF INKEY$<>"c” THEN B0 TO 730
790 6O TO 500
800 PRINT AT 5,0;"WAKE UP 1riitirtiis
805 PRINT AT 10,0;“I am not going to wait all day '"
810 PRINT AT 15,5;"Press 'C' for another go."
B20 IF INKEY$¢>"c" THEN GO TO B20
B30 BO TO 500
900 REM detect cheating
905 CLS
910 PRINT AT 5,0;"No cheating please !"
920 PRINT AT B,0; “When you stop hitting *B’*
740 PRINT AT 10,0;"1 shall continue.”
950 PRINT AT 15,5;"Press 'C’ for another go. "
960 IF INKEYS<>"c" THEN GO TO 940
970 60 TO S00
1000 REM sort and display digits
1010 LET dp=0
1020 IF gq>=1 THEN LET g=q/10: LET dp=dp+1: GO TO 1020
1050 FOR i=1 TO 3
1050 LET digit=INT (q#10)
1070 LET q=gt10-digit
1080 'IF i<dp+1 THEN LET g(i)=digit
1090 IF i>=dp+1 THEN LET gli+1)=digit
1100 NEXT i
1110 LET g(dp+1)=10
1200 FOR i=1 TO 3
1210 POKE 32002,g(i)
1220 POKE 32001,89
1230 POKE 32000, (4%i)
1240 LET z=USR 31474
1250 NEXT i
1300 REM display s
1310 POKE 32002,13
1320 POKE 32001,89
1330 POKE 32000,24
1340 LET z=USR 31474
1350 RETURN

i "Immediately the screen goes"

Program listings

The ZX Spectrum in science teaching

Program 7 STOPCLOCK

1 CLEAR 63999

2 REM stopclock

3 PRINT AT 10,0;"Loading data, please wait.”
10 FOR i=45040 TO 65082

12

13

14 DATA 42,0,254,58,2

15 DATA 254,55,63,23,23

14 DATA 23,79,6,253,22

17 DATA 8,10,30,4,31

18 DATA 48,4,54,0,24

15 DATA 2,54,56,44,29

20 DATA 32,243,245, 125,198

21 DATA 26,111,241,12,21

22 DATA 32,230,201

25 FOR i=64768 TO 64895

26 READ x

27 POKE 1,%

28 NEXT i

29 DATA 31,17,17,17,17,17,31,0
30 DATA 4,4,4,4,4,4,4,0

31 DATA 31,17,16,16,31,1,31,0
32 DATA 31,17,16,30,15,17,31,0
33 DATA 1,1,1,%,31,8,8,0

34 DATA 31,1,1,31,16,17,31,0
35 DATA 31,1,1,31,17,17,31,0
36 DATA 31,16, 16,18, 16,16,15,0
37 DATA 31,17,17,31,17,17,31,0
38 DATA 31,17,17,31,14,16,16,0
39 DATA 0,0,0,0,0,0,4,0

40 DATA 0,0,0,30,0,0,0,0

41 DATA 0,0,31,21,21,21,21,0
42 DATA 0,0,30,2,30, 16,30,0
43 DATA 17,17,17,31,17,17,17,0
44 DATA 0,0,31,16,31,1,31,0
45 REM stopclock routine

50 FOR i=64000 TO 64376

51 READ x

52 POKE i,x

53 NEXT i

S4 DATA 62,0,50,0,252,50,1,252,50,2

S5 DATA 252,50,3,252,50,4,252,0,0

s6 DATA 62,12,50,2,254, 62, 24,50,0,254
57 DATA 62,88,50, 1,254,205, 16,254,0,0
=8 DATA &2,13,50,2,254, 62,24,50,0,254
59 DATA 62,89,50,1,254,208, 16,254

50 DATA &2,10,50,2,254,62,6,50, 0,254

&1 DATA 62,90,50, 1,254,205, 16,254

62 DATA 62,0,50, 120,92, 205, 0,251,219, 63,230, 3,50, 5,252
&3 DATA 219,63,230,3,71,38,5,252, 184,40
&4 DATA 245,120,50,5,252,62,0,50,120,92

218,223,250, 62,0, 50, 120,92

1,
&7 DATA 218,223,250,62,0,50,0,252,0,0
1,

71 DATA 218,223,250,62,0,50,
72 DATA 58,3,252,198,1,50,3,

h
'
&9 DATA 218,223,250,62,0,50,1, 25!
3
i
v

73
74

1010
1020
1030
1040
1050
10860
1070
1080
1090
1100
1110
1120

Program listings

DATA 218,223,250, 42,0,50,3,252,0,0

DATA 58, 4,252,198, 1,50, 4,252, 254, 10

DATA 218,223,250, 42,0,50, 4,252,0,0

DATA 62,127,219, 254,246,224, 254, 255, 194, 110, 250

DATA 205,0,251,219,63,230,3,71,58,5

DATA 252, 184,202,110,250,201

DATA 0,0,0,0,0,0

REM showtimes subroutine

DATA 58,120, 92,7,50, 2,254, 62, 18, 50,0, 254, 62, 90, 50, 1,254, 205, 14, 254
DATA 58,0,252,50, 2,254, 62, 12,50, 0,254, 62,90, 50, 1,254, 205, 16, 254, 0
DATA 58, 1,252,50, 2,254, 42, 18,50, 0,254, 42, 89,50, 1,254,205, 14, 254, 0
DATA 58,2,252,50,2,254,62, 12,50, 0,254, 62,89, 50, 1,254, 205, 16, 254,0
DATA S8,3,252,50, 2,254, 42, 18,50, 0,254, 62, B8, 50, 1, 254, 205, 16, 254,0
DATA 58,4, 252,50, 2,254, 62, 12,50, 0,254,562, 88,50, 1,254, 205, 16,254,0
DATA 201

cLs

PRINT AT 0,0;“Start and"

PRINT AT
PRINT AT
PRINT AT
PRINT AT
PRINT AT
PRINT AT
PRINT AT
PRINT AT 19,05
PRINT AT 21,0; "SPACE. "
RANDOMIZE USR 44000
PRINT AT 0,0;" 3
PRINT AT 2
PRINT AT 4
PRINT AT &
PRINT AT 8,0; "measurement.”
PRINT AT 10,0;"]
PRINT 5
PRINT
*PRINT
PRINT
IF INKEYS$C>"e” AND INKEYS$<)"r™ THEN GO TO 1110
IF INKEY$="r" THEN GO TO 900

"Press R o
0; "for another"

Program 8 FAST TIMER

10 CLEAR 31473

15 DIM g(5): REM digits for display
1& PRINT AT 10,0; "Loading data, please wait.*
20 FOR i=31474 TO 31514

30 READ x

40 POKE i,x

50 NEXT. i

40 DATA 42,0,125,58,2

70 DATA 125,55,43,23,23

80 DATA 23,79,4,126,22

%0 DATA B, 10,30,4,31

100 DATA 48,4,54,0,24

110 DATA 2,54,56,44,29

120 DATA 32,243,245,125,198

130 DAT

>

26,111,241,12,21

140 DATA 32,230,201
200 FOR §=32256 TO 32375
210 READ x

220 POKE i,x

The ZX Spectrum in science teaching

230 NEXT i

240 DATA 31,17,17,17,17,17,31,0

250 DATA 4,4,4,4,4,4,4,0

260 DATA 31,17,16,16,31,1,31,0

270 DATA 31,17,16,30,16,17,31,0

280 DATA 1,1,1,9,31,8,B,0

290 DATA 31,1,1,31,16,17,31,0

300 DATA 31,1,1,31,17,17,31,0

310 DATA 31,16,16,16,16,16,16,0

320 DATA 31,17,17,31,17,17,31,0

330 DATA 31,17,17,31,16,16,16,0

340 DATA 0,0,0,0,0,0,4,0

3%0 DATA 0,0,0,30,0,0,0,0

350 DATA 0,0,31,21,21,21,21,0

370 DATA 0,0,30,2,30,14,30,0

390 DATA 0,0,31,14,31,1,31,0

400 FOR i=44000 TO 64024

410 READ x

420 POKE i,x

430 NEXT i

450 DATA 243,1,0,0,219, 63,230, 1,32,250

455 DATA 219,43,230,1, 40,250

450 DATA 3,219,43,230,1,32, 249,251,201

500 CLS

510 PRINT AT 0,8;“FAST TIMER"

520 PRINT AT 4,0;"The timing begins when switch®
530 PRINT AT 4,0;"input O goes HIBH and stops”
540 PRINT AT 8,0;“when input O goes LOW."

550 PRINT AT 15,5; “Ready to begin.*

560 PRINT AT 10,0; *Maximum time interval: 455 ms®
800 LET t=USR 44000

810 LET g=t/100

815 CLS

820 60 SUB 1000

830 PRINT AT 2,0;" Press R for another reading.”
840 IF INKEYSCO"r" THEN GO TO 840

850 GO TO 500

1000 REM sort and display digits

1010 LET dp=0

1020 IF q>=1 THEN LET g=g/10:
1050 FOR i=1 TO 3

1060 LET digit=INT (q#10)
1070 LET gaq#10-digit

1080 IF i<dp+! THEN LET g(i)=digit
1090 IF id=dp+1 THEN LET g(i+1)=digit
1100 NEXT i

1110 LET gtdp+1)=10

1200 FOR i=1 T0 5

1210 POKE 32002,g¢i)

1220 POKE 32001,89

1230 POKE 32000, (6% (i-1))

1240 LET z=USR 31474

1250 NEXT i

1300 REM display s

1310 POKE 32002,13

1320 POKE 32001,50

1330 POKE 32000,24

1340 LET z=USR 31474

1400 REM display m

1410 POKE 32002,12

1420 POKE 32001,90

1430 POKE 32000, 18

T dp=dp+i: GO TO 1020

268

1440 LET

Program listings

=USR 31474

1450 RETURN

Program 9 TSA METER

1

CLEAR 63999
REM TIME, SPEED & ACCELERATION METER
PRINT AT 10,0;"Loading data, please wait.*
FOR i=45040 TO 65082

READ x

POKE i,x

NEXT {

DATA 42,0,25%,58,2

DATA 254,55, 63,23,23

DATA 23,79,6, 253,22

DATA 8, 10,30,6,31

DATA 48,4,54,0,24

DATA 2,54,56,44,29

DATA 32,243,245,125,198

DATA 28,111,241,12,21

DATA 32,230,201

FOR i=64748 TD 44895

READ x

POKE i,x

NEXT i

DATA 31,17,17,17,17,17,31,0

DATA 4,4,4,4,4,4,4,0

DATA 31,17,16,16,31,1,31,0

DATA 31,17,16,30,16,17,31,0

DATA 1,1,1,9,31,8,8,0

DATA 31,1,1,31,16,17,31,0

DATA 31,1,1,31,17,17,31,0

DATA 31,16,16,16,16,16,16,0

DATA 31,17,17,31,17,17,31,0

“BATA 31,17,17,31,18,16,16,0

DATA 0,0,0,0,0,0,4,0
DATA 0,0,0,30,0,0,0,0

DATA 0,0,31,21,21,21,21,0

DATA 0,0,30,2,30, 1,30,0

DATA 17,17,17,31,17,17,17,0

DATA 0,0,31,14,31,1,31,0

REM Machine code timing routine

FOR i=54000 TO 44184

READ x |
POKE 1,3 i
NEXT i i
DATA 243,84,0,221,33,0,251,221,54,0

DATA 0,221,35, 16,248, 22,0,30,0, 46

DATA 0, 42,252, 50, 243, 250, 62, 124, 50, 245, 250, 62

DATA 251,50,244,250, 50,246,250, 219,63,230

DATA 3,71,219, 63,230,3,79, 184,40, 248

DATA 0, 121,148, 65,254, 1,40, 8, 254, 2

DATA 40,18, 121,238,2,71, 58,243,250, 198

DATA 4,%0,243,250, 221,42, 243, 250, 24, 12

DATA 58,245,250, 198, 4,50, 245, 250, 221, 42

DATA 245,250,221, 115,0,221,114,1,221, 117

DATA 2, 38,247,250, 41,50, 247, 250, 40,28

DATA 123,198, 1,95, 122,206, 0, 87, 125,206

DATA 0,111,219,254,230,1,40, 10,219, 43

DATA 230,3,79, 184,40,230,24, 169, 6, 64

DATA 221,33,248, 251,221, 126, 4,221, 150,0

The ZX Spectrum in science teaching

&5 DATA 221,119,4,221,126,5,221,158, 1,221
66 DATA 119,5,221,126,6,221,138,2,221,119
&7 DATA &,221,45,221,45,221,45,221,45, 16
&8 DATA 219,251,201

120 DIM g(S): REM digits for display

125 DIM a(4): REM acceleration stores

130 DIM t(4): REM time interval stores
135 DIM s(4): REM speed stores

140 REM define large digits

141 POKE USR "A"+0,0

142 POKE USR "A"+1,0

143 POKE USR “A"+2,0

144 POKE USR "A"+3,255

145 POKE USR "A"+4,255

146 POKE USR "A"+5,0

147 POKE USR "A"+54,0

148 POKE USR "A"+7,0

150 POKE USR "B"+0,24

151 POKE USR “B"+1,24

152 POKE USR "B"+2,24

153 POKE USR "B"+3,24

154 POKE USR "B"+4,24

155 POKE USR "B"+5,24

154 POKE USR “B"+&,24

157 POKE USR "B"+7,24

160 POKE USR *C"+0,255

161 POKE USR "C"+1,255

162 POKE USR "C"+2,3

163 POKE USR "C"+3,3

164 POKE USR "C"+4,3

165 POKE USR "C"+5,3

166 POKE USR "C"+56,3

167 POKE USR 7,3

170 POKE USR "D"+0,3

171 POKE USR "D"+1,255

172 POKE USR *D"+2,255

173 POKE USR "D"+3,192

174 POKE USR “D"+4,192

175 POKE USR "D"+3,192

176 POKE USR "D"+&,255

177 POKE USR "D"+7,255

400 REM BEGIN

410 CLS

420 PRINT "TIME, SPEED & ACCELERATION METER"
430 PRINT AT 3,0;"For ACCELERATION press 'A'"
440 PRINT AT 5,0;"For SPEED press ’S’"
450 PRINT AT 7,0;"For TIME INTERVAL press 'T°"
440 LET as=INKEY$S

470 IF a$<>"a™ AND a$<>"s" AND as$<>“t“ THEN GO TO 4&0
480 IF " THEN GO TO 700

490 IF as="s" THEN GO TO 400

500 REM TIME INTERVAL

505 CLS : PRINT AT 0,3;“MEASURING TIME INTERVALS"
515 60 SUB 000

520 B0 TO S35

525 PRINT AT 1, Ready to take reading ";k
535 POKE 44247,2: REM two events

540 LET h=USR 64000

545 B0 SUB 4000

550 LET g=ti

555 LET t(k)=q

560 GO SUB 1000

270

Program listings

570 LET k=k+1

575 IF k>f THEN GO TO 7000

580 60O TO 525

600 REM SPEED

405 CLS : PRINT AT 0,10;"HEASURING SPEEDS"
615 GO SUB 9000

620 GO TO &35

425 PRINT AT 1,0;"Ready to take reading "3k
435 POKE 64247,2: REM two events

640 LET h=USR 44000

645 GO SUB 4000

650 LET g=0.04/t1

655 LET s(k)=q

660 GO SUB 1000

670 LET k=k+i

&75 IF k> THEN GO TO 7000

680 GO TO &25

700 REM ACCELERATIONS

705 CLS : PRINT AT 0,5; "MEASURING ACCELERATIONS"
715 GO SUB 9000

720 GO TO 735

725 PRINT AT 1,0;"Ready to take reading “jk
735 POKE 64247,4: REM four events

740 LET h=USR £4000

745 GO SUB 4000

750 LET t2=t2+(t1+t3)/2

752 LET q=0.04%((1/¢3-1/t1) /£2)

755 LET atk)=q

760 GO SUB 1000

770 LET k=k+1

775 IF k> THEN GO TO 7000

780 GO TO 725

1000 REM sort and display digits

1010 LET dp=0: LET sign=0

1015 IF <O THEN LET q=ABS q: LET sign=!
1020 IF g>=1 THEN LET g=q/10: LET dp=dp+i: GO TO 1020
1050 FOR i=1 TO 4
1060 LET digit=INT (qf10)

1070 LET q=q#10-digit

1080 IF i<dp+1 THEN LET g{i)=digit

1090 IF i>=dp+l THEN LET g(i+l)=digit

1100 NEXT i

1110 LET gtdp+1}=10
1120 IF sign=0 THEN GO TO 1200
1130 FOR i=4 TO 1 STEP -1
1140 LET g(i+1)=g(i)

1150 NEXT i
1160 LET g(1)=11
1200 CLS

1205 FOR i={ TO 5

1210 POKE 65026,91(i)

1220 POKE 65025,89

1230 POKE 65024, (6% (i-1))
1240 LET h=USR &5040

1250 NEXT i

1300 ‘REM display s

1310 POKE 65026, 13

1320 POKE 45025,90

1330 POKE 4£5024,22

1340 LET h=USR 65040

1350 IF a$="t" THEN RETURN
1360 REM display m

271

The ZX Spectrum in science teaching

1370 POKE 65026, 12

1380 POKE 65025,50

1390 POKE 65024, 16

1400 LET h=USR &5040

1410 PRINT AT 17,28;"aa"

1420 IF a$="a" THEN PRINT AT 17,31;"c": PRINT AT 18,3
1430 IF as="s" THEN PRINT AT 17,31;"b": PRINT AT 18,3
1440 RETURN

4000 REM Calculate times

4005 LET conv=0.000031504

4010 LET base=64260

4020 LET t1=(45S364PEEK (base+2) +2568PEEK (base+1)+PEEK (base))¥conv

4030 LET t2=(465536tPEEK (base+s) +2564PEEK (base+5) +PEEK (base+4))#conv
4080 LET t3=(455364PEEK (base+10)+2568PEEK (base+9)+PEEK (basetB))%conv
4050 IF (t1+t2+t3)=0 THEN LET base=base+128: 60 TO 4020

4060 RETURN

7000 REM restart routine

7010 PRINT AT 0,0;"Press "R’ to restart”

7020 PRINT : PRINT "Press "M’ to recall readings”

7030 LET c8=INKEY$

7040 IF ce="r" THEN GO TO 410

7050 IF c$<>"m" THEN 6O TO 7030

7060 IF as="a" THEN GO TO 7300

7070 IF as="s* THEN GO TO 7200

7100 REM List times

7110 CLS : PRINT

7120 FOR z=1 TO f

7130 PRINT 1 PRINT “Time interval (";z3") = #3INT (100008t (z))/10000;" ="
7140 NEXT z

7150 PRINT : PRINT : PRINT “Press 'R’ to restart"

7160 IF INKEY$<>"r" THEN GO TO 7160

7170 GO TO 410

7200 REM List speeds

7210 CLS : PRINT

7220 FOR z=1 TO

7230 PRINT : PRINT "Speed ("jz3") = ";INT (100008s(z))/10000;" m/s
7240 NEXT z

7250 GO TO 7150

7300 REM List accelerations

7310 CLS : PRINT

7320 FOR z=1 TO ¢

7330 PRINT : PRINT "Acceleration ("jz;") =
7340 NEXT z

7350 GO TO 7150

9000 PRINT : PRINT "You may take i, 2, 3 or 4"
PRINT “successive readings, which will®

#3 INT (10000%a(z))/10000;" m/ss"”

9010 PRINT

9020 PRINT : PRINT "be stored as well as being"
9030 PRINT : PRINT “displayed.”

9040 PRINT : PRINT "When you are ready to begin,”

9050 PRINT : PRINT “"press one of these numbers. "
9055 IF INKEY$<>"" THEN GO TO 9053

9060 LET e$=INKEY$

90465 IF es="" THEN B0 TO 9040

9070 LET $=VAL (e$)

9080 IF £¢1 OR >4 THEN GO TO 7060

9090 PRINT : PRINT "0.K. I’m ready.”

9100 LET k=1

9200 RETURN

Program 10 ACCELERATION TUTOR

1 CLEAR 43999
§ :gﬂ ACCELERATION TUTOR
INT AT 10,0; "Loadi "
10 FOR i=45040 TO l;g::;ng AiES) plemseihiits
11 READ »
12 POKE i,x
13 NEXT i
14 DATA 42,0,254,58,2
15 DATA 254, 55,63,23,23
16 DATA 23,79,6,253,22
17 DATA 8,10,30,6,31
18 DATA 48,4, 54,0, 24
19 DATA 2,54,56, 44,29
20 DATA 32,243,245, 125,198
21 DATA 26,111,241,12,21
22 DATA 32,230,201
25 FOR i=44748 TO 54895
26 READ x
27 POKE i,x
28 NEXT i
29 DATA 31,17,17,17,17,17,31,0
30 DATA 4,4,4,4,4,4,4,0 !
31 DATA 31,17,16,16,31,1,31,0
32 DATA 31,17,16,30,16,17,31,0
33 DATA 1,1,1,9,31,8,8,0
34 DATA 31,1,1,31,16,17,31,0
35 DATA 31,1,1,31,17,17,31,0
36 DATA 31,16, 18,16, 16, 18, 16,0
37 DATA 31,17,17,31,17,17,31.0
38 DATA 31,17,17,31, 16,16, 16,0
39 DATA 0,0,0,0,0,0,4,0 !
40 DATA 0,0,0,30,0,0,0,0
41 DATA 0,0,31,21,21,21,21,0
42 DATA 0,0,30,2,30, 16,30,0 -
43 DATA 17,17,17,31,17,17.17,0
:; DATA 0,0,31,16,31,1,31,0
REM Machine code timi
46 FOR i=44000 TO 541.84'”9 fitio
47 READ »
48 POKE 1i,x
49 NEXT §
50 DATA 243,6,0,221,33,0,251
;; DATA 0, 221,35, 16.249,22.0:3}6?;;0
&= DATA 0,62,252,50,15:!,250,é2,12‘. 50, 245,250,462
DATA 25[,50,244,25ﬂ,50.1'4é,250 219,63 530 ’
54 DATA 3,71,219,63,230,3,79, 184, 40,248
55 DATA 0,121, 168,45, 254, 1, 40,8, 254, 2
56 DATA 40,18,121,238,2,71, 58,243,250, 198
57 DATA 4,50,243,250,221, 42, 243, 250, 24, 12
;: g:frn 58,245,250, 198, 4, 50, 245, 250, 221, 42
39 DATA 245,250,221, 115,0,221, 114, 1,221, 117
DATA 2.55,2"7,250,51,!0,247,250 40,28
&1 DATA 123,198, 1,95, 122,206, 0,87, 125, 204
62 DATA 0,111,219, 25‘,230,1,40, l0:219'53
:E 3:;: 230,3,79, 184, 40,230, 24, 169, &, b4
ol 221,33,248, 251,221,126,4,221, 130,0
s nm’: 221,119, 4,221, 126,5, 221, 158, 1, 221
= 119,5,221,126,6, 221,158, 2,221, 119
DATA &,221,45,221, 85, 221, 45, 221, 45. 16
&8 DATA 219,251,201 T

Program listings

R

The ZX Spectrum in science teaching

REM Define symbols, etc. .
;gg DIM g{5): REM digits for display
125 DIM a(4): REM acceleration stores
130 DIM t(4): REM time interval stores
135 DIM s{4): REM speed Fturux
140 REM define large digits
141 POKE USR "A"+0,0
142 POKE USR "A"+1,0
143 POKE USR "A"+2,0
144 POKE USR "A"+3,255
145 POKE USR "A"+4,255
144 POKE USR "A"+5,0
147 POKE USR "A"+5,0
148 POKE USR "A"+7,0
150 POKE USR "B"+0,24
151 POKE USR "B"+1,24
152 POKE USR "B"+2,24
153 POKE USR "B"+3,24
154 POKE USR "B"+4,24
155 POKE USR "B"+5,24
156 POKE USR
157 POKE USR "B
160 POKE USR “C"+0,255
161 POKE USR "C"+1,255
162 POKE USR "C"+2,3
163 POKE USR "C"+3,3
164 POKE USR “C"+4,3
145 POKE USR “C"+5,3
1646 POKE USR “C"+5,3
167 POKE USR "C"+7,3
170 POKE USR “D"+0,3
171 POKE USR "D"+1,255
172 POKE USR "D"+2,255
173 POKE USR "D"+3,192
174 POKE USR "D"+4,192
175 POKE USR "D"+5,192
176 POKE USR "D"+6,255
177 POKE USR "D"+7,255
400 REM BEGIN
410 CLS
T "ACCELERATION TUTOR" "
:i’g ::IX:T AT 3,0;"Connect ?lsxnelz 40-mm card
0;"to a trolley. .
g AT &7 30150 ¢ ML it o0 ek
440 PRINT AT 9,0;"to switch input 0. sionts
470 PRINT AT 11,0;"Let the trolley pass in
480 PRINT AT 13,0;“of both photocells.
T0 700
$ Eg'r as="t": REM TIME INTERVALS
520 IF 1s="t" THEN LET q=t2
530 IF 18="i" THEN LET g=ti
540 IF 1%="§" THEN LET q=t3
SUB 1000
::?) ?g 1e="i" THEN PRINT AT 0,0
=70 1F 1$="f" THEN PRINT AT 0,0
580 IF 1$="t* THEN I;R;é:‘; AT 0,0
T as="s": REM
ﬁg li§ 1$="i" THEN LET g=0.04/t1
420 IF 1$="§" THEN LET q=0.04/t3
1o00 § "
:ig ;.: ?::'1" THEN PRINT AT U.O;'."lrullal sp:l:d
650 IF 1$="$" THEN PRINT AT 0,0;"Final spee

;"Time interval between speed

274

winitial time interval®: GO 1077070
“Final time interval®: 60 TO 7

: GO TO 770

Program listings

650 PRINT AT 1,0;"Press T for measured time"
670 PRINT AT 2,0;"Press M to return to main menu.”
680 LET m$=INKEY$: IF m$<>"m" AND m$<>"t" THEN GO TO &80
690 IF m$="m" THEN GO TO 740
495 GD TO 500
700 REM ACCELERATIONS
710 PRINT AT 18,0; "READY TO MEASURE ACCELERATION"
720 POKE 44247,4: REM four events
730 LET h=USR 44000
740 GO SUB 4000
750 LET q=0.048((1/t3-1/t1) /t2)
755 LET as="a*
760 B0 SUB 1000
765 PRINT AT 0,0; "Acceleration®
770 PRINT "Press T
780 PRINT “Press F
790 PRINT "Press I
BOO PRINT “Press A
805 PRINT “Press R
BI0 LET 1s=INKEYS
820 IF 18<>"r™ AND 18¢>"t" AND 18¢>"i" AND 1$<>"#“ AND 18<>"a" THEN GO TO 810
B30 IF l$="t" THEN GO TO 500
840 IF 1$="a" THEN GO TO 750
850 IF 1%="r" THEN GO TO 400
B&0 GO TO 400
1000 REM sort and display digits
1010 LET dp=0: LET sign=0
1015 IF q<O THEN LET q=ABS q: LET sign=1
1020 IF g>=1 THEN LET q=q/10: LET dp=dp+i: GO TO 1020
1050 FOR i=1 TO 4
1060 LET digit=INT (q#10)
1070 LET q=q#10-digit
1080 IF i<dp+1 THEN LET g(i)=digit
1090 IF i>=dp+1 THEN LET gli+ll=digit
1100 NEXT i
1110 LET gtdp+1)=10
1120 IF sign=0 THEN GO TO 1200
1130 FOR i=4 TO 1 STEP -1
1140 LET gti+1)=g(i)
1150 NEXT i
1160 LET g(1)=11
1200 CLS
1205 FOR i=1 TO S
1210 POKE &5024,g(i)
1220 POKE 45025,89
1230 POKE &35024, (62(i-1))
1240 LET h=USR 45040
1250 NEXT i
1300 REM display s
1310 POKE &5024,13
1320 POKE 5025, 90
1330 POKE &5024,22
1340 LET h=USR £5040
1350 IF as="t" THEN RETURN
1360 REM display m
1370 POKE 65026,12
1380 POKE 45025,90
1390 POKE 45024, 16
1400 LET h=USR 45040
1410 PRINT- AT 17,28; "aa"
1420 IF as="a" THEN PRINT AT 17,313 "e*
1430 IF as="g

for time between speeds”
to display final speed"
to display initial speed”
to display acceleration”
to take new readings”

: PRINT AT 18,31; "d*
" THEN PRINT AT 17,31;"b": PRINT AT 18,315 "b"

The ZX Spectrum in science teaching

1440 RETURN

4000 REM Calculate times

8005 LET conv=0.000031506

:ﬂg;g L;$TET:T:;;;::§EEK (base+2)+2568PEEK (base+1)+PEEK (base))fconv
4030 LET t2=(45S364PEEK (base+h) +2561PEEK (base+5) +PEEK (base+4)) Sconv
4040 LET t3=(455344PEEK (base+10)+256¥PEEK {base+9)+PEEK (base+8))fconv
4050 IF (k1+t2+t3)=0 THEN LET base=base+128: GO TO 4020

4055 LET t2=t2+(t1+t3)/2

4060 RETURN

Program 11 CONSERVATION OF MOMENTUM

1 CLEAR 63999
2 REM CONSERVATION OF MOMENTUM o
3 PRINT AT 10,0;"Loading data, please wait.
10 DIM t(4,2): REM stores for time intervals
46 FOR i=64000 TO 64184
47 READ x
48 POKE i,x
45 NEXT i
50 DATA 241,5.0,221.33,0,251,22135:;0
s1 DATA ©0,221,33,16,248,22,0,30,0,
52 DATA 0,62,252,50,243,250,62, 124, 50, 245, 250, 62
=3 pATA 251,50,248,250,50,246,250,219,63,230
54 DATA 3,71,219,63,230,3,79, 184,40,248
S5 DATA 0,121,168, 65,254, 1,40,8,254,2
S6 DATA 40, 18,121,238,2,71,58, 243,250, 198
57 DATA 4,50,243,250,221,42,243, 250, 24,12
S8 DATA 58,245,250, 198, 4,50,245, 250,221, 42
59 DATA 245,250,221,115,0,221,114,1,221,117
50 DATA 2,58,247,250,61,50, 247,250, 40,28
&1 DATA 123,198,1,95,122,208,0,87, 125,206
62 DATA 0,111,219,254,230,1,40,10,219,63
&3 DATA 230,3,79,184,40,230,24,169,6,44
&4 DATA 221,33,248,251,221,126,4,221,150,0
&5 DATA 221,119,4,221,126,5,221,158,1,221
b6 DATA 119,5,221,126,6,221,158,2,221,119
&7 DATA &,221,45,221,45,221,45,221,45,16
&8 DATA 219,251,201
400 REM BEGIN
410 CLS
420 PRINT "CONSERVATION OF MOMENTUM" i
430 PRINT AT 3,0;"Connect two photocells,
440 PRINT AT 5,0;"one to switch input 0 i
450 PRINT AT 7,0;"the other to switch input 1.
460 PRINT AT 9,0;"Place a 40-mm card on each”
470 PRINT AT 11,0;"trolley and allow them to"
480 PRINT AT 13,0;"collide in the normal way. i
490 PRINT AT 15,0;"The speeds of the trolleys will®
497 PRINT AT 17,0;"be displayed for each photocell.”
498 PRINT AT 1# there are not enough transits
499 PRINT AT 21,0;"press SPACE to regain contrel.
500 REM TIME INTERVAL
505 FOR n=1 T0 4
506 LET t(n,1)=0: LET t(n,21=0
S07 NEXT n
510 POKE 44247,8: REM B events = 4 transits
520 LET h=USR 64000
4000)
gig g213$BRT 21,0;"Press R for another measurement.

276

Program listings

590 IF INKEY$<>"r" THEN GO TO 590

600 B0 TO 400

4000 REM Calculate speeds for four transits

4005 LET canv=0.000031506

4010 REM Channel | data

4020 LET base=44260

4030 LET t(1,1)=conv# (6SS360PEEK (base+2) +2541PEEK (base+1) +PEEK (base!)
4035 IF £(1,1)=0 THEN LET base=base+128: GO TO 4100
4040 LET t(2,1)=convi (455364PEEK (base+10)+2S58PEEK (base+?) +PEEK (base+8))
:g;os IF £(2,1)=0 THEN LET base=base+128: GO TO 4110

LET (3, 1)=conv (655344PEEK (base+18) +2563PEEK +17) +

4055 IF £1(3,1)=0 THEN LET base=base+128: GO TO llzo(b‘“ TIPESK (hasevien)
8080 LET t(4,1)=convk (455363PEEK (base+26) +256IPEEK (base+25) +PEEK +2
4065 IF t(4,1)=0 THEN LET base=base+128: GO TO 4130 G
4070 GO TO 4200

4090 REM Channel 2 data

4100 LET (4, 2)=convi (655368PEEK (base+26) +256FPEEK (base+25) +PEEK (bases24))
4110 LET t(3,2)=conv¥ (655348PEEK (base+1B) +2568PEEK (base+17) +PEEK (base+14))
4120 LET t(2,2)=convk (655364PEEK (base+10)+25424PEEK (base+9) +PEEK (base+8))
4130 LET £(1,2)=conv# (455364PEEK (base+2) +2568PEEK (base+1) +PEEK
4200 CLS

4205 LET position=5

4210 PRINT AT 0,5;"CONSERVATION OF MOMENTUM"

4220 PRINT AT 3,0;"Results at photocell 0"
4230 FOR n=1 TO 4
4240 IF t(n,1)=0 THEN GO TO 4290
4250 PRINT AT position,0; “Speed ("
4260 LET position=position+2
4290 NEXT n
4300 LET position=position+2
4320 PRINT AT position,0;"Results at photocell 1°
4325 LET position=position+2
4330 FOR n=1 TO 4
4340 IF t(n,2Y=0 THEN GO TO 4390
4350 PRINT AT position,0;"Speedi”;n;") = *;0. o
4380 LET positionspositionez SR
4390 NEXT n
4400 RETURN
5000 FOR i=64256 TO &5000
5010 PRINT i,PEEK i
5020 NEXT i
5030 NEXT i
4000 PRINT IN 63: GO TO 6000

(base))

= "j0.04/t(n,1};* misn

Program 12 SPEED-TIME PLOTTER

1 CLEAR 63999
2 REM SPEED-TIME PLOTTER

20 REM define arrows
21 POKE USR "B"+0,8
22 POKE USR "B"+1,4
23 POKE USR "B"+2,2
24 POKE USR "B"+3,255
25 POKE USR "B"+4,2
26 POKE USR "B"+5,4
27 POKE USR "B"+4,8
28 POKE USR "B"+7,0
31 POKE USR "A"+0,1&
32 POKE USR "A"+1,54
33 POKE USR "A"+2,84
34 POKE USR "A"+3, 146

277

The ZX Spectrum in science teaching

35 POKE USR "A"+4,16

3& POKE USR "A"+5,186

37 POKE USR "A"+&,16

38 POKE USR "A"+7,1&

45 REM Machine code timing routine

44 FOR i=44000 TO 64184

47 READ x

48 POKE i,»

49 NEXT i

50 DATA 243,6,0,221,33,0,251,221,54,0

s1 DATA 0,221,35,16,248,22,0,30,0, 45

s2 DATA 0,42,252,50,243,250, 62, 124, 50,245, 250, 62
53 DATA 251,50,244.250,50,246.250,21?,&3,230
54 DATA 3,71,219,63,230,3,79,184,40,248

=5 DATA 0,121,168, 65,254, 1, 40,8, 254,2

S6 DATA 40,18,121,238,2,71,58,243,250,198

S7 pATA 4,50,243,250,221,42,243,250,24,12

sa DATA 58,245,250, 198, 4,50, 245,250,221,42
59 DATA 245,250,221,115,0,221, 114,1,221,117
50 DATA 2,38,247,250,61,50,247,250,40,28

&1 DATA 123,198, 1,95, 122,206,0,87,125,206
&2 DATA 0,111,219,254,230, 1,40,10,219,43

53 DATA 230,3,79, 184, 40,230, 24, 169,251,201,6,32
54 DATA 221,33,120,251,221,126,4,221,150,0
&5 DATA 221,119,132,221,126,5,221,158,1,221
&6 DATA 119,133,221,126,6,221, 158,2,221,119
&7 DATA 134,221,45,221,45,221,45,221,45,16
48 DATA 219,251,201

120 DIM s(32): REM speed stores

130 DIM t(32): REM time interval stores

400 REM BEGIN

410 CLS

420 PRINT AT 1,5;"SPEED - TIME PLOTTER"

430 PRINT AT 3,0;"This program measures the*
440 PRINT AT 5, speeds of a l46-toothed card"
450 PRINT AT 7,0;"as it passes in front of a*
450 PRINT AT 9,03 "photocell, connected to”
470 PRINT AT 11,0;"switch input 0.”

480 PRINT AT 15,0;"Please release the card now."
490 REM IF a$="s" THEN 0 TO &00

400 REM MEASURE SPEEDS

‘610 POKE 64247,32: REM 32 events

420 LET h=USR 64000

530 CLS 3 PRINT AT 10,0;"All readings taken.®
&40 PRINT AT 13,0;"Flease wait while the results®

&50 PRINT AT 16,0;"are calculated.”

700 REM Calculate times and speeds

720 FOR b=1 TO 32

730 LET timebase=54256+(b-1)84

750 LET t(b)=(A53362PEEK (timebase+2) +2564PEEK (timebase+1)+PEEK (timebase))¥0.
004

755 IF b=1 THEN B0 TO 790

760 LET s(b-1)=t(b)-t(b-1)

770 IF slb-1)=0 THEN GO TO 790

780 LET s{b-1)=100/s{b-1}

785 IF sib-1)>165 THEN LET s(b-1)=165

790 NEXT b

800 REM plot graph

805 CLS

810 REM DISTANCE-TIME PLOT

820 PLOT 10,0: DRAW 0,175

830 PLOT 0,10: DRAW 255,0

278

L e ——————

Program listings

835 PLOT 10,10

B840 FOR b=1 TD 32

850 LET y=bi5+5

B&O LET x=10+t (b)
B70 IF %3255 THEN GO T

0 900

B8O DRAW x-PEEK 2347 ey
380 R 7,y-PEEK 23478
910 P i a*
2o :;r;;rnruﬁoéﬂa : PRINT i PRINT "D": PRINT “I*: PRINT "g":
o1 P arr o PRINT "C": PRINT "E": PRINT AT 21,26;"TIME b* T

: 0,4;*Press S for SPEED-TINE graphs | @ o C

20 IF INKEY$<>"s" THEN GO TO 920 oreen

1000 REM SPEED-TIME PLOT

1010 CLS

1020 PLOT 10,0: DRAW 0,175

1030 PLOT 0,10: DRAW 255,0

1035 PLOT 10,10 '

1040 FOR b=1 TO 31

1050 LET y=10+s (b}

;050 LET x=10+t (b}

070 IF %>255 THEN GO TO 1

100

1080 DRAW x-PEEK 23677,y—

il ,y-PEEK 23678

1110 PRINT AT I,0;"a": PRI

110 105"a": PRINT : PRINT *§*: “pr

“?;P;R[NT PR T “S": PRINT “P": PRINT “E": PRINT

INT AT 0,1;*Press D for DI
STANCE- .

1120 IF INKEY$<>"d" THEN GO T0 1120 A araen
1130 60 TO 80O
2000 PRINT AT 0,2; "DISTANCE-TIME graph (Press S)*

“T": PRINT

"z PRINT

Program 13 FREQUENCY METER

1 E\EEAR 53999
2 REM FREQUENCY MET
J: igmr AT m(o;"msaj?n
R 1=65040 2
e 040 TO £5082
12 POKE i,x
13 NEXT i
14 DATA 42,0,254,58, 2
15 DATA 254,55, 63,23, 23
1& DATA 23,79, 4,253, 22
17 DATA 8, 10,30, 8,31
18 DATA 48,4,54,0,24
19 DATA 2,54,56, 44,29
20 DATA 32,243,245, 125, 198
21 DATA 26,111,241, 12,21
22; g;m 32,230,201
R i=4474
23/Fon 4 8 TO 64895
27 POKE i,x
28 NEXT i
29 DATA 31,17,17
30 DTA 45,4k, hrkrare
:_1’ ‘DATA 31.17,1$,|s.3i,1,31,n
= g:Trn 31,17,16,30,16,17,31,0
3 A 1,1,1,9,31,8,8,0
34 DATA 31,1,1,31,16,17,31,0
35 DATA 31,1,1,31,17,17,31,0
;; DATA 31,16,16, 16,18, 18, 16,0
o gnm 31717,17,31,17,17,31.0
ATA 31,17,17,31,16, 16, 16,0

g data, please wait."

The ZX Spectrum in science leaching

39 DATA 0,0,0,0,0,0,4,0
40 DATA 0,0,0,30,0,0,0, O
1 DATA 0,0,31,21,21,21,
42 DATA 0,0,30,2,30, 15300

43 DATA 17,17,17,31,17,17,17,0

44 DATA 0,0,31,16,31,1,31,0

45 REM Machine code timing routine

46 FOR i=64000 TO 54184

47 READ x

48 POKE i,»

49 NEXT i

50 DATA 243,6,0,221,33,0,251,221,54,0

s1 DATA 0,221,35,16,248,22,0,30,0,46

s2 DATA 0,62,252,50,243,250,62,124,50,2 45,250, 52
53 DATA 251,50,244,250, 50, 246,250, 219, b3, 230
=4 DATA 3,71,219,43,230,3,79, 184, 40,248

55 DATA 0,121,168,45,254,1,40,8,254,2

S& DATA 40,18,121,238,2,71,58,243,250,198

57 DATA 4,50,243,250,221,42,243,25@,22,li‘

58 DATA 58,245,250, 198,4,50,245,250,221,42

59 DATA 245,250,221,115,0,221,114,1,221, 117

&0 DATA 2,58,247,250,61,50, 247 250,40,28

&1 DATA !.23 198,1,95,122,204,0,87, 1"5 208

&2 DATA 0,111,219,254,230,1,40,10,219,63

&3 DATA 230,3,79,184,40,230,24,169, 6, &4

&4 DATA 221,33,248,251,221,125,4,221,150,0

&5 DATA 221,119,4,221, 126 5,221,158, 1,221

&b DATA 119,5,221,126,6,221,158,2,221,119

&7 DATA a,221.45,221,45,221.45.221,45,1e

&8 DATA 219,251,201

120 DIM g(S): REM digits for display

400 REM BEGIN

410 CLS

420 PRINT "FREQUENCY METER"

430 PRINT AT 3,0;“Connect the unknown frequency to”
440 PRINT AT 5,0;"switch input 0"

450 PRINT AT 7,0;"through a ’*squaring’ circuit®
440 PRINT AT 9,0;"i# necessary."

500 REM TIME INTERVAL

510 POKE &4247,32: REM 32 events = 16 cycles
520 LET h=USR 44000

530 60 SUB 4000

5S40 GO SUB 1000

550 PRINT AT 0,0;*While input is still connected”
560 PRINT AT 1,0;"press F to stop.”

570 PAUSE S0

590 IF INKEY$="§" THEN STOF

400 GO TO 500
1000 REM sort and display digits
1010 LET dp=0: LET sigs
1015 IF q<0 THEN LET q=ABS q: LET sign= 1
1020 IF g>=! THEN LET g=q/10: LET dp=dp+l: 60 TO 1020
1050 FOR i=1 TO 4
1060 LET digit=INT (q¥10)
1070 LET q=qti0-digit

1080 IF i<dp+l THEN LET gtil=digit
1090 IF i>=dp+l THEN LET gli+l)=digit

1100 NEXT i

1110 LET g(dp+1)=10

1120 IF sign=0 THEN GO TO 1200

1130 FOR i=4 7O 1 STEP -1

280

Program listings

1140 LET gti+1)=g(i)

1150 NEXT i
1160 LET g(li=11
1200 CLS

1205 FOR i=1 T0 §
1210 POKE 45026,9(i)
1220 POKE 45025, 89
1230 POKE 45024, (6%(i-1))
1240 LET h=USR 65040
1250 NEXT i
1300 REM display H
1310 POKE 65026, 14
1320 POKE 65025,90
1330 POKE 65024, 18
1340 LET h=USR 65040
1400 REM display z
1410 POKE £5026,15
1420 POKE 65025, 90
1430 POKE 45024,24
1440 LET h=USR 65040
1450 RETURN
:g?g :gn Calculate times
M Add total time for first
4020 REM This is equivalent to B JZ:Z'"“ A Anpus: o
4050 LET conv=0.000031506/14
4080 LET base=64240
4070 LET total=o
4100 FOR c=0 TO 124 STEP 4
4110 LET time=s! 2
ALipiter tumjiﬁtﬁfi-cmsuumuﬁatpszk (base+c+1)+PEEK (base+c)
4130 NEXT ¢
4200 LET g=totalsconv
4210 RETURN

Program 14 PENDULUM PERIOD

1 CLEAR 63999

§ l::n PENDULUM PERIOD

3 ros:h:r-:;o:g Tnc-' Lulﬂh’-g data, please wait."
11 READ x

12 POKE i,x

13 NEXT i

14 DATA 42,0,254,58,2

1S DATA 254,55, 63,23, 23

14 DATA 23,79,,253, 22

17 DATA 8,10, 30,4, 51

18 DATA 48,4,5
19 DATA 2,54, 56, 44 29
20 DATA 32,243,245, 125, 198
21 DATA 26,111,241,12,21
22 DATA 32,230,201
25 FOR 1=64768 TO 44895
26 READ x
27 POKE i,x
28 NEXT i
29 DATA 31,17,17
30 DATA 4,4, 4,4, 41:,” e
31 DATA 31,17, 14, 16, 31,1,
32 DATA 31,17, 16,30, 16, l?x;.loo
33 DATA 1,1,1,9,31,8,8,0

281

e |

The ZX Spectrum in science teaching

34 DATA 31,1,1,31,18,17,31,0
35 DATA 31,1,1,31,17,17,31,0
36 DATA 31,16,16,16,16,16,16,0
37 DATA 31,17,17,31,17,17,31,0
38 DATA 31,17,17,31,15,16,16,0
39 DATA 0,0,0,0,0,0,4,0
40 DATA 0,0,0,30,0,0,0,0
41 DATA 0,0,31,21,21,21,21,0
42 DATA 0,0,30,2,30,16,30,0
43 DATA 17,17,17,31,17,17,17,0
44 DATA 0,0,31,14,31,1,31,0)
45 REM Machine code timing routine
45 FOR i=44000 TO 44184
47 READ x
48 POKE i,x
9 NEXT i
;o DATA 243,6,0,221.3!,0,25:,,;1;1,05:';0
221,35, 16,248, 22,0, 30,0,
2; g::: g:é!, 552:50:243,250.62, 124,50, 245, 250, 62
53 DATA 251,50, 244, 250,50, 246,250,219, 63,230
54 DATA 3,71,219,83,230,3,79, 184,40,248
55 DATA 0,121,168,65,254, 1,40,8,254,2
s& DATA 40,18,121,238,2,71,58,243,250,198
=7 DATA 4,50,243,250,221, 42,243,250, 24,12
S8 DATA 58,245,250, 198, 4,50, 245, 250, 221, 42
59 DATA.245,250,221,115,0,221,114,1,221, 117
40 DATA 2,58,247,250,61,50,247,250,40,28
&1 DATA 123,198,1,95,122,204,0,87, 125,206
&2 DATA 0,111,219,254,230,1,40,10,219,63
&3 DATA 230,3,79, 184,40,230, 24,169, 6,64
&4 DATA 221,33,248,251,221,124,4,221,150,0
&5 DATA 221,119,4,221,126,5,221,158, 1,221
&6 DATA 117,5,12!,126,5,221,156.2,221,11?
&7 DATA &,221,45,221,45,221,45,221,45,16
68 DATA 219,251,201
120 DIM g{S): REM digits for display
400 REM BEBIN
410 CLS
420 PRINT "PENDULUM PERIOD" .
430 PRINT AT 3,0;"Connect the photocell to
440 PRINT AT 5,0; "switch input 0% p
450 PRINT AT 7,0;"Allow the pendulum to I\lll’lg
460 PRINT AT 9,0;"in front of the photocell.
500 REM TIME INTERVAL
510 POKE 44247,5: REM five events
520 LET h=USR 44000
530 GO SUB 4000
560 SUB 1000 . y "
580 PRINT AT 0,0;"While pendulum is still swinging
581 PRINT AT 1,0;"press F to stop.” .
582 PRINT AT 2,0;"Release pendulum for nr}nthfr
S84 PRINT AT 3,0;"measurement of the period.
584 PAUSE S0
S90 [IF INKEY$="f" THEN STOP
400 GO TO 500
1000 REM sort and display digits
1010 LET dp=0: LET ‘lgn’:gs —
<O THEN LET g= : -
:g;: ::' :>-1 THEN LET q=q/10: LET dp=dp+l: GO TO 1020
1030 FOR i=1 TO 4
1060 LET digit=INT (gq%10)
1070 LET g=q#10-digit

282

1080 IF i<dp+l THEN LET gti)=digit

1090 IF i>=dp+1 THEN LET gli+1)=digit

1100 NEXT i

1110 LET g(dp+1}=10

1120 IF sign=0 THEN GO TO 1200

1130 FOR i=4 TO 1 STEP -}

1140 LET gti+1)=g(i)

1150 NEXT i

1160 LET g(1)=11

1200 CLS

1205 FOR i=1 TO 5

1210 POKE 45026,g¢i)

1220 POKE 65025,89

1230 POKE 65024, (68 (i-1))

1240 LET h=USR 65040

1250 NEXT {

1300 REM display s

1310 POKE 65028,13

1320 POKE £5025,90

1330 POKE 65024,22

1340 LET h=USR 45040

1350 RETURN

4000 REM Calculate times

40053 LET conv=0.000031506

4010 LET base=464250

4020 LET t1=(&SS3L8PEEK (base+2) +2564PEEK (base+1)+PEEK (base))iconv
4030 LET t2=(455348PEEK (base+s) +2561PEEK (base+5) +PEEK (base+4)) tconv
4040 LET t3=(455344PEEK (base+10)+2S68PEEK (base+9) +PEEK (base+8)) fconv
4042 LET td=(595368PEEK (base+14) +2S63PEEK (base+13) +PEEK (base+12)) tconv
4044 LET qutl+t2+t3+t4

4050 IF q=0 THEN LET base=base+128: 80 TO 4020
4060 RETURN

Program listings

Program 15 PULSE GENERATOR

1 CLEAR 63999

2 REM PULSE DUTPUTS

10 FOR i=64000 TO 64038

20 READ x

30 POKE i,x

40 NEXT i

50 DATA 243,82,255,211,95

60 DATA 237,75,0,251,13,32,253, 18,251

70 DATA 62,0,211,95

80 DATA 237,75,2,251,13,32,253, 16, 251

90 DATA 2,127,219, 254, 244,224, 254, 255, 40, 220, 251, 201
100 CLS

150 PRINT AT
160 PRINT AT quare pulses will be output”
170 PRINT AT 7,0; "through the TTL output port. "
180 PRINT AT 9,0; "Enter the pulse length”
190 PRINT AT 11,0;"in microsecond units *
200 PRINT AT 13,05 "maximum = 300000, minimum = 30°
210 INPUT length
220 1F« 1ength>300000 OR length<30 THEN GO TO 210
230 CLS : PRINT AT 1,7;"PULSE DUTPUT"
240 PRINT AT 5,0;"Pulse length ";length;* microseconds®
250 PRINT AT 9,0; "Enter the time between pulses”
260 PRINT AT 11,0;"in microsecond units *
270 PRINT AT 13,0; "maximum = 300000, minimum = 60

275 PRINT AT 15,0;“This must be at least 30":

PRINT AT 17,0; "microsecends great
er than"

28

3

The ZX Spectrum in science teaching

276 PRINT AT 19,0;"the length of the pulses.”
T width
igg ::ﬂ:mtmmmc DR width<s0 OR (width-length<30) THEN GO TO 280
300 LET byte=(length83.5-100)/1&
310 LET highbyte=INT (byte/256)
320 LET lowbyte=byte-256%highbyte
330 POKE ﬁlz!ﬁ,lmhytetli
340 POKE &4257,highbyte+
350 LET hyt0=(‘(uidthdmgthll3.5-100)Jlb
340 LET highbyte=INT (bytn{‘?Sb)
370 LET lowbyte=byte-25&thighbyte
380 POKE 64258, lowbyte+l
390 POKE 64259, highbyte+l
400 CLS =
410 PRINT AT 1,7;“PULSE DUTPUTS "
420 PRINT AT 5,0;"Pulses of length "jlength
430 PRINT AT 7,0;"and time between pulses "jwidth
440 PRINT AT 9,0;"(in microseconds) ar!l.nnu
450 PRINT AT 11,0;"being output thrnugh.
450 PRINT AT 13,0;"the TTL output port. .
500 PRINT AT 2;,0;'Preis SPACE for different values'
510 LET 1=USR 44000
520 GO TO 100

Program 16 PROGRAMMABLE OSCILLATOR

1 CLEAR 63999 o
5 PRINT AT 5,0; "Loading data. Please wait.
10 FOR i=0 TO &3
20 POKE (i+64192),128+1274SIN (i3P1/32)
30 NEXT i
100 FOR i=44000 TO 64025
110 READ x
120 POKE i,x
130 NEXT i
150 DATA 33,192,250, 126,211,127,58, 100,250, 61
160 DATA 32,253,44,32,244, 62,127,217, 254,246
170 DATA 224,254,255, 40,231,201 .
180 PRINT AT B,0;"Enter the desired requency”
190 PRINT AT 10,03"in the range 15 to 500 Hz.
INPUT freq i
;gg IF freq<1S DR freq>500 THEN PRINT AT 12,0;freq;" is OUT OF RANGE. Try aga
in.": 60 TO 200
210 LET p=INT ((3500000/freq/64-58)/16)+1
220 REM "p" is the number of delay loops to be executed
230 POKE &4100,p
240 CLS . %
250 PRINT AT 10,0;"Oscillations now being output
260 PRINT AT 12,5; "Press SPACE to stop"
270 LET 1=USR 64000
280 CLS .
290 PRINT AT B,0;"Press F for a new frequency.
"Press E to finish.,"
THEN GO TO 180
320 IF INKEY$<>“e" THEN GO TO 310

Program listings

Program 17 X-Y PLOTTER

1 CLEAR 63999
2 REM XYPLOTTER

100 FOR i=64000 TO 44086

110 READ x

120 POKE i,x

130 NEXT i

150 DATA 0,62,0,211,31,42,100,61,32,253,219

160 DATA 31,47,254,176,56,2,62,175,87,62

170 DATA 1,211,31,42,100,41,32,253,219, 31

180 DATA 79,122,230,7,103,122,230,56,7,7

190 DATA 111,122,230, 192,15, 15,15, 198,64, 132

200 DATA 103, 121,230,248,15,15,15, 133,111,121

210 DATA 47,230,7,7,7,7,198,198,50,73

220 DATA 250,203,0,42, 127,219, 254, 246, 224, 254, 255, 202, 1, 250, 251, 201

300 LET 1=USR 64000

Program 18 STORAGE OSCILLOSCOPE

2 REM ADC Graph Plot
3 CLEAR 43995
5 LET ag=""
10 FOR i=43994 TO 64115
20 READ x
30 POKE i,x
40 NEXT i
50 DATA 243,33,6,251,42,0
60 DATA 205, 100, 250,87, 42, 0,205, 100, 250, 95
70 DATA 146,48, 1,47,230,240, 40,242, 115
80 DATA SE,200,250,254.2.56.38.]5,:-2,1,205,100.250,119
B2 DATA 58,200, 250,254, 3,56, 23,34,62,2, 205, 100,250, 119
B4 DATA 58, 200, 250,254, 4,56, 8,36, 62, 3, 205, 100, 250, 119
84 DATA 37,37,37
68 DATA 62, 127,219,254, 244,224,254, 255, 32, 22
90 DATA 44,40, 19,58,201, 250, 40,4, 71,205, 110,250, 16
100 DATA 251,462,0,205, 100,250, 119,24, 179, 251,201
130 DATA 211,31,205, 110,250,219, 31,201,0,0
180 DATA 42,50, 61,32, 253,201
150 CLS : PRINT AT 1,5;"STORAGE OSCILLOSCOPE"
160 PRINT AT 4,9;"by R.A.Sparkes"
170 PRINT AT 7,0;“Enter no. of channels required,”
180 PRINT AT 9,0;"minimum 1, maximum 4."
190 PRINT AT 11,0;"Channel 0 is the action channel*
200 INPUT n
201 IF n{1 OR n>4 THEN GO TO 200
202 PRINT AT 16,0;"Press C for a central axis,"
203 PRINT AT 18,0;"cr press B for an axis at the*
204 PRINT AT 20,0;"bottom of the screen.”
205 LET c$=INKEY$: IF c$<>"b" AND c$<>"c” THEN GO TO 205
210 IF n{1 OR n>4 THEN GO TO 200
214 CLS : PRINT AT 1,5;"STORAGE OSCILLOSCOPE™
220 PRINT AT 5,0;"Enter the time interval between"
230 PRINT readings in microseconds.
240 PRINT The minimum time is equal to 200*
242 PRINT AT 11,0;“times the number of channels.”
245 PRINT AT 13,0;"The maxinum time is": PRINT AT 15,0; "50000 microseconds. "
250 INPUT m
260 IF m<200%n OR m>S0000 THEN GO TO 250
265 LET m=INT (m/200)
270 POKE &4201,m-n+1

L |

The ZX Spectrum in science teaching

280 POKE £4200,n
290 PRINT AT 21,0;*I am ready to take readings.”
300 LET z=USR 63996
310 IF as="s" THEN B0 TO 590

320 IF c$="b" THEN GO TO 400

330 CLS

340 PLOT 16,0

350 DRAW 0,175

355 PLOT 10,50

350 DRAW 240,0

370 PRINT AT 2,0;"+1*
375 PRINT AT &,0;"+.5"
380 PRINT 0
385 PRINT i
390 PRINT AT 18,0;"-1"
392 PRINT AT B,0;"V*
394 PRINT AT 11,31;"t"
395 60 TO 590

400 CLS

410 PLOT 15,0

420 DRAW 0,175

430 PLOT 10,10

440 DRAW 240,0

510 PRINT AT
512 PRINT AT
513 PRINT AT
514 PRINT AT
515 PRINT AT
520 PRINT AT
530 PRINT AT
540 PRINT AT 21,31;"t"

590 FOR j=1 TO n

600 FOR i=1 TO 240

610 LET y=10+0.BSSPEEK (64005+i+256%)

620 IF y>175 THEN LET y=175

630 LET x=i+15

835 IF i=1 THEN PLOT x,y: 60 TO 650

640 DRAW x-PEEK 23677,y-PEEK 23678

650 NEXT i

440 NEXT j

700 PRINT AT 21,5;"S for same, N for new."

800 LET a$=INKEYS

B10 IF as="" THEN GO TO 800

BIS IF as="s" THEN PRINT AT 21,5;"Ready to take readings.”: GO TO 300
820 GO 10 150

Program 19 FAST ADC

1 REM FAST ADC
2 REM Graph Plot
3 CLEAR 43999
10 FOR i=64000 TO 64036
20 READ x
30 POKE i,x
40 NEXT i
50 DATA 243,33,6,251,58, 192,250, 95, 4, 250
80 DATA 14,127,219,127,87,219,127,119, 145,48
70 DATA 1,47,230,192,40,245,44,83,21,32
80 DATA 253,237, 162,32,248,251,201
140 LET as=""
150 CLS : PRINT AT 1,5;"FAST STORAGE OSCILLOSCOPE®
160 PRINT AT 4,9;"by R.A.Sparkes"

Program listings

170 PRINT AT 7,0;"Press C for a central axis,"

180 PRINT AT 9,0;"or press B for an axis at the"

190 PRINT AT 11,0;"bottom of the screen.”

200 LET c$=INKEY$: IF c$<>"b" AND c$<>“c* THEN B0 TO 200
210 CLS : PRINT AT 1,5;"FAST STORAGE OSCILLOSCOPE"

220 PRINT AT 5,0;"Enter the time interval between®

230 PRINT AT 7,0;"readings in microseconds.*

240 PRINT AT 9,0;"The minisum time is equal to 12"

245 PRINT AT 11,0;"and the maximum time is"

250 PRINT AT 13,0;"1000 microseconds. "

260 INPUT m

270 IF m<12 OR m>1000 THEN GO TO 260

280 POKE &4192,1+INT ((m-11)%7/32)

290 PRINT AT 21,0;"1 am ready to take readings.”

300 LET z=USR 64000

310 IF as$="s" THEN G0 TO S%0

320 IF c$="b" THEN 60 TO 400

330 CLS

340 PLOT 16,0

350 DRAM 0,175

355 PLOT 10,90

340 DRAW 240,0

370 PRINT AT 2,05"+1"

375 PRINT AT &,0;"+.5"

380 PRINT AT 10,
385 PRINT AT 14,0;"-,5"
390 PRINT AT 18,0;"-1"
392 PRINT AT 8,05"v"
394 PRINT AT 11,31;7t"
395 GO TO 590

400 CLS

410 PLOT 16,0

420 DRAW 0,175

430 PLOT 10,10

440 DRAW 240,0

510 PRINT AT

513 PRINT AT
514 PRINT AT
515 PRINT AT
520 PRINT AT
530 PRINT AT
S40 PRINT AT 21,31;"t"

590 PLOT 15,10+0.644PEEK (44262)

400 FOR i=1 TO 240

610 LET y=10+0.544PEEK (64262+1)

620 IF y>175 THEN LET y=175

&40 DRAW 1,y-PEEK 23478

450 NEXT i

700 PRINT AT 21,5;"S for same, N for new."

800 LET as=INKEYS$

810 IF as="" THEN GO TO 80O

815 IF as="s" THEN PRINT AT 21,5;"Ready to take readings.*: B0 TO 300
820 GO TO 150

Program 20 DIGITAL MULTIMETER

10 CLEAR 32255

IS DIM g(4): REM digits for display

16 PRINT AT 10,0;"Loading data, please wait."
20 FOR i=32512 TO 32554

30 READ x

287

The ZX Specirum in science teaching

40 POKE i,x
50 NEXT i

&0 DATA 42,0,125,58,2

70 DATA 125,55,63,23,23

80 DATA 23,79,4,126,22

90 DATA B8,10,30,6,31
100 DATA 48,4,54,0,24

110 DATA 2,54,56,44,29

120 DATA 32,243,245,125,198

130 DATA 26,111,241,12,21

140 DATA 32,230,201
200 FOR i=32256 TO 32383

210 READ x

220. POKE i,»

230 NEXT i

240 DATA 31,17,17,17,17,17,31,0

250 DATA 4,4,4,4,4,4,4,0

260 DATA 31,17,16,16,31,1,31,0

270 DATA 31,17,16,30,16,17,31,0

280 DATA 1,1,1,9,31,8,8,0

290 DATA 31,1,1,31,16,17,31,0

300 DATA 31,1,1,31,17,17,31,0

310 DATA 31,16,16,16,16,16,16,0

320 DATA 31,17,17,31,17,17,31,0

330 DATA 31,17,17,31,15,16,16,0

340 DATA 0,0,0,0,0,0,4,0

350 DATA 0,0,0,30,0,0,0,

3460 DATA 0,0,31,21,21,21,21,0

370 DATA 0,0,30,2,30,16,30,0

380 DATA 17,17,17,31,17,17,17,0

390 DATA 0,0,31,16,31,1,31,0

400 CLS : PRINT AT 1,5;"DIGITAL MULTIMETER"
410 PRINT AT 5,0;"Voltage is measured on channel 0"
420 PRINT AT 7,0;"Current is measured on channel 1"
430 PRINT AT 9,0;"Do you wish to display”
440 PRINT AT 11,0;" POWER or RESISTANCE ?"
450 PRINT AT 15,0;" Press P or R.*

455 LET k$=INKEYS

450 IF k$<>"p" AND k$<>*r" THEN GO TO 455
470 GO SUB 2000: REM display V and A

480 IF k#="p" THEN B0 SUB 2300

490 IF k$="r" THEN GO SUB 2200

500 REM take readings

510 REM current

520 OUT 31,1

525 PAUSE 1

530 LET c=IN 31

540 LET current=c$0.01132/5

545 LET g=current

550 POKE 32001,89

5460 BO SUB 1000

500 REM voltage

510 DUT 31,0

420 PAUSE 1

&30 LET w=(IN 31)-c

632 LET v=IN 31

534 IF v>254 THEN PRINT AT 4,10;"0UT OF RANGE": PAUSE 10: PRINT AT 4,103"

“: GO TO 500
635 LET voltage=vk0.01142
640 LET g=voltage
450 POKE 32001,88

288

Program listings

660 GO SUB 1000
470 IF k$="p" THEN GO TO 900
700 REM calculate resistance
705 IF current<0.00001 THEN LET resistance=0: GO TO 720
710 LET resistance=voltage/current
720 LET g=resistance
750 POKE 32001,90
760 GO SUB 1000
780 IF INKEY$="" THEN GO TO 500
790 GO TO 400
900 REM calculate power
910 LET power=valtagetcurrent
920 LET g=power
950 POKE 32001,90
940 GO SUB 1000
980 IF INKEY$:
990 GO TO 400
1000 REM sort and display digits
1010 LET dp=0
1020 IF g>=1 THEN LET q=q/10: LET dp=dp+i: GO TO 1020
1050 FOR i=1 TO 3
1060 LET digit=INT (q&10)
1070 LET gq=q#10-digit
1080 IF i<dp+i THEN LET g(i)=digit
1090 IF i>=dp+1 THEN LET gti+1)=digit
1100 NEXT i
1110 LET g(dp+1)=10
1200 FOR i=1 TO 4
1210 POKE 32002,q(i)
1230 POKE 32000, (68 (i-1))
1240 LET h=USR 32512
1250 NEXT i
1440 RETURN
2000 REM PRINT vV
2005 CLS
2010-PRINT AT 0,25;" -
2020 PRINT AT 1,25;" -
2030 PRINT AT 2,25
2040 PRINT AT 3,25
2050 PRINT AT 4,25
2060 PRINT AT 5,25;
2070 PRINT AT &,25;" .
2100 REM PRINT A
2110 PRINT AT B,25;% *
2120 PRINT AT 9,25;
2130 PRINT AT 10,25;* "
2140 PRINT AT 11,25;" "

" THEN GO TO S00

2150 PRINT AT 12,25;" u
2150 PRINT AT 13,25;" .
2170 PRINT AT 14,25;" .
2180 RETURN

2200 REM PRINT OHMS

2210 PRINT AT 16,25;" "
2220 PRINT AT 17,25;" .
2230 PRINT AT 18,25;" .
2240 PRINT AT 19,25;" L]
2250 PRINT AT 20,25;" “
2260 PRINT AT 21,25;" .
2280 RETURN

2300 REM PRINT W

2310 PRINT AT 1&,25;" .

The ZX Spectrum in science teaching

2320 PRINT AT 17,25;" .
2330 PRINT AT 18,2
2340 PRINT AT 19,25;" .
2350 PRINT AT 20,2
2350 PRINT AT 21,
2380 RETURN

5000 OUT 31,1: PRINT IN 31
5010 OUT 31,0: PRINT IN 31
5020 GO TO 5000

Program 21 CURRENT-VOLTAGE PLOT

1 REM CURRENT-VOLTAGE CHARACTERISTICS
10 CLS
20 PLOT 10,0
30 DRAW O, 165
40 PLOT 0,16
50 DRAW 255,0
40 PRINT AT 21,20;"VOLTABE" i
70 PRINT AT 20,0;"0 0.5 1E:lsri|':; 2.0 2.5
NT AT 0,3;"DIODE CHARAC "
:g i:lmr AT 5,0;°C*1 PRINT “U": PRINT "R": PRINT "R
INT *T*
100 REM RAMP THE OUTPUT VOLTAGE
105 PLOT 10,10
110 FOR x=10 TO 255
115-0UT 127,x
120 OUT 31,0
130 PAUSE 1
140 LET y=12+(IN 31)82.5
145 IF y>175 THEN GO TO 140
150 DRAW (x-PEEK 23477), (y-PEEK 23478)
160 NEXT x
170 IF INKEY$="* THEN GO TO 170
180 B0 TO 100

Program 22 FOUR-CHANNEL CHART RECORDER

1 CLEAR 31999
100 FOR 1=32000 TO 32078
110 READ x
120 POKE i,x
130 NEXT i
140 DATA 33,255,67,55,63,30,32,203, 22,43
150 DATA 29,32,250, 62,43, 188, 32,241,4, 126
160 DATA 14,4,121,211,31,30, 100,29, 32,253
170 DATA 219,31,203, 63,203, 63,203, 63,87, 10,146,687
180 DATA 230,7,103,122,230,56,7,7,198,31
190 DATA 111,122,230,192,15,15, 15,198, 64, 132
200 DATA 103,203,254,13,32,210,42,127,219,254
210 DATA 24s,224,254,255, 40,178,201
220 POKE 32257,44: REM channel 1 on top row
230 POKE 322%58,100: REM channel 2 on second row
240 POKE 32259,134: REM channel 3 on third row
250 POKE 32240,175: REM channel & on bottom row
260 CLS
265 PRINT AT 0,3;"Multi-channel oscilloscope®
266 PRINT AT B8,21; "Channel 1*
267 PRINT AT 12,21;"Channel 2"
268 PRINT AT 16,21;"Channel 3*
269 PRINT AT 20,21;"Channel 4"
270 LET 1=USR 32000

290

e S T

Program listings

Program 23 MECHANICS DRILL

10 REM MECHANICS DRILL

20 REH by R.A.Sparkes

100 CLS

110 PRINT AT {,7;“MECHANICS DRILL®

120 PRINT AT 4,0;"This program tests your ability*
130 PRINT PRINT "to solve egquations in mechanics.”

140 PRINT : PRINT "First I should like to know"
150 PRINT : PRINT “your name. Type it in and then®
160 PRINT : PRINT "press ENTER. If you make"

170 PRINT : PRINT "a mistake, you can rub it out”

180 PRINT : PRINT "with the DELETE key (top-right).*
190 PRINT : PRINT "Press the CAPS-SHIFT key at the"
200 PRINT : PRINT “same time as this DELETE key."
210 INPUT as

290 REM what sort of question

300 CLS

310 PRINT AT 0,7;"MECHANICS DRILL*

320 PRINT : PRINT "You can choose questions on®

330 PRINT : PRINT “"three different equations:*

340 PRINT : PRINT : PRINT "1. s = uit + aktits2"
350 PRINT : PRINT " 2

365 PRINT "2. v = u + 2ta#s"

370 PRINT : PRINT : PRINT “3. v = u + att"

380 PRINT : PRINT : PRINT "Press ocne of these numbers"
390 PRINT : PRINT "to make your choice,”

400 LET n$=INKEVS$: IF n$<>"1" AND n$<>2* AND n$<>"3" THEN G0 TO 400
410 IF n$="1" THEN GO TD 1000

420 IF n$="2" THEN GO TD 2000

430 IF n$="3" THEN GO TO 3000

1000 REM s=usteattit/2

1005 LET attempts=0

1016 LET u=1+INT (RND$20)

1017 LET t=1+INT (RND210)

1018 LET a=1+INT (RND120)

1019 REM ask same question again

1020 LET attempts=attempts+l

1030 CLS : PRINT * s = ult + aktat/2"

1040 PRINT AT 4,0; "What is the value of s*

1050 PRINT : PRINT *if u has the value “;
1060 PRINT : PRINT "t has the value ";
1070 PRINT : PRINT " a has the value ";a;" m/s2"

1075 IF attempts)>3 THEN LET r#="Press SPACE for another problem": PRINT : PRINT
¢ PRINT : PRINT "This seems to be too difficult.”: PRINT : PRINT "The correct a
nswer is “jtrue;" m": LET correct=1: GO TO 1130

1080 PRINT : PRINT : PRINT "Bive your answer as a number"

1090 PRINT : PRINT “of metres, then press ENTER."

1110 INPUT ans

1120 LET true=ust+attst/2

1125 IF ABS (ans-true)/true<0.01 THEN GO SUB S000

1126 IF ABS (ans-true) /true>=0,01 THEN GO SUB 4000

1130 PRINT : PRINT r$

1150 PRINT : PRINT "Press @ for a different equation®

1170 LET y$=INKEY$: IF y${>" " AND y$<>"q" AND y$<>*Q" THEN GO TO 1170

1180 IF y$="0" OR y$="g" THEN GO TO. 300

1190 IF correct=1 THEN GO TO 1000

1200 BO TO 1020

2000 REM viv = uku + 2fats

2005 LET attempts=0

2006 LET u=1+INT (RND§20)

2007 LET a=1+INT (RND$20)

291

L "' DD

The ZX Spectrum in science leaching

2008 LET s=1+INT (RND$20)

2020 REM ask same question again

2025 LET attempts=attempts+!

2030 CLS : PRINT * H 4

2040 PRINT " v =u + 2ras”
2050 PRINT AT 4,0;"What is the value of
2055 PRINT : PRINT "if u has the value

2060 PRINT PRINT * s has the value "is
2070 PRINT : PRINT " a has the value ";ja;" mfs2"
"Press SPACE for another problem”: PRINT : FRINT

2075 IF attempts>3 THEN LET rs=
: PRINT : PRINT "This seems to be too dificult.”

swer is "jtrue;” m/s": LET correct=1: 60 TO 2130

2080 PRINT : PRINT : PRINT "Give your answer as a number "

2090 PRINT : PRINT "of m/s, then press ENTER."

2110 INPUT ans

2120 LET t#$=5TR$ (SOR (uSu+28a¥s))

2121 LET true=VAL (t$(1 TO 5)}

2125 IF ABS (ans-true) /true<0.01 THEN GO SUB S000

2126 IF ABS (ans-true) /true>=0.01 THEN GO SUB 6000

2130 PRINT : PRINT r$

2150 PRINT : PRINT "Press 0 for a different equation”

2170 LET y$=INKEY$: IF y8<>" " AND y$<3"q" AND y$e>"0" THEN G4 T0 2170

2180 IF y$="0" OR ys="gq" THEN GO TO 300

2190 IF correct=1 THEN GO TO 2000

2200 GO TO 2020

3000 REM v = u + aft

3005 LET attempts=0

3006 LET u=1+INT (RND220)

3007 LET +INT (RND320)

3008 LET t=1+INT (RND¥25)

3020 REM ask same guestion again

3025 LET attempts=attempts+l

3030 CLS : PRINT AT 0,5;" v = u + agt”

3050 PRINT AT 4,0;"What is the value of v"

3055 PRINT : PRINT i u has the value "ju;" m/s”

3080 PRINT 1 PRINT * a has the value "ja;" m/s2"

3070 PRINT : PRINT " t has the value “;t;" s”

3075 IF attempts>3 THEN LET rs="Press SPACE for another problem™: PRINT : PRINT
: PRINT : PRINT “This seems to be too dificult.": PRINT : PRINT "The correct an

swer is "jtrue;” m/s*: LET correct=i: GO TO 3130

3080 PRINT : PRINT : PRINT "Bive your answer as a number”

3090 PRINT : PRINT "of m/s, then press ENTER. *

3110 INPUT ans

3120 LET true=utakt

3125 IF ABS (ans-true)/true<0.0l THEN 60 SUB 5000

3126 IF ABS lans-true)/true>=0.01 THEN GO SUB 6000

3130 PRINT : PRINT r$

3150 PRINT : PRINT "Press O for a different eguation”

3170 LET yS=INKEY$: IF y$C>" * AND y$<>*g" AND y3<>'Q" THEN GO T0 3170

3180 IF y$="0" OR y$="g" THEN GO TO 300

3190 1F correct=1 THEN GO TD 3000

3200 GO TO 3020

5000 REM Correct .answer

5010 PRINT : PRINT "Well done “;a$

5020 LET ré="Press SPACE for another problem®

5030 LET correct=1

5040 RETURN

£000 REM Wrong answer

5010 PRINT : PRINT "This is not good enough.”

020 LET r$="Press SPACE to try again.”

6030 LET correct=0

4040 RETURN

PRINT : PRINT "The correct an

292

Program listings

Program 24 INTEGRATED SCIENCE TEST

L REM integrated science test
20 DIM s(5): DIM r$(5)
40 PRINT AT 10,0; "Please wait
; till "
S0 PRINT : PRINT “are ::mstru:t;d.'graph“ sebols
133 GO0 SUB 3000: REM construct graphic symbols
60 SUB 1000: REM call instructions
110 FOR n=1 TO 5: LET stn)=0: NEXT n

115 LET
:;g tg SUB 4000: REM call question 1
130 LeY SUB 5000: REM call guestion 2
140, LET SUB 6000: REM call question 3
SUB 7000: REM call question 4
H

160 LET SUB B0QO: REM
} call quest
170 GO TO 9000: REM call test score
1000 REM instructions
1010 CLS : PRINT “How to run this program. "
1020 FRINT *nannannansnnnnnnmnannn
1030 FRINT : PRINT "After msch question there are"
RINT “five possible answers, labelled”
1050 PRINT "A, B, €, D and E."
:gig PRINT : PRINT “Choose the best answer and th
1070 PRINT *jress ane of these letters:
1080 PRINT : PRINT "Press *"4"" for the first question®
0: LET k$=INKEY$: IF k${>"Xx" AND k$<>
1050 puee. THEN GO T 1090
1500 REM print, collect a K
1510 PRINT AT 17,0; AR arkiresponni
1520 PRINT “A, Heat energy"
1530 PRINT "B, Chemical energy"
1540 PRINT "C. Movement energy"
1550 PRINT "D. Potential energy®
1560 PRINT "E. Electrical energy”
£7E’P‘8‘U5ED:: LET ke=INKEY$: IF k$="A" OR k$="BE" OR k$="C" OR ¥
=gt k$="b" OR k$="c" DR k$ ="g" N ;
1580 REM response not allowed HRSSRES SN aST A
1585 PRINT AT 17,20; "Press only*
1590 PRINT AT 18,203 "A,B,C,D or E"
1595 B0 TO 1570
1600 REM check response
1610 IF r$(ni=ks THEN GO T
0 1850
1620 REM wrong
1630 LET x$="Sorry, that is not right.*: LET
1640 LET s(n)=0: LET err=1: RETURN
1650 REM correct
1660 LET x$="Well done, that
iy is correct.”
1670 IF err=0 THEN LET stn)=1
1680 LET err=0
1690 RETURN
1700 REM display result
1710 FOR i=11 TO 21: PRINT AT i,03"
1720 PRINT AT 12,0;x8 B
1730 PRINT 3 PRINT y$
1780 PRINT : PRINT z$
1750 PRINT AT 21,10
1760 PAUSE 0: LET k
1770 RETURN
3000 REM line graphics
3010 FOR i=0 T0 20
3020 FOR j=0 T0 7
3030 READ row

ry again."

LET zg=""

"3 NEXT i

ress ""X"" to continue."
NKEY$: IF k$<>“X* AND k$<>"x" THEN GO TO 1760

OR k$="E"

293

The ZX Spectrum in science teaching

3040 POKE USR CHRS (i+144)+j,row

3050 NEXT j

3070 NEXT i

3080 RETURN

3100 DATA 0,0,0,255,255,0,0,0

3110 DATA 16, 16,16,255,255,16, 14,16

3120 DATA 16,16,16,18,16,16,16,16

3130 DATA 16,16,18,31,31,0,0,0

3140 DATA 1&,16,16,240,240,0,0,0

3150 DATA 0,0,0,31,31,16,16,16

3160 DATA 0,0,0,240,240,15,16,16

3170 DATA 18, 16,16,255,255,0,0,0

3180 DATA 0,0,0,255,255, 14,16, 16

3190 DATA 16,16,16,31,31,14,16,16

3200 DATA 16,16,16,240,240,16,16,16

3210 DATA 128,64,32,15,8,4,2,1

3220 DATA 1,2,4,8,15,32,64,128

3240 DATA 255,0,0,0,0,0,0,0

3250 DATA 0,0,0,0,0,0,0,255

3260 DATA 128,128,128,128,128,128,128,128
3270 DATA 1,1,1,1,1,1,1,1

3280 DATA 255,1,1,1,1,1,1,1

3290 DATA 1,1,1,1,1,1,1,255

3300 DATA 255,128, 128,128,128,128,128,128
3310 DATA 128,128,128,128,128,128,128,255
4000 REH question 1

4010 BORDER 7

4020 CLS

4040 PRINT "1. faaaaaaaaaiaaaaaaag"
4050 PRINT " c c c"
4050 PRINT * c c en
4070 PRINT * jaaag Ol c*
4080 PRINT * c «c c*
4090 PRINT " c - c c”
4100 PRINT * c ¢ tnonnr c c”
4110 PRINT " c c p afak c"
4120 PRINT c cp ac c"
4130 PRINT * € c©p gc c c*
4140 PRINT * nnnnnnnnRARRRNNANNNNR"

4200 PRINT "A lamp gives out light energy”

4210 PRINT “and also another kind of energy.”

4220 PRINT “Which one ?"

4230 LET n=1: LET r$(1)="a"

4240 GO SUB 1500: REM print, collect and mark responses
4280 LET y$="A lamp gives out heat as well as light”
4290 BO SUB 1700: REM display result
4320 IF err=1 THEN GO TO 4000

4340 RETURN

5000 REM question 2

5010 CLS : PRINT "2.": INK 2

5030 PRINT AT 9,0;"

5035 INK 5

5040 FOR i=0 TO 23

5050 PRINT AT 5,i;" o"

5040 PRINT AT &,i;" MILK 1"

5070 PRINT AT 7,i L]

5080 PRINT AT B,
5090 NEXT i
5095 INK O
5100 PRINT AT 11,0;"What kind of energy does the®
5110 PRINT “engine give to the van ?°

5130 LET n=2: LET r$(2)="c"

o o"

294

Program listings

5140 GO SUB 1500: REM print, collect and mark responses
5150 LET y$="The engine maves the van along.”

S160 GO SUB 1700: REM display result

5170 IF err=1 THEN GO TO S000

5180 RETURN

5000 REM question 3

4010 CLS 3 PRINT *3.*: INK 2
5030 PRINT AT 9,5;" &
5035 INK O
5040 PRINT AT 2,7;7°q
5050 PRINT AT 3,7;%q p*
060 PRINT AT 4,7;7q";: BRIGHT 1: INK 6: PRINT " "1 BRIGHT O: INK 0: PRINT "p

:-07(1 PRINT AT S5,7;"g";: BRIGHT 1: INK &: PRINT * BRIGHT 0: INK

PRINT “p

EGSO PRINT AT &,7;"g";: BRIGHT 1: INK &: PRINT * "3: BRIGHT O: INK 0: PRINT "p

5090 PRINT AT 7,7;%g

BRIGHT 1: INK &: PRINT * "3: BRIGHT 0: INK 0:

it INK

£100 PRINT AT B,7;"q*;: BRIGHT 1: INK &: PRINT * *;: BRIGHT 0: INK
"3: INK 4: PRINT " » .

6110 INK 0: PRINT AT 11,0;"What kind of energy

6120 PRINT "in food 7"

6130 LET n=3: LET r$(3)="p"

6140 GO SUB 1500:

6150 LET y$="Food

PRINT "p

PRINT “p

is stored”

REM print, collect and mark responses
is chenical energy. We can store this in our bodies.”
6160 GO SUB 1700: REM display result

&170 IF err=1 THEN GO TO 4000

6180 RETURN

7000 REM question 4

7010 CLS : PRINT “4.*

7080 PRINT AT
7050 PRINT AT
7060 PRINT AT §
7070 PRINT AT SPARKES *

7080 PRINT AT %,10;" BATTERY *

7090 PRINT AT 10,10;" L]

7100 PRINT AT 11,0;"What kind of energy does a *

7110 PRINT “battery contain 7%

7130 LET n=4: LET re(4)="p~

7140 GO SUB 1500: REM print, collect and mark responses

7150 LET y$="A battery stores its energy as chemical energy. This turns intoele
ctrical energy only if it is connected into a circuit.”

7160 GO SUB 1700: REM display result

7170 IF err=1 THEN GO TO 7000

71BO RETURN

8000 REM guestion 5
8010 CLS : PRINT "5
B020 PRINT : PRINT “nnnl*
8030 PRINT 1"

B8040 PRINT " 1"

B0S0 PRINT * 1

B0L0 PRINT " 1
B070 PRINT * 1
BOBO PRINT * 18
8090 PRINT * 1
BO9S PRINT *
8100 PRINT

nAnAnNRNAnNnRRNNNNnnnn"®
: PAUSE BO: PRINT AT 1,0;" »
B110 PRINT PAUSE 24: PRINT AT 1,1;* *
8120 PRINT PAUSE 24: PRINT AT 1,2;" *
Bi30 PRINT AT 1,3;"0": PAUSE 24: PRINT AT 1,3;" =

The ZX Spectrum in science teaching

8140 PRINT AT 2,4;"0"; PAUSE 20: PRINT AT 2,4
B150 PRINT AT 3,5;"0": PAUSE 1&: PRINT AT 3,5
8160 PRINT AT 4,63“0": PAUSE 12: PRINT AT 4,4
B170 PRINT AT 5,7;"0": PAUSE 9: PRINT AT 5,7;
B1B0 PRINT AT &,B;"D": PAUSE &: PRINT AT &,8;" *

8190 PRINT AT 7,9;"0": PAUSE 4: PRINT AT 7,%;" "

8200 PRINT AT B,10;°0": PAUSE 3: PRINT AT B,10;" "

8210 FOR i=11 70 30

8220 PRINT AT 9,i;"0": PAUSE 2: PRINT AT 9,i;" "

8230 NEXT i

8300 PRINT AT 11,0;"What kind of energy is the"

8310 PRINT "ball losing. nnnnnn*

8330 LET n=5: LET rs$(5)="d"

8340 GD SUB 1500: REM print, collect and mark responses

B350 LET y$="The ball is falling, so it is losing potential emergy.”
B340 GO SUB 1700: REM display result

B370 IF err=1 THEN 60 TO BOOO

8470 RETURN

9000 REM display test score

9010 BORDER 3: CLS

9015 PRINT

9020 PRINT “Buestion number First answer"

9030 FOR n=t TO 5

9040 PRINT AT 3+n,7;n;: PRINT TAB 20;

9050 IF s(n)=0 THEN PRINT "Wrong"

9060 IF s{n)=1 THEN PRINT "Correct"

9065 LET total=total+s(n)

9070 NEXT n

9090 LET qs$="s"

9100 IF total=1 THEN LET gs="*
9110 PRINT AT 15,0;"You scored ";
9120 PRINT “out of 5 questions.
9200 PRINT AT 20,0;"Press ""Y"" to repeat the test, any other key to
9210 PAUSE 0: LET k$=INKEY$: IF k$="Y" OR k$="y" THEN T0 110

9220 CLS : BORDER 7

otal;" correct answer”;g$

Program 25 ELEMENTS

1 REM ELEMENTS
2 REM by R.A.Sparkes
10 GD SUB 9000: REM Load data into array
20 DIM p$i{15)
30 DIM ds(15)

PRINT : PRINT AT 1,10;"ELEMENTS"
: PRINT "ELEMENTS is a guessing game."
"You type in the missing letters”
"one by one. Each correct letter"
"takes you nearer to guessing"
"the whole element. You can have"
up to eight incorrect guesses”
“after which, you will be "
"given the correct answer,"
&0 PRINT AT 21,0;“Press SPACE to continue.”
63 IF INKEY$<>" " THEN GO TO &3
&4 CLS
&5 PRINT AT 1,103 "ELEMENTS*
66 PRINT : PRINT : PRINT “Type your name,"
&7 PRINT : PRINT : PRINT "then press ENTER."
&8 PRINT : PRINT
S0 INPUT as$
100 REM set up word
110 B0 SUB B8000: REM Get an element

296

120 LET wordlength=LEN (ws$)
130 FOR i=1 TO wordlength
140 LET p#tid=ws(i TO i)

150 LET d$(i)="-"

160 NEXT i

170 LET guess=0

180 CLS : PRINT AT 11,12;

190 REM Print letter positions
200 FOR n=1 TO wordlength

210 PRINT ;*-";

220 NEXT n

250 REM Ask question

260 PRINT AT 1,0;a8;","

270 PRINT AT 4,0;"Guess a letter.”
280 PRINT AT 0,1
290 PRINT AT 2,27;quess

330 LET 14=INKEY$: IF l$="" THEN GO TO 330

333 IF CODE 18<97 THEN LET I$=CHR$ (CODE 1$+32)
340 IF CODE 13<97 OR CODE 1$>122 THEN GO TO 330
340 LET flag=0

370 FOR i=1 TO wordlength

380 IF 18<>psti) THEN GO0 TO 400
390 LET flag=1

395 LET ds(il=1s

400 NEXT i

410 REM Construct word so far
415 LET g$=""

420 FOR i=1 TO wordlength

430 LET gs=gs+ds(i)

440 NEXT i

500 PRINT AT 11,0;"The word is
520 IF flag=0 THEN PRINT AT 15,0
NT *try again.”

530 IF flag=1 THEN PRINT AT 15,0;"
INTS")

540 IF g$=w$ THEN GO TO 80O

550 IF flag=0 THEN LET guess=guess+l

560 IF guess>B THEN GO TO 880

580 GO TO 270

800 REM Success

810 PRINT AT 1,0;"Well done, ";a$

820 PRINT AT 4,0;"the hidden element is"

830 PRINT AT &,0;w$

850 PRINT AT 20,0;"Press SPACE for another word."”

g%
“Your letter is not in my word

840 THEN GO TO 860
870

8B0 REM too many guesses

890 CLS

900 PRINT AT 1,0;"No, “ja$

910 PRINT AT 4,0;"the hidden element”

920 PRINT AT 8,0;ws

930 PRINT AT 20,0;"Press SPACE for another word.”
940 IF INKEY$<3>* * THEN GO 10 940

950 6O T0 100

8000 REM Get an element
8010 LET r=INT (1+RND$103)
8020 IF es(ri="

8030 LET ws=""

8050 FOR i=1 TO 15

8060 LET q$=es(r) (i TO 1)
8070 IF q$<>" " THEN LET wh=w$+qs$
8080 NEXT i

" THEN GO TO 8010

Program listings

"z PRINT : PRI

": PRINT : PR

297

The ZX Spectrum in science teaching

8090 LET e$(r)=""

8100 RETURN

9000 REM Load data into array

9010 DATA "actinium”,"aluminium”",“americium®,"antimony","argon®
9020 DATA "arsenic","astatine","barium”,"berkeliun","beryllium"
9030 DATA "bismuth®,”boron”,"bromine”, "cadmium”,"caesium”

9040 DATA "calcium”,”"californium”,"carbon”,"cerium”,"chlorine”
9050 DATA “chromium”,"cobalt”, "copper®, “curium®, “dysprosium”

9060 DATA "einsteinium”,"erbium”,"europium”,"fermium”,"flucrine”
9070 DATA "francium”, "gadolinium”,"galliun","germaniua”, "gold"
9080 DATA “hafnium”,"heliun”,"holmium", "hydrogen”, "indium"

9090 DATA “iodine","iridium”,"iron", "krypton”,"lanthanum”

9100 DATA "lawrencium”,”lead”,”lithium”,"lutetiun®, "magnesiun®
9110 DATA “manganese”, "medelevium”, “mercury", “mal ybdenun” , “necdymiun”
9120 DATA "neon”, "neptunium”, “nickel”, "niobium","nitrogen”

9130 DATA “"nobelium", "osmium®, “oxygen®, "palladium”, "phosphorus”
9140 DATA “platinum®, “plutonium®, “polonium®, “potassium”, “praseodymium”
9150 DATA "promethium”,”protactinium”,"radium”,"radon”, "rhenium"
9160 DATA *rhodium”,"rubidium®,*ruthenium®,“samarium®,*scandium®
9170 DATA "selenium”,“silicon”,"silver","sodiua","strontium®

9180 DATA "sulphur”,”tantalum”,*technetium”,“tellurium”,“terbium"
9190 DATA “"thallium",“thorium","thulium”,"tin","titanium"

9200 DATA “tungsten”,”uranium”,”vanadium”,"xenon”,"ytterbium"
9210 DATA "yttrium","zinc","zirconium®

9300 RESTORE

9310 DIM e$(103,15)

9320 FOR n=1 TO 103

9330 READ e$(n)

9340 NEXT n

9500 RETURN

Program 26 CHEMICAL NAMES

100 REM Introduction

110 cLs

120 PRINT “"Hello.™

130 PRINT

140 PRINT "I should like to know your name"

150 PRINT "Please type it in."

160 PRINT : PRINT "If you make a mistake,”

170 PRINT "you can rub it out again®

180 PRINT "with the DELETE key (top-right).”

190 PRINT "Hold down the CAPS SHIFT key*

200 PRINT "(lower left) at the same time*

210 PRINT "and press the DELETE key for"

220 PRINT "sach leter you want to rub out.*

230: PRINT : PRINT "When you are satisfied, press®
240 PRINT "the ENTER key -(extreme right)"

250 PRINT "to tell me that you are ready.”

260 INPUT AT 1,0;"Type here "; LINE n$

270 IF n#<>"" THEN GO TO 300

280 INPUT AT 0,0;"Cone on! You must have some name*;AT 1,0;"Type it here "; LIN

290 80 TO 270

310 PRINT "Hello *jn$

330 PRINT : PRINT "I shall give you the chemical®
340 PRINT "symbol for one of the elements."

350 PRINT "You must type out the full name"

350 PRINT "of that element and [will™

370 PRINT “tell you if you are right.”

380 PRINT : PRINT "Remember that you can rub out®

298

Program listings

390 PRINT “any letters you type wrongly and”

400 PRINT “don’t forget to press ENTER to”

410 PRINT "tell me that you are ready.”

420 PRINT AT 20,0; “Press “*C"* to get a question.”
0

450 IF INKEYS<>"c* AND INKEY$<>C* THEN GO TD 450
450 RESTORE

500 REM Question routine

510 LET x=1+INT (RNDE24.9%)

520 FOR i=1 TO x: READ s$: READ e$: NEXT i

530 LET guesses=0

535 PRINT AT 20,0;*

540 PRINT AT 19,0;“The symbol is ";s$

S50 PRINT : PRINT "What is the name of the element?*
570 INPUT AT 1,0;"Type here “;g%

580 REM convert to lower case

590 LET wi=""

600 FOR i=1 TO LEN g$

610 LET 18=g#(i)

620 LET v=CODE 1%

&30 IF v<97 THEN LET v=v+32

540 LET 1$=CHR$ v

650 LET wi=ws+ls

660 NEXT i

&70 REM Check answer

&80 IF we=e$ THEN BO TO BOO

&90 REM Wrong answer

700 LET guesses=guesses+1: IF guesses)3 THEN B0 TD 900
710 CLS
720 PRINT
725 PRINT
730 PRINT "That is not right."

740 PRINT : PRINT “Perhaps the spelling is wrong.®

750 PRINT : PRINT “Press ""C"" to try again.”

760 PAUSE 0: IF INKEY$<>"c" AND INKEY${)>"C" THEN TO0 760

770 60 TO 333

B00 REM Correct answer

B10 CLS : PRINT "Well done, that is correct.”

820 PRINT : PRINT "Would you like another 7"

825 PRINT

830 PRINT "Press 'Y’ for YES or "N’ for NO."

B840 PAUSE 0

B350 IF INKEY$="y" DR INKEY$="Y" THEN GO TO 300

B40 IF INKEY$="n" OR INKEY$="N" THEN STOP

870 60 TO 840

900 REM Three wrong guesses

910 CLS : PRINT "You don’t seem to know this one,": PRINT : PRINT n$;
920 PRINT : PRINT "The name for "js$;" is
940 PRINT : PRINT "Do you see where you went wrong?"
950 GO TO 820

1000 REM symbols and names

1010 DATA *Cu
1020 DATA "Sn*","tin"
1030-DATA *Au*, "gold”
1040 DATA "S*","sulphur®
1050 DATA *H",*hydrogen”
1060 DATA "I*
1070 DATA "Ag
1080 DATA "Pb
1090 DATA "Cd'
1100 DATA "B","boron"

299

The ZX Spectrum in science teaching

1110 DATA “C","carbon”
1120 DATA "C1","chlorine”
1130 DATA “K*,“potassium®
1140 DATA "Na","sodium*
1150 DATA "He*,*helium®
1150 DATA "Li","lithium*
1170 DATA *A","argon"
1180 DATA "Ne”,"neon”
1190 DATA
1200 DATA
1210 DATA “Ge","germanium®
1220 DATA "As”,"arsenic"
1230 DATA "Se”,"selenium®
1240 DATA 0%, “pxygen”
1250 DATA "Mg","magnesium"

Program 27 ANALOGUE-DIGITAL SIMULATION

1 CLEAR 31500

3 PRINT AT 10,5;*Loading, please wait.”
100 REM DEFINE OUTLINES
110 FOR j=97 TO 107
120 FOR i=0 TO 7

121 READ x
122 POKE USR (CHRS j)+i,x

123 NEXT i

124 NEXT j

130 DATA 85,0,0,0,0,0,0,0

140 DATA ©,128,0,128,0,128,0,128

145 DATA 1,0,1,0,1,0,1,

150 DATA ©,0,0,0,0,0,0,85

160 DATA 85,0,128,0,128,0,128,0

170 DATA B5,0,1,0,1,0,1,0

180 DATA 128,0,128,0,128,0,128,85

190 DATA 1,0,1,0,1,0,1,85

200 DATA 0,0,0,0,0,0,0,85

210 DATA 0,0,0,255,255,0,0,0

220 DATA 0,0,0,255,255,128,128,128

400 GO SUB Bf .

S00 BORDER &

550 CLS

560 PRINT AT 4,0;"128 44 32 16 8 4 2 1"
570 PRINT AT 1,0;"eaé eaf eaf eaf eaf eaf eaf eaf"
580 PRINT AT 2,0;"bcbcbecbecbecbecbebe”
590 PRINT AT 3,0;"gih gih gih gih gih gih gih gih”
400 PRINT AT 18,0;"0 40 80 120 140 200 240"
610 PRINT AT 19,0;"kjjjikjiijkisiiksjiskijsikisisk”

420 FOR n=0 TO 255

630 POKE 32512,n

440 RANDOMIZE USR 32100

650 PAUSE 5

660 NEXT n

700 INPUT "Enter a number (O to 255) "jnumber
710 IF number<0 OR nunber>255 THEN GO TO 700
730 POKE 32512,number

740 RANDOMIZE USR 32100

750 6O TO 700

800 FOR 1=31744 TO 31831

810 READ x

820 POKE i,x

B30 NEXT i

300

850

Program listings

DATA 31,17,17,17,17,17,31,0
DATA 4,4,4,4,4,4,4,0

DATA 31,17,16,16,31,1,31,0

DATA 31,17,16,30,14,17,31,0

DATA 1,1,1,9,31,8,8,0

DATA 31,1,1,31,16,17,31,0

DATA 31,1,1,31,17,17,31,0

DATA 31,16,16,16,14,14,16,0

DATA 31,17,17,31,17,17,31,0

DATA 31,17,17,31,14,14,16,0

DATA 0,0,0,0,0,0,0,0

FOR i=32000 TO 32058

READ x

POKE 1,x

NEXT i

DATA 24,89,5,0,0,0,0,0,0,0

DaATA 0,0,0,0,0,0,42,0,125,58

DATA 2,125,55,63,23,23,23,79,6,124
DATA 22,8,10,30,56,31,48,4,54,0

DATA 24,2,54,56,44,29,32,243, 245,125
DATA 198,26,111,241,12,21,32, 230,201
FOR i=32100 TO 32409

READ x

POKE i,x

NEXT i

DATA 33,4,127,62,0,50,3,127,50,4
DATA 127,58,0, 127,254, 100,56, 5,214, 100
DATA 52,24,247,45,254,10,55,5,214,10
DATA 52,24,247,45,119,62,0,50,5, 127
DATA 58,4,127,50,2,125,167,40,7,42
DATA 1,50,5,127,24,5,62,10,50,2
DATA 125,42,12,50,0, 125, 62,89,50,1
DATA 125,205, 16, 125,58, 3, 127,50, 2, 125
DATA 147,32,11,58,5,127,187,32,5,62
DATA 10,50,2, 125,42, 18,50,0,125, 62
DATA 89,50, 1, 125,205,186, 125,58, 2,127
DATA 50,2, 125,62,24,50,0,125, 62,89
DATA 50,1, 125,205, 16,125,0,0,0,0
DATA 0,0,58,0,127,71,14,0,33,32

DATA B8,121,7,7,95,22,0,25,120,23
DATA 71,48, 4,62,0,24,2,62,56,119
DATA 44,119,44,119,44,44,44, 44,44, 44
DATA 44,44,44,44,44,44,44,44,44, 44
DATA 44,44,44,44,44,44,44,45,44,44
DATA 44,44,44,44,119,44,119,44,119,44
DATA 44,44,44,44,44,44,44,44,44,44
DATA 44,48,44,44,44,44,44,48,44,44
DATA 44,44,43,44,44,44,44,44, 44,119
DATA 44,119,44,119,12, 42,8, 185,32, 154
DATA 0,0,17,160,80,33, 140, 90,58, 0
DATA 127,254,8,56,8,214,8,54,0, 44
DATA 28,24,244,54,55,58,0,127,230,7
DATA 71,40,6,62,0,55,31,16,252, 18
DATA 20,18, 20, 18, 20,18, 20, 18, 20, 18
DATA 20,18, 20,18, 44,462,191, 187,48, 1
DATA 201,54,63,24,245,0,0,0,0,0
RETURN

301

The ZX Spectrum in science teaching

Program 28 BYTE SIMULATION

10 REM Bistable simulation
20 REM by R.A.Sparkes
30 REM 12/1/83

40 REM

100 REM S$REESRIEETXTIETALLE

110 REM

120 REM Initialize variables

130 REM

140 REM BERBRRfSRsssasnss

150 REM

140 DIN b(B): REM bits of the byte
170 GO SUB 9000: REM Define graphics characters
180 LET byte=0: REM initial value
200 REM $Eisitssssssdein

210 REM

220 REM Main program
230 REM

240 REM SRRSfsiseasnenss
250 REM

240 60 SUB 1000: REM draw bistable
270 GO SUB 2000: REM Accept an input
280 60 SUB option: REM Execute chosen option
290 GO TO 270: REM Repeat sequence
1000 REM T¥gsisssssississs

1010 REM

1020 REM Draw bistable

1030 REM

1040 REM sEgsgssnessssisss

1050 REM

1060 CLS

1070 PRINT AT 1,12;"BYTE 32500"

1990 PRINT AT 4,B; "eabababababababaf”
117 PRINT AT 5,8;"d d d dddddd"
1110 PRINT AT &,B;*gacacacacacacacah”
1120 RETURN

1500 REM ®#stisstssxsssss

1510 REM

1520 REM Display byte in

1530 REM binary and decimal

1540 REM

1550 REM ¥1f3sszssstssssss

1540 REM

1570 LET temp=byte

1580 FOR i=8 TO 1 STEP -1

1590 LET bitvalue=2~(i-1)

1500 LET b(i)=(temp>=bitvalue)

1610 IF b(i) THEN LET temp=temp-bitvalue
1620 NEXT i

1700 PRINT AT 14,0;" Decimal value = "jbyte;"

1710 FOR i=1 TO 8
1720 PRINT AT S, (25-28i);3b (i)
1730 NEXT i

1740 RETURN

2000 REM SEXERISERERERIELRL
2010 REM

2020 REM Accept an input
2030 REW

2040 REM Stsgssssssssssess

s P to enter a new number

2050 REM
2060 PRINT AT 16,0;"

302

Program listings

2070 PRINT AT 17,7;"A to add a number”
2080 PRINT AT 18,7;"5 to subtract a number”
2090 PRINT AT 19,7;"L to shift left"

2100 PRINT AT 20,7;"R to shift right"

2110 PRINT AT 21,7;"F to finish"

2200 LET a$=INKEY$

2210 IF a$<>"p" AND as<)"P" AND a$<>"a" AND a$<>"A" AND a$<>"s" AND a$<>"S" AND
;;;;'1' AND a$<>"L" AND as<>"r* AND a$<>"R" AND a$<>"f" AND a$<>“F* THEN GO TO
2220 PRINT AT 16,0;" "

2230 PRINT AT 17,0;"
2240 PRINT AT 18,0
2250 PRINT AT 19,0
2260 PRINT AT 20,0,
2270 PRINT AT 21,0;"

2280 REM This clears the option choice

2290 REM Now determine where the chosen option can be found
2300 IF a$="p" OR a%="P" THEN LET option=3000
2310 IF as="a" OR

LET option=4000
LET option=5000
LET option=6000
LET option=7000
a$="F" THEN LET option=B000

2350 RETURN

2500 REM SE88stsssssidsast

2510 REM

2520 REM Collect number

2530 REM as an integer

2540 REM between O and 255

2550 REM

2560 REM SEERREERTEERTEINE

2570 REM

2580 PRINT AT 16,9;"what number (0 to 255)7"
2590 INPUT n$

2600 IF CODE n$>57 OR CODE n$<48 THEN GO TO 2590
2610 LET number=INT VAL ns’

2520 IF number<O OR number >255 THEN GO TOD 2590
2630 RETURN

3000 REM STEXIRERLRLITRLLR

3010 REM

3020 REM Poke number into byte

3030 REM

3040 REM SEXEITLELETRETREE

3050 REM

3060 PRINT AT 14,0;"POKE address with"

3070 GO SUB 2500: REM Collect number

3080 LET byte=number

3090 PRINT AT 14,0;" POKE 32500, “;byte; " N
3093 PRINT AT 18,0;" .
3095 PAUSE 100

3100 GO SUB 1500: REM Display number

3110 RETURN

4000 REM $3EREXLRLRERLREEE

4010 REM

4020 REM Add a number

4030 REM

4040 REM SEskitasarsssssssy

4050 REM

4070 PRINT AT 14,5;*ADD"

4080 GO SUB 2500: REM Collect number
4090 LET bytesbyte+nunber

4100 IF byte>255 THEN LET byte=byte-25&

The ZX Spectrum in science teaching

4110 PRINT AT 16,5;"ADD “;number;”
4120 GO SUB 1500: REM Display number
4130 RETURN

S000 REM SSRfsssssssssnsss

5010 REM

5020 REM Subtract a number

5030 REM

5040 REM $1ftsgsgtstssssss

5050 REM

5070 PRINT AT 14,03 "SUBTRACT"

S080 GO SUB 2500: REM Collect number
5090 LET byte=byte-number

5100 IF byte<0 THEN LET byte=byte+256

5110 PRINT AT 14,0; “SUBTRACT "jnumber;"

5120 GO SUB 1500: REM Display number
5130 RETURN

4000 REM ti1fSEesiesnsasss

6010 REM

4020 REM Shift left

5030 REM

&040 REM SISSESTRETTRRLRLE

6050 REM

5080 PRINT AT 1&,8;"SHIFT LEFT"
4070 LET bytesbytetbyte

5080 IF byte>255 THEN LET byte=byte-256

6090 GO SUB 1500: REM Display number
6100 RETURN

7000 REH SSSXESTREILTRTXLE

7010 REM

7020 REM Shift right

7030 REM

7040 REM SRIXTRTREILERiess

7050 REM

7060 PRINT AT 16,8;"SHIFT RIGHT*
7070 LET byte=INT (byte/2)

7080 GO SUB 1500: REM Display number
7090 RETURN

8000 REM ¥ifififisssssssss

8010 REM

8020 REM Finish

8030 REM

B8040 REM XEFTRIEERERETLENL

8050 REM

8060 STOP

9000 REM SESELEESEEERENEEN

2010 REM

9020 REM Define graphics chars
9030 REM

9040 REM $331XR3esstssssey

9050 REM

9100 FOR i=0 TO 7

9110 FOR j=0 TO 7

9120 READ row

9130 POKE USR CHR$ (i+144)+j,rom
9140 NEXT j

9150 MNEXT i

9200 REM Defining characters

9210 REM Letter A = horiz line
9220 DATA 0,0,0,255,255,0,0,0
9230 REM Letter B = T-junction down
9240 DATA 0,0,0,255,255,24,24,24
9250 REM Letter C = T-junction up

304

Program listings

9260 DATA 24,24,24,255,255,0,0,0

9270 REM Letter D = Vertical line
9280 DATA 24,24,24,24,24,24,24,24

9290 REH Letter E = Top-left corner
9300 DATA 0,0,0,31,31,24,24,24

9310 REM Letter F = Top-right corner
9320 DATA 0,0,0,248,248,24,24,24

9330 REM Letter 6 = Bottom-left corner
9340 DATA 24,24,24,31,31,0,0,0

9350 REM Letter H = Bottom-right corner
9350 DATA 24,24,24,248,248,0,0,0

7400 RETURN

Program 29 RADIOACTIVE DECAY

1 REM radiocactive decay
5 DIM n(8,32)
10 CLS
20 REM Set up molecules
30 FOR y=0 T0 &
40 FOR x=0 TO 3t
50 PRINT AT y,x;CHRS 79
55 LET niy+l,x+1)=1
&0 NEXT x
70 NEXT y
80 PLOT 0,10: DRAW 255,0
90 PLOT 24,0: DRAW 0,115
100 PRINT AT 20,2;"0"
110 PRINT AT 17,1;"50"
120 PRINT AT 14,0;"100"
130 PRINT AT 11,0;"150"
140 PRINT AT 8,0;“200"
150 PRINT AT 21,3;%0 5 10 15 20 25 30 35 40 t/s*;
160 LET count=224
170“PLOT 24,110 *
180 FOR x=24 TO 255 STEP 0.45
190 REM Let nuclei decay at random
200 LET xpos=INT (328RND)
210 LET ypos=INT (74RND)
220 IF n(ypos+l,xpos+1)=1 THEN GO SUB 1000
300 DRAW x-PEEK 23677, (10+count/2) -PEEK 23478
310 NEXT »
320 PRINT AT 0,0;"Plot finished B
330 STOP
1000 REM A nucleus has decayed
1010 LET n(ypos+l,xpos+1)=0
1020 PRINT AT ypos,xpos;CHRS 42
1030 LET count=count-1
1040 RETURN

Program 30 SUM OF TWO DICE

100 REM Sum of two dice

110°PRINT AT 0,&;"THE SUM OF TWO DICE"

150 DIM s(12)

160 PRINT AT 2,0;“TOTAL NUMBER OF THROWS = *
170 PLOT 4,0: DRAW 0, 150

180 PRINT AT 5,0;"120"

190 PRINT AT 10,0; "BO"

200 PRINT AT 15,0;"40"

[
b

The ZX Spectrum in science teaching

210 PRINT AT 20,0;"0"
220 PLOT 0,10: DRAW 255,0
300 PRINT AT 21,13%2 3 4 5 & 7
500 RANDOMIZE
1000 LET total=0
1010 FOR i=2 TO 12: LET s(i)=0: NEXT i
1020 REM shake dice and add them up
1050 LET dicei=INT (1+(4$RND))
1060 LET dice2=INT (14 (S5RND))
1070 LET sum=dicel+dice2
FOR i=2 TO 12
:833 1:0 sum=i THEN LET s(i)=s(i)+l: GD SUB 2000
1100 NEXT i
1110 LET total=total+i
1120 IF total=800 THEN STOP
1130 PRINT AT 2,26;total
1140 60 TO 1020
2000 REM update bar chart
2010 LET x=(i-2)824+8
2020 LET y=s(i)+10
2040 PLOT x,y
2050 DRAW 7,0
2070 RETURN

? 10 11 12%;

Program 31 STANDING WAVES

1 CLEAR 28927
2 PRINT AT 10,0;"Loading data, please wait”
10 FOR i=28928 TO 29097
20 READ x
30 POKE i,x
40 NEXT §
50 DATA 205,32,113,198,134
40 DATA 50,9,113,203,0
70 DATA 201,0,0,0,0
80 DATA 0,205,32,113,198
20 DATA 198,50,25,113,203
100 DATA 0,201,0,0,0
110 DATA 0,0,122,230,7
120 DATA 103,122,230,56,7
130 DATA 7,111,122,230,192
140 DATA 15,15,15, 198,44
150 DATA 132,103,121,230,248
160 DATA 15,15, 15,133,111
170 DATA 121,47,230,7,7
180 DATA 7,7,201,0,0
190 DATA 0,0, 243, 14,0
200 DATA &,115,10,87,205
210 DATA 0,113,38,118,58
220 DATA 70,113,129,111,126
230 DATA 198,89,87,2,205
240 DATA 16,113,4,10,87
250 DATA 205,0,113,38,118
260 DATA 58,70,113,95,121
270 DATA 147,111,126,198,40
280 DATA B7,2,205,16,113 .
290 DATA 4,10,87,205,0
100 DATA 113,5,10,95,5
310 DATA 10,198,12,131,4
320 DATA 4,2,87,205,16
130 DATA 113,12,12,194,75

306

340 DATA 113,58,70,113,561
350 DATA 50,70,113,62,254
340 DATA 219,254,246,224,254
370 DATA 255,202,73,113,254
380 DATA 254,40,241,251,201
500 REM Set up wave table
510 FOR i=0 TO 255

520 POKE (i+30208), (1585IN (i%P1/321)
530 NEXT i

550 CLS

400 RANDOMIZE USR 29000

Program 32 LONGITUDINAL WAVES

1 REM LONGITUDINAL PULSES
2 CLEAR 28471
10 PRINT AT 10,0;“Loading data, please wait®
100 FOR i=29496 TO 29927
110 READ x
120 POKE i,x
130 NEXT i
140 FOR i=0 TO 127
145 POKE 29184+ ,945IN (i#P1/44)
150 NEXT i
200 DATA 243,62,258,219,254, 244,224, 254, 255, 40
210 DATA 28,254,254, 40,242,254, 253, 40, 2, 251
220 DATA 201,58, 128, 114, 60,230, 127,50, 128, 114
230 DATA 111,38,114,126,50,0,112,24,19,58
240 DATA 128,114,167,40,4,254,64,32, 228, 62
250 DATA 0,0,50,128,114,50,0,112,33,255
250 DATA 112,17,0,113,1,0,1,237, 184,58
270 DATA 0,113,95,58,129,114,87,6,8,62
280 DATA 0,135,203, 19,48, 1,130, 14,248, 203
290 DATA 47,50,0,114,33,1,113,17,0,113
300 DATA 1,0,1,237,174,14,16,6,115,10
310 DATA 87,205,140, 116,6,112,10,87,4,10
320 DATA 130,129,4,115,2,87,205,190, 114,62
330 DATA 16, 129,79,254,240,32,226,195,1,11&
340 DATA 38,80,122,230,248,15, 15,15, 111,122
350 DATA 47,230,7,7,7,7,198,134,50, 162
360 DATA 11&,203,0,125,198,32, 111,254, 128,56
370 DATA 244,198,128, 111,36, 34, 42,88, 188, 32
375 DATA 236,201,0,0,0,0,0,0,0,0
380 DATA 38,80,122,230,248,15,15,15,111,122
390 DATA 47,230,7,7,7,7, 198, 198, 50,212
400 DATA 114,203,0,125,198,32, 111,254,128, 56
410 DATA 244,198,128, 111,34,34, 62,88, 188, 32, 236, 201
500 REM Collect reflection coefficient
510 CLS
520 PRINT AT 0,8; "PULSE REFLECTION"
530 PRINT AT 5,0; "Enter the reflection coefficient”
540 PRINT AT 7,0;"as 1, 0.5, 0, -0.5 or -1"
550 INPUT n
560 LET refcof=-INT (n£2+.1)
570 POKE 29313,refcof
SB0 PRINT AT 10,0;"Resetting wave table”
600 REM Reset wave tables
410 FOR i=28672 TO 29183
420 POKE i,0
630 NEXT i
1000 REM main program
1010 CLS

Program listings

307

The ZX Spectrum in science teaching

1020 PRINT AT 0,8;"Pulse reflection”
1030 PRINT AT 2,0;"Press Z to sead a single pulse”
1040 PRINT AT 4,0;"Hold I to make continuous waves"
1050 PRINT AT &,03"and CAPS-SHIFT to stop the pulse”
1060 PRINT AT B,0;"Press X to change the reflectioncoefficient”
1070 PRINT AT 11,0;"The reflection coefficient”
1080 PRINT AT 13,0;"is ";n;" at present"
1200 LET 1=USR 29496
1300 GO TO S00

L CLEAR 63999

I PRINT AT 10,0;"Loading data, please wait."

10 DIM t(4,2): REM stores for time intervals

46 FOR i=68000 TO 64184

47 READ x

48 POKE i,x

49 NEXT i

50 DATA 243,4,0,221,33,0,251,221,54,0

51 DATA 0,221,35, 16,248, 22,0,30,0,46

52 DATA 0, 62,252,50, 243, 250,62, 124,50, 245, 250,62

3 DATA 251,50,244,250,50,246,250,219,63,230

s4 DATA 3,71,219,43,230,3,79,184,40,248

55 DATA 0,121,168, 65,254, 1,40,8,254,2

54 DATA 40, 18,121,238,2,71,58,243,250, 158

57 DATA 4,50,243,250,221,42,243,250,24,12

S8 DATA 58,245,250, 198, 4,50,245,250,221,42

59 DATA 245,250,221,115,0,221,114,1,221,117

Program 33 MOLECULAR MOTION - BASIC

2 RANDOMIZE
10 GO SUB 5000
20 GO SUB 3000
30 GO SUB 2000
100 POKE pos,5é
120 GO SUB 1000: REM Get new position
130 LET 1$=INKEY$
200 IF 1 d" THEN LET direction=1
210 IF 1$="a" THEN LET direction=-1

220 THEN LET directian=32
230 THEN LET direction=-32
240 THEN LET directior 31

250 THEN LET directios 3

260 IF 1$="z" THEN LET direction=31

270 IF 1$="g" THEN LET direction=-33
280 6O TO 100

1000 REM Get new position

1010 LET newpos=pos+direction

1020 LET screen=PEEK newpos

1030 3 THEN GO TO 1300
1040 THEN GO TO 1500
1050 THEN GO TO 1400

1300 POKE pos, 63

1310 LET- pos=newpos

1330 RETURN

1500 REM Horizontal wall

1510 IF direction=31 THEN LET direction=-33: RETURN
1520 IF direction=32 THEN LET direction=-32: RETURN
1530 IF direction=33 THEN LET direction=-31: RETURN
1540 IF direction=-33 THEN LET direction=31: RETURN
1550 IF direction=-32 THEN LET direction=32: RETURN
1560 IF direction=-31 THEN LET direction=33: RETURN

308

1600 REM Vertical wall

1610 IF direction=-31 THEN LET direction=-33: RETURN
1620 IF direction=-33 THEN LET direction=-31: RETURN
1630 IF direction=33 THEN LET directior 1: RETURN
1640 IF direction=31 THEN LET direction=33: RETURN
1650 IF direction=1 THEN LET direction=-1: RETURN
1660 IF direction=-1 THEN LET direction=1: RETURN
2110 LET pos=22785+INT (29$RND)+32KINT (13¥RND)

2160 LET r=INT (RND$8)

2200 IF r=0 THEN LET direction=1

2210 IF r=1 THEN LET directior 3

2220 IF r=2 THEN LET direction=32

2230 IF r=3 THEN LET directio
2240 IF r=4 THEN LET directior 1
2250 IF r=5 THEN LET direction=-31
2260 IF r=6 THEN LET direction=-32
2270 IF r=7 THEN LET direction=-33

2400 RETURN

3000 REM Do display

3010 CLS

3015 PRINT AT 0,8; “Molecular motion®

3020 PRINT AT 2,0;"q w e Press these®
3025 PRINT AT 3,13%a b c”

3030 PRINT AT 4,0;"ad o ed keys to move in”
3040 PRINT AT 5,1;f g h*

3045 PRINT AT 6,0;"z x c each direction®

3060 INK 0: PAPER 0
3070 PRINT AT 7,0;" E
3080 PRINT AT 21,0;" "
3090 INK PAPER 1

3100 FOR i=8 TO 20

3110 PRINT AT i,0;" "

3120 PRINT AT 1,313" *

3130 NEXT i

3140 INK 7: PAPER 7

3150 FOR i=8 TO 20

3160 PRINT AT 1,13" =
3170 NEXT i

3180 INK O

3200 RETURN

5000 REM define arrow characters

5010 REM A is a

5011 POKE USR "a®+0,224

5012 POKE USR “a*+1,192

5013 POKE USR
5014 POKE USR “a
35015 POKE USR “a"+4,8
5016 POKE USR "a*+5,4
5017 POKE USR “a"+b,2
5018 POKE USR "a’+7, 1
5020 REM B is b

5021 POKE USR “b"+0, 14
5022 POKE USR “b"+1,56
5023 POKE USR "b"+2,84
5024 POKE USR “b"+3,16
5025 POKE USR "b"+4,16
5026 POKE USR "b“+5,16
5027 POKE USR "b"+4, 16
5028 POKE USR *b"+7,1é
5030 REM C is c

5031 POKE USR “c+0,7
5032 POKE USR “c"+1,3

Program listings

309

The ZX Spectrum in science teaching

5033 POKE USR "c"+2,5
5034 POKE USR "c"+3,8
5035 POKE USR "c"+4,16
5036 POKE USR "c"+5,32
5037 POKE USR "c"+6,8%
5038 POKE USR "c“+7,128
5040 REM D is d

S041 POKE USR "d"+0,0
5042 POKE USR * 1,0
5043 POKE USR "d"+2,32
5044 POKE USR "d"+3,84
5045 POKE USR "d"+4,255
5046 POKE USR "d"+5,44
5047 POKE USR "d"+4,32
5048 POKE USR "d"+7,0
5050 REM E is e

5051 POKE USR "&"+0,0
5052 POKE USR "e"+1,0
5053 POKE USR "e"+2,4
5054 POKE USR “e"+3,2
5055 POKE USR "e"+4,235
5056 POKE USR “e"+5,2
5057 POKE USR "e"+4,4
5058 POKE USR “e"+7,0
5060 REM F is #

5061 POKE USR "£"+0,1
5042 POKE USR "f"+1,2
5063 POKE USR “§“+2,4
S044 POKE USR "f"+3,8
5045 POKE USR "§"+4,16
S046 POKE USR "#"+5,160
5047 POKE USR "§"+6,192
S048 POKE USR "§"+7,224
5070 REM G is g

5071 POKE USR "g"+0,1&
5072 POKE USR "g"+1,16
5073 POKE USR "g"+2,16
5074 POKE USR "g"+3,16
5075 POKE USR 4,16
5076 POKE USR "g"+5,84
5077 POKE USR "g"+&,56
5078 POKE USR "g"+7,16
5080 REM H is h

5081 POKE USR "h"+0,128
5082 POKE USR "h"+1,44
5083 POKE USR "h"+2,32
5084 POKE USR "h"+3,16
5085 POKE USR "h"+4,8
5086 POKE USR "h"+5,5
5087 POKE USR "h"+6,3
5088 POKE USR "h"+7,7
5090 RETURN

Program 34 MOLECULAR MOTION - FAST

1 CLEAR 30000
2 RANDOMIZE

5 PRINT AT 10,1;"Please wait, loading data.”
10 6O SUB 1000
20 GO SUB 2000

30 GO SUB 3000
S0 LET temp=3

310

100 RANDOMIZE USR 30464
110 PAUSE temp

NKEY$
" THEN G0 TO 100
m" THEN LET temp=temp-1

150 IF temp<i THEN LET temp=1

160 IF 1$="n" THEN LET temp=temp+1

170 IF temp>S THEN LET temp=S

180 60 TO 100

1000 FOR i=30464 TO 30759

1010 READ x

1020 POKE i,x

1030 NEXT i

1100 REM machine codes in decimal

1120 DATA 58,128,126,79,6,122,10, 111

1130 DATA 4,10,103,4,10,95,4,10,87,25

1140 DATA 126,254,63,202,13,120,254,0,202, 128,119
1150 DATA 254,9,194,13, 120, 123, 254, 223, 40, 22
1160 DATA 254, 255,40, 24,254, 31,40, 26,258,225
1170 DATA 40,28,254,1,40,30,17,31,0,195

1180 DATA 0,120,17,225,255,195,0, 120,17, 1
1190 DATA 0,195,0,120,17,33,0,195,0,120

1200 DATA 17,223,255,195,0,120, 17, 255, 255, 195
1210 DATA 0,120,0,0,0,0,0,0,0,0
1220 DATA 0,0,0,0,0,0,0,0,0,0
1225 DATA 0,0,0,0,0,0,0,0,
1226 DATA 0,0,0,0,0,0,0,0
1230 REM horizontal wall at 128,119
1250 DATA 123,254,31,40,22
1260 DATA 254,32,40,24,254,33,40, 26,254,223
1270 DATA 40,28,254,224,40,30,17,33,0, 195
1280 DATA 0,120,17,223,255,195,0, 120, 17,224
1290 DATA 255,195,0,120, 17,225,255, 195,0,120
1300 DATA 17,31,0,195,0,120,17,32,0,195
1310 DATA 0,120
1320 DATA 0,0,
1330 DATA 0,0,
s

o,
0,0
o

o000BOCO

0,0,0

Nooooooe

B

1390 DATA 122,2,5,123,2,5, 195,32, 120,0

1400 REM “empty’ at 13,120

1410 DATA 0,0,0,0,54,56,229,6,122, 10

1420 DATA 111,4,10,103,54,43,225,124,2,5

1430 DATA 125,2,13,194,4,119,201,0,0,0

1500 RETURN

2000 REM make up tables

2050 LET mols=35

2100 FOR i=1 TO mols

2110 LET pos=22753+INT (298RND)+328INT (14%RND)

INT (pos/256)

os-poshi §256

2140 POKE (1228256+i),poslo

2150 POKE (1234256+i),poshi

2160 LET r=INT (RND$8)

2200 IF r=0 THEN POKE (1248256+i),1: POKE (1258256+i),0
2210 IF r=1 THEN POKE (1248256+i),33: POKE (1258256+i),0
2220 IF r=2 THEN POKE (124¥256+i),32:r FOKE (1258256+1),0
2230 IF r=3 THEN POKE (1248256+i),31: POKE (1258256+i),0
2240 IF r=4 THEN POKE (124%256+i),255: POKE (125125&+i),255

Program listings

311

The ZX Spectrum in science teaching

2250 IF r=5 THEN POKE (1248256+1),223: POKE (1258256+1),255
2260 IF r=4 THEN POKE (124%256+i),224: POKE (125%256+i),255
2270 IF r=7 THEN POKE (1283256+i),225: FOKE (1254256+1),255
2280 NEXT i

2300 POKE 1263256+128,mols

2400 RETURN

3000 REM Do display

3010 CLS

3020 PRINT AT 0,8;"Molecular motion®

3030 PRINT AT 2,0;"Press M to increase temperature.”

3040 PRINT AT 4,0;"Press N to decrease temperature.”

3060 INK 0: PAPER 0

3070 PRINT AT &,0;"

3080 PRINT AT 21,0;"

3090 INK FAFER 1

3100 FOR i=7 TO 20

3110 PRINT AT i,05" *

3120 PRINT AT i,31;" "

3130 NEXT i

3140 INK 7: PAPER 7

3150 FOR i=7 TO 20 i
3160 PRINT AT i,1;"000000000000000000000000000000!
3170 NEXT i

3180 INK O

3200 RETURN

5000 FOR i=0 TO mols

5010 PRINT PEEK (1248256+1i),PEEK (125%206+1)
5020 NEXT i

Program 35 GRAVITY

1 REM GRAVITY
5 LET acceleration=-10
& LET ps=" ®
10 CLS
20 PRINT AT 0,8; "VERTICAL HEIGHT"
30 PRINT AT 4,0;"This program prints the vertical®
40 PRINT AT 6,0;"height reached by an object”
50 PRINT AT B,0; "thrown vertically upwards.”
&0 PRINT AT 12,0;"Enter the initial speed"”
70 PRINT AT *in the range 0 to 200."
80 INPUT “Speed = ";initspeed
90 CLS
100 REM VERTICAL HEIGHT
110 PRINT AT 0,0;"Acceltn. Speed Height Time"
130 FOR t=0 TO 18
140 LET height=initspeedit+0.S5taccelerationktit
150 LET speed=initspeed+accelerationst
160 LET number=acceleration: GO SUB 1000
170 PRINT AT t+2,3jtruncate
180 LET number=speed: GO SUB 1000
190 PRINT AT t+2,10; truncate
195 IF height<1 THEN LET h$="Q"+ps
200 LET number=height: GO SUB 1000
210 PRINT AT t+42,18;truncate
220 LET number=t: GO SUB 1000
230 PRINT AT t+2,27;truncate
240 NEXT t
250 STOP
1000 REM Convert to four digits
1010 IF ABS number<0.01 THEN LET number=0
1020 LET n$=STRS number+" .

312

1030 LET truncate=VAL ns(TO 4)
1040 IF number<0 THEN LET truncate=VAL ns(TO 5)
1050 RETURN

Program 36 RESONANCE

1 REM LCR Resonance

10 REM Define chm symbol

11 POKE USR "a"+0,24

12 POKE USR "a"+1,3&

13 POKE USR "a"+2,66

14 POKE USR "a"+3,129

15 POKE USR “a"+4,66

16 POKE USR "a"+5,34

17 POKE USR *a"+&,38

18 POKE USR "a"+7,231

20 REM Define micro symbol

21 POKE USR "I +0,466

22 POKE USR *b"+1,64

23 POKE USR "b"+2,66

24 POKE USR *b"+3,100

25 POKE USR "b"+4,B88

26 POKE USR "b"+5,64

27 POKE USR "b"+&, 44

28 POKE USR “b“+7,64

100 CLS

110 PLOT 0,5

120 DRAW 255,0

130 PLOT 5,0

140 DRAW 0,175

150 PRINT AT 0,0;" Ly
160
170
180 INPUT "Inductance (millihenries) = "
190 PRINT AT 0,0;"Inductance = “;L;* mH*
200 INPUT "Resistance (ohms) = *
210 PRINT AT 1,0;"Resistance = 3
220 INPUT "Capacitance (microfarads)
230 PRINT AT 2,0;"Capacitance = ";C;" bF"
240 IF R=0 THEN LET R=.0001
250 LET E=50
260 PLOT 5,5
270 LET flag=0
280 FOR f=1 TO 2500 STEF 10
290 LET XL=f4L/1000
300 LET XC=1000000/ (£3C)
310 LET X=XL-XC
320 LET Z=50R (RER+XX)
330 LET I=E/Z
340 LET VC=I#XC
350 IF UC<2 THEN LET £=2550: GO TO 400
370 IF VC>1500 THEN LET flag=0: GO TO 400

Program listings

380 IF flag=1 THEN DRAW S+INT (f/10)-PEEK 23677, 5+INT (VC/10)-PEEK 234678

390 IF flag=0 THEN PLOT S+INT (£/10) ,S+INT (VC/10): LET flag=1
400 NEXT ¢
410 GO TO 150

Program 37 CAPACITOR DISCHARGE

1 REM Capacitor Discharge
10 REM Define ohm symbol
11 POKE USR "a"+0,24

313

The ZX

12 POKE
13 POKE
14 POKE
15 POKE
16 POKE
17 POKE
18 POKE
20 REM
21 POKE
22 POKE
23 POKE
24 POKE
25 POKE
24 POKE

Spectrum in science teaching

USR “a"+1,34
USR *
USR

USR "a"+4,b56
USR "a"+5,36

USR "a"+&,36

USR "a"+7,231
Define micro symbol
USR "B"+0, 66

USR "b"+1,86

27 POKE USR "b"+&,564
28 POKE USR "b"+7,64

100 CLS

110 PLOT 0,5
120 DRAW 255,0

130 PLOT

5'
140 DRAW 0,

150 PRINT AT 0,0;" "
160 PRINT AT 1,03" :

170 PRINT AT 2,0;"V": PRINT AT 21,31;
180 INPUT "Capacitance (microfarads)
190 PRINT AT 0,0;"
200 INPUT "Resistance (ohms) = "
210 PRINT AT 1,0;

e
apacitance = ";C;" bF*"

“Resistance = "

240 IF R=0 THEN LET R=.0001

250 LET

E=148

260 PLOT 5,E+S

270 LET
280 LET
290 LET
300 LET
310 REM
320 LET
330 LET
340 LET
350 LET

tine=0

charge=EfC: REM microcoulomb
voltages
timeinc=1

Begin iteration

current=vol tage/R
charge=scharge-currentstimeinc
voltage=charge/C
time=time+timeinc

360 DRAW S+time-PEEK 23477,5+voltage-PEEK 23478
370 IF time<250 THEN 60 TO 310
400 60 TO 150

Program 38 PROJECTILES

30 LET g=10
40 LET =0

50 LET angle=45

40 LET speed=25

70 LET mass=1

100 REM Collect initial conditions

110 CLS

120 PRINT AT 1,5;"PROJECTILE MOTION®

130 PRINT AT 3,0;"Initial conditions:"

140 PRINT AT 5,1 ";speed

150 PRINT AT 7,1 “jangle

160 PRINT AT 9,1 "

170 PRINT AT "ig

180 PRINT AT Press ENTER to confirm.”
190 PRINT AT Press SPACE to change

il4

Program listings

200 LET key=CODE INKEYS

210 IF key<>13 AND key<>32 THEN GO TO 200

220 IF key=13 THEN GO TO 900

230 REM Change values

240 PRINT AT 17,0;"Which do you want to change?”

250 PRINT AT 19,0; "Enter S, A, F or G"

260 LET 18=INKEY$: IF 1$<)>"S" AND 1$<3"s" AND 1$C>"A" AND 18<>"a® AND 1SC*F® A
ND 1$<>"§" AND 18<>"G" AND 1$<>"g" THEN B0 TO 260

265

270 OR 1$="s" THEN GO SUB 500
280 OR 1$="a" THEN GO SUE 600
290 OR l$="f" THEN GO SUB 700
300 OR 1$="g* THEN GO SUB 80O

310 GO TO 100

500 REM Alter initial speed

520 PRINT AT 0,0;"Enter new starting speed
530 PRINT AT 2,0;"in the range O to 100.
535 PRINT AT 4,0;" "
540 INPUT speed

S50 IF speed<0 OR speed>100 THEN GO TO 500
560 RETURN

600 REM Alter initial angle

620 PRINT AT 0,0;"Enter new angle of projection
630 PRINT AT 2,0;"in the range 0 to 90.

635 PRINT AT 4,03
440 INPUT angle
450 IF angle<0 OR angle)90 THEN B0 TO 400

&40 RETURN

700 REM Alter érictional drag

720 PRINT AT 0,0;“Enter new frictional drag "

730 PRINT AT 2,0;"in the range 0 to 9.

735 PRINT AT 4,0;" .
740 INPUT 4

750 IF 40 OR #>3 THEN GO TO 700

760 RETURN .

800 REM Alter gravitational acceleration

820 PRINT AT 0,0;"Enter new gravity "

830 PRINT AT 2,0;"in the range 0 to 20. :
835 PRINT AT 4,0;" .
840 INPUT g

850 IF g¢0 OR g>20 THEN GO TO BOO

860 RETURN

900 REM Select variable for investigation

910 CLS

920 PRINT AT 17,0;"Which do you want to investigate"

540 PRINT AT 19,0;"Enter S, A, F or G"

950 LET 1$=INKEY$: IF 1$<>"S" AND 18<>"s" AND 13<{>"A" AND 1%<>"a" AND 1$<3"F" A
ND 18<>"f" AND 1$<>"G" AND 1$<>"g" THEN GO TO 950

955 IF 14="5" OR 1%="g" THEN LET hell=1500

960 IF 1$="A" OR 1$="a" THEN LET hell=1400

965 IF 18="F" DR 1$="f" THEN LET hell=1700
970 IF 1$="G" OR 1$="g" THEN LET hell=1800
980 CLS

990-GO TO hell

1000 REM Initialize variables

1010 LET timeincr=0.1

1020 LET x=0: LET y=40

1025 PLOT 255,40: DRAW -255,0

1030 LET gravity=-g

1035 LET drag=f/10

1040 LET xspeed=speediCOS (anglesP1/180)
1050 LET yspeed=speedtSIN (angletPI/180)

The ZX Spectrum in science teaching Program listings
1060 REM Iteration starts here Program 39 NEWTON

1070 LET xforce=dragixspeed

1080 LET yforce=dragtyspeed 1 REM Newton

1100 LET xacceleration=-xforce/mass 2 REM Satellite motion

1110 LET xspeed=xspeed+xaccelerationttimeincr 100 CLS

1120 LET x=x+xspeedttimeincr 110 PRINT AT 0,7;"SATELLITE MOTION"

1200 LET yacceleration=gravity-yforce/mass 120 PRINT AT 2,0;"The aim of this program is to"
1210 LET yspeed=yspeed+yaccelerationttimeincr 130 PRINT AT 4,0;"set a rocket in orbit around the"
1220 LET y=y+yspeedStineincr 140 PRINT AT &,0;"moon from a space station.”

1230 IF x>255 OR y>175 OR y<0 THEN RETURN 150 PRINT AT 8,0;"You can choose the initial speed”
1300 DRAM x-PEEK 23477,y-PEEK 23678 160 PRINT AT 10,0;"and direction of the rocket."
1310 GO TO 1060 170 PRINT AT 12,0;“Crashing the rocket or losing"
1500 REM Investigate speed 180 PRINT AT 14,0;"it in space causes a restart.”
1510 PRINT AT 0,0;“Investigating speed = 190 PRINT AT 21,0;"Press B to begin.”

1520 PRINT AT 2,0;"Present speed = ";speed;” L) 200 IF INKEY$<>"b" AND INKEV$<>"B" THEN GO TO 200
1525 PRINT AT &, " 210 CLS

1530 B0 SUB 1000 220 REM Draw moon and space station

1540 PRINT AT 2,0;"Press SPACE to change speed” 230 FOR i=0 TO 360 STEP B

1550 PRINT AT 4,0;"Press C to change something else” 240 LET x=128+68SIN (i#PI/180)

1560 LET k$=INKEY$: IF k$<>" " AND k$<>"C" AND k$<>"c* THEN B0 TO 1540 250 LET y=88+64C0S (itPL/180)

1570 IF k$="C" OR k$="c* THEN GO TO 100 260 PLOT 128,88

1580 6O SUB 500 270 DRAW x-PEEK 23677,y-PEEK 23678

1590 GO TO 1500 280 NEXT i

1600 REM Investigate angle 300 FOR i=0 TO 340 STEP 10

1610 PRINT AT 0,0;"Investigating angle . 310 LET x=128+245IN (i1P1/180)

1620 PRINT AT 2,0i"Present angle = *;angle;” - 320 LET y=3+28C0S (itP1/180)

1625 PRINT AT 4,0;" B 330 PLOT 128,3

1630 GO SUB 1000 340 DRAW x-PEEK 23&77,y-PEEK 23678

1640 PRINT AT 2,0;"Press SPAGE to change angle” 350 NEXT i

1650 PRINT AT 4,0;"Press C to change something else" 360 REM Next attempt begins here

1560 LET k$=INKEY$: IF k$<>" " AND k$<>"C" AND k$<>"c" THEN BD TO 1640 370 PRINT AT 0,0;" ~
1670 IF k$="C" DR k$="c" THEN GO TO 100 380 PRINT AT 1,05 -
1680 GO SUB 400 400 INPUT "Enter speed (0 to 10} ";speed

1690 60 TO 1600 410 PRINT AT 0,0;"Speed = ";speed

1700 REM Investigate friction 420 INPUT "Enter angle (=90 to 90) ";angle

1710 PRINT AT 0,0;"Investigating friction L 430 PRINT AT 1,0;"Angle = “;angle

1720 PRINT AT 2,0;"Present friction = ";¢;" . 480 REM Calculate current position and speed

1725 PRINT AT 4,0;" " 450 LET x=128: LET y=5

1730 BO SUB 1000 440 LET xvelocity=speedtSIN (angletP1/180)

1740 PRINT AT 2,0;"Press SPACE to change friction” 470 LET yvelocity=speed#COS (angletPI/1B0)

1750 PRINT AT 4,0;"Press C to change something else” 480 PLOT x,y

1760 LET k$=INKEY$: IF k$<>" " AND k$<{>“C" AND k$<>"c* THEN GO TO 1740 500 REM Iteration begins

1770 IF k$="C" OR k$="c" THEN GO TO 100 510 REM The moon is at 128,88

1780 6O SUB 700 520 REM First calculate the rocket-moon distance
1790 60 TO 1700 530 LET xdisplacement=x-128

1800 REM Investigate gravity 540 LET ydisplacement=y-88

S50 LET parameter=xdisplacementt:xdisplacement+ydisplacement $ydisplacenent

1810 PRINT AT 0,0;"Investigating gravity »
S40 LET distance=SOR (parameter$paraneter3iparameter)

1820 PRINT AT 2,0;"Present gravity = ";gravity;” "

1825 PRINT AT 4,0;" o 570 IF distance<350 THEN GO TO 360
1830 60 SUE 1000 600 REM Compute new speed
1840 PRINT AT 2,0;"Press SPACE to change gravity” 610 LET xvelocity=xveloci ty-200%xdisplacement /distance

620 LET yvelocity=yvelocity-2008ydisplacement/distance

1850 PRINT AT 4,0;"Press C to change something else” 50 ROl . i
3 ompute new positions

1860 LET k$=INKEY$: IF kS$<>" " AND k$<3>“C" AND k$< >"c* THEN GO TO 1860

]199;3 IF k$="C" OR k$="c" THEN GO TO 100 :;g ::S “=“WE:“¢=:‘I
GO SUB 800 T y=y+yvelocity
1890 GO TO 1800 460 IF x<0 DR x>255 OR y<0 OR y>175 THEN GO TO 340

480 DRAW x-PEEK 234677,y-PEEK 23478
490 GO TO S00

The ZX Spectrum in science teaching

Program 40 RUTHERFORD

=

100
110
120
130
140
150
160
170
180

210
220
230
240
250
260
270
280
360
370
380
400
410
480
500
510
520
530
540
550
560
570
&00
610
&20
&30
540
650
660
680
690

REM Rutherford

REM Alpha particle scattering

CLs

PRINT AT 0,3;"ALPHA PARTICLE SCATTERING"
PRINT AT 2,0;"The aim of this program is to”
FRINT AT 4,0;"fire apha particles at random”
PRINT AT 6,0;"at a nucleus of gold.”

PRINT AT 8,0;"The alpha particles are"
PRINT AT 10,0;"deflected by the nucleus and"
PRINT AT 12,0;"there could be a direct hit."
PRINT AT 16,0;"Press B to begin."

IF INKEYS<>"b" AND INKEY$<{>"B" THEN GO TO 200
CLs

REM Draw gold nucleus

FOR i=0 TO 350 STEP 10

LET x=128+24SIN (i3PI/1B0)
LET y=88+421C0S (1tP1/180)

PLOT 128,88

DRAW x~-PEEK 23677,y-PEEK 23478
NEXT i

REM Next attempt begins here
LET x=0

LET y=RND$175

LET xvelocity=10

LET yvelocity=0

PLOT x,y

REM ITteration begins

REM The nucleus is at 128,88

REM First calculate the particle-nucleus distance
LET xdisplacement=x-128

LET ydisplacement=y-88

LET parameter=xdisplacement Izdisplacement+ydisplacement8ydisplacenent

LET distance=SOR (parameter #parameter tparameter)
IF distance<i0 THEN GO TO 30

REM Compute new speed

LET xvelocity=svelocity+200%xdisplacement/distance
LET yvelocity=yvelocity+2008ydisplacement/distance
REM Compute new positions

LET x=x+xvelocity

LET y=y+yvelocity

IF %<0 OR x>255 OR y<O OR y>175 THEN GO TO 340
DRAW x-PEEK 23477,y-PEEK 23478

60 TO S00

Index

acceleration
measurement, 105-7
simulation, 74
ACCUMULATOR, 132
address, 33-5, 131-2
addressing modes of the
microprocessor, 135, 146-7
arithmetic, machine-code,
137-41

analogue input connections,
12

analogue interfacing, 112-28

analogue to digital conversion
(ADC), 1126F

analyser, spectrum, 127-8

AND., %4, 144

ANIMALS, 26

animation, 41-5

amplifier, 99, 109, 113

ASCII code, 30

assembly language
programming 31, 134,

174-6
ATTRIBUTES, 42-5, 169-70

BASIC, 30
binary code, 29, 38
bit, 29

bitwise logic, 144
Boolean algebra, 94-7
buffering inputs, 99, 113
buffering outputs, 109
byte, 30

calculation, 60
capacitor discharge
measurement of, 115
simulation of, 73
CARRY bit, 138, 141
characters
user-defined, 38
chunky, 37
CHRS, 32
clock, 100, 224
comments in assembly
language, 176
computer assisted learning
(CAL), 14,20-2
conditional jumps, 151
conservation of momentum,
106

control panel, simulated, 117

coordinates of screen, 62

counting in machine code,
143

crash, program, 12, 35, 168

crash protection, 12, 50
current measurement, 115-6
curves, trigonometric, 62-8

Darlington driver buffer, 109
data, 118

data memory, 120

decay
random (radioactive), 72
capacitor, 73, 115

defining characters, 38

demonstration programs (not

listed in Appendix)

absolute DR.AE:V. 62
a(x;;leratmn due to gravity,

ADC calibration, 114
ADC graphplot, 114
advanced timer, 226-8
BIGDIG, 214
BIGLETT, 185-7
binary counter, 86
burglar alarm, 93
circle, 66-7

cosine curve, 64-5
damped oscillations

pedestrian crossing, 92
Bluning points, 61, 202-5
ROGOSC (assembly), 229
psychedelic lights, 86
pseudo-code, 53
ULSER (assembly), 222
random lights, 86
row of stars, 45, 174
selective indicator, 90
screen dots, 61, 2024
screenfill, 182
screen print, 177
screen scroll, 207
shift register, 87
ple timer, 100
sine curve, 64
STOPCLOCK (assembly).
217-21
STORAGE OSCILLO-
SCOPE (assembly), 231-2
switch indicator,
tangent curve, 66
Iernrg:ramre measurement,
1

timer (simple}, 100
traffic lights, 85

(equation), voltmeter tutor, 123
damped oscillations (by form 124

“iteration), 74 wave superposition, 64-5,
data acquisition. 119 208

decimal to hex.,

ellipse, 67

ETCHASKETCHA. 118

fast ADC, 233

FAST TIMER (assembly),
24

filled graphics, 39
Fourier synthesis, 69
wvity, 68
ex. to decimal, 33
high resolution plotting, 61,

instant transfer to screen,
210~

large digit display, 185-7
line drawing, 62
line graphics, 40
Lissajous figures, 67
logic maker (simple), 91
metronome, 87
MOLECULAR MOTION
(assembly), 196
motion, 42-4, 199-201
moving origin, 63
moving star, 434, 191-3
parabola, 67

decay
capacitor, 73
of oscillations. 69, 74
random (radioactive), 72
delays, 189
digital interfacing, 79T
digital to analogue
conversion (DAC), 122-6
discovery learning, 22
DRAW, 62-3

electronic blackboard, 13
EPROM, 234
EXCLUSIVE-OR, 144

feedback, 98-9

frequency measurement, 107-8
Fourier synthesis, 69

fox and rabbit populations, 78

games, 25-6

graphics
chunky, 37
high resolution, 61-4
machine-code, 168{f
origin,

The ZX Spectrum in science teaching

user-defined, 38-40

hexadecimal, 32

high byte, 34, 139

high resolution graphics, 61-4
hysteresis, 99

immediate addressing, 134
INC, 143

indexed addressing 147
indirect addressing, 160-1
individualized learning, 22
INKEYS, 47
INPUT, 46
input
analogue, 113
buffcr%u‘)‘}
digital, 92-4
stant pictures, 210
structions, Z80, 134
teraction, 45-51
interfacin,
analogue, 112fT
digital, 79T
in machine code, 2167
interference waves, 208
interpreter, BASIC, 32
interrupts, 222
iterative methods, 72-8

joystick, 118

JP, 150

JR, 152-4

keyboard sensing in machine

kinetic model of a gas, 196

large digits display, 1838,
212-4

LD, 134

learning
computer assisted, 20-2
discovery, 22
programmed, 21

least squares [it, 24, 72

Lissajous figures, 67

loading machine code, 170-3

logic
BASIC, 94-7
machine code, 144-5

machine code
arithmetic, 137fF
comparison with BASIC,
183, 200-1
Eraphics, 168fT
eyboard interaction, 193
location in memory, 170
timing, 216-28
memory
RAM, 29
ROM, 32

screen, 42-5
top of memory pointers, 170

320

microprocessor, 28
mnemonic codes, 134
modelling, 23
monitor, 174
motion
linear, 74
molecular, 196
Newton’s laws, 107
projectile, 74
simple harmonic, 69
wave, 205
moving origin, 63
mull.?ge choice items, testing,

negative numbers in machine
code, 156

non-volatile memory, 235

numerical problems, 23

operand, 134
operating slyjsiem. 32

origin move, 63

output
analogue, 122
buffering, 99
digital, 81

parag;ﬂtrs in graph plotting,

photocell, 99

photodiode, 99

pictures, 37

PLOT a point in BASIC, 61

PLOT a point in machine
code, 201-4

potentiometer input, 118

power measurement, 116

PRINT, 45
PROGRAM COUNTER, 148
prmgzammpd learning, 21

shift instructions, 158
shift register, 87

SIGN bit, 157
simulation
alpha panticles, 76
capacitor di arge, 73

fo)%gand rabbit populations,

interference of waves, 206
molecular motion, 196
oscillations, 69, 74
projectiles, 74
radioactive decay, 72
satellite motion. 76
statistics, 72
spectrum analyser, 128
speed

simulation, 74

of camera shutter, 102

of rifle pellet, 102

of trolley, 104
STACK, 161
STOPCLOCK. 217-21
structured programming, 52-9
subroutines, machine-code,

150
switching outputs, 82-3
switch inputs, 88-9

temperature measurement, 118
testing. 15-16
text presentation, 45
timin
in BASIC
in machine code, 2217
with the internal clock, 216
traffic lights, 85
tutorial, 16

volatile memory, 29
voltage measurement, 112-14

52-9
projectile motion, 74
pulse output,
push button input, 118

RND, uses, 72
ndioaczgve decay, 72

reaction timer, 100

read memory, 131-2
resistance measurement, 115-6
resonance, LCR, 7

rgﬁpon?l-. smdmt‘;ﬁﬁﬁ&

rifle pellet speed,

ROM, 32

scattering of alpha particles, 76
screenfill, 182

screen scroll, 207
selFmodifying programs, 204
sensors, 117

seven-segment display, 110, 237

waveform output, 124, 127-9
wave si ion, 205
wrile to memory, 131-2

X-INDEX, 147

ZERO bit, 157

ZNA425 DAC, 123
ZN428 DAC, 123
ZN448 ADC, 121

